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I. Introduction and Motivation 

     The transformation of monetary policy decisions in most countries from 

individual decisions to group decisions is one of the most notable developments 

in the recent evolution of central banking (Blinder, 2004, Chapter 2). In an earlier 

paper (Blinder and Morgan, 2005), we created an experimental apparatus in 

which Princeton University students acted as ersatz central bankers, making 

monetary policy decisions both as individuals and in groups. That experiment 

yielded two main findings: 

1. groups made better decisions than individuals, in a sense to be made 

precise below; 

2. groups took no longer to reach decisions than individuals did.1 

Finding 1 was not a big surprise, given the previous literature on group versus 

individual decisionmaking (most of it not from economics). But we were frankly 

stunned by finding 2. Like seemingly everyone, we believed that groups moved 

more slowly than individuals. A subsequent replication with students at the 

London School of Economics (Lombardelli et al., 2005), verified finding 1 but did 

not report on finding 2. 

     This paper replicates our 2005 findings using the identical experimental 

apparatus, but with students at the University of California, Berkeley. That the 

replication is successful bolsters our confidence in the Princeton results. But that 

is neither the main purpose nor the focus of this paper. Instead, we study two 

                                                 
1 In both our 2005 paper and the present one, “time” is measured by the amount of data required 
before the individual or group decides to change the interest rate—not by the number of ticks of 
the clock. Our reason was (and remains) simple: This is the element of time lag that is relevant to 
monetary policy decisions; no one cares about how many hours the committee meetings last. 
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important issues that were deliberately omitted from our previous experimental 

design. 

     The first pertains to group size. In the Princeton experiment, every student 

monetary policy committee (MPC) had five members—precisely (and 

coincidentally) the size that Sibert (2005) subsequently judged to be optimal. 

Lombardelli et al. (2005), following our lead, also used committees of five. But 

real-world monetary policy committees vary in size, so it seems important to 

compare the performance of small versus large groups. Revealed preference 

arguments offer little guidance in this matter, since real-world MPCs range in size 

from three to nineteen, with the European Central Bank (ECB) headed even 

higher. In this paper, we study the size issue by comparing the experimental 

performances of groups of size four and size eight.2

     The second issue pertains to leadership and is the truly unique aspect of the 

research reported here. In both our Princeton experiment and in Lombardelli et 

al.’s replication, all members of the committee were treated equally. But every 

real-world monetary policy committee has a designated leader who clearly 

outranks the others. At the Federal Reserve, he is known as the “chairman”; at 

the ECB, he is the “president”; and at the Bank of England and many other 

central banks, he or she is the “governor.” Indeed, we are hard-pressed to think 

of any committee, in any context, that does not have a well-defined leader.3 

Observed reality, therefore, strongly suggests that groups need leaders in order 

                                                 
2 The reason for choosing even-numbered groups will be made clear shortly. 
3 Juries come close, but even they have a foreman. 
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to perform well. But is it true? That is the main question that this research is 

designed to answer. 

     Consider leadership on MPCs in particular. While all MPCs have designated 

leaders, the leader’s authority varies greatly. The Federal Open Market 

Committee (FOMC) under Alan Greenspan (less so, it seems, under Ben 

Bernanke) was at one extreme; it was what Blinder (2004, Chapter 2) called an 

autocratically-collegial committee, meaning that the chairman came close to 

dictating the committee’s decision. This tradition of strong leadership did not 

originate with Greenspan. Paul Volcker’s dominance was legendary, and 

Chappell et al. (2005, Chapter 7) estimated econometrically that Arthur Burns’ 

views on monetary policy carried about as much weight as those of all the other 

FOMC members combined. At the other extreme, the Bank of England’s MPC is 

what Blinder (2004) called an individualistic committee--one that reaches 

decisions (more or less) by true majority vote. Its Governor, Mervyn King, even 

famously allowed himself to be outvoted once in 2005 in order to make this point. 

In between these poles, we find a wide variety of genuinely-collegial committees, 

like the ECB Governing Council, which strive for consensus decisionmaking. 

Some of these committees are firmly led; others are led only gently. 

     The scholarly literature on group decisionmaking, which comes mostly from 

psychology and organizational behavior rather than from economics, gives us 

relatively little guidance on what to expect. And only a small portion of this 

literature is experimental. As a broad generalization, our quick review of the 

literature led us to expect to find some positive effect of leadership on group 
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performance--which is the same prior we had before reviewing the literature. But 

it also led to some doubts about whether intellectual ability is the key ingredient 

in effective leadership (Fiedler and Gibson, 2001). Rather, the gains from group 

interaction may depend more on how well the leader encourages the other 

members of the group to contribute their opinions frankly and openly (Blades 

(1973), Maier (1970), Edmondson (1999)). In an interesting public goods 

experiment, Guth et al. (2004) also found that stronger leadership produced 

better results. We did not find any relevant evidence on whether leadership 

effects are greater in larger or smaller groups.  

     With these two issues—group size and leadership—in mind, we designed our 

experiment to have four treatments, running ten or eleven sessions of each 

treatment: 

i. four-person groups with no leader, hereafter denoted {n=4, no leader} 

ii. four-person groups with a leader {n=4, leader} 

iii. eight-person groups with no leader {n=8, no leader} 

iv. eight-person groups with a leader {n=8, leader}. 

     We summarize our results very briefly here because they will be understood 

far better after the experimental details are explained. First, we successfully 

replicate our Princeton results, at least qualitatively: Groups perform better than 

individuals, and they do not require more “time” to do so. Second, we find rather 

little difference between the performance of four-person and eight-person groups; 

the larger groups outperform the smaller groups by a very small (and often 

insignificant) margin. Third, and most important, we find no evidence of superior 
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performance by groups that have designated leaders. Groups without such 

leaders do as well as or better than groups with well-defined leaders. This is a 

surprising finding, and we will speculate on some possible reasons later 

     The rest of the paper is organized as follows. Section II describes the 

experimental setup, which is in most respects exactly the same as in Blinder and 

Morgan (2005). Sections III and IV focus on the data generated by 

decisionmaking in groups, presenting new results on the effects of group size 

and leadership respectively. Then Section V briefly presents results comparing 

group and individual performance that mostly replicate those of our Princeton 

experiment, though there are a few exceptions. Section VI summarizes the 

conclusions. 

 

II. The Experimental Setup4

Our experimental subjects were Berkeley undergraduates who had taken 

at least one course in macroeconomics. We brought them into the Berkeley 

Experimental Social Sciences Lab (Xlab) in groups of either four or eight, telling 

them that they would be playing a monetary policy game. Each computer was 

programmed with the following simple two-equation macroeconomic model—

exactly the same one that we used in the Princeton experiment—with parameters 

chosen to resemble the U.S. economy:  

(1)   πt =  0.4πt-1 + 0.3πt-2 + 0.2πt-3 + 0.1πt-4   − 0.5(Ut-1 − 5) + wt

(2)   Ut − 5 = 0.6(Ut-1 − 5) + 0.3(it-1 − πt-1 − 5) - Gt + et .

