Information Heterogeneity in the Macroeconomy

Ponpoje Porapakkarm† Eric R. Young‡
Department of Economics Department of Economics
University of Virginia University of Virginia

January 16, 2008

Abstract

This paper considers the role that information heterogeneity can play in generating wealth inequality. We solve a model where households face both aggregate and idiosyncratic shocks to returns and wages under two assumptions about information – fully-informed (FI) economies have agents who observe all states while partially-informed (PI) economies have agents that must rely on the Kalman filter to extract estimates of the states based on observed prices. We find that the PI economy has higher aggregate activity (output, consumption, investment) and larger fluctuations in output and investment. Quantitatively, we find that the most important factor is the gap between the PI agents’ beliefs about the state of the world and the true state; the other two factors at play, the heterogeneity of forecasts tomorrow and the higher risk faced by PI agents, generate only small changes in behavior.

Keywords: Heterogeneity, Information, Wealth Distribution

JEL Classification Codes: E21, E25, E32

† PO Box 400182, Charlottesville, VA 22904. Email: pp9s@virginia.edu.
‡ Corresponding author. PO Box 400182, Charlottesville, VA 22904. Email: ey2d@virginia.edu.
1. Introduction

This paper studies the role of information in a dynamic economy, particularly the role of information asymmetries in generating inequality. We study an economy of incomplete insurance and business cycles – modified from Krusell and Smith (1998) to include idiosyncratic shocks to earnings and returns – under two assumptions about the information available to agents. The first economy we label ‘fully-informed’ or ‘FI’ agents, because they observe the aggregate and idiosyncratic components of the prices separately.\(^1\) We show that this type of agent can uncover the exact values of the aggregate states relevant for forecasting prices (the aggregate capital stock and the level of technology) from these four pieces of information. FI agents therefore agree on the distribution of future prices, which we will label as 'beliefs' about prices. Furthermore, the FI agents also agree on the point estimates of these prices.

In the second economy, the ‘partially-informed’ or ‘PI’ economy, agents do not observe the idiosyncratic and aggregate components of the prices separately. Using the Kalman filter PI agents construct estimates of the four unobserved states (aggregate capital, technology, and the idiosyncratic wage and return shocks) using only two signals, the total wage and the total return on assets; as a result, their inference is incomplete. Furthermore, since observations are idiosyncratic beliefs become idiosyncratic – an agent with a high current realization of the idiosyncratic shock will perceive the distribution of future prices differently than one with a low current realization, even without correlation between the aggregate and idiosyncratic shocks. As a result, heterogeneous beliefs arise in equilibrium among the PI agents.\(^2\) In particular, PI agents will disagree about the mean of future prices.

Our interest in this model is driven by several considerations. First, we find it advisable to consider the possibility that agents in our models are no better informed about the aggregate capital stock than the model-builder is, for three reasons. One, the aggregate capital stock series published by the BEA is annual and thus not available for real-time decision-making at higher frequencies; two, as shown by An (2006), the published capital stock series diverges from one filtered from a medium-scale New Keynesian model that fits observed fluctuations; and three, the published capital

1 Measured idiosyncratic shocks to labor earnings are quite large (Storesletten, Telmer, and Yaron 2004, Guvenen 2007) and are a standard part of incomplete insurance models. Idiosyncratic shocks to returns are not standard; we interpret idiosyncratic shocks to returns as reflecting the types of investment errors present in Campbell (2006).

2 Our paper is related to the vast literature on rational expectations in models with heterogeneous information (see Grossman 1991 and the many references within) but with signals that are driven by idiosyncratic shocks (similar to Lucas 1972 or Graham and Wright 2007).
stock series is subject to large and frequent revisions, as noted by Rupert (2007). Therefore, it seems reasonable to assume that agents don’t have good information about aggregate capital, so they must filter it using knowledge of the model economy and their observations about prices. Information about the distribution of wealth, which is the "true" state of the world, is even worse in the actual economy; measurements of this distribution (the Surveys of Consumer Finances) are taken only once every three years and are difficult to reconcile with National Income and Product Accounts.

Second, the data on trading volume (DeJong and Espino 2006) is difficult to reconcile with standard models of consumption-smoothing in the presence of uninsurable idiosyncratic earnings risk – income moves too slowly to generate the large transactions that occur at high frequencies in equity markets, for example. One direction for theory to proceed is the introduction of 'speculative trade' driven by heterogeneous beliefs; our environment is a natural one for embedding heterogeneous beliefs and it does not require rule-of-thumb agents or noise traders (PI agents have naturally heterogeneous beliefs, although FI agents do not). Finally, we know from previous work (Aiyagari 1994, Guvenen 2005) that this economy produces savings behavior that is highly sensitive to perceived returns on assets; our model naturally produces differences across individuals that could dramatically alter their savings behavior.

Models with asymmetric information that preserve heterogeneity of beliefs in the limit are not straightforward to construct. Work by Pearlman and Sargent (2005), Kasa (2000), Walker (2007), and Kasa, Walker, and Whiteman (2007) demonstrate some of the technical obstacles that must be surmounted to prevent agents from using past observations of prices to infer the private information of other agents, although this literature is typically concerned with the conditions under which equal numbers of states and signals does not produce full revelation. In our model the number of signals given to each agent is two (total wage and total return), and there are infinitely-many agents receiving different signals at any point in time. Without the idiosyncratic shocks to returns, the fact that idiosyncratic shocks do not enter into the law of motion for the aggregate states would imply that, with enough data, the entire time series of capital and technology could be recovered with arbitrary precision. Idiosyncratic shocks to returns prevent this unravelling, leading to an economy in which private information persists forever.\(^3\)

\(^3\)Bomfim (2001a) studies agents who use biased rules of thumb to forecast prices; he finds little effect without strategic complementarities between the output decisions of biased and unbiased agents. In contrast, Krusell and Smith (1996) find large effects of including agents who use unsophisticated rules of thumb to make savings decisions.\(^4\)Note that the preservation of private information in the limit is not merely an issue of counting signals and states.
We are able to provide some analytical results about the PI economy relative to the FI economy. First, PI agents have biased beliefs about the current state of the world. In the presence of a common shock, we show that even a continuum of observers do not produce unbiased average estimates; thus, the distribution of beliefs in the PI economy is centered around the wrong mean. It turns out that this bias also moves significantly over time – the standard deviation of the average bias in the idiosyncratic wage shock is about 1/3 of the standard deviation of the wage shock itself. PI agents also perceive expected risks differently, although we cannot prove that their perceived risk is actually higher due to general equilibrium effects. We therefore calibrate and solve the model numerically to obtain quantitative answers.

Our first quantitative result involves a comparison of the aggregate behavior of the FI economy to the PI economy; this question extends the main question of Krusell and Smith (1998) – does the absence of insurance markets for idiosyncratic risk have important implications for aggregate dynamics? – to a world of asymmetric and disparate information. We find that the PI economy displays several strikingly different outcomes. First, aggregate activity is higher in the PI economy (output, consumption, and investment), not only on average but in every period we observe. Second, the PI economy displays larger fluctuations in output and investment than the FI economy, but smaller fluctuations in aggregate consumption. Third, the correlation between aggregate capital returns and all aggregates drops significantly; in particular, the correlation between aggregate returns and aggregate wages drops from significantly positive to slightly negative. A low correlation between returns and wages is consistent with the joint behavior of wages and stock returns in US data.

We then examine individual agent behavior in order to provide intuition for the first two results. We show that three mechanisms are at play in generating the differential saving of PI agents, based on PI agents viewing essentially all movements in prices as driven by the much larger idiosyncratic shocks. Because idiosyncratic return shocks are not persistent, PI agents view increases in returns as purely transitory; thus, PI agents do not have any incentive to raise their savings, although FI agents do. On the other hand, two effects work to raise the saving of PI agents. First, PI agents also perceive that wages are not as persistent, meaning that they expect lower wages in the future; pure consumption smoothing incentives imply that they should increase saving today to spread their transitory good luck over many periods. Second, PI agents underestimate the power

Depending on the model, private information could disappear in the limit even if the number of states exceeds the number of signals, as happens in our model when idiosyncratic return shocks are shut down.
of decreasing returns to saving; because they believe the shocks are idiosyncratic, they also believe
that their increased demand for saving will be matched by a decline for some other individual. As
a result, they misperceive the evolution of average returns and end up saving more.

Our last experiment compares the wealth concentration in the FI and PI economies. Contrary
to our intuition, the PI economy displays less wealth concentration, not more. There are two
mechanisms at work in the model that affect wealth concentration. First, since PI agents have
beliefs that are symmetrically distributed about the mean belief (not the true value), agents who
are 'optimistic' regarding returns will tend to save more; given that savings functions are concave
in expected returns, the effect of the upward-biased belief is larger than the effect of the downward-
based symmetric belief, leading to wealth concentration. Second, the higher precautionary savings
by the PI agents leads to less wealth concentration, since the poor are not so poor and their
additional savings reduces the return to the wealthy. We find that the second effect is dominant
in our simple economy; presumably, this ranking could change if we introduce transfer programs
to the poor that are means-tested.5

2. Model

The model economy is populated by a continuum of households and a continuum of firms, both
with unit measure. The production sector is represented by a stand-in firm that operates a Cobb-
Douglas production technology,

$$Y_t = \exp (z_t) K_t^\alpha N_t^{1-\alpha},$$

where K_t and N_t are aggregate capital and labor inputs in the economy and $\alpha \in (0,1)$ is capital’s
share of income. The aggregate shock in the economy is the technology shock z_t, which evolves as

$$z_{t+1} = \rho_z z_t + e_{t+1}; \quad e_t \sim \text{iid } N \left(0, \sigma_e^2\right);$$

we assume $|\rho_z| < 1$. With competitive factor markets the factor prices would satisfy

$$\log (MPK_t) = \log (\alpha) + (1 - \alpha) \log (N_t) + z_t + (\alpha - 1) \log (K_t)$$

$$\log (MPN_t) = \log (1 - \alpha) - \alpha \log (N_t) + z_t + \alpha \log (K_t),$$

5The second effect has been noted in other models, such as models of habit formation (Díaz, Pijoan-Mas, and
Ríos-Rull 2003) or the spirit of capitalism (Luo and Young 2007a).
where MPK_t and MPN_t are marginal product of capital and labor. $\delta \in [0, 1]$ is a fixed depreciation rate.

The other sector of the economy is represented by a continuum of infinitely-lived households with total measure 1. These agents are heterogeneous ex post along three dimensions: their uninsurable idiosyncratic shocks ε^i_t and η^i_t to wages and returns, their accumulated cash on hand m^i_t, and their information sets Ω^i_t. ε^i_t evolves according to an exogenous AR(1) process

$$\varepsilon^i_{t+1} = \mu_{\varepsilon} + \rho_{\varepsilon} \varepsilon^i_t + \nu^i_{t+1}; \quad \nu^i_t \sim \text{iid } N \left(0, \sigma^2_{\nu}\right).$$

(2.3)

Under the assumption that households are perfect substitutes in terms of labor input, individual wages are given by $w^i_t = \exp \left(\varepsilon^i_t\right) MPN_t$. We assume that $|\rho^i_{\varepsilon}| < 1$. η^i_t evolves according to the process

$$\eta^i_{t+1} = \mu_\eta + \rho_\eta \eta^i_t + \zeta^i_{t+1}; \quad \mu_\eta = -\frac{\sigma^2_\zeta}{2(1 + \rho_\eta)}; \quad \zeta^i_t \sim \text{iid } N \left(0, \sigma^2_\zeta\right),$$

(2.4)

where $|\rho_\eta| < 1$. μ_η is defined such that unconditional mean of $\exp(\eta^i_t)$ is one. The individual return to saving is then given by $R^i_t = \exp \left(\eta^i_t\right) MPK_t$. The covariance matrix of the exogenous shocks $(\varepsilon_t, \nu^i_t, \eta^i_t)$ is denoted

$$\Sigma = \begin{bmatrix}
\sigma^2_\varepsilon & \rho_{\varepsilon\nu}\sigma_\varepsilon\sigma_\nu & \rho_{\varepsilon\zeta}\sigma_\nu\sigma_\zeta \\
\rho_{\varepsilon\nu}\sigma_\varepsilon\sigma_\nu & \sigma^2_\nu & \rho_{\nu\zeta}\sigma_\nu\sigma_\zeta \\
\rho_{\varepsilon\zeta}\sigma_\nu\sigma_\zeta & \rho_{\nu\zeta}\sigma_\nu\sigma_\zeta & \sigma^2_\zeta
\end{bmatrix}.$$

Since we will assume inelastic labor supply by households, N_t will be a constant (denoted \bar{N}).\(^6\)

2.1. Information Structure

We now discuss the informational assumptions we make – that is, what agents observe and how they make inference about what they do not observe. For future reference all variables that may not be common across households are indexed by a superscript i.

Definition 2.1. The observation set Υ^i_t is the set of (i) variables that i directly observes up to

\(^6\)Elastic labor supply would be straightforward to introduce, provided that the equilibrium function used to forecast N is log-linear:

$$\log \left(N_t\right) = b_0 + b_1 z_t + b_2 \log \left(K_t\right).$$

The only complication this setup poses is the need to solve endogenously for N_t at each point in time by clearing the labor market; since the burden of the model is already large and elastic labor supply only complicates the discussion, we abstract from it.
period \(t \) and (ii) the model structure and all parameters.

Definition 2.2. The information set \(\Omega^i_t \) is the union of (i) the observable set \(\Upsilon^i_t \) and (ii) the set of variables that \(i \) can infer by using \(\Upsilon^i_t \).

Under an assumption of full information, the definitions are redundant since inferable variables can always be assumed as directly observable; hence \(\Upsilon^i_t = \Omega^i_t \). In contrast, under partial information an agent directly observes only parts of the economy; however, she can construct an inference out other unobserved parts, implying that \(\Upsilon^i_t \subset \Omega^i_t \).