                                                 
4 This section overlaps substantially with Section 1.1 of Blinder and Morgan (2005), but omits 
some of the detail presented there. 
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Equation (1) is a standard accelerationist Phillips curve. Inflation, π, 

depends on the deviation of the lagged unemployment rate from its presumed 

natural rate of 5%, and on its own four lagged values, with weights summing to 

one. The coefficient on the unemployment rate was chosen roughly to match 

empirically-estimated Phillips curves for the United States. 

Equation (2) can be thought of as an IS curve with the unemployment rate, 

U, replacing real output. Unemployment tends to rise above (or fall below) its 

natural rate when the real interest rate, i − π , is above (or below) its "neutral" 

value, which is also 5%. (Here i is the nominal interest rate.)  But there is a lag in 

the relationship, so unemployment responds to the real interest rate only 

gradually. Like real-world central bankers, our experimental subjects control only 

the nominal interest rate, not the real interest rate. 

The Gt term in (2) is the shock to which our student monetary 

policymakers are supposed to react. It starts at zero and randomly changes 

permanently to either +0.3 or −0.3 sometime during the first 10 periods of play. 

Readers can think of G as representing government spending or any other shock 

to aggregate demand. As is clear from (2), a change in G changes U by precisely 

the same amount, but in the opposite direction, on impact. Then there are lagged 

responses, and the model economy eventually converges back to its natural rate 

of unemployment. Because of the vertical long-run Phillips curve, of course, any 

constant inflation rate can be an equilibrium. 

We begin each round of play with an initial inflation rate of 2%—which is 

also the central bank’s target rate (see below). Thus, prior to the shock (that is, 
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when G=0), the model's steady-state equilibrium is U=5, i=7, π=2. As is apparent 

from the coefficients in equation (2), the shock changes the neutral real interest 

rate from 5% to either 6% or 4% permanently. Our subjects—who do not know 

this--are supposed to detect and react to this change, presumably with a lag, by 

raising or lowering the nominal interest rate accordingly. 

Finally, the two stochastic shocks, et and wt, are drawn independently from 

uniform distributions on the interval [−.25, +.25].5 Their standard deviations are 

approximately 0.14, or about half the size of the G shock. This sizing decision, 

we found, makes the fiscal shock relatively easy to detect--but not “too easy.” 

Lest our subjects had forgotten their basic macroeconomics, the 

instructions reminded them that raising the interest rate lowers inflation and 

raises unemployment, while lowering it does the reverse, albeit with a lag.6 In the 

model, monetary policy affects unemployment with a one-period lag and inflation 

with a two-period lag; but students are not told that. Nor are they told anything 

else about the model's specification. They are, however, told that the demand 

shock, whose magnitude they do not know, will occur at a random time that is 

equally likely to be any of periods 1 through 10. 

While this model may look trivial, stabilizing such a system can be tricky in 

practice. Because of the unit root apparent in equation (1), the model diverges 

from equilibrium when perturbed by a shock--unless it is stabilized by monetary 

policy. But long lags and modest early-period effects combine to make the 

divergence from equilibrium pretty gradual, and hence less than obvious at first. 

                                                 
5 The distributions are iid and uniform, rather than normal, for programming convenience. 
6 A copy of the instructions is available on request. 
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Once unemployment and inflation start to “run away from you,” it can be difficult 

to get them back on track. 

Each play of the game proceeds as follows. We start the system in steady 

state equilibrium at the values mentioned above: G=0, i=7%, lagged U=5%, and 

all lags of π=2%. The computer then selects values for the two random shocks 

and displays the first-period values of U and  π, which are normally close to the 

optimal values (U=5%, π=2%), on the screen for the subjects to see. In each 

subsequent period, new random values of et and wt are drawn, thereby creating 

statistical noise, and the lagged variables that appear in equations (1) and (2) are 

updated. At some random time, unknown to students, the G shock occurs. The 

computer calculates Ut and πt each period and displays them on the screen, 

where all past values are also shown. Subjects are then asked to choose an 

interest rate for the next period, and the game continues for 20 such periods. 

Students are told to think of each period as a quarter; so the simulation covers 

“five years.” 

No time pressure is applied; subjects are permitted to take as much clock 

time as they wish to make each decision. As noted above, the concept of time 

that interests us is the decision lag: the amount of new data the decisionmaker 

insists upon before changing the interest rate. In the real world, data flow in 

unevenly over calendar time; in our experiment, subjects see one new 

observation on unemployment and inflation each period. So when we say below 

that one type of decisionmaking process “takes longer” than another, we mean 

that more data (not more minutes) are required.  
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To rate the quality of their performance, and to reward subjects 

accordingly, we tell students that their score for each quarter is: 

              (3)  st = 100 − 10⏐Ut − 5⏐ − 10⏐πt − 2⏐, 

and the score for the entire game (henceforth, S) is the (unweighted) average of 

st over the 20 quarters. We use an absolute-value function instead of the 

quadratic loss function that has become ubiquitous in research on monetary 

policy (and much else) because quadratics are too hard for subjects--even 

Princeton and Berkeley students--to calculate in their heads. Notice also that the 

coefficients in equation (3) scale the scores into percentages, which gives them a 

ready intuitive interpretation. Thus, for example, missing the unemployment 

target by 0.8 (in either direction) and the inflation target by 1.0 results in a score 

of 100 - 8 -10 = 82 for that period.7 At the end of the session, scores are 

converted into money at the rate of 25 cents per percentage point. Subjects 

typically earned about $20-$21 out of a theoretical maximum of $25.  

One final detail needs to be mentioned. To deter excessive manipulation 

of the interest rate (which we observed in testing the apparatus in dry runs), we 

charge subjects a fixed cost of 10 points each time they change the rate of 

interest, regardless of the size of the change.8 Ten points is a small charge; 

averaged over a 20-period game, it amounts to just 0.5% of the total potential 

score. But we found it to be large enough to deter most of the excessive fiddling 

with interest rates. Analogously, researchers who try to derive the Fed’s reaction 

function from the minimization of a quadratic loss function find that they must 
                                                 
7 The unemployment and inflation data are always rounded to the nearest tenth. So students see, 
e.g., 5.8%, not, say, 5.83%. 
8 To keep things simple, only integer interest rates are allowed. 
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add, say, a quadratic term in (it – it-1) to fit the data. Without that wrinkle, interest 

rates are far too volatile.9

The sessions are played as follows. Either four or eight students enter the 

lab and are read detailed instructions, which they are also given in writing. They 

are then allowed to practice with the computer apparatus for five minutes, during 

which time they can ask any questions they wish. Scores during those practice 

rounds are displayed for feedback, but not recorded. At the end of the practice 

period, each machine is reinitialized, and each student is instructed to play 12 

rounds of the game (each lasting 20 “quarters”) alone—without communicating in 

any way with the other subjects. Once all the subjects have completed 12 rounds 

of individual play, the experimenter calls a halt to Part One of the experiment. 

In Part Two, the students gather around a single large screen to play the 

same game 12 times as a group. It is here that the sessions with and without 

leaders differ. In leaderless sessions, the rules are exactly the same as in 

individual play, except that students are now permitted to communicate freely 

with one another—as much and in any way they please. Everyone in the group is 

treated alike, and each subject receives the group's common score. 