We will confine our study to two economies; the FI economy where everyone is *fully-informed* (FI) and PI economy where everyone is *partially-informed* (PI).\(^7\) Both FI and PI agents are identical except for their observable sets; in particular, we assume that they face the same processes for the idiosyncratic shocks. The PI agents are forced to use the Kalman filter to extract signals about \((K_t, z_t, \varepsilon^i_t, \eta^i_t)\) from observations \(\{R^i_t, w^i_t\}_{\tau \leq t}\), whereas the FI agent directly observes these values. One key point is that PI agents do not observe their individual shock \(\varepsilon^i_t\), but only their "paycheck" \(w^i_t = \exp(\varepsilon^i_t)MPN_t\). Similarly, they do not observe their idiosyncratic return shock \(\eta^i_t\), but only the total return \(R^i_t = \exp(\eta^i_t)MPK_t\).\(^8\)

2.1.1. FI Economy

In the FI economy, all agents are fully-informed about the relevant state variables. Their information set is therefore given by

\[
\Upsilon^{FI}_t \equiv \{k^i_t, \varepsilon^i_t, \eta^i_t, \Gamma_t(k, \varepsilon, \theta), z_t, R^i_t, w^i_t, \Xi\}_{\tau \leq t},
\]

where \(k^i\) is individual capital, \(\Gamma_t(\cdot)\) is the cross-sectional distribution of households, and \(\Xi\) is the model structure and all parameters. The FI agent’s recursive problem is

\[
V^{FI}(k^i_t, \varepsilon^i_t, \eta^i_t, \Gamma_t, z_t) = \max_{k^i_{t+1} \in [0, m^i_t]} \{ u(m^i_t - k^i_{t+1}) + \beta E[V^{FI}(k^i_{t+1}, \varepsilon^i_{t+1}, \eta^i_{t+1}, \Gamma_{t+1}, z_{t+1}) | \Omega^{FI}_t] \}
\]

(2.5)

\(^7\)In Krusell and Smith (1998) every household is fully-informed; their equilibrium can be approximated by allowing households to use only information in current period. We also show here that in an economy where not all households are fully-informed, if there exists a zero mass fully-informed agent her knowledge of current period values is sufficient to accurately forecast the evolution of aggregate capital.

\(^8\)We leave aside the issue of how wages are determined when individual and aggregate wage components are not observable.
subject to the budget constraint and law of motion for Γ,

$$m_{t}^{i} = k_{t}^{i} (1 + R_{t}^{i} - \delta) + w_{t}^{i} h$$

$$\Gamma_{t+1} = F(\Gamma_{t}, z_{t}, z_{t+1}) ,$$

and the shock processes (2.1), (2.3), and (2.4). k_{t+1}^{i} is individual savings in capital and $E [\cdot | \Omega_{t}^{FI}]$ is the expectation operator conditioned on information set Ω_{t}^{FI}. Note that $K_{t+1} \in \Omega_{t}^{FI}$ since it is an aggregation of current savings. Following the approximate aggregation result in Krusell and Smith (1998) and Young (2007) the only relevant aggregate variables are K_{t} and z_{t}; other moments of Γ_{t} do not contribute to forecasting future prices. We therefore parameterize the law of motion for K_{t+1} as

$$\log (K_{t+1}) = a_{0} + a_{1} z_{t} + a_{2} \log (K_{t}) ; \quad (2.6)$$

this assumption is based on results in Young (2007) that show more flexible functional forms do not alter the aggregate dynamics of the model. It is obvious that any FI agent who knows $(R_{t}^{i}, w_{t}^{i}, \varepsilon_{t}^{i}, \eta_{t}^{i})$ can compute (K_{t}, z_{t}) by using (2.2); thus prices fully reveal the relevant state variables in our setting. To make comparisons across agents simple and relatively free of numerical error, we rewrite the FI agent problem using (R_{t}^{i}, w_{t}^{i}) as state variables rather than (K_{t}, z_{t}). The recursive problem of an FI agent is therefore

$$V^{FI}(s_{t}^{i,FI}) = \max_{k_{t+1}^{i} \in [0, m_{t}^{i})} \left\{ u (m_{t}^{i} - k_{t+1}^{i}) + \beta \int \Psi_{t+1} V^{FI}(s_{t+1}^{i,FI}) dF (\Psi_{t+1}) \right\} \quad (2.7)$$

9 Asset markets are incomplete here, since there exists only one asset (a claim to capital). In a complete market environment, belief heterogeneity is formally equivalent to discount factor heterogeneity and therefore leads to a degenerate wealth distribution (see Tsyrennikov 2006).

10 The presence of z_{t+1} in the law of motion for Γ_{t} reflects the law of large numbers requirement for the idiosyncratic shocks.

11 This result is due to the near-linearity of the optimal saving function k_{t+1}^{i} with respect to m_{t}^{i} combined with the fact that changes in the aggregate states linearly displace the savings function. Also contributing to the approximate aggregation result is the fact that only agents with low m_{t}^{i} have nonlinear savings rules and they are both small in measure and contribute negligible amounts to aggregate saving. Extensive discussions of this point can be found in Krusell and Smith (1998), Krusell and Smith (2006), and Young (2007).

12 While these conjectures (approximate aggregation and linearity of the aggregate law of motion) are based on a different model, we verify that they hold here. Linearity is critical, since it permits us to apply the Kalman filter in the PI economy.
subject to

$$m_t^i = k_t^i (1 + R_t^i - \delta) + w_t \bar{h}$$

$$\log (R_{t+1}^i) = A_0 + A_1 \log (R_t^i) + A_2 \log (w_t^i) - A_2 \varepsilon_t^i + (\rho_\eta - A_1) \eta_t^i + e_{t+1} + \zeta_{t+1}$$

$$\log (w_{t+1}^i) = A_3 + A_4 \log (R_t^i) + A_5 \log (w_t^i) + (\rho_\varepsilon - A_5) \varepsilon_t^i - A_4 \eta_t^i + e_{t+1} + \nu_{t+1}^i$$

and idiosyncratic processes (2.3), and (2.4), where $$\Psi_t^i = \{e_{t+1}, \nu_{t+1}^i, \zeta_{t+1}^i\}$$ and

$$\xi_{t}^{F,I} = \{k_t^i, \varepsilon_t^i, \eta_t^i, \log (R_t^i), \log (w_t^i)\}.$$

Appendix A shows that the dynamic equations for $$R_t^i$$ and $$w_t^i$$ shown above can be derived from equations (2.2), (2.1), and (2.6), where the coefficients $$\{A_i\}_0^5$$ will be determined endogenously in equilibrium. For ease of comparison with the PI agent, the evolution ($$\log (R_t^i), \log (w_t^i)$$) can be written as

$$E_t^{F,I} = \begin{bmatrix} \log (R_{t+1}^i) \\ \log (w_{t+1}^i) \end{bmatrix} \sim N \left(\begin{bmatrix} E_t^{F,I} [\log (R_{t+1}^i)] \\ E_t^{F,I} [\log (w_{t+1}^i)] \end{bmatrix}, V_2 \right)$$

where $$V_2$$ is a constant covariance matrix defined in Appendix A.

It is helpful here to note a property of $$V_2$$: it does not depend on the values of $$(a_0, a_1, a_2)$$ in the law of motion for $$K_t$$. Thus, FI agents who are confronted with a different aggregate law of motion – such as the one that arises from an economy populated entirely by PI agents – will know that returns and wages carry the same risk (one period ahead).

2.1.2. PI Economy

In the PI economy each agent is disparately informed. Specifically, PI agent $$i$$’s observation set is defined by

$$\Upsilon_t^{F,I} = \{k_t^i, R_t^i, w_t^i, \Xi\} \subset \Upsilon_t^{F,I}.$$

That is, PI agents do not observe the aggregate state of the world, nor do they observe their idiosyncratic shocks ($$\varepsilon_t^i, \eta_t^i$$) separately from their total wage and total return. In addition, the
observations \(\{R^i_\tau, w^i_\tau\}_{\tau \leq t} \) are private information.

This information structure creates the problem of forecasting others' forecasts and the number of state variables explodes to infinity.\(^{13}\) Intuitively, aggregate \(K_{t+1} \) is the summation over individual \(k^i_{t+1} \), which is itself a function of \(i \)'s private information \((R^i_t, w^i_t) \). Thus to forecast \(K_{t+1} \), agent \(i \) needs to forecast every other agent's \((R^j_t, w^j_t) \). Thus, \(k^i_{t+1} \) will depend not only agent \(i \)'s private information \((R^i_t, w^i_t) \) but also on what she expects \((R^j_t, w^j_t) \) to be for all \(j \). Consequently, \(K_{t+1} \) will be a function of individual \(i \)'s expectation of other's \((R^j_t, w^j_t) \), denoted the first-order expectation.\(^{14}\)

We can repeat the same induction and introduce an infinite array of higher-order expectations into the PI agent’s problem. To avoid an infinite-dimensional problem, we impose Assumptions (2.3) and (2.4) below.

Assumption 2.3. PI agents ignore all the higher order expectations when they make their savings decisions.

Assumption 2.4. PI agents believe that the law of motion of aggregate capital is captured by (2.6).

Note that Assumption (2.3) does not remove the higher order expectations from \(\Omega^P I_t \); a PI agent can construct a belief about the higher-order expectations from \(\Upsilon^P I_t \). Assumption (2.3), exogenously imposed here, allows us to remove all higher-order expectations from the state vector of the household. Like the FI problem, the approximate aggregation embedded in Assumption (2.4) is a computational technique to avoid keeping track of the whole distribution of households; in addition, here it is a restriction needed to consistently apply approximate aggregation in the PI economy, since the approximate law of motion for \(K_{t+1} \) cannot contain variables not contained in \(\Omega^i_t \). Proposition (2.5) states the consistency restriction formally.

Proposition 2.5. Any linear approximate law of motion for \(K_t \) is limited to linear combinations of \(M_s \left[x^i_t \right] \), where \(x^i_t \in \Omega^i_t \) and \(M_s \left[x^i \right] \) is an aggregate operator over \(x^i \) (for example moments, percentiles, Gini coefficient).

Proof The policy function \(k^i_{t+1} \) is a function of \(\{x^i_1, x^i_2, x^i_3, \ldots\} \), where \(x^i \in \Omega^i_t \). By aggregation, \(K_{t+1} = \int k^i_{t+1} \Gamma_t(\cdot) \). Consequently \(K_{t+1} \) is a function of some moments of \(\{x^i_1, x^i_2, x^i_3, \ldots\} \).

\(^{13}\)Townsend (1983) is the first statement of this problem.

\(^{14}\)See Nimark (2007).
Applying the consistency restriction in the FI economy is trivial; under full information, any variable x^i can be used in the approximate law of motion since all variables are in Ω_t^{FI}. However, in the PI economy only aggregation over $x^i \in \Omega_t^{PI}$ can be used. After we state the PI agent’s problem, we argue that although z_t and K_t are not in Ω_t^{PI} (2.6) can still be used to approximate the one that is consistent with Proposition (2.5).

Given Assumptions (2.3) and (2.4), a PI agent can use the Kalman filter to estimate $\{K_t, z_t, \varepsilon^i_t, \eta^i_t\}$ and construct forecasted R^i_{t+1} and w^i_{t+1}. The state and measurement equations are

$$
\begin{bmatrix}
 z_{t+1} \\
 \varepsilon^i_{t+1} \\
 \eta^i_{t+1} \\
 \log (K_{t+1})
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 \mu_{\varepsilon} \\
 \mu_{\eta} \\
 a_0
\end{bmatrix} +
\begin{bmatrix}
 \rho_{z} & 0 & 0 & 0 \\
 0 & \rho_{\varepsilon} & 0 & 0 \\
 0 & 0 & \rho_{\eta} & 0 \\
 a_1 & 0 & 0 & a_2
\end{bmatrix}
\begin{bmatrix}
 z_t \\
 \varepsilon^i_t \\
 \eta^i_t \\
 \log (K_t)
\end{bmatrix} +
\begin{bmatrix}
 \varepsilon_{t+1} \\
 \varepsilon^i_{t+1} \\
 \varepsilon^i_{t+1} \\
 \zeta^i_{t+1}
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
 \log (R^i_t) \\
 \log (w^i_t)
\end{bmatrix} =
\begin{bmatrix}
 \log (\alpha) + (1 - \alpha) \log (N) \\
 \log (1 - \alpha) - \alpha \log (N)
\end{bmatrix} +
\begin{bmatrix}
 1 & 0 & 1 & \alpha - 1 \\
 1 & 1 & 0 & \alpha
\end{bmatrix}
\begin{bmatrix}
 z_t \\
 \varepsilon^i_t \\
 \eta^i_t \\
 \log (K_t)
\end{bmatrix}
$$