In sessions with a designated leader, the experimenter begins by telling 

everyone which student earned the highest score while playing alone in Part 

One, and designates that student as the “leader” (the term we used) of the group 

for Part Two. Up to that moment, the subjects do not know that leadership wioll 

have anything to do with the experiment. The leaders of each group is 

responsible for communicating (verbally) the group’s decision to the 
                                                 
9 See, for example, Rudebusch (2001). 
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experimenter, who then enters it into the computer. That device normally ensures 

that the leader leads the discussion, or at least that communication is directed to 

him or her. The leader is accorded two privileges, which are common knowledge: 

his or her score in Part Two is double that of the other subjects; and, in the event 

of a tie vote, the leader gets to break the tie. That is why we chose even-

numbered groups.10

After 12 rounds of group play, the subjects return to their individual 

computers for Part Three, in which they play the game another 12 times alone, 

with no communication with the others. For future reference, Table 1 summarizes 

the flow of each session. 

Table 1 
The Flow of the Experiment 

 
                            Instructions 
                            Practice Rounds (no scores recorded) 
                            Part One: 12 rounds played as individuals 
                            Part Two: 12 rounds played as a group (with or without a leader) 
                            Part Three: 12 rounds played as individuals 
                            Students are paid by check and leave. 

 

A typical session (of 36 rounds of the game) lasted about 90 minutes, and we ran 

42 sessions in all, amounting to 252 total subjects. (No subject was permitted to 

play more than once.) Each of the 21 four-person sessions should have 

generated 24 individual rounds of play per subject, or 21 x 4 x 24 = 2,016 in all, 

plus 12 group rounds per session, or 252 in all. Each of the 21 eight-person 

sessions should have generated twice as many individual observations (hence 

4,032 in total), plus the same 252 group observations. Thus we have a plethora 

                                                 
10 In fact, ties were rare. 
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of data on individual performance but a relative paucity of data on group 

performance. Since a small number of observations were lost due to computer 

glitches, Table 2 displays the exact number of observations we actually 

generated for each treatment. We concentrate on our new findings on the 

behavior of ersatz monetary policy committees—the 504 experimental 

observations listed in the rightmost column of Table 2. 

 
Table 2 

Number of observations for each treatment 
 Number of 

sessions 
Individuals Groups 

n=4, no leader 10 960 120 
n=4, leader 11 1032 132 
n=8, no leader 10 1885 120 
n=8, leader 11 2112 132 

 
 

III. Are larger groups more effective than smaller groups? 

         The title of our 2005 paper asked, “Are two heads better than one?” We 

now ask whether eight heads are better than four—that is, do smaller (n=4) or 

larger (n=8) groups perform better in conducting simulated monetary policy? As 

an empirical matter, most real-world MPCs cluster in the five- to ten-member 

range, with some smaller and some larger.11 So our eight-person committees are 

somewhat typical of real-world MPCs while our four-person committees are on 

the small side.  But does group size matter at all?  

     To focus on size effects, we begin by pooling the data from sessions with and 

without designated leaders. Initially, we do not attempt to control for the skill 

                                                 
11 See Mahadeva and Sterne (2000). 
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levels of the members of the group either. Regressing the average game score 

(the variable S defined above) for each of the 504 group observations on only a 

dummy for the size of the group, and clustering by session to produce robust 

standard errors, yields the following linear regression, with standard errors in 

parentheses and the absolute values of t-ratios under that:12

  
(4)     Si   =   85.48  +  2.28 D8i        R2 = 0.028      N = 504 observations 
                     (1.06)    (1.21) 
                      t=80.4   t=1.9 
 
where D8 is a dummy for groups of size eight (the n=4 groups are the omitted 

category). The regression suggests a small positive effect of larger group size--a 

score 2.3 points higher for the larger groups--which is significant if you are not 

too fussy about significance levels (the p-value is 0.067). 

     However, it is possible that larger groups simply had, on average, more 

highly-skilled individuals than did smaller groups. Therefore, it might be important 

to control for the abilities of the various members of the group. Fortunately, we 

have a natural, high-quality control for ability: the average score of all the 

members of the group prior to their exposure to group play, that is, in Part One of 

the experiment. We call this variable Ai (for ability) and use both it and its square 

as controls for skill in the following regression:  

(5)     Si   =  -300.5  +  1.29 D8i  + 9.63Ai  - 0.060A2
i          R2 = 0.235       N=504 

                    (124.1)   (0.72)         (3.28)    (0.022) 
                      t=2.4     t=1.8          t=2.9      t=2.8 
 

                                                 
12 Clustering by session allows for the possibility of autocorrelation and heteroskedasticity for 
observations generated in a given session (i.e., by the same group of individuals). See White 
(1980).  
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Notice the huge jump in R2—the variable A has real explanatory power.13

     This regression reveals that controlling for differences in the average ability of 

members of the larger groups reduces the estimated difference in the 

performance of large versus small groups by over 40%. However, even after 

accounting for the ability of group members, larger groups perform significantly 

better (p value = 0.08) than smaller groups. 

     The quadratic in ability, by the way, carries an interesting and surprising 

implication: that the contribution of individual ability to group performance peaks 

at A=80.7 points, which is only a few points above the average Part One score of 

77.4 points. After that, too many (good) cooks seem to spoil the broth. This is an 

unexpected and puzzling finding which raises many questions; so it merits a brief 

digression. 

     First, is it a fluke? We went back to our Princeton data and discovered that the 

same general quadratic shape of the S=f(A) function held in those data, although 

neither A nor A2 was statistically significant. Second, does the slope really turn 

down, rather than just flatten out, at high values of A? To study this, we ran 

several “horse race” regressions. One compared the fits of the quadratic 

functional form in (5) with that of a logarithmic specification; the quadratic fit the 

data better. The other nested the two specifications by including A, A2, and ln(A) 

in the same regression and then doing F-tests; those tests found the two 

quadratic coefficients to be jointly significant while the coefficient on ln(A) was 

not. So the function does seem to turn down. Third, however, the estimated 

                                                 
13 When (5) is estimated by ordinary least squares instead, the coefficients are almost identical, 
but the standard errors are roughly half of those in (5)—indicating that clustering matters. 
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negative effect of high individual ability on group performance is not quantitatively 

strong (in the relevant range). For example, while the slope ∂S/∂A is 1.27 when 

A=70, it is just -0.40 when A=84. In sum, this is a weak effect, but it does seem to 

be present in the data. 

      That said, let us return to why larger groups perform better than smaller 

groups. One possible explanation is that a group’s decisions might be dominated 

by its most skilled player.14 Larger groups will, on average, have better “best 

players” than smaller groups simply because the first order statistic for skill will, 

on average, be higher in groups of four than in groups of eight. To see whether 

that factor might be empirically important in these data, we included both the 

average score of the group’s best player (BEST) and its square in the regression 

to get:  

 

(6)     Si   =  -293.2  +  1.03 D8i  + 7.03Ai  - 0.044A2
i   + 2.02BESTi – 0.010BEST2

i   
                     (85.6)    (0.65)         (2.42)     (0.016)       (1.86)            (0.012) 
                      t=3.4      t=1.6         t=2.9      t=2.7           t=1.1             t=0.9  
R2 = 0.261 N = 504 
 
The effect of larger group size is reduced by another 20%, to just one point, and 

it is now no longer significant at standard levels (p=0.12). 

     The explanatory power of the BEST variables is modest, however. Neither 

BEST nor BEST2 is statistically significant on its own, and the estimated 

coefficients are small compared to those of the A variables. Moreover, adding 

BEST and BEST2 raises R2 by only 0.026. However, an F-test of the joint 

hypothesis that the coefficients on both variables are zero strongly rejects that 
                                                 
14 Several colleagues assured us that this would be the case in our first experiment, but we tested 
and rejected the hypothesis in Blinder and Morgan (2005). 
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hypothesis (F=30.91, p = 0.00). Thus, the evidence suggests that the fuller 

specification (6) is preferred, but that the influence of the best player on group 

decisionmaking is modest—a point to which we shall return in considering the 

effects of leadership.  

 Next, we consider whether heterogeneity of the members of the group, as 

measured by skill differences among the players, improves group performance. 

Specifically, we measure heterogeneity by introducing the variable SDAi, which is 

the standard deviation of the average scores obtained by the members of the 

group in Part One. Adding  this variable to regression (6) yields: 

(7)     Si   =  -293.4  +  1.03 D8i  + 7.08Ai  - 0.04A2
i   + 1.98BESTi – 0.01BEST2

i   
                     (86.6)    (0.66)         (2.63)     (0.02)       (1.90)            (0.012) 
                      t=3.4      t=1.6         t=2.7      t=2.6           t=1.0             t=0.9  
 
                      + 0.02SDAi                        R2 = 0.261 N = 504 
                        (0.16) 
     t=0.1 
 
Apart from the totally insignificant coefficient on SDA, regression (7) looks almost 

exactly like regression (6). Thus heterogeneity does not seem to matter. 

How do larger groups outperform smaller groups? 

     Having shown that larger groups (barely) outperform smaller groups, the next 

question is: Why is this the case? To try to understand the source of the larger 

group’s (slightly) superior performance, we next examine the dependent variable 

LAG, defined as the number of quarters that elapse between the shock (the 

increase or decrease in G) and the committee’s first interest rate change. This 

was the variable that held the biggest surprise in our previous research: Groups 
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actually had shorter LAGs, on average, than individuals, although the difference 

was not statistically significant. 

     To determine whether a shorter or longer decisionmaking lag is the source of 

the advantage for large groups, we start off by regressing LAG on a dummy for 

the size of the group, clustering by session as usual. The result is:  

 
(8)      LAGi   =    3.31  -  0.27 D8i        R2 = 0.002 N = 504 
                         (0.35)    (0.48) 
                          t=9.5     t=0.6 
 
The regression indicates no significant difference between the two groups in 

terms of the speed of decisionmaking. (The p value of the coefficient of the 

dummy is 0.58.) Controlling for differences in ability, which are once again 

significant, reduces even this small negative coefficient (which means that larger 

groups decide faster) to essentially zero:  

 
(9)     LAGi   =  97.3  -  0.02 D8i  - 2.33Ai  + 0.014A2

i    R2 = 0.066 N = 504 
                       (33.7)   (0.42)        (0.91)     (0.006) 
                       t=2.9     t=0.1         t=2.6      t=2.4 
 
Groups with more skilled players tend to decide more quickly, but only until A 

reaches 81.2. But there is no case at all that larger groups are faster. Moreover, 

the low R2 values in these regressions indicate that neither group size nor ability 

explains much of the variation in lag times.  

     Next, we turn to accuracy rather than speed. Define the variable CORRECT 

to be equal to 1 if the group’s initial interest rate move is in the correct direction—

that is, a rise in G is followed by a monetary tightening, or a decline in G is 
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followed by a monetary easing—and to be 0 otherwise. Do larger groups derive 

their advantage by being more accurate, in this sense? 

     As usual, we start with the simplest specification:15  

 
(10)     CORRECTi   =    0.889  +  0.016 D8i        R2 = 0.001 N = 504 
                                     (0.031)   (0.035) 
                                      t=28.9     t=0.4 
 
And once again, there is no difference between groups of size four and size 

eight. The next regression shows that controlling for skill levels does not change 

this conclusion:  

(11)     CORRECTi   =  0.44  -  0.01 D8i  + 0.006Ai  + 0.000A2
i           

                                   (4.26)    (0.04)        (0.114)      (0.001) 
                                    t=0.1     t=0.3         t=0.05       t=0 
R2 = 0.008 N = 504 

As before, group size has no effect. What is interesting to note here is that the 

average ability of the members of the group is also of no use in predicting the 

group’s odds of making the first interest rate move in the correct direction—a 

surprising finding.  

     Having failed so far, we turn finally to one last performance metric: the 

frequency of interest rate changes. Remember that each change in the rate of 

interest costs the group a 10-point charge. So it is possible that larger groups do 

better because they “fiddle around” less with interest rates. To test for this, we 

define a variable FREQ, which measures the average number of rate changes a 

group makes over the course of a 20-quarter game. Since interest rate changes 

                                                 
15 Of course, since CORRECT is binary, a linear probability specification may not be appropriate. 
As an alternative, we could have performed a probit regression at the cost of not being able to 
cluster standard errors. The results from probit regressions are qualitatively and quantitatively 
similar to the linear probability specifications reported here.  
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are costly, it pays for groups to economize on them. The initial simple regression 

reveals a modest effect of group interaction in producing more “patient” 

decisionmaking:  

(12)     FREQi   =   2.08   -   0.26 D8i        R2 = 0.017 N = 504 
                             (0.10)     (0.15) 
                             t=20.0     t=1.7 
 

     Here at last we find a partial answer to the question of why larger groups 

perform better: They average 0.26 fewer interest rate changes per game. Since 

only about 2.25 changes are made on average, this is a meaningful difference, 

although the p-value of the coefficient is only 0.10. But could it simply be that 

more skilled players manage to economize on rate changes better than less 

skilled players? The answer turns out to be no. It really is a large-group effect, 

albeit a modest one, as the following regression shows:  

(13)        FREQi   =  6.07  -  0.27 D8i  -  0.13Ai  + 0.001A2
i     

                             (13.6)     (0.15)        (0.37)      (0.002) 
                             t=0.4       t=1.8         t=0.4       t=0.4) 
R2 = 0.031 N = 504 

Indeed, strikingly, the ability variable seems to have little to do with the frequency 

of rate changes.  

     To summarize this investigation, larger groups take about as much time 

(measured in terms of data) and are about as accurate in their decisions as 

smaller groups. However, they make slightly fewer interest rate changes overall, 

and this slightly more “patient” behavior produces a systematic, though quite 

modest, performance improvement over small groups. 
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IV. Does leadership enhance group performance? 

     Up until now, we have focused on group size while ignoring the effects of 

leadership on performance. But as noted in the introduction, virtually all 

decisionmaking groups in the real world, and certainly all MPCs, have well-

defined leaders—e.g., the chairman of a committee. To an economist, or to a 

Darwinian evolutionist for that matter, this observation creates a strong 

presumption that leadership must be functional. For why else would it be so 

ubiquitous? But, as we show now, our experimental findings say otherwise: 

Surprisingly, groups with designated leaders do not outperform groups without 

leaders. 