In Appendix B, we show that PI agents need to filter only $(\varepsilon^i_t, \eta^i_t)$ since the measurement equations are an exact linear combination of the state variables. Denote the belief about $(\varepsilon^i_t, \eta^i_t)$ given information up to period t by $(\varepsilon^i_{t|t}, \eta^i_{t|t})$ and the prior by

$$
\begin{bmatrix}
 \varepsilon^i_{t|t} \\
 \eta^i_{t|t}
\end{bmatrix} \sim N \left(\begin{bmatrix}
 \varepsilon^i_{t|t} \\
 \eta^i_{t|t}
\end{bmatrix}, \overline{P}\right);
$$

here we assume that the agents are using the stationary covariance matrix \overline{P} from the Kalman filter.\[^{15}\]

\[^{15}\]Having the agents use an evolving variance-covariance matrix introduces many additional state variables into the problem. This assumption rules out some interesting possibilities that we intend to explore in future work; in particular, introducing the HIP specification for labor income from Guvenen (2007) would naturally require operating the filter outside the steady state.
The recursive problem of PI agent is
\[
V_{PI}^t (s^i_{t+1}) = \max_{k^i_{t+1} \in (0,m^i_t)} \left\{ u (m^i_t - k^i_{t+1}) + \beta \int_{\log(R^i_{t+1}), \log(w^i_{t+1})} V_{PI}^t (s^i_{t+1}) d\Phi_t (\log(R^i_{t+1}), \log(w^i_{t+1}) | \Omega^i_{t+1}) \right\}
\]
subject to
\[
m^i_{t+1} = k^i_t (1 + R^i_t - \delta) + w^i_{t+1} T,
\]
where
\[
s^i_{t+1} = \{ k^i_t, \pi^i_{t+1|t}, \rho^i_{t+1|t}, \log(R^i_t), \log(w^i_t) \}.
\]
The Kalman filter (derived explicitly in Appendix B) yields the following forecast rules:
\[
E^t_{PI} \begin{bmatrix} \log(R^i_{t+1}) \\ \log(w^i_{t+1}) \end{bmatrix} \sim N \left(\begin{bmatrix} E^t_{PI} [\log(R^i_{t+1})] \\ E^t_{PI} [\log(w^i_{t+1})] \end{bmatrix}, B_3 \Phi B_3^T + V_2 \right) \tag{2.11}
\]
\[
E^t_{PI} \begin{bmatrix} \log(R^i_{t+1}) \\ \log(w^i_{t+1}) \end{bmatrix} = \begin{bmatrix} A_0 \\ A_3 \end{bmatrix} + \begin{bmatrix} A_1 & A_2 \\ A_4 & A_5 \end{bmatrix} \begin{bmatrix} \log(R^i_t) \\ \log(w^i_t) \end{bmatrix} + \begin{bmatrix} -A_2 & \rho_\eta - A_1 \\ \rho_\epsilon - A_5 & -A_4 \end{bmatrix} \begin{bmatrix} \pi^i_{t|t} \\ \eta^i_{t|t} \end{bmatrix}
\]
where the dynamics of the estimated idiosyncratic shocks follow
\[
\begin{bmatrix} \pi^i_{t+1|t+1} \\ \eta^i_{t+1|t+1} \end{bmatrix} = \begin{bmatrix} \mu_\epsilon \\ \mu_\eta \end{bmatrix} + \begin{bmatrix} \rho_\epsilon \pi^i_{t|t} \\ \rho_\eta \eta^i_{t|t} \end{bmatrix} + G_3 \left(\begin{bmatrix} \log(R^i_{t+1}) - E_t [\log(R^i_{t+1})] \\ \log(w^i_{t+1}) - E_t [\log(w^i_{t+1})] \end{bmatrix} \right); \tag{2.12}
\]
\{A_j\}_{j=0}^5 are the same coefficients as in (2.8). \(B_3\) and \(G_3\) are constant matrices derived from the filtering problem, while \(V_2\) is the same matrix as in FI forecast rule (2.8). The presence of the term \(B_3 \Phi B_3^T\) implies two things about the PI agents’ forecasts – they are riskier than the FI agents’ forecasts (since \(B_3 \Phi B_3^T\) is positive semidefinite) and depend on the coefficients \((a_0, a_1, a_2)\). Thus, PI agents who find themselves confronted with the law of motion from an economy populated entirely by FI agents will perceive that the riskiness of returns and wages has changed.

Propositions (2.6) and (2.7) show the consistency of Assumption (2.4) with Proposition (2.5).

Proposition 2.6. Assume Assumption (2.3) and restrict the aggregate operator \(M_s []\) only to the first moment. Then a log-linear approximate law of motion for \(K_t\), if it exists, takes the form
\[
\log(K_{t+1}) = \alpha_0 + \alpha_1 z_t + \alpha_2 \log(K_t) + \alpha_3 E^t \left[\pi^i_{t|t} \right] + \alpha_4 E^t \left[\eta^i_{t|t} \right], \tag{2.13}
\]
where \(E^i_t [x^i] \) is cross-sectional expectation over \(x^i \).

Proposition 2.7. If \(\sigma_z \rightarrow \infty \) and \(\sigma_{\varepsilon} \rightarrow \infty \), (2.6) and (2.13) coincide.

The proof of Propositions (2.6) and (2.7) are shown in Appendix C. Intuitively, when both \(\varepsilon^i_t \) and \(\eta^i_t \) dominate \(z_t \), PI agents will infer that any unexpected change in \(R^i_t \) and \(w^i_t \) is almost entirely due to \(\varepsilon^i_t \) and \(\eta^i_t \). In this case, \((\pi^i_{t|t} - \varepsilon^i_t) \) and \((\eta^i_{t|t} - \eta^i_t) \) will converge to zero. Consequently \(E^i_t [\pi^i_{t|t}] \) and \(E^i_t [\eta^i_{t|t}] \) will converge to their unconditional mean and (2.13) will reduce to (2.6). A trivial case is when \(\sigma_z \rightarrow 0 \) but \(\sigma_{\varepsilon} \) and \(\sigma_{\eta} \) are fixed. Since there is no aggregate shock, both (2.6) and (2.13) degenerate to \(K_{t+1} = K_t = K \) (the model becomes Aiyagari 1994 with return shocks).

Finally, we note that the PI economy does not have a "representative agent" analogue. In a world of complete markets, the idiosyncratic shocks \((\varepsilon^i, \eta^i)\) would be insured away, leaving the PI economy (which has two signals and two underlying states) equivalent to the FI economy. Thus, the comparison between FI and PI is necessarily complicated by the incomplete market assumption; Graham and Wright (2007) contains a related discussion about the inconsistency between private information and complete asset markets. The implication of the incomplete market assumption is that welfare comparisons are more difficult; we cannot say definitively that FI agents are better off than PI agents, since price effects matter.

2.2. Market Clearing

In our economy equilibrium requires that supply and demand are equated in the markets for capital, labor, and goods. The first two markets will be in equilibrium if

\[
\begin{align*}
N &= h \int \exp(\varepsilon^i_t) \Gamma_t(\cdot) \\
K_t &= \int k^i_t \Gamma_t(\cdot),
\end{align*}
\]

where \(\Gamma_t(\cdot) = \Gamma_t(k^i_t, \varepsilon^i_t, \eta^i_t) \) in the FI economy and \(\Gamma_t(\cdot) = \Gamma_t(k^i_t, \varepsilon^i_t, \eta^i_t, \pi^i_{t|t}, \eta^i_{t|t}) \) in the PI economy.\(^{16}\) To obtain the goods market clearing condition we integrate the budget constraints to obtain

\[
\int m^i_t \Gamma_t(\cdot) = \int k^i_{t+1} \Gamma_t(\cdot) + \int c^i_t \Gamma_t(\cdot).
\]

\(^{16}\)Agents will also differ along the \((\pi^i_{t|t}, \log(\bar{K}^i_{t|t}))\) dimensions, but we do not need to keep track of these variables explicitly because they are exact linear combinations of the other states and the observed prices. Note that we could define the domain of \(\Gamma_t \) as the same for both PI and FI agents, since for FI agents we have \(\varepsilon^i_t = \pi^i_{t|t} \) and \(\eta^i_t = \eta^i_{t|t} \).
We then note that

\[m^i_t = k^i_t \left(1 + \exp(\eta^i_t) MKP_t - \delta \right) + MPN_t \exp(\varepsilon^i_t) \bar{h}, \]

so that

\[\int \left[k^i_t \left(1 + \exp(\eta^i_t) MKP_t - \delta \right) + MPN_t \exp(\varepsilon^i_t) \bar{h} \right] \Gamma_t(\cdot) = \int k^i_{t+1} \Gamma_t(\cdot) + \int c^i_t \Gamma_t(\cdot). \]

Rearranging yields

\[(1 - \delta) \int k^i_t \Gamma_t(\cdot) + MPK_t \int k^i_t \exp(\eta^i_t) \Gamma_t(\cdot) + MPN_t \bar{h} \int \exp(\varepsilon^i_t) \Gamma_t(\cdot) = \int k^i_{t+1} \Gamma_t(\cdot) + \int c^i_t \Gamma_t(\cdot). \]

Since there is no correlation between \(k^i_t \) and the realization of \(\eta^i_t \), we can separate that integral into the product of two integrals,

\[MPK_t \int k^i_t \exp(\eta^i_t) \Gamma_t(\cdot) = MPK_t \int k^i_{t+1} \Gamma_t(\cdot) \left(\int \exp(\eta^i_t) \Gamma_t(\cdot) \right). \]

Then we use the definition of aggregates and the fact that \(\int \exp(\eta^i_t) \Gamma_t(\cdot) = 1 \) to obtain

\[(1 - \delta) K_t + MPK_t K_t + MPN_t N_t = K_{t+1} + C_t. \]

From the firm’s first-order conditions we get the goods market clearing condition:

\[z_t K^\alpha_t N_t^{1-\alpha} + (1 - \delta) K_t = K_{t+1} + C_t. \]

Therefore, if the labor and capital markets both clear, the goods market will automatically clear.

3. Effects of Unobservable State Variables

Before we present numerical results, we discuss the effects of unobservable common state variables in the PI economy. The difference between a PI agent and an FI agent is captured by the difference in their forecast rules (2.8) and (2.11). There are two points to address here. First by having less information, PI agents perceive higher risks than their FI counterparts. Since the matrix \(B_3 PB_3^T \) is positive semidefinite, PI forecasts have higher variance (in the matrix sense). Second, there is endogenous heterogeneity in beliefs and forecasts among PI agents, since \(\varepsilon^i \) and \(\eta^i \) depend on
the whole history of \(\{R^i_t, w^i_t\}_{T < t} \). Thus PI agents who receive the same \(R^i_t \) and \(w^i_t \) will typically infer different state variables depending on their current beliefs, which translates into different expected \(R^i_{t+1} \) and \(w^i_{t+1} \). On the contrary, FI agents with the same \(R^i_t \) and \(w^i_t \) will always have the same expected \((R^i_{t+1}, w^i_{t+1}) \). As the second point will play an important role in determining the aggregate behavior of the PI economy, we discuss this result in some detail. Since we are assuming a convergent covariance matrix in the Kalman filter, the terms belief and expectation will be used interchangeably.

3.1. Degeneration of PI Beliefs

We can view both FI and PI agents as possessing priors over the values of four variables, \(\{MPK_t, MPN_t, \epsilon^i_t, \eta^i_t\} \). For the PI agent these priors are nondegenerate normals with means and variances derived from the Kalman filter. For the FI agent these priors are degenerate at the current value, so we can view them as normals with a mean equal to the true value and zero variance. One important issue to consider is whether PI beliefs converge to FI beliefs as the sample size gets large; since we permit agents to use an infinite amount of past data when estimating the states, this convergence is undesirable.

Proposition 3.1. Assume that either (i) \(\sigma_\epsilon = 0 \) or (ii) \(\sigma_\eta = 0 \). Any PI agent observing the time series of \(\{R^i_t, w^i_t\}_{T = -\infty}^t \) can recover all relevant state variables and PI beliefs degenerate into FI beliefs.

To see how this degeneration obtains, suppose that \(K_0 \) is known with certainty and that \(\sigma_\epsilon = 0 \); that is, agents do not experience idiosyncratic shocks to their returns \((R^i_t = MPK_t) \). Observing \(MPK_0 \) is sufficient to determine \(z_0 \) exactly:

\[
z_0 = \frac{MPK_0}{\alpha K_0^{\alpha - 1} N^{1 - \alpha}}.
\]

Now we can use the law of motion for capital to obtain \(K_1 \):

\[
K_1 = \exp (a_0 + a_1 z_0 + a_2 \log (K_0)).
\]

Given \(K_1 \) and \(R_1 \) we can obtain \(z_1 \) and repeat indefinitely, constructing a sequence \(\{z_t, K_t\}_{t=0}^\infty \) that depends on \(K_0 \) as a unique parameter (assuming that households know \(\alpha \) and the coefficients from the law of motion); given the infinite length of the sample and the stationarity of \(z \), we can estimate
K_0 with arbitrary precision. From this sequence it is straightforward to obtain $\{MPN_t, \varepsilon^i_t\}_{t=0}^\infty$ given observations on $\{w^i_t\}_{t=0}^\infty$. Thus, while this economy still has more underlying states than signals, it implies full information in the limit.17 If instead $\sigma_v = 0$ simply switching the roles of w^i_t and R^i_t in the discussion suffices to prove the assertion.

3.2. Cross-Sectional Beliefs

In this subsection, we compare cross-sectional beliefs in the PI economy with the FI economy, focusing on two characteristics: the cross-sectional average and cross-sectional variance of beliefs. For a given period t, the first variable measures the average perception of agents over the states of the economy while the second measures the dispersion of their perceptions. We show that unobservable common state variables always induce a bias in cross-sectional average of beliefs and heterogeneity in individuals’ forecasts. To illustrate, we digress and discuss a simple filtering problem with similar properties.