     We begin, as usual, with a simple regression comparing the scores (S) of 

groups with and without leaders—ignoring, for the moment, group size. Defining 

a dummy LED to be 1 if the group has a designated leader and 0 otherwise, a 

regression over all 504 group observations yields:  

(14)     Si   =   87.05  -  0.83 LEDi        R2 = 0.004 N = 504 
                       (0.61)   (1.22) 
                      t=142.0   t=0.7 
 
The regression coefficient indicates a small negative effect of leadership (under 1 

point), but it does not come close to statistical significance; the p-value is almost 

exactly 0.5—a coin flip. The basic finding is that leadership does not affect group 

performance.  

     We proceed now to try to overturn this surprising non-result. First, could it be 

that a positive effect of leadership is masked because the participants in the 

sessions with leaders just happen to be, on average, less able than those in the 

 20



sessions without leaders? Adding controls for ability (A and A2) as we did before 

yields: 

 

(15)     Si   =  -325.4  -  0.16 LEDi  + 10.30Ai  - 0.064A2
i           

                     (133.6)   (0.74)             (3.51)     (0.023) 
                     t=2.4       t=0.2              t=2.9      t=2.8) 
R2 = 0.227 N = 504 
 
The estimates resemble regression (5), with a quadratic in A that peaks at 80.4. 

The estimated effect of leadership here is negative, but trivially so; essentially, it 

is zero. 

     One interesting question to ask is whether the group’s score is driven more by 

the skill of the average member or by the skill of the leader. To address this 

question, we restrict our attention to sessions with designated leaders (thus 

reducing the sample size to 264) and add the previously-defined variables BEST 

and BEST2 to the regression. Remember that BEST is the average score of the 

highest-scoring individual during Part One of the experiment. Since that person 

was designated as the leader in Part Two, BEST also measures the leader’s 

ability. So we run the following horse-race regression: 

(16)     Si   =  -393.6  +  12.26Ai  - 0.078A2
i   - 0.38BESTi + 0.005BEST2

i    
                      (202.2)    (6.10)      (0.041)       (2.70)           (0.017) 
                      t=1.9        t=2.0        t=1.9         t=0.1             t=0.3 
R2=.322 N = 264 
 
     Interestingly, the average skill of the group’s members is a much better 

predictor of performance than the skill of the leader. To see this formally, we ran 

F-tests to determine the effect of omitting the two Ai variables versus omitting the 

two BESTi variables from the regression. For the Ai variables, the F-statistic is 
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8.7 (p = 0.00) whereas for the BESTi variables, the F-statistic is only 3.2 (p = 

0.06). The comparative weakness of the BEST variable helps to explain the 

absence of any leadership effects on performance: While the leader is the best 

player, he or she seems incapable of improving the performance of the group.16

 Similarly, we can ask whether leadership effects on group performance 

differ by the gender of the leader, controlling for ability. Again, we restrict our 

attention to sessions with designated leaders and add the dummy variable 

FEMALE to the regression.17  

(17)     Si   =  -740.63  +  21.33Ai  - 0.137A2
i   - 0.63FEMALEi    

                      (133.11)     (3.61)     (0.024)       (1.05)         
                      t=5.6           t=5.9      t=5.6          t=0.6  
R2=.368 N = 216 

While the regression indicates a negative coefficient for female leaders, the 

magnitude of the coefficient is quite modest and it does not come close to 

statistical significance. Thus, women do neither better nor worse as leaders.18

     So leaders seem to have no discernible effect on the quality of a group’s 

overall performance. Do they, however, influence the group’s strategy? To 

examine this, we look first at the dependent variable LAG defined earlier. 

Regression (18) shows that leadership does not influence the speed of reaction 

significantly. 

(18)      LAGi   =    3.24  -  0.11 LEDi        R2 = 0.000 N = 504 
                            (0.37)   (0.49) 
                            t=8.7     t=0.2 
 

                                                 
16 The inverted quadratic in BEST looks peculiar, but it is upward-sloping in the relevant range. 
17 A leader in one of the eight person sessions refused to identify his or her gender; hence the 
number of observations is reduced to 216.  
18 They are also neither better nor worse as followers. The sex composition of the group does not 
help explain the group’s performance. 
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A slightly negative coefficient (indicating shorter lags) also appears when we 

control for the group’s ability in regression (19) below.  But it, too, is insignificant. 

 (19)     LAGi   =  99.3  -  0.29 LEDi  - 2.38Ai  + 0.015A2
i           

                          (30.3)   (0.41)          (0.82)      (0.006) 
                          t=3.3     t=0.7           t=2.9       t=2.6) 
R2 = 0.068 N = 504 
 
     What about leadership effects on the likelihood of moving in the correct 

direction on the first interest rate change? The simple regression shows 

essentially no effect: 

(20)     CORRECTi   =    0.913  -  0.030 LED        R2 = 0.002 N = 504 
                                      (0.016)   (0.034) 
                                      t=55.9     t=0.9 
 
And, once again, controlling for skill levels does not change this conclusion:  

(21)    CORRECTi   =  0.35  -  0.025 LEDi  + 0.009Ai  + 0.000A2
i       

                                   (3.82)   (0.033)           (0.102)      (0.001) 
                                   t=0.1      t=0.7             t=0.1          t=0.03 
R2 = 0.010 N = 504 

     Finally, we turn to the frequency of rate changes. Do groups with designated  

leaders change interest rates more (or less) frequently? The answer is (weakly) 

more frequently, as the following two regressions show. But in neither case is the 

effect close to statistical significance. 

(22)     FREQi   =   1.88   +   0.14 LEDi        R2 = 0.005  N = 504 
                             (0.12)      (0.16) 
                             t=16.1      t=0.9 
 

(23)     FREQi   =   10.6  +  0.15 LED  -  0.26Ai  + 0.002A2
i           

                             (13.0)    (0.15)           (0.35)     (0.002) 
                             t=0.8      t=1.0            t=0.8       t=0.8 
R2 = 0.019 N = 504 
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     To this point, we have looked for leadership effects on the (tacit) assumption 

that they are the same in large (n=8) and small (n=4) groups. Similarly, in the 

previous section we examined the effects of group size while maintaining the 

hypothesis that size effects are the same with and without leaders. To test for 

possible interaction effects, the next regression essentially combines (4) (for 

group size) and (14) (for leadership), allowing for an interaction between the two: 

(24)  Si  =  87.05  -  3.01 LEDi   -  0.002D8i  +  4.35(D8i * LEDi)        
                  (0.72)   (1.96)            (1.23)           (2.27) 
                t=121.4   t=1.5             t=0.0            t=1.9 
R2 = 0.057 N = 504 

In fact, we find a surprisingly strong interaction effect (with p-value=0.06). 

Leadership actually hurts performance in groups of four (though the p-value of 

the negative coefficient is only 0.13), but helps in groups of eight. Put differently, 

larger groups appear to do better if they are led, but smaller groups do worse. 

     Unfortunately, this effect is largely an illusion attributable to the fact that the 

{n=8, leader} groups just happened to get better-than-average participants while 

the {n=4, leader} groups happened to get some of the worst. This fact is shown in 

Table 3, and its implications are shown in regression (25), which augments (24) 

by controlling for ability in the usual way. 

Table 3 
Average Scores in Part One, by Treatment 

Treatment Part One Mean Score 
(individual play) 

               All treatments 77.4 
               n=4, no leader 78.4 
               n=4, leader 75.5 
               n=8, no leader 76.8 
               n=8, leader 78.2 
 
(25)  Si  = –292.0  -  0.72 LEDi  +  0.77D8i  +  1.05(D8i * LEDi)   +   
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                 (121.0)   (1.10)            (0.84)         (1.44) 
                 t=2.41     t=0.7             t=0.9           t=0.7 
 
  9.43Ai  -  0.06A2

i          R2 = 0.237 N = 504 
 (3.18)      (0.02)            
  t=3.0       t=2.4 
     This regression reveals that much of the difference in performance of groups 

with and without leaders really reflects the different skill levels of the individual 

group members. For example, the coefficient on the interaction effect is reduced 

to less than one-fourth of its value in regression (24) and is now totally 

insignificant (p value=0.47). Still, the coefficients suggest a small negative effect 

of leadership in smaller groups and a small positive effect in larger groups.  

     A fair summary so far would be to say that you need a magnifying glass (and 

you must ignore statistical significance) to see any effects of leadership on group 

performance. The main message, surprisingly, is that leadership does not seem 

to matter. 

      One other place to look for leadership effects is in how much people learn 

from the experience of playing as a group. In our Princeton experiment (Blinder 

and Morgan (2005)), we found significant improvements in performance when 

individuals came together to play as groups. And the next section will show that 

the advantage for groups is even larger in the Berkeley experiment. Could it be 

that the learning that apparently takes place in group play is greater when the 

group has a designated leader? 

     Table 4 displays the improvements in score from Part One (individual play) to 

Part Two (group play) separately for each of the four experimental treatments. 

While the individuals in the {n=4, leader} treatment groups stand out as the worst 
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players in Part One, there is no support here for the idea that group interactions 

help subjects more when there is a designated leader.  

 
 

Table 4 
Improvements from Individual to Group Play, by Treatment 
(1) 

Treatment 
(2) 

Part One Mean Score 
(individual play) 

(3) 
Part Two Mean Score 

(group play) 

(4) 
Difference 

n=4, no leader 78.4 87.1 8.7 (11.1%) 
n=4,  leader 75.5 84.1  8.6 (11.4 %)
n=8, no leader 76.8 87.1 10.3 (13.4%)
n=8, leader 78.2 88.4 10.2 (13.0%)

 

     To assess statistical significance, we examine the dependent variable DIFFi  

suggested by Table 4: the average score of a given subject in group play (Part 

Two of the game) minus that individual’s average score while playing as an 

individual in Part One. Table 4 above suggests that improvements are 

systematically higher with larger groups but independent of leadership. Thus, we 

include as righthand variables dummies for group size and whether the group 

was led or not. As usual, we cluster by session to obtain: 

(26)  DIFFi  =  8.71  +   0.03 LEDi  +   1.46 D8i    R2 = 0.005 N = 250 
                      (0.83)     (0.99)             (0.99) 
                       t=10.5    t=0.03            t=1.5            
 

This regression shows that leadership has no effect on the improvement between 

individual and group play. On the other hand, participation in larger groups 

improves upon individual performance slightly more than participation in smaller 

groups does; however, the result does not rise to the level of statistical 

significance (p = 0.15).  

 26



      One final question about leadership and learning can be raised. We found in 

our Princeton experiment (and replicate below) that scores typically improve 

quite a bit when subjects move from individual play to group play (from Part One 

to Part Two) but then fall back somewhat when they return to individual play 

(from Part Two to Part Three). The change in an individual’s performance from 

Part One to Part Three can therefore be used as an indicator of what might be 

called the “durable learning” that emerges from experience with group play. Is 

this learning greater with leadership than without? 

     Table 5 suggests that the answer is no. When n=4, the subjects learn more 

from group play when the groups have a designated leader, but not when n=8. 

Notice, by the way, that the largest improvement in Table 5 comes in the {n=4, 

leader} groups, the very treatment that, by chance, got the weakest players. We 

will return to this point later. 

Table 5 
Improvements from Part One to Part Three, by Treatment 
(1) 

Treatment  
(2) 

Part One Mean Score 
(individual play) 

(3) 
Part Three Mean Score 

(group play) 

(4) 
Difference 

n=4, no leader 78.4 83.2 4.8   (6.1%) 
n=4,  leader 75.5 85.2  9.7 (12.8%) 
n=8, no leader 76.8 85.1  8.3 (10.8%) 
n=8, leader 78.2 84.9 8.7   (8.6%) 

 

     The significance of this result can be appraised by regressing the dependent 

variable POSTDIFFi, defined as the difference between the average score of a 

given subject in Part Three of the game less that individual’s average score in 

Part One, on dummy variables for leadership and size. Clustering by session as 

usual, the result is: 
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(27)  POSTDIFFi  = 7.38  +    0.41 LEDi  -  0.18 D8i     
                               (1.13)     (1.21)             (1.21) 
                                t=6.5      t=0.3              t=0.2            
R2 = 0.001 N = 250 

This regression shows that neither group size nor leadership affects the durable 

performance gains that arise from exposure to group play.  

          In sum, there is no evidence from our experiment of superior (or even 

faster) performance by groups with leaders versus groups without. If anything, 

the evidence points weakly in the other direction. Overall, the most prudent 

conclusion appears to be that groups with leaders perform no better than groups 

without leaders. This is a surprising finding, to say the least. Should we believe 

it? Maybe, but maybe not. 

Why no leadership effects? 

     First, in defense of our experimental design, note that we do not choose the 

leaders randomly or arbitrarily. Instead, each designated leader earns his or her 

position by superior performance in the very task that the group will perform. This 

principle for selecting leaders, we believe, gives them a certain legitimacy—as is 

normally the case in real-world groups. At least that was our intent. A second 

element of realism derives from the reward structure. By doubling the leader’s 

reward in group play, we give him or her a greater stake in the outcome—just as 

leaders of real-world groups normally have a greater stake in the outcome than 

other members do. For example, history will appraise the performance of the 

“Greenspan Fed” and the “Rehnquist Court.” The names of most of the other 

members will be forgotten. 
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    Second, it should be noted that while giving the leader the tie-breaking vote 

should allow him or her to influence the group’s decisions in principle, it may not 

do so in practice. For example, we found in Blinder and Morgan (2005) that there 

was no difference in either the quality or speed of group decisionmaking when 

groups made decisions unanimously rather than by majority rule. 

     Third, it should be noted that the task in our experimental setup is what 

psychologists call intellective (figuring something out) rather than, say, 

judgmental or moral (deciding what’s right and wrong). So the surprising 

conclusion that leadership in groups has no apparent benefits should, at the very 

least, be limited to such intellective tasks. As Fiedler and Gibson (2001, p. 171) 

pointed out, “Extensive empirical evidence has shown that a leader’s intellectual 

ability or experience does not guarantee good performance.” That said, making 

monetary policy decisions is, for the most part, an intellective task. So the result 

may have relevance to actual monetary policy committees. 

     Fourth, however, there is never any disagreement among members of our 

ersatz MPCs over what the group’s objectives (including the relative weights) 

are. Every player tries to maximize exactly the same function. By contrast, at 

least on some real-world MPCs (e.g., the Fed), there is potential for 

disagreement over the central bank’s objectives and/or weight. In such cases, 

the leader might (or might not) be more influential.  