3.2.1. A Simple Filtering Problem

Consider the linear state-space system

\[
\begin{align*}
y_{t+1} &= \rho y_t + e_{t+1} \\
x^i_t &= y_t + \varepsilon^i_t \\
e_{t+1} &\sim \text{iid } N(0, \sigma^2_e), \quad \varepsilon^i_{t+1} \sim \text{iid } N(0, \sigma^2_e)
\end{align*}
\]

where y_t is a common unobservable variable and x^i_t is individual i’s measurement of y_t corrupted with classical measurement error; assume $|\rho| < 1$. Given prior $y^i_{t|t} \sim N(\overline{y}^i_{t|t}, p)$ we can write

\[
\begin{pmatrix}
y^i_{t+1|t} \\
x^i_{t+1|t}
\end{pmatrix} \sim N\left(\begin{pmatrix}
\rho \overline{y}^i_{t|t} \\
\rho \overline{y}^i_{t|t}
\end{pmatrix}, \begin{pmatrix}
p + \sigma^2_e & p + \sigma^2_e \\
p + \sigma^2_e & p + \sigma^2_e + \sigma^2_e
\end{pmatrix}\right)
\]

17Our result is the first one that we are aware of that implies more states than signals still leads to complete revelation; the literature on incomplete information revelation typically focuses on the case where the number of signals equals the number of states.
where p is steady state variance of the filter. After observing x_{t+1}^i, the posterior is given by

$$y_{t+1|t+1}^i \sim \mathcal{N} \left\{ \rho \mu_{t|t}^i + \beta \left(x_{t+1}^i - \rho \mu_{t|t}^i \right), \left(p + \sigma_e^2 \right) \right\},$$

$$\beta = \frac{p + \sigma_e^2}{p + \sigma_e^2 + \sigma_y^2}.$$

Therefore, the dynamics of i’s belief are given by

$$y_{t+1|t+1}^i = \rho \mu_{t|t}^i + \beta \left(x_{t+1}^i - \rho \mu_{t|t}^i \right), \tag{3.2}$$

where $\beta \in [0,1]$ is the Kalman gain and where $\gamma_{t|t}^i$ is the expectation by agent i about y_t given $\{x^i_{\tau}\}_{\tau \leq t}$. We define two operators for convenience: \mathbf{E}^i is the cross-sectional expectation operator and \mathbf{V}^i is the cross-sectional variance operator. We have the following propositions that establish some key properties of the cross-section of beliefs about the unobserved state.18

Proposition 3.2. The cross-sectional distribution of beliefs $\bar{y}_{t+1|t+1}^i$ is

$$\bar{y}_{t+1|t+1}^i \sim \mathcal{N} \left(\mathbf{E}^i \left[\bar{y}_{t+1|t+1}^i \right], \mathbf{V}^i \left[\bar{y}^i \right] \right), \tag{3.3}$$

$$\mathbf{E}^i \left[\bar{y}_{t+1|t+1}^i \right] = (1 - \beta) \rho \mathbf{E}^i \left[y_{t|t}^i \right] + \beta \left(y_{t|t} + \epsilon_{t+1} \right),$$

$$\mathbf{V}^i \left[\bar{y}^i \right] = \frac{\beta^2 \sigma_e^2}{1 - (1 - \beta)^2 \rho^2}.$$

Proof Substituting out x_{t+1}^i from (3.2) and rearranging we obtain the individual belief

$$\bar{y}_{t+1|t+1}^i = (1 - \beta) \rho \mu_{t|t}^i + \beta y_{t|t}^i + \beta \epsilon_{t+1}^i.$$

Applying $\mathbf{E}^i [\cdot]$ and $\mathbf{V}^i [\cdot]$ to both sides, we get the process of the cross-sectional average of beliefs as above and

$$\mathbf{V}^i \left[\bar{y}_{t+1|t+1}^i \right] = (1 - \beta)^2 \rho^2 \mathbf{V}^i \left[\bar{y}_{t|t}^i \right] + \beta^2 \sigma_e^2.$$

Since $(1 - \beta)^2 \rho^2 < 1$, there exists a time-independent variance of $\bar{y}_{t|t}^i$ given by (3.3). ϵ_{t}^i is normally distributed across i and y_{t+1} is fixed for all i. Thus the distribution of $\bar{y}_{t|t}^i$ converges to a normal distribution.

18We are unaware of any results in the filtering literature regarding the properties of the cross-sectional average of filtered variables.
Proposition 3.3. The average belief about the common state variable y_t is biased almost surely even with a continuum of individuals.

Proof Subtracting y_{t+1} from both sides of (3.2) we obtain

$$\bar{y}_{t+1|t+1} - y_{t+1} = \rho \bar{y}_{t|t} + \beta \left(x_{t+1} - \rho \bar{y}_{t|t} \right) - y_{t+1} = (1 - \beta) \rho \left(\bar{y}_{t|t} - y_t \right) + \beta \varepsilon_{t+1} - (1 - \beta) e_{t+1}.$$

Applying $E_i[\cdot]$ on both sides yields

$$E_i[\bar{y}_{t+1|t+1}] - y_{t+1} = (1 - \beta) \rho \left(E_i[\bar{y}_{t|t}] - y_t \right) - (1 - \beta) e_{t+1}.$$

The RHS is a measure of the cross-sectional bias; since e_{t+1} is not zero almost surely, this estimate is almost surely biased.

If y_t is observable, the dynamics of $E_i[\bar{y}_{t|t}]$ will coincide with y_t, leading to homogenous beliefs about y_t. However, Propositions (3.2) and (3.3) show that unobservable y_t generates heterogenous beliefs $\bar{y}_{t|t}$ that are biased on average, even with a continuum of observers. We can also establish one fact about the cross-section of beliefs about future observables.

Proposition 1. The cross-sectional variance of the forecast $\bar{x}_{t+1|t}$ is given by

$$V_i[\bar{x}_{t+1|t}] = \frac{\beta^2 \sigma^2_e}{1 - (1 - \beta)^2} + \sigma^2_e.$$

Proof Using $V_i[\bar{y}]$ in (3.3) and the measurement equations, we obtain immediately

$$V_i[\bar{x}_{t+1|t}] = \frac{\beta^2 \sigma^2_e}{1 - (1 - \beta)^2} + \sigma^2_e.$$

If $\sigma^2_e \to 0$ (no measurement error) then $\beta \to 1$ and $V_i[\bar{x}_{t+1|t}] \to \sigma^2_e$, the conditional variance of y_{t+1}; it is easy to see that $V_i[\bar{x}_{t+1|t}]$ is increasing in σ^2_e, so that unobservable y_t increases the heterogeneity in forecasts $\bar{x}_{t+1|t}$.

3.2.2. Beliefs in the PI Economy

In the previous section, we illustrated that an unobservable common state variable induces bias and heterogeneity in cross-sectional beliefs. Here we show that the same effects occur in the PI
economy. Denote the vectors of state and observed variables by
\[Y_i^t = [z_t \ \varepsilon_i^t \ \eta_i^t \ \log (K_t)]^T \]
and
\[X_i^t = [\log (R_i^t) \ \log (w_i^t)]^T, \]
respectively. Using matrix notation, we can write the state-space
system (2.9) as
\[
Y_{t+1}^i = C + DY_i^t + \Psi_{t+1}^i, \tag{3.4}
\]
\[X_i^t = \mathcal{E} + \mathcal{F}Y_i^t, \]
\[\Psi_{t+1}^i \sim N(0, \Sigma), \]

where \(\Psi_{t+1}^i = [e_{t+1} \ v_{t+1}^i \ \zeta_{t+1}^i \ 0]^T \). The following propositions characterize the cross-sectional
beliefs in the PI economy.

Proposition 3.4. Let \(Y_{i|t}^i \) be i’s expectation of \(Y_i^t \) given observation \(\{X_{\tau}^i\}_{\tau \leq t} \). Define the co-
variance matrix of \(Y_{t+1|i}^i \) as \(\hat{P} = DPD' + \Sigma \), where \(P \) is the convergent covariance matrix of \(Y_{t|t}^i \)
from the Kalman filter. The recursive expectation of \(Y_i^t \) is
\[
Y_{t+1|t+1}^i = C + (I - \mathcal{K})DY_{t|i}^i + \mathcal{K}DY_i^t + \mathcal{K}\Psi_{t+1}^i, \tag{3.5}
\]
where \(\mathcal{K} = \hat{P}\mathcal{F}'(\hat{\mathcal{F}}\hat{P}\mathcal{F}')^{-1}\mathcal{F} \) and \(I \) is the conformable identity matrix. The cross-sectional belief
\(Y_{t|t}^i \) has a joint-normal distribution,
\[
Y_{t|t}^i \sim N \left(\mathbb{E}_i \left[Y_{t|t}^i \right], V_i \left[Y_{t|t}^i \right] \right), \tag{3.6}
\]
\[
\begin{align*}
\mathbb{E}_i \left[Y_{t|t}^i \right] &= C + (I - \mathcal{K})D\mathbb{E}_i \left[Y_{t-1|t-1}^i \right] + \mathcal{K}D\mathbb{E}_i \left[Y_{t-1}^i \right] + \mathcal{K}_0 e_t, \\
V_i \left[Y_{t|t}^i \right] &= (I - \mathcal{K})DV_i \left[Y_{t-1|t-1}^i \right] D^T (I - \mathcal{K})^T + Q,
\end{align*}
\]

where \(X_{01} \) denotes the first column of \(X \), \(Q \) is a constant matrix, and \(\Sigma_Y \) is the cross-sectional
variance of \(Y_i^t \).

Proposition 3.5. The cross-sectional belief \(\mathbb{E}_i \left[Y_{t|t}^i \right] \) in the PI economy is biased almost surely.

The proofs of Propositions (3.4) and (3.5) follow the same steps as in the above simple filter
problem and are thus relegated to Appendix D. As shown in the simple filter problem, the presence
of a common state variable produces *biased* average beliefs in the PI economy. Equation (3.6)
shows that aggregate shock \(e_t \) is the driving force in the stochastic process of average beliefs.
Thus, any economy with private information and an aggregate shock will produce biased beliefs
on average. The convergence of \(V_i \left[Y_{t|t} \right] \) depends on the eigenvalues of the matrix \((I - \mathcal{K}) \mathcal{D}\). Due to nonlinearity, we cannot show that \(V_i \left[Y_{t|t} \right] \) converges in general. However, we can argue that \(V_i \left[Y_{t|t} \right] \) must remain finite. i' beliefs can drift away from the average belief only if the observations \((\log (R^i_t), \log (w^i_t))\) drift away from their cross-sectional averages. Since both \(\varepsilon^i_t \) and \(\eta^i_t \) are mean-reverting processes, this drifting cannot continue indefinitely. Thus \(V_i \left[Y_{t|t} \right] \) converges to a unique matrix or a limit cycle.\(^\text{19}\)

Turning to the observables, we derive the expression for the cross-sectional variance of the forecasts.

Proposition 3.6. Denote \(\bar{X}^i_{t+1|t} = \left[E_t \left[\log (R^i_{t+1}) \right] \ E_t \left[\log (w^i_{t+1}) \right] \right]^T \). In the PI economy the cross-sectional variance of \(\bar{X}^i_{t+1|t} \) is

\[
V^i \left[\bar{X}^i_{t+1|t} \right] = \mathcal{F} \mathcal{D} V^i \left[Y_{t|t} \right] \mathcal{D}^T \mathcal{F}^T,
\]

and in the FI economy the cross-sectional variance of forecasts is

\[
V^i \left(E_t \left[\log (R^i_{t+1|t}) \right] \right) = \rho^2 \frac{\sigma^2_\varepsilon}{1 - \rho^2_\eta},
\]

\[
V^i \left(E_t \left[\log (w^i_{t+1|t}) \right] \right) = \rho^2 \frac{\sigma^2_\varepsilon}{1 - \rho^2_\varepsilon}.
\]

Proof The cross-sectional variance in the PI economy is derived by applying \(V^i \left[Y_{t|t} \right] \) to the measurement equations. In the FI economy, agents observe both \(z_t \) and \(K_t \) and thus have homogenous forecasts for \(MPK_{t+1} \) and \(MPN_{t+1} \). Since \(\log (R^i_{t+1}) = \log (MPK_{t+1} + \eta^i_{t+1}) \) and \(\log (w^i_{t+1}) = \log (MPN_{t+1} + \varepsilon^i_{t+1}) \), the cross-sectional variance of FI forecasts is determined by the cross-sectional variance of \(\varepsilon^i_{t+1} \) and \(\eta^i_{t+1} \) only.

Proposition (3.6) shows that any heterogeneity in forecasts in the FI economy depends only on the exogenous idiosyncratic shocks. On the contrary, in the PI economy there is endogenous heterogeneity in the forecasts induced by unobservable state variables. Unlike the simple filter problem, however, we cannot analytically show that the cross-section variance of forecasts in the PI economy is higher than that in the FI economy, since it depends endogenously on the behavior of the aggregate capital stock through the matrices \(\mathcal{D} \) and \(\mathcal{F} \). Thus we defer further discussion to the next section after we present numerical results.

\(^{19}\)In all of our numerical experiments it converged to a unique matrix.
4. Results

This section of the paper is divided into four subsections. The first subsection discusses the calibration and computation of the FI and PI models. In the second subsection we compare the aggregate dynamics of the two economies; our interest here is determining whether the assumption of homogeneous information is critically important for the standard battery of business cycle statistics. The third subsection discusses the differences in individual behavior that give rise to the different aggregate dynamics – essentially, we ask what makes a PI agent different from an FI agent. Finally, in the fourth subsection we discuss the wealth distributions produced by the two economies.

4.1. Calibration and Computation

We assume one model period corresponds to one quarter. The felicity function \(u(c) \) is chosen to be \(\log(c) \), so that relative risk aversion equals one. The chosen parameters of the model are \(\beta = 0.99 \), \(\alpha = 0.36 \), \(\delta = 0.0217 \), and \(h = 0.3271 \); these values yield aggregate outcomes generally consistent with US data on capital/output and investment/output ratios and capital’s share of income. The log of technology shock \(z_t \) is estimated from the annual series of GDP and tangible assets from the National Income and Product Accounts and then converted into a quarterly process, yielding \(\rho_z = 0.96429 \) and \(\sigma^2_e = 0.0071^2 \). We use the estimates of Storesletten, Telmer, and Yaron (2004) for the \(\varepsilon \) process, although for convenience we ignore the countercyclical variance movements that is the main focus of their paper. For the process for \(\eta \) we have little information – we therefore assume that the process has \(\rho_\eta = 0 \) and \(\sigma^2_\zeta = 0.05 \); consistent with our interpretation of \(\eta \) as reflecting poorly-diversified portfolios, it seems natural to assume that they are not persistent errors.