     Finally, and perhaps most important, our narrow experimental concept of 

leadership—leading the discussion, reporting the group’s decision, and breaking 

a tie if necessary—does not correspond to the common meaning of  “leadership” 
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as expressed, for example, in the admittedly chauvinistic statement, “He’s a 

leader of men.” Our experimental leaders do not lead in the sense that a military 

officer leads a platoon, a politician leads a party, or an executive leads a 

business. Brown (2005) classified leaders as “transformational” and 

“transactional,” the latter meaning motivating subordinates with rewards. Our 

experimental leaders were neither.  

     We thought about trying to select our group leaders by what might loosely be 

described as “leadership qualities,” but quickly abandoned the idea as being too 

subjective and too difficult. We think this decision was the right one. But, in 

interpreting the experimental results, it is important to remember that our leaders 

are selected, on average, for their “smarts,” not for their “leadership qualities.” 

There is no reason to think that the cognitive ability that we use to select group 

leaders correlates highly with traits that are associated with leadership in the real 

world, such as verbal dexterity, aggressiveness, an extroverted personality, a 

trustworthy affect, good looks, and height. That said, the recent selection of an 

outstanding academic economist, Ben Bernanke, to be Chairman of the Federal 

Reserve Board suggests that intellectual ability is a key consideration in selecting 

leaders of real-world MPCs. 

 

V. Groups versus individuals 

     We turn now to the data on individual performance and, especially, to the 

comparisons between groups and individuals that were the focus of Blinder and 

Morgan (2005). The results here are easy to summarize: For the most part, our 
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new results with the Berkeley sample replicate what we had found earlier with the 

Princeton sample. Still, a few differences are worth noting. 

     To begin with, we found in our original experiment that groups (which were 

then of size five) turned in better average performances than did individuals. 

Specifically, the average group score (on the 0-100 scale) was 88.3 while the 

average individual score was 85.3. The difference of 3 points, or 3.5%, was 

highly significant. If we merge all four of our group treatments in the Berkeley 

experiment, the average group score is 86.6 versus an average individual score 

of 81.1. Again, groups do better, but here their advantage is 5.5 points, or 6.8%--

almost twice as large as in the Princeton experiment.  This performance gap is 

also highly significant (t=11.2).  

     Before commenting on Princeton-Berkeley differences, a few words on the 

two samples are in order. Table 6 displays summary statistics comparing 

individual scores at Berkeley and at Princeton. It shows that Princeton students 

performed notably better than Berkeley students—scoring about 5.8% higher 

when playing as individuals. We are not particularly interested in appraising the 

relative quality of Princeton versus Berkeley undergraduates, but this difference 

does align with performance on standardized tests for entering students at the 

two universities. In addition, notice that the standard deviation across the 

Berkeley scores is considerably higher than it was at Princeton. Thus there is 

considerably more variability in the performance of student monetary 

policymakers at Berkeley than was the case at Princeton. Indeed, the differences 

between Berkeley and Princeton subjects are statistically significantly different 

 31



from one another. For example, if one compares mean individual performance in 

Part One of the experiment (prior to any exposure to group play), and treats each 

subject as the unit of observation, one obtains a mean for Berkeley students of 

77.4 versus a mean of 83.9 for Princeton students. This large performance gap is 

highly significant (t = 5.8).  

Table 6 
Individual Scores: Berkeley and Princeton 

 Berkeley Princeton 
Mean Score 81.1 85.3 
Standard Deviation 15.8 10.1 
 

 Another noteworthy difference between the Princeton and Berkeley 

samples is that women’s performance as individuals in Part One is worse than 

that of men in the Berkeley sample, but not in the Princeton sample. This can be 

seen in Table 7. 

Table 7 
Individual Scores Prior to Group Play, by Gender: Berkeley vs. Princeton 

  Berkeley Princeton 
Females Mean Score 75.94 83.37 
 Standard Deviation 20.04 11.40 
Males Mean Score 79.38 84.38 
 Standard Deviation 16.88 11.59 
 

The 3.44 point gap between the scores of males and females at Berkeley is 

highly significant (t = 4.48, p = 0.00), whereas the 1.01 point gap for the 

Princeton subjects is not (t = 1.37, p = 0.18).  

 Interestingly, however, the inferior performance of women at Berkeley 

disappears once they participate in group decisionmaking. Table 8 presents the 

mean scores and their standard deviation, arrayed by gender and university, for 
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individual play in Part Three, which comes after exposure to group play. The 

gender gap between the mean scores, which was substantial for Berkeley 

subjects in Part One of the experiment (see Table 7), virtually vanishes after 

exposure to group decisionmaking (see Table 8). For the Princeton subjects, the 

small initial gap in scores (favoring men) seen in Table 7 drops to essentially 

zero in Table 8. Naturally, neither of these gender differences comes close to 

statistical significance. Notice that these results imply that women learn more 

than men from group play. 

Table 8 
Individual Scores Following Group Play, by Gender: Berkeley vs. Princeton 
  Berkeley Princeton 
Females Mean Score 84.80 86.67 
 Standard Deviation 9.49 7.75 
Males Mean Score 85.22 86.60 
 Standard Deviation 10.63 8.52 
      

     Table 9 contains a parallel comparison of group scores at Berkeley and 

Princeton. Although the Berkeley scores come from groups of size four and size 

eight while the Princeton scores come from groups of size five, our earlier result 

that group size barely matters suggests that the comparison is valid. The group 

scores, like the individual scores, are higher at Princeton than at Berkeley. But 

notice that the difference in performance across the two experiments is now only 

about 2.1%--far lower than the percentage difference for individual play. This 

means that the performance gain from group play is higher for Berkeley students 

than for Princeton students. 
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Table 9 
Group Scores: Berkeley and Princeton 

 Berkeley Princeton 
Mean Score 86.6 88.3 
Standard Deviation 6.8 4.7 
 

      The following regression confirms that this difference is significant, after the 

usual correction for robust standard errors. We estimate: 

(28)  Si  = 85.27  +  3.02 GPi  -  4.18 BERKi  +  2.50 (GPi * BERKi)        
                 (0.37)    (0.57)          (0.55)              (0.75) 
                 t=231.8   t=5.4          t=7.6                t=3.4 
R2 =0.027 N = 8,893 

where GP and BERK are dummy variables associated with observations that 

occurred when the game was played as a group and by Berkeley students, 

respectively. The coefficient estimates, all of which are significant at the 1 

percent level, reveal that Berkeley students performed far worse than Princeton 

students when playing as individuals, but improved more than Princeton students 

from group interaction.  We do not have a ready explanation for this difference, 

but we do note that Lombardelli et al. (2005, p. 194) found that weaker players 

improved more over the course of their entire experiment—spanning both group 

and individual play. Remember also that Berkeley women, who were weaker 

players than Berkeley men in Part One of the experiment, also improved more 

after group play. 

All this suggests a systematic pattern: that weaker players gain more from 

exposure to group play. To investigate this phenomenon further, we 

disaggregated both our Berkeley and Princeton samples to see whether the 

increase in scores from Part One (individual play) to Part Two (group play) 
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correlated negatively with the Part One scores. That is, do weaker players benefit 

more from working in groups? To examine this question, we regress the mean  

score of a group over its 12 repetitions (Smean) on the average score of 

individuals comprising the group in Part One of the game (Ai). The results are: 

(29)  Smeani  =    56.77  +   0.386 Ai    R2 =0.320 N = 351 
                             (8.90)     (0.11)            
                             t=6.38    t=3.50 
 

Notice that the coefficient on the average individual score is considerably smaller 

than one, which implies that ∂(Smean - A)/∂A is decidedly negative (in fact, it is 

estimated to be -0.61). Thus. consistent with the findings of Lombardelli et al. 

(2005), we find that weaker players improve more from group interaction than do 

stronger players. 

     The next question pertains to the decisionmaking lag. How much time 

elapses, on average, between the shock and the monetary policy reaction to it? 

And do groups display systematically longer lags than individuals? Remember, 

the most surprising result from our original Princeton experiment was that groups 

were not slower; in fact, they were slightly faster, though the difference was not 

statistically significant. Approximately the same is true in our Berkeley 

experiment. The mean lags before the first interest rate change are essentially 

identical (roughly 3.3 “quarters”) in both group and individual play. 

     Formally, regression (30) estimates the same specification as (28), but with 

LAG replacing S as the dependent variable: 
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(30) LAGi = 2.45  - 0.15 GPi + 0.75 BERKi + 0.12 GPi *BERKi   
                  (0.23)  (0.21)        (0.28)             (0.30) 

           t=10.7    t=0.7         t=2.7              t=0.4   
R2 = 0.007 N = 8,893 

The regression shows that groups take about the same amount of time as 

individuals to reach a decision, as we found before. (The F-test for omitting the 

two GP variables has a p-value of 0.69.) It also shows that Berkeley students 

playing as individuals move more slowly (by approximately 0.75 “quarters”) than 

do Princeton students. 

     Finally, a few words on learning are in order. In our Princeton experiment, we 

found little evidence for conventional learning by doing, but strong evidence that 

subjects learned a great deal from their experience in group play.19 Figure 1 

displays parallel results for the Berkeley experiment. Visually, there is now a 

meaningful sign of improving scores during the 12 rounds of Part One (individual 

play)—which is once again consistent with the finding that weaker players learn 

more. But there is apparently no learning during the 12 rounds of Part Two 

(group play) or during the 12 rounds of Part Three (individual play again). Most 

notably, scores rise sharply when students move from individual to group play 

(from Part One to Part Two), and then fall back a bit when they return to 

individual play (from Part Two to Part Three), just as they did in our Princeton 

experiment. 

 

 

 

                                                 
19 By contrast, Lombardelli et al. (2005) found that subjects did learn from experience. 
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Figure 1: Scores over Time 
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To assess the statistical significance of these results, we regress Si on a 

time trend whose slope and intercept are allowed to vary in each of the three 

periods of the game. Specifically, define the variable GAME to be a linear time 

trend that runs from 1 to 36, and the variables P2 and P3 to be dummy variables 

connoting Parts Two and Three of the experiment, respectively. We restrict 

attention to data from the Berkeley experiment (shown in Figure 1) and cluster 

standard errors by session. The results are:  

(31)  Si  = 76.06  +  0.20 GAMEi  +  9.22P2i  –   0.14(P2i * GAMEi)   +   
                 (1.13)    (0.11)               (1.90)          (0.14) 
                 t=67.5    t=1.8                t=5.0           t=1.0 
 
  9.00P3i  –  0.21(P3i * GAMEi)          R2 = 0.065  N = 6,493 
 (1.73)         (0.12)            
  t=5.2          t=1.7 
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Notice that the time trend is positive and significant (p value = 0.075) in 

the first part of the game (an estimated gain of 0.2 point per round), whereas 

afterward, the time trends are pretty near zero—just as the graph suggests. The 

three intercept and three slope terms together indicate that moving from 

individual play in Part One to group play in Part Two has a strong and highly 

significant positive effect on scores (about 7.6 points20), about a quarter of which 

is lost when subjects return to individual play in Part Three.21  

 

VI. Conclusions 

     In this paper, we replicate earlier findings from Blinder and Morgan (2005) 

showing that simulated monetary policy committees make systematically better 

decisions than the same individuals making decisions on their own. Furthermore, 

committees do not take any longer (as measured by required data inflow) to 

reach decisions. This experimental evidence supports the observed worldwide 

trend toward making monetary policy decisions by committees, rather than by 

lone-wolf central bankers. We also find several shreds of suggestive (but not 

particularly surprising) evidence that the margin of superiority of groups over 

individuals is greater when the individuals are of lower ability. 

     But the more novel findings of this paper pertain to groups that differ in terms 

of size and leadership. We find some weak evidence that larger groups (in our 

case, n=8) outperform smaller groups (n=4), mainly because larger groups seem 

                                                 
20 The intercept jumps upward by 9.22, but the dummy P2 also turns on when GAME rises from 
12 to 13. 
21 When GAME rises from 24 to 25, the intercept falls by 0.22, but the dummy P3 turns on while 
the dummy P2 turns off for the time trend terms. The net effect of all this, plus incrementing 
GAME by 1, is a reduction of 1.9 points. 
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better able to resist the temptation to “fiddle” with interest rates too much. But 

these differences are small, and many are not statistically significant. So, in 

terms of institutional design, it is not clear whether larger or smaller MPCs are to 

be recommended. 

     Our most surprising and important result, at least to us, is that ersatz MPCs 

do not perform any better when they have a designated leader than when they 

do not—even though every real-world MPC has a clear (and sometimes 

dominant) leader, and even though our designated leaders were chosen purely 

on the basis of their skill in making ersatz monetary policy. We caution that we 

would not apply this finding beyond the realm of intellective tasks—e.g., we do 

not recommend that Army platoons venture out without a commanding officer! 

But that said, there are probably many more tasks in the economic world, 

including monetary policy, that are more intellective than combative in nature. For 

example, promotions to supervisory positions are often based on superior 

performance on metrics that are basically intellective. So this finding, if verified by 

other work, is potentially of wide applicability. In terms of the taxonomy of MPCs 

emphasized by Blinder (2004), our results suggest that an individualistic 

committee, where the leader is only modestly more important than the other 

members, may be a better institutional design than a collegial committee, where 

the role of the leader is more pronounced.  

     Finally, we unearth a small puzzle that cries out for explanation. We find that 

the decisionmaking ability of an experimental monetary policy committee is not 

monotonically increasing in the average ability of its members. Rather, the 
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functional relationship rises to a peak (at above-average ability) and then falls 

(albeit only slightly)—perhaps mimicking the functionality of a university faculty 

meeting. Since there are no issues of either congestion or conflicting incentives 

in our experimental design, we are at a loss to explain this surprising finding. 

And, at this point, we are certainly not prepared to recommend that governments 

selecting candidates for real-world monetary policy committees adopt the Hruska 

principle—by adding a dash of mediocrity.22

 

                                                 
22 Roman Hruska was the U.S. Senator who defended an ill-fated nominee to the U.S. Supreme 
Court in 1970 by arguing that there are lots of mediocre people, and that they are entitled to 
representation on the Court, too! 
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