Appendix E presents an extensive discussion of our solution method. We use monomial rules adapted for normal random variables to compute the integrals and a combination cubic-linear spline interpolation scheme to evaluate the value functions.\(^{20}\) We solve the household problem using Brent’s method and Newton-Raphson iteration on the first-order condition, depending on how close we are to the borrowing constraint. The details of the simulation are also contained in Appendix E; briefly, we use a cross-section of 100,000 households to approximate the continuum

\(^{20}\) Fortran code to solve the model is available upon request. Typically the code takes several days to converge, even when executed in parallel, and is likely to be unstable for poor initial guesses. In addition, the grids often need to be adjusted to ensure convergence.
and use Monte Carlo methods to generate the shocks.\footnote{The method used in Young (2007) would be preferable, but it is too computationally burdensome because agents differ along 5 dimensions and the beliefs cannot be restricted to the points in a finite-state approximation to the shock processes. Our results are not sensitive to increasing the number of agents in the cross-section to 800,000, except that some graphs are smoothed out (particularly aggregate consumption).}

4.2. Aggregate Dynamics

In this section, by comparing FI and PI economy, we will show that relaxing the full information assumption significantly changes the aggregate dynamics of our economy. The equilibrium law of motion of \(K_t \) and forecasting rules for the two economies are

\[
\begin{align*}
\log (K_{t+1}) & = 0.0907 + 0.0591z_t + 0.9699 \log (K_t) \\
E_t \left[\log (R^i_{t+1}) \right] & = -0.1375 + 0.9542 \log (R^i_t) - 0.0278 \log (w^i_t) + 0.0278z^i_t - 0.9542\eta^i_t \\
E_t \left[\log (w^i_{t+1}) \right] & = 0.0402 + 0.0056 \log (R^i_t) + 0.9799 \log (w^i_t) - 0.0369z^i_t - 0.0056\eta^i_t \\
V_t \begin{bmatrix} \log (R^i_{t+1}) \\ \log (w^i_{t+1}) \end{bmatrix} & = \begin{bmatrix} 0.0025 & 0.0071^2 \\ 0.0071^2 & 0.0283 \end{bmatrix}
\end{align*}
\]

for the FI economy and

\[
\begin{align*}
\log (K_{t+1}) & = 0.0713 + 0.0752z_t + 0.9768 \log (K_t) \\
E_t \left[\log (R^i_{t+1}) \right] & = -0.1248 + 0.9550 \log (R^i_t) - 0.0388 \log (w^i_t) + 0.0388\pi^i_{t|t} - 0.9550\tilde{\eta}^i_{t|t} \\
E_t \left[\log (w^i_{t+1}) \right] & = 0.0330 + 0.0052 \log (R^i_t) + 0.9861 \log (w^i_t) - 0.0431\pi^i_{t|t} - 0.0052\tilde{\eta}^i_{t|t} \\
V_t \begin{bmatrix} \log (R^i_{t+1}) \\ \log (w^i_{t+1}) \end{bmatrix} & = \begin{bmatrix} 0.0028 & 0.0068^2 \\ 0.0068^2 & 0.0283 \end{bmatrix}
\end{align*}
\]

for the PI economy, where \(V_t \) is the conditional variance operator.

These laws of motion are conditional on the Assumptions (2.3) and (2.4); accuracy tests are needed to verify whether these assumptions are reasonable. If we compute \(R^2 \) for the laws of motion for \(K_t \), in both cases it exceeds 0.99998. Given the arguments in den Haan (2007), we prefer to judge the approximation based on the maximum error of the law of motion in our simulation of 5000 periods: these errors are \(1.83 \times 10^{-4} \) and \(5.68 \times 10^{-4} \) in the FI and PI economies, respectively. Finally, we assess how well one PI agent would forecast aggregate capital using the first-order
expectations about the idiosyncratic shocks, yielding the regression
\[
\log (K_{t+1}) = 0.1179 + 0.0098z_t + 0.9617 \log (K_t) + 0.0573E^i_t [\tilde{e}^i_{t|t}] - 0.0037E^i_t [\tilde{\eta}^i_{t|t}];
\]
the maximum error for this regression is \(2.71 \times 10^{-4}\). Although adding \(E^i_t [\tilde{e}^i_{t|t}] \) and \(E^i_t [\tilde{\eta}^i_{t|t}]\) does reduce the maximum error, the size of error is already very small; furthermore, the coefficients on these additional terms are not particularly large. Thus the computational benefit from removing \(E^i_t [\tilde{e}^i_{t|t}] \) and \(E^i_t [\tilde{\eta}^i_{t|t}]\) from the law of motion, and consequently PI agents’ state variables, should outweigh the cost in terms of computational accuracy.\(^{22}\)

From (4.1) and (4.2), we first note that aggregate capital is more sensitive to the technology shock in the PI economy; we detail in the next subsection the reasons that underlie both the higher capital stock and the heightened sensitivity observed in the PI economy. Second, PI agents face larger one-period risk in returns, although this effect is small in our calibration. Given that the covariance matrix for the FI agent is independent of the law of motion for \(K_t\), it is immediate that the second effect is driven entirely by the filtering problem of the PI agent; that is, the higher risks faced by PI agents do not have a general equilibrium component.

Table 1 presents the standard battery of business cycle statistics – standard deviations and cross-correlations – for a simulation of 5000 periods.\(^{23}\) The notable differences between the two economies are bolded in the table. Mean aggregate activity measures (output, consumption, capital, investment) are uniformly higher in the PI economy. The volatility of all variables except consumption is also higher in the PI economy, reflecting the higher coefficient on \(z_t\) in the law of motion for \(K_t\). With respect to correlations, there are two key differences. First, in the FI economy aggregate consumption has a higher contemporaneous correlation with aggregate output and the aggregate technology shock than in the PI economy. Second, the cross correlations of \(MPK\) with other aggregates are uniformly lower in the PI economy; indeed, the correlation between returns and wages goes from positive in the FI economy to negative in the PI economy.

The lower panel in Figure (1) plots the aggregate capital stocks from a simulation for both the FI

\(^{22}\)We are computing another PI economy where we assume the law of motion takes the form (2.13) and includes the first order expectations \(E^i_t [\tilde{e}^i_{t|t}] \) and \(E^i_t [\tilde{\eta}^i_{t|t}]\) as state variables. If the results are still the same, we can claim that Assumptions (2.3) and (2.4) are approximately sufficient. The key difference between this test and the previous one is that behavior is not being held constant here.

\(^{23}\)The initial distribution is the stationary distribution from a model without aggregate shocks; 1000 periods are dropped before statistics are computed, so the total length of the simulation is 6000 periods. The series are not filtered.
and PI economy; in the PI economy we find that K_t is uniformly higher and this difference increases when technology increases and decreases when z_t falls; the correlation between $(K_t^{PI} - K_t^{FI})$ and z_t is 0.49. Due to the higher sensitivity of capital accumulation to the technology shock, swings in K_t are exaggerated in the PI economy; despite the fact that these swings are larger, the higher average value prevents capital in the PI economy from dropping below that in the FI economy (our plot is entirely representative and is truncated only for the convenience of presentation, as the two series never switch).

Figure (2) shows the time path of aggregate consumption and investment in the two economies; one thing that stands out is the 'choppiness' of aggregate consumption in the FI economy relative to the PI economy. Figure (3) decomposes aggregate consumption into three bands – cycles with periods between 2 and 6 quarters, between 6 and 32 quarters, and above 32 quarters. The plot shows that the FI economy has significantly more high and medium frequency variation than the PI economy; we also observe a phase shift at very low frequencies, where the PI aggregate consumption lags behind, although the variances very similar over this band. The delay in the response of consumption accounts for the lower contemporaneous correlation between aggregate consumption and output in the PI economy. A similar decomposition for aggregate investment – not shown for brevity – implies that investment is more volatile in the PI economy across all bands and displays only a small phase shift at low frequencies.

4.3. Dynamics of Cross-sectional Beliefs

In Section (??), we showed that the unobservable z_t generates endogenous heterogeneity in beliefs and induces bias in the average belief. In order to assess how important these effects are, we report the quantitative results from our calibrated models. A quick summary of the results of these experiments is that belief dispersion is not significantly higher in the PI economy relative to the FI economy but the PI economy does display a pronounced bias.

The dynamics of beliefs is fully characterized by Equation (3.6); in the calibrated equilibrium
the coefficients for the matrices are

\[K = \begin{bmatrix}
0.0241 & 0.0033 & 0.0208 & -0.0121 \\
1.0251 & 0.9956 & 0.0295 & 0.3396 \\
0.8883 & -0.0014 & 0.8898 & -0.5700 \\
-0.1368 & 0.0029 & -0.1397 & 0.0905 \\
\end{bmatrix} \]

\[KD = \begin{bmatrix}
0.0224 & 0.0031 & 0.0000 & -0.0118 \\
1.0140 & 0.9389 & 0.0000 & 0.3317 \\
0.8137 & -0.0014 & 0.0000 & -0.5568 \\
-0.1251 & 0.0028 & 0.0000 & 0.0884 \\
\end{bmatrix} \]

\[(I - K)D = \begin{bmatrix}
0.9419 & -0.0031 & 0.0000 & 0.0118 \\
-1.0140 & 0.0041 & 0.0000 & -0.3317 \\
-0.8137 & 0.0014 & 0.0000 & 0.5568 \\
0.2003 & -0.0028 & 0.0000 & 0.8885 \\
\end{bmatrix}. \]

All eigenvalues of \((I - K)D\) are less than one; thus there exists a convergent covariance matrix \(\Sigma = \mathbf{B}^T \mathbf{P} \mathbf{B} \), validating our assumption. Table 2 reports the cross-section standard deviation in beliefs and forecasts; the dispersion of expectations in PI and FI economies is only slightly different. Obviously, for the FI agent there can be no dispersion in beliefs about \((z_t, K_t)\), since these are common variables; thus, the PI agent accommodates dispersion in beliefs about those variables by reducing (slightly) the dispersion in beliefs about the idiosyncratic shocks. With respect to forecasts, the largest difference occurs in the cross-sectional beliefs about \(\log(R_{it+1})\) rather than \(\log(w_{it+1})\). To understand why, we note that the difference in the variance-covariance matrix of the forecast errors, \(\Sigma = \mathbf{B}^T \mathbf{P} \mathbf{B} \), has the following entries:

\[
\Xi(1,1) = A_2^2 p_{11} + 2A_2 (A_1 - \rho_\eta) p_{12} + (\rho_\eta - A_1)^2 p_{22}
\]

\[
\Xi(1,2) = -A_2 (\rho_\epsilon - A_5) p_{11} + ((\rho_\eta - A_1)(\rho_\epsilon - A_5) + A_2 A_4) p_{12} - A_4 (\rho_\eta - A_1) p_{22}
\]

\[
\Xi(2,2) = (\rho_\epsilon - A_5)^2 p_{11} - 2A_4 (\rho_\epsilon - A_5) p_{12} + A_4^2 p_{22},
\]

where \(p_{ij}\) is the \((i, j)\)th element of \(\mathbf{P}\). Both \(\Xi(1, 2)\) and \(\Xi(2, 2)\) are small, meaning that the consequences of private information for dispersion in wage beliefs is limited. But \(\Xi(1, 1)\) is

\[\text{24} \text{ The key for this result is that } \rho_\epsilon, \rho_\eta, \text{ and } a_2 \text{ are all relatively close to each other, meaning that filtering does not} \]
relatively large because A_1 is close to 1 and $\rho_\eta = 0$, leading to larger effects on the beliefs about returns.\footnote{We have
\[A_1 = \rho_z \alpha + (1 - \alpha) (a_2 - \alpha a_1); \]
since $\rho_z \approx a_2$ and $a_1 \approx 0$ we get $A_1 \approx a_2$ which is close to 1. This result holds in a wide class of economies, since it relies only on persistence in capital movements and aggregate technology shocks.}

Figure (4) and (5) plot the cross-sectional average of beliefs: $E^i [z^i_{t|t}]$, $E^i [\log (K^i_{t|t})]$, $E^i [\varepsilon^i_{t|t}]$, and $E^i [\eta^i_{t|t}]$; the plots show persistent biases in all variables. Both beliefs about aggregates are smoother than their realized counterparts, reflecting the tendency for agents to attribute movements in prices to idiosyncratic components rather than aggregates; in addition, $E^i [\log (K^i_{t|t})]$ reacts with a delay relative to actual $\log (K_t)$. If we look instead at the realized marginal products, we see from Figure (6) that beliefs about $\log (MPN_t)$ are very smooth relative to the true value, while beliefs about $\log (MPK_t)$ display significant fluctuations. The smoothness in $E^i [\log (MPN^i_{t|t})]$ manifests itself in the relatively large bias found in $E^i [\varepsilon^i_{t|t}]$; since ε^i is a relatively large shock, agents attribute almost all movements in wages to idiosyncratic shocks.

To understand how the average beliefs responses to an unobserved aggregate shock, we apply a single technology impulse to the PI economy.\footnote{We consider an PI (FI) economy currently in the stationary state -- that is, $z_t = 0$ for a long time so that the distribution has settled down to some stationary one. Due to precautionary savings this distribution is not the one produced by a model without aggregate shocks, although it typically is close. We then hit this economy with an increase in ε_t of 2.5 standard deviations; the size of the shock is designed to make the graphs easier to read and does not materially affect the results (because the model is close to linear).} Figure (8) displays the impulse response dynamics in the PI economy. Realized z_t jumps up immediately and converges monotonically to the steady state, consistent with the AR(1) process. However, average estimated z_t does not -- it jumps up only by a small amount -- since agents rationally attribute most of the increase in wages to ε^i. Average estimated K_t falls, the opposite direction from the realized K_t, and remains persistently below average for many periods before overshooting and returning to the mean.

To understand the impulse response paths, note that when the shock hits PI agents observe a rise in both R^i_t and w^i_t. We can decompose the observed prices into the aggregate and idiosyncratic components:

\[
\begin{align*}
\log (R^i_t) &= \log (MPK_t) + \eta^i_t, \\
\log (w^i_t) &= \log (MPN_t) + \varepsilon^i_t.
\end{align*}
\]
Since σ_ε and σ_η are much larger than σ_z, when a PI agent observes an unexpected rise in R_i^t and w_i^t the correct inference is that the change is mostly due to a rise in both η_i^t and ε_i^t; that is, they underweight the common component driven by z_t. As a result, average estimated MPK_t and MPN_t will move less than the realized one and the shortfall is made up in the increase in average estimated ε_i^t and η_i^t; since PI agents do not observe these averages, they cannot revise their estimates to eliminate the bias. The smaller change in average estimated MPN_t, compared to MPK_t, is due to our calibration that σ_ε is much larger than σ_η.

There is also another channel that generates confusion for PI agents regarding the current state of the world. New observations not only convey the information about the new innovations, they also have a retrospective effect. A PI agent realizes that her prior might be incorrect, so she will always revise her previous prior once she observes more information (namely the realizations of R_i^t and w_i^t). In this model, PI agents respond to technology shocks by revising downward their current estimate of K_t (on average) even though they know that it cannot adjust today (it is hard to see in Figure (8) because the revision is very small); this downward revision produces a decline in MPN_{1t}^i and therefore an upward adjustment in $\varepsilon_{t|t}^i$.

4.4. Average Biases and Difference in Aggregate Dynamics

In Section (??), we noted that moving from FI economy to PI economy will have three effects. First, agents will perceive higher risk in both R_i^t and w_i^t. Second, endogenous heterogeneity in expectations about the future arises. And third, there are biases in cross-sectional expectation of all current unobserved states. We also noted that there is not much difference in terms of perceived risks and heterogeneity in expectations between the two economies. Thus, the key difference between the behavior of the FI and PI economies must come through the beliefs about current states; the purpose of this subsection is to show how this difference generates different aggregate savings.

The savings behavior of agents in the PI economy differs from that in the FI economy for two reasons. First, PI agents have different information, and second, they face a different law of motion for the aggregate capital stock. We construct three experiments in order to separate the myriad of effects present in the model. Experiment (1) introduces into the economy a (measure

27 Lucas (1972) contains a similar mechanism – in that model, agents observe the product of an aggregate and island-specific shock to prices and cannot differentiate between the two.

28 This backward-looking revision is called smoothing in the Kalman filter literature.
zero) population of PI agents who take as fixed the PI filtering process and the law of motion for aggregate capital, but are not confused about the current state of the world (that is, each period we reset their beliefs to correspond to the true state). Experiment (2) introduces a (measure zero) population of FI agents who take as given the law of motion for aggregate capital from the PI economy (FI agents living in a PI world); these agents differ from PI agents in terms of their beliefs about the state of the world today and the distribution of possible states tomorrow. Experiment (3) computes the equilibrium of an economy populated entirely by the PI agents from Experiment (1) (they are not confused about the current state). Figure (??) plots the aggregate capital stock for the two basic economies – PI and FI – plus the aggregates constructed from these three experiments.

Comparing the results of Experiments (1) and (2), we see that their paths lie very close together. The difference between the two populations is simply their expectations about the state of the world tomorrow; as noted above, FI agents view next period’s returns as less risky than the PI agents. We note that the difference is not mean zero, as FI agents always save less than their (not confused) PI counterparts. This difference is driven by precautionary savings motives and is model-specific; in the presence of background risk, increased return risk has an ambiguous effect on savings, particularly when the two are correlated. 29 Because the difference in expected risk is small, the difference between behavior is small as well.

We do not plot the time path from Experiment (3), since it lies on top of the path from the FI economy (they have the same law of motion out to at least three decimal places). The difference between Experiment (1) and Experiment (3) is that agents have different mean expectations (since capital evolves deterministically); this effect is large. Note that Experiment (1) and Experiment (2) do not lie on top of each other, as FI and Experiment (3) do, despite both of pairs of experiments involving agents who differ only in terms of their expectations about tomorrow (all of them know the state of the world today and also use the same law of motion for aggregate capital). There are minor differences in the variance-covariance matrices produced by Experiments (1) and (3), but these are of the same size as the differences between Experiment (3) and the FI economy, so they do not account for the gap.

Given that confusion about the current state is critical for generating the different behavior of the PI and FI economies, we now discuss why confusion matters. Figure (??) plots the expected profile of beliefs given an impulse to technology at time \(t \); that is, these plots are not time paths

but rather forecasts based only on information available at time \(t \). Looking first at the forecasts of \(\log(R_i^t) \), the PI agent believes that any deviation will have no persistence at all; thus, there is no incentive to save for tomorrow since returns will not be higher. In contrast, for the FI agent the persistently high returns driven by the aggregate shock do induce an additional incentive to save. Turning to wages, PI agents also perceive less persistence in \(\log(w_i^t) \) compared to the FI forecast; intertemporal substitution motives for smoothing consumption then induce the PI agent to save more today relative to the FI agent.

There is also a subtle general equilibrium effect that tends to increase the saving of the PI agent. PI agents believe that high returns are idiosyncratic, so in periods where they want to buy assets there must be another agent who wants to sell. As a result, PI agents systematically underestimate the power of decreasing returns to scale at the aggregate level; that is, they foresee aggregate capital tomorrow being lower than it will turn out to be. In the calibrated equilibrium the motives that lead to higher saving dominate; our assumption that return shocks are not persistent means that, if anything, we are understating the motive to save since any persistence would increase it further.

Thus, PI agents tend to save more at a point in time, accounting for the higher capital stock. To see why technology shocks affect the capital stock more strongly in the PI economy, we need to look at the behavior of agents tomorrow. When the PI agent arrives in the period after the technology shock, on average her wealth will be higher than expected. Savings functions in this model are increasing in wealth, meaning that next period the PI agent will have an incentive to save more again, leading to larger fluctuations in investment and capital.

Our result raises a concern in empirical econometrics. Confusion induced by unobserved state variables causes the PI agents, on average, to accumulate more capital despite facing the same underlying process for idiosyncratic risk. If an econometrician observes only data from the PI economy and incorrectly imposes the full information assumption, one would infer that PI agents are more averse to (background) risk, which is not true (their underlying preferences are the same; although their indirect preferences over intertemporal wealth gambles, measured as the curvature in the value function, are in fact different the size of the effect is very small). Thus, we caution empirical researchers to consider carefully the information sets of their households when estimating household-level parameters.
4.5. Disparate Information and Wealth Concentration

We noted above that the model tended to concentrate belief heterogeneity in returns; heterogeneity of this sort has the potential to generate significant differences in asset holdings over time. Aiyagari (1994), Chamberlain and Wilson (2000), and Guvenen (2005) show how sensitive savings in this model is to small changes in expected returns—as the expected return on savings converges to the time rate of preference, savings becomes infinitely elastic (see Figure 12). Furthermore, as shown in Aiyagari (1994), the effect is asymmetric; incrementing expected returns by some small amount increases savings more than decrementing the return by the same amount decreases it.30 Thus, agents who receive (or believe that they have received) good return shocks will save a lot, leading to a significant concentration of wealth among such agents; we call this effect \textit{optimism}. On the other hand, the presence of return shocks reduces the concavity of the savings function due to prudence; with return shocks, higher average returns also means higher variance, discouraging accumulation.31 Whether the model produces more or less wealth concentration is then a contest between optimism and prudence.

To examine how the model sorts out these two effects, we compare the wealth distributions in the FI and PI economies. To give the reader a reference point, in US data wealth is highly concentrated among only the top percentile of wealth distribution; Budría Rodríguez et al. (2002) report a Gini coefficient of wealth equal to 0.8 with 25 percent of the wealth (and 90 percent of the financial wealth) held by the top 1 percent of the wealth distribution. Figure (13) shows the Lorenz curve and Gini coefficient for the FI and PI economies, showing that there is a significantly lower Gini coefficient in the PI economy. In addition, the Lorenz curve for the PI economy lies everywhere above the one for the FI economy. Thus, the PI economy both fewer poor and fewer rich households; the prudence effect is sufficiently strong that it wipes out optimism.

5. Conclusion

Our concluding comments will be directed at future research. Our model can be viewed as an attempt to integrate heterogeneity of beliefs (or expectations) into a macroeconomic model without relying on noise traders or rule-of-thumb agents. If we remove FI agents from the economy, all

30This asymmetry is a consequence of the concavity of the consumption function; Carroll (2004) provides the theoretical foundation for this concavity and we verify it numerically for our model.

31Because the return shocks are purely transitory, the effect on the savings function is very small and cannot be seen in Figure (12).
heterogeneity in beliefs is endogenous and driven by optimal filtering of individual data. Our model is not as general as possible, of course, so it is important to investigate how robust our results are. For example, Brevik and d’Addona (2007) shows that agents with recursive utility might not have an incentive to learn the state of the world in the future, even if they have an incentive to learn it today, which may give rise to a form of information stickiness in the presence of small costs of information (as in Mankiw and Reis 2006). We intend to extend our model to Epstein and Zin (1989) preferences in order to investigate this possibility, since it would generate more heterogeneity in expectations. Another extension would build on Saito (2005), who explores the problem of filtering between two aggregate shocks; if we interpret one shock as a Markov chain that shifts the process for idiosyncratic risk while the other is continuous and does not affect idiosyncratic risk, this model poses a different problem for partially-informed agents. Another extension would be to permit more quantities to be observed in equilibrium (as in Bomfim 2001b or Aruoba 2006).

One substantive issue that we believe can fruitfully be examined in the context of our model is the trading volume puzzle (existing models do not match either the mean or volatility of asset turnover); with heterogeneous beliefs, agents are likely to trade more than the standard model would predict.32 To explore the trading volume puzzle we would need to add additional assets into our economy, particularly a risk-free asset; that model would then shed some light on how risk-free debt would be priced in a world of incomplete information.33 In fact, the model might even be useful for making predictions about which assets would be traded. One particularly interesting extension would introduce additional markets and then permit agents to receive signals only about prices in markets they are actively using (via search, for example); thus, households who are not attempting to find a job would not get any new information about their wage, leading to more heterogeneity in beliefs. That model would require that the filter be operated outside the steady state, however, and introduces nontrivial computational burden.

Since our model predicts that less information leads to larger business cycles, it may be useful for understanding the so-called Great Moderation, the decline in aggregate volatility that has been observed since the early 1980s (see Fernández-Villaverde and Rubio-Ramírez 2007). It is reasonable

32DeJong and Espino (2006) examines the trading volume predicted by a heterogeneous-agent economy with complete markets.

33Ongoing work is examining the role of asymmetric information in a worker-entrepreneur economy where risk-free debt is the only asset traded. Preliminary results based on a two-period model suggest that the price of risk-free debt can be significantly different than the full information benchmark.
to think that information about the aggregate economy has been getting better, both because the
BEA is better at collecting and producing data and because information about aggregates diffuses
more rapidly due to IT improvements. While a complete study of this issue is beyond the scope
of this paper – in particular, it would require that the model be extended to permit elastic labor
supply at the minimum – our results do suggest that these informational improvements should
reduce aggregate volatility, particularly in investment. The rising labor income risk measured by
Krueger and Perri (2006) might work in the opposite direction, however, since it would imply that
the compounding effects of confusion would get stronger as agents attach even less weight to the
aggregate shock. A quantitative comparison of the two effects would be needed to determine which
is stronger.

Finally, drawing some connection between the expectations produced by our model and direct
measures of consumer confidence will eventually be necessary. Figure (14) shows that there is a
strong correlation between the Michigan Survey of Consumer Sentiment and an index of Industrial
Production at business cycle frequencies (the correlation is 0.58). The data show also that the
sentiment measure is as volatile as IP. In Figure (15) we plot a measure of consumer sentiment
from our model – the average expectation of output \(E^t \left[Y^t_{i(t)} \right] \). This variable is considerably less
volatile than output in the model and nearly orthogonal to actual output; thus, while we think the
model is taking a step in the direction of modelling expectations, it clearly is missing some critical
mechanisms.

\[^{34} \text{Both series are taken from the FRED database and HP-filtered using a smoothing parameter of 144,400.} \]
\[^{35} \text{Danthine, Donaldson, and Johnsen (1998) is one attempt to connect consumer sentiment to business cycles through a 'peso problem' model of unfalsified expectations.} \]
References

A. Appendix A

In this appendix we show how to derive the price process for R^i_t and w^i_t used by an FI agent. Given competitive factor markets we can solve for z_t and $\log K_t$ by equating factor prices to marginal products:

\[
\log (R^i_t) - \log \alpha - (1 - \alpha) \log (N) = z_t + (\alpha - 1) \log (K_t) + \eta^i_t
\]
\[
\log (w^i_t) - (1 - \alpha) + \alpha \log (N) = z_t + \alpha \log (K_t) + \varepsilon^i_t,
\]

which implies

\[
z_t = \alpha (\log (R^i_t) - \log \alpha - (1 - \alpha) \log (N)) + (1 - \alpha) (\log (w^i_t) - \log (1 - \alpha) + \alpha \log (N)) - (1 - \alpha) \varepsilon^i_t - \alpha \eta^i_t
\]
\[
\log (K_t) = (\log (w^i_t) - \log (1 - \alpha) + \alpha \log (N)) - (\log (R^i_t) - \log \alpha - (1 - \alpha) \log (N)) - \varepsilon^i_t + \eta^i_t.
\]

Now we substitute the laws of motion for aggregate capital, the technology shock, and the idiosyncratic shock processes into the pricing equations in period $t + 1$, obtaining

\[
\log (R^i_{t+1}) - \log \alpha - (1 - \alpha) \log (N) = \rho_z z_t + \varepsilon_{t+1} + (\alpha - 1) (a_0 + a_1 z_t + a_2 \log (K_t)) + \mu_{\eta} + \rho_{\eta} \eta^i_t + \zeta^i_{t+1}
\]
\[
\log (w^i_{t+1}) - (1 - \alpha) + \alpha \log (N) = \rho_z z_t + \varepsilon_{t+1} + \alpha (a_0 + a_1 z + a_2 \log (K_t)) + \mu_{\varepsilon} + \rho_{\varepsilon} \varepsilon^i_t + \nu^i_{t+1}.
\]

Substituting z_t and $\log K_t$ out, we get the forecast equations

\[
\begin{bmatrix}
\log (R^i_{t+1}) \\
\log (w^i_{t+1})
\end{bmatrix}
\sim N \left(\begin{bmatrix}
E_t [\log (R^i_{t+1})] \\
E_t [\log (w^i_{t+1})]
\end{bmatrix}, \Sigma \right)
\]

\[
E_t [\log (R^i_{t+1})] = A_0 + A_1 \log (R^i_t) + A_2 \log (w^i_t) - A_2 \varepsilon^i_t + (\rho_{\eta} - A_1) \eta^i_t
\]
\[
E_t [\log (w^i_{t+1})] = A_3 + A_4 \log (R^i_t) + A_5 \log (w^i_t) + (\rho_{\varepsilon} - A_5) \varepsilon^i_t - A_4 \eta^i_t
\]

\[
\Sigma = \begin{bmatrix}
\sigma^2_e + \sigma^2_\zeta + 2 \rho_{\varepsilon \zeta} \sigma_e \sigma_\zeta & \sigma^2_\nu + \rho_{\varepsilon \nu} \sigma_e \sigma_\nu + \rho_{\varepsilon \nu} \sigma_e \sigma_\nu \\
\sigma^2_\nu + \rho_{\varepsilon \nu} \sigma_e \sigma_\nu + \rho_{\varepsilon \nu} \sigma_e \sigma_\nu & \sigma^2_\nu + 2 \rho_{\varepsilon \nu} \sigma_e \sigma_\nu
\end{bmatrix}
\]
where

\[
A_0 = (\alpha - 1) a_0 + (1 - A_1) \log (\alpha) - A_2 \log (1 - \alpha) + ((1 - A_1) (1 - \alpha) + A_2 \alpha) \log (\bar{N}) + \mu_\eta \\
A_1 = \rho_z \alpha + (1 - \alpha) (a_2 - a_1 \alpha) \\
A_2 = (1 - \alpha) (\rho_z - (1 - \alpha) a_1 - a_2) \\
A_3 = \alpha a_0 - A_4 \log (\alpha) + (1 - A_5) \log (1 - \alpha) + (\alpha (A_5 - 1) - (1 - \alpha) A_4) \log (\bar{N}) + \mu_\varepsilon \\
A_4 = (\rho_z + a a_1 - a_2) \alpha \\
A_5 = (1 - \alpha) \rho_z + \alpha (a_1 (1 - \alpha) + a_2).
\]

The error in the forecasts of future prices is the innovation in the technology shock and the idiosyncratic shocks.

A detailed derivation is now given. For returns, we have

\[
\log (R_{t+1}^i) - \log (\alpha) - (1 - \alpha) \log (\bar{N}) = \rho_z z_t + e_{t+1} + (\alpha - 1) (a_0 + a_1 z_t + a_2 \log (K_t)) + \mu_\eta + \rho_\eta \eta_t^i + \zeta_{t+1} \\
= (\alpha - 1) a_0 + ((\alpha - 1) a_1 + \rho_z) z_t + (\alpha - 1) a_2 \log (K_t) + \mu_\eta + \rho_\eta \eta_t^i + e_{t+1} + \zeta_{t+1} \\
= (\alpha - 1) a_0 + \\
((\alpha - 1) a_1 + \rho_z) \alpha (\log (R_t^i) - \log (\alpha) - (1 - \alpha) \log (\bar{N})) + \\
((\alpha - 1) a_1 + \rho_z) (1 - \alpha) (\log (w_t^i) - \log (1 - \alpha) - \alpha \log (\bar{N})) - \\
((\alpha - 1) a_1 + \rho_z) (1 - \alpha) \varepsilon_t^i - ((\alpha - 1) a_1 + \rho_z) \alpha \eta_t^i + \\
(\alpha - 1) a_2 \varepsilon_t^i + (\alpha - 1) a_2 \eta_t^i + \mu_\eta + \rho_\eta \eta_t^i + e_{t+1} + \zeta_{t+1} \\
= (\alpha - 1) a_0 + \\
(\rho_z \alpha + (1 - \alpha) (a_2 - a_1 \alpha)) (\log (R_t^i) - \log (\alpha) - (1 - \alpha) \log (\bar{N})) + \\
(1 - \alpha) (\rho_z - (1 - \alpha) a_1 - a_2) (\log (w_t^i) - \log (1 - \alpha) + \alpha \log (\bar{N})) - \\
(1 - \alpha) (\rho_z - (1 - \alpha) a_1 - a_2) \varepsilon_t^i + \\
(\rho_\eta - \alpha \rho_z - (1 - \alpha) (a_2 - a a_1)) \eta_t^i + \mu_\eta + e_{t+1} + \zeta_{t+1}.
\]
For wages, we have

\[
\begin{align*}
\log (w_{t+1}^i) - \log (1 - \alpha) + \alpha \log (N) &= \rho_z z_t + \epsilon_{t+1} + \alpha (a_0 + a_1 z + a_2 \log (K_t)) + \mu_\varepsilon + \rho_\varepsilon \varepsilon_t^i + \nu_{t+1}^i \\
&= \alpha a_0 + (\rho_z + \alpha a_1) z_t + \alpha a_2 \log (K_t) + \mu_\varepsilon + \rho_\varepsilon \varepsilon_t^i + \epsilon_{t+1} + \nu_{t+1}^i \\
&= \alpha a_0 + (\rho_z + \alpha a_1) (\log (R_t^i) - \log (\alpha) - (1 - \alpha) \log (N)) + (\rho_z + \alpha a_1) (1 - \alpha) (\log (w_t^i) - \log (1 - \alpha) + \alpha \log (N)) - \\
&\quad (\rho_z + \alpha a_1) \varepsilon_t^i - (\rho_z + \alpha a_1) \alpha \eta_t^i + \\
&\quad \alpha a_2 (\log (w_t^i) - \log (1 - \alpha) + \alpha \log (N)) - \\
&\quad \alpha a_2 (\log (R_t^i) - \log (\alpha) - (1 - \alpha) \log (N)) - \\
&\quad \alpha a_2 \varepsilon_t^i + \alpha a_2 \eta_t^i + \mu_\varepsilon + \rho_\varepsilon \varepsilon_t^i + \epsilon_{t+1} + \nu_{t+1}^i \\
&= \alpha a_0 + (\rho_z + \alpha a_1 - a_2) \alpha (\log (R_t^i) - \log (\alpha) - (1 - \alpha) \log (N)) + \\
&\quad (\rho_z (1 - \alpha) + \alpha (a_1 (1 - \alpha) + a_2)) (\log (w_t^i) - \log (1 - \alpha) + \alpha \log (N)) + \\
&\quad (\rho_\varepsilon - \rho_z (1 - \alpha) - \alpha (a_1 (1 - \alpha) + a_2)) \varepsilon_t^i - \\
&\quad (\rho_z + \alpha a_1 - a_2) \eta_t^i + \mu_\varepsilon + \epsilon_{t+1} + \nu_{t+1}^i.
\end{align*}
\]

Defining \(\{A_i\}_{i=1}^5\) as in the text, we have

\[
\begin{align*}
\log (R_{t+1}^i) - \log (\alpha) - (1 - \alpha) \log (N) &= (\alpha - 1) a_0 + \mu_\eta + \\
&\quad A_1 (\log (R_t^i) - \log (\alpha) - (1 - \alpha) \log (N)) + \\
&\quad A_2 (\log (w_t^i) - \log (1 - \alpha) + \alpha \log (N)) - \\
&\quad A_2 \varepsilon_t^i + (\rho_\eta - A_1) \eta_t^i + \epsilon_{t+1} + \zeta_{t+1}^i \\
\log (w_{t+1}^i) - \log (1 - \alpha) + \alpha \log (N) &= \alpha a_0 + \mu_\varepsilon + \\
&\quad A_4 (\log (R_t^i) - \log (\alpha) - (1 - \alpha) \log (N)) + \\
&\quad A_5 (\log (w_t^i) - \log (1 - \alpha) + \alpha \log (N)) + \\
&\quad (\rho_\varepsilon - A_5) \varepsilon_t^i - A_4 \eta_t^i + \epsilon_{t+1} + \nu_{t+1}^i.
\end{align*}
\]

The equations (A.1) are produced by collecting the constants.
B. Appendix B

In this appendix we present the filtering problem for the PI agent. Using matrix notation, write the state-space system (2.9) as

\[
\begin{align*}
Y_{t+1} &= C + DY_t + \Psi_{t+1} \\
X_t &= E + FY_t \\
\Psi_{t+1} &\sim N(0, \Sigma).
\end{align*}
\]

Since the observed variables are linear combinations of state variables, we can reduce the number of states. Define

\[
H = \begin{bmatrix}
F \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

and premultiply to obtain

\[
HY_{t+1} = HC + HDH^{-1}HY_t + H\Psi_{t+1}.
\]

The first two rows of \(HY_t\) are the rows of \(X_t - E\) and therefore observable in the current period. The unobserved state variables are now only \(\varepsilon_t^i\) and \(\eta_t^i\), the idiosyncratic shocks. Rewrite the transformed system as

\[
\begin{align*}
\Lambda_{t+1}^i &= G_1 + G_2 \Lambda_t^i + \Theta_{t+1}^i \\
Z_{t+1}^i &= B_1 + B_2 Z_t^i + B_3 \Lambda_t^i + \Phi_{t+1}^i
\end{align*}
\]
where

\[
\Lambda^i_t = \begin{bmatrix} \varepsilon^i_t \\ \eta^i_t \end{bmatrix},
\]

\[
\Theta^i_{t+1} = \begin{bmatrix} \nu_{t+1}^i \\ \zeta_{t+1}^i \end{bmatrix},
\]

\[
G_1 = \begin{bmatrix} \mu_\varepsilon \\ \mu_\eta \end{bmatrix},
\]

\[
G_2 = \begin{bmatrix} \rho_\varepsilon & 0 \\ 0 & \rho_\eta \end{bmatrix},
\]

\[
Z^i_t = \begin{bmatrix} \log (R^i_t) - \log (\alpha) - (1 - \alpha) \log (N) \\ \log (w^i_t) - \log (1 - \alpha) + \alpha \log (N) \end{bmatrix},
\]

\[
\Phi^i_{t+1} = \begin{bmatrix} e_{t+1} + \zeta_{t+1}^i \\ e_{t+1} + \nu_{t+1}^i \end{bmatrix},
\]

\[
B_1 = \begin{bmatrix} (\alpha - 1) a_0 + \mu_\eta \\ \alpha a_0 + \mu_\varepsilon \end{bmatrix},
\]

\[
B_2 = \begin{bmatrix} A_1 & A_2 \\ A_4 & A_5 \end{bmatrix},
\]

\[
B_3 = \begin{bmatrix} -A_2 & \rho_\eta - A_1 \\ \rho_\varepsilon - A_5 & -A_4 \end{bmatrix},
\]

with \(\{A_i\}_0^5 \) the same terms as in Appendix A. The covariance between \(\Theta^i_{t+1} \) and \(\Phi^i_{t+1} \) is given by the matrix

\[
\Upsilon = \begin{bmatrix} V_1 & V_3^T \\ V_3 & V_2 \end{bmatrix},
\]
From (B.1), conditioned on period t, Λ^i_t is independent of $\{\Theta^i_s, \Phi^i_s\}_{s > t}$ and normal:

$$\Lambda^i_t \sim N \left(\bar{\Lambda}^i_t, P^i_t \right).$$

Conditioning on period t information, we have

$$\begin{bmatrix} \Lambda^i_{t+1|t} \\ Z^i_{t+1|t} \end{bmatrix} \sim N \left(\begin{bmatrix} G_1 + G_2 \bar{A}^i_{t|t} \\ Z^i_{t+1|t} \end{bmatrix}, \begin{bmatrix} G_2 P^i_{t|t} G_2^T + V_1 & G_2 P^i_{t|t} B_3^T + V_3 \\ B_3 P^i_{t|t} G_2^T + V_3^T & B_3 P^i_{t|t} B_3^T + V_2 \end{bmatrix} \right).$$

$$Z^i_{t+1|t} = B_1 + B_2 Z^i_t + B_3 \bar{A}^i_t.$$

After observing $Z^i_{t+1|t}$ in period $t + 1$, the updated value for $\Lambda^i_{t+1|t+1}$ will obey

$$\Lambda^i_{t+1|t+1} \sim N \left(\bar{\Lambda}^i_{t+1|t+1}, P^i_{t+1|t+1} \right)$$

$$\bar{\Lambda}^i_{t+1|t+1} = G_1 + G_2 \bar{A}^i_{t|t} + (G_2 P^i_{t|t} B_3^T + V_3) \left(B_3 P^i_{t|t} B_3^T + V_2 \right)^{-1} \left(Z^i_{t+1|t} - B_1 - B_2 Z^i_t - B_3 \bar{A}^i_t \right)$$

$$P^i_{t+1|t+1} = (G_2 P^i_{t|t} G_2^T + V_1) - (G_2 P^i_{t|t} B_3^T + V_3) \left(B_3 P^i_{t|t} B_3^T + V_2 \right)^{-1} \left(B_3 P^i_{t|t} G_2^T + V_3^T \right).$$

From (B.1), conditioned on period t we can write out

$$\log \left(R^i_{t+1} \right) - \log \left(\alpha \right) - (1 - \alpha) \log \left(\bar{N} \right) = \left(\alpha - 1 \right) a_0 + \mu + A_1 \left(\log \left(R^i_t \right) - \log \left(\alpha \right) - (1 - \alpha) \log \left(\bar{N} \right) \right) +$$

$$A_2 \left(\log \left(w^i_t \right) - \log \left(1 - \alpha \right) + \alpha \log \left(\bar{N} \right) \right) -$$

$$A_2 e^i_{t|t} + \left(\rho / A_1 \right) n^i_{t|t} + \epsilon_{t+1} + \delta^i_{t+1}$$

$$\log \left(w^i_{t+1} \right) - \log \left(1 - \alpha \right) + \alpha \log \left(\bar{N} \right) = \left(\alpha a_0 + \mu + A_4 \left(\log \left(R^i_t \right) - \log \left(\alpha \right) - (1 - \alpha) \log \left(\bar{N} \right) \right) +$$

$$A_5 \left(\log \left(w^i_t \right) - \log \left(1 - \alpha \right) + \alpha \log \left(\bar{N} \right) \right) +$$

$$(\rho - A_5) e^i_{t|t} - A_4 n^i_{t|t} + \epsilon_{t+1} + \nu^i_{t+1}.$$

41
Thus, we obtain the following system of equations that describes the evolution of the prices and beliefs in the PI economy:

\[
\begin{align*}
\begin{bmatrix}
 \log (R_{i+1}^t) \\
 \log (w_{i+1}^t)
\end{bmatrix}
\sim
N\left(\begin{bmatrix}
 E_t \log (R_{i+1}^t) \\
 E_t \log (w_{i+1}^t)
\end{bmatrix}, B_3 P_{t|t} B_3^T + V_2\right) \tag{B.2}
\end{align*}
\]

\[
\begin{align*}
E_t \left[\log (R_{i+1}^t) \right] &= A_0 + A_1 \log (R_i^t) + A_2 \log (w_i^t) - A_2 \bar{z}_{i|t}^t + (\rho - A_1) \bar{\eta}_{i|t}^t \\
E_t \left[\log (w_{i+1}^t) \right] &= A_3 + A_4 \log (R_i^t) + A_5 \log (w_i^t) + (\rho - A_5) \bar{z}_{i|t}^t - A_4 \bar{\eta}_{i|t}^t
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
 \bar{z}_{i+1|t+1}^t \\
 \bar{\eta}_{i+1|t+1}^t
\end{bmatrix}
\sim
G_3 \left(\begin{bmatrix}
 \log (R_{i+1}^t) \\
 \log (w_{i+1}^t)
\end{bmatrix} - E_t \left[\log (R_{i+1}^t) \right], E_t \left[\log (w_{i+1}^t) \right] \right)
\tag{B.3}
\end{align*}
\]

where \(G_3 = (G_2 P_{t|t} B_3^T + V_3) (B_3 P_{t|t} B_3^T + V_2)^{-1} \). Letting the process for \(P_{t|t} \) converge to a constant yields the laws of motion in the main body of the paper. Since the Kalman filter recursion depends on endogenous variables its convergence is not ensured (see Baxter, Graham, and Wright 2007). We did not encounter any problems with convergence, however, and do not further pursue this issue here.

C. Appendix C

This section prove Proposition 2.6 and 2.7. Given PI problem (???), \(k_{i+1}^t \) is a function of \(\{ k_i^t, \bar{z}_{i|t}, \bar{\eta}_{i|t}, \log (R_i^t), \log (w_i^t) \} \). In addition, the observation \((R_i^t, w_i^t) \) imposes two linear restrictions on \(i \)'s beliefs:

\[
\begin{align*}
\log (R_i^t) &= \log (\alpha) + (1 - \alpha) \log (\bar{N}) + \bar{z}_{i|t}^t + (\alpha - 1) \log \left(\bar{K}_{i|t}^t \right) + \bar{\eta}_{i|t}^t, \\
\log (w_i^t) &= \log (1 - \alpha) - \alpha \log (\bar{N}) + \bar{z}_{i|t}^t + \alpha \log \left(\bar{K}_{i|t}^t \right) + \bar{\eta}_{i|t}^t.
\end{align*}
\]

Thus \(k_{i+1}^t \) can be written as a function of \(\{ k_i^t, \bar{z}_{i|t}, \log (\bar{K}_{i|t}^t), \bar{\eta}_{i|t}^t, \log (R_i^t), \log (w_i^t) \} \). Using Proposition (2.5) and restricting \(\mathcal{M}_s [\cdot] \) to the first moment, we can write the law of motion for aggregate capital as

\[
\log (K_{t+1}^i) = \gamma_0 + \gamma_1 \log (K_i^i) + \gamma_2 E^i \left[\bar{z}_{i|t}^t \right] + \gamma_3 E^i \left[\log (\bar{K}_{i|t}^i) \right] + \gamma_4 E^i \left[\bar{\eta}_{i|t}^t \right] + \gamma_5 E^i \left[\log (R_i^t) \right] + \gamma_6 E^i \left[\log (w_i^t) \right].
\]
Next applying $\mathbf{E}^i[\cdot]$ on both sides of (C.1), we obtain the equations

$$
\begin{align*}
 z_t + (\alpha - 1) \log (K_t) &= \mathbf{E}^i \left[\bar{z}_t^i \right] + (\alpha - 1) \mathbf{E}^i \left[\log (\bar{K}_t^i) \right] + \mathbf{E}^i \left[\bar{\eta}_t^i \right], \\
 z_t + \alpha \log (K_t) &= \mathbf{E}^i \left[\bar{z}_t^i \right] + \alpha \mathbf{E}^i \left[\log (\bar{K}_t^i) \right] + \mathbf{E}^i \left[\bar{\eta}_t^i \right].
\end{align*}
$$

These two linear restrictions imply that Equation (C.2) is equivalent to Equation (2.13) as in Proposition (2.6).

D. Appendix D

Here we prove Propositions (3.4) and (3.5). For the system (2.9) we can derive the steady state Kalman Filter as

$$
\begin{align*}
 \mathbf{Y}^i_{t+1|t+1} &\sim N \left(\bar{\mathbf{Y}}^i_{t+1|t+1}, \mathbf{P} \right), \\
 \bar{\mathbf{Y}}^i_{t+1|t+1} &= \mathbf{C} + \mathbf{D} \mathbf{Y}^i_t + \hat{\mathbf{P}} \mathbf{F}' \left(\mathbf{F} \hat{\mathbf{P}} \mathbf{F}' \right)^{-1} \left(\mathbf{X}^i_{t+1} - \mathbf{E} \left(\mathbf{C} + \mathbf{D} \mathbf{Y}^i_t \right) \right) \\
 \hat{\mathbf{P}} &= \mathbf{D} \mathbf{P} \mathbf{D}' + \Sigma,
\end{align*}
$$

where \mathbf{P} is the steady state covariance matrix produced by $\mathbf{P}_{t+1|t+1}$. Substituting out \mathbf{X}^i_{t+1} in (D.1), we have

$$
\begin{align*}
 \bar{\mathbf{Y}}^i_{t+1|t+1} &= \mathbf{C} + (\mathbf{I} - \mathbf{K}) \mathbf{D} \bar{\mathbf{Y}}^i_t + \mathbf{K} \mathbf{D} \mathbf{Y}^i_t + \mathbf{K} \mathbf{\Psi}^i_{t+1}
\end{align*}
$$

where $\mathbf{K} = \hat{\mathbf{P}} \mathbf{F}' \left(\mathbf{F} \hat{\mathbf{P}} \mathbf{F}' \right)^{-1} \mathbf{F}$ and \mathbf{I} is the conformable identity matrix. Thus the cross-sectional expectation is multivariate normal with mean

$$
\mathbf{E}^c \left[\bar{\mathbf{Y}}^i_{t+1|t+1} \right] = \mathbf{C} + (\mathbf{I} - \mathbf{K}) \mathbf{D} \mathbf{E}^c \left[\mathbf{Y}^i_t \right] + \mathbf{K} \mathbf{D} \mathbf{E}^c \left[\mathbf{Y}^i_t \right] + \mathbf{K} \mathbf{e}_{t+1}.
$$

36 Given prior in period as $\mathbf{Y}^i_{t|t} \sim N \left(\bar{\mathbf{Y}}^i_{t|t}, \mathbf{P}^i_{t|t} \right)$, we can write the joint normal distribution below

$$
\begin{align*}
 \left[\begin{array}{c}
 \mathbf{Y}^i_{t+1|t} \\
 \mathbf{X}^i_{t+1|t}
 \end{array} \right] &\sim N \left(\left[\begin{array}{c}
 \mathbf{Y}^i_{t+1|t} \\
 \mathbf{X}^i_{t+1|t}
 \end{array} \right], \left[\begin{array}{cc}
 \mathbf{P}^i_{t+1|t} & \mathbf{P}^i_{t+1|t} \mathbf{F}' \\
 \mathbf{F} \mathbf{P}^i_{t+1|t} & \mathbf{F} \mathbf{P}^i_{t+1|t} \mathbf{F}'
 \end{array} \right] \right), \\
 \mathbf{Y}^i_{t+1|t} &= \mathbf{C} + \mathbf{D} \mathbf{Y}^i_t, \\
 \mathbf{P}^i_{t+1|t} &= \mathbf{D} \mathbf{P}^i_{t|t} \mathbf{D}' + \Sigma.
\end{align*}
$$

After observing \mathbf{X}^i_{t+1}, the update equation is shown in (D.1).
where K_{01} is the first column of K. To get the cross-sectional variance, applying $V^i[\cdot]$ on both sides of (D.2) yields

$$V^i \left[Y_{t|t}^i \right] = (I - K) D V^i \left[Y_{t-1|t-1}^i \right] D^T (I - K)^T + K D V^i \left[Y_{t-1}^i \right] D^T K^T +$$

$$K V^i \left[\Psi_t^i \right] K^T + (I - K) D \text{Cov} \left(Y_{t-1|t-1}^i, Y_{t-1}^i \right) +$$

$$K D \text{Cov} \left(Y_{t-1|t-1}^i, Y_{t-1}^i \right) D^T K^T$$

$$= (I - K) D V^i \left[Y_{t-1|t-1}^i \right] D^T (I - K)^T + K \Sigma Y K^T +$$

$$(I - K) D \left(\sum_{j=0}^{\infty} ((I - K) D)^j K \Sigma Y (D^T)^{j+1} \right) K^T +$$

$$K \left(\sum_{j=0}^{\infty} D^{j+1} \Sigma Y K^T (D^T (I - K)^T)^j \right) D^T (I - K^T)$$

where

$$\Sigma Y = V^i \left[Y_{t-1}^i \right] = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \sigma^2_{\varepsilon} & 0 & 0 \\ 0 & 0 & \sigma^2_{\eta} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\sigma^2_{\varepsilon} = \rho_{\varepsilon}^2 \frac{\sigma^2_0}{1 - \rho_{\varepsilon}^2} \quad \text{and} \quad \sigma^2_{\eta} = \rho_{\eta}^2 \frac{\sigma^2_0}{1 - \rho_{\eta}^2}.$$
Thus

\[
\text{Cov} \left[Y_{t-1|t-1}, Y_t \right] = \sum_{j=0}^{\infty} ((I-K)D)^j K \text{Cov} \left[Y_{t-j|t-1}, Y_{t-1} \right] D^T
\]

\[
= \sum_{j=0}^{\infty} ((I-K)D)^j K \text{Cov} \left[Y_{t-j}, Y_t \right] D^T
\]

\[
= \sum_{j=0}^{\infty} ((I-K)D)^j K \Sigma_Y (D^T)^{j+1}.
\]

This result concludes the proof of Propositions (3.4).

To prove Proposition (3.5), subtract \(Y_{t+1} \) and apply \(E^i[\cdot] \) to both sides, yielding

\[
E^i \left[Y_{t+1|t+1} \right] - Y_{t+1} = (I-K)D \left(E^i \left[Y_{t|t} \right] - Y_t \right) - (I-K)_{o1} \epsilon_{t+1},
\]

where \((I-K)_{o1}\) is the first column of \((I-K)\). The presence of the common term \(\epsilon_{t+1} \) ensures that there is cross-sectional bias in the PI economy.

E. Appendix E

This appendix explains the algorithm to compute the equilibrium of the model. Our algorithm for solving the FI agent’s problem is modified from Krusell and Smith (1998) and Young (2007). The objective of the algorithm is to obtain the coefficients in the law of motion for aggregate capital (2.6). We divide the algorithm into three main parts. In summary, the first part is to solve for the value functions \((V^{FI}, V^{PI}) \) over a finite grid of \((k^i, \varepsilon^i, \eta^i, R^i, w^i)\), given a law of motion (2.6). The second part is to solve for the policy functions \(k' \) over a much finer grid of \((k^i, \varepsilon^i, \eta^i, R^i, w^i)\) using \(V^{FI} \) and \(V^{PI} \) from the first part. The third part is to simulate the time series of \(\{K_t, MPK_t, MPN_t, z_t\}_{t=1}^T \) using the policy function from the second part and update the law of motion until the coefficients \((a_0, a_1, a_2)\) converge. The following subsections explain the algorithm in detail. For the PI agents simply substitute beliefs for actual idiosyncratic shock values and change the laws of motion as appropriate.
Table 1a
Business Cycle Statistics, FI

<table>
<thead>
<tr>
<th></th>
<th>z</th>
<th>log (Y)</th>
<th>log (K)</th>
<th>log (C)</th>
<th>log (I)</th>
<th>MPK</th>
<th>MPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.0004</td>
<td>0.4530</td>
<td>3.0174</td>
<td>0.1217</td>
<td>-0.8135</td>
<td>0.0277</td>
<td>2.7112</td>
</tr>
<tr>
<td>Std</td>
<td>0.0257</td>
<td>0.0344</td>
<td>0.0333</td>
<td>0.0277</td>
<td>0.0628</td>
<td>0.0006</td>
<td>0.0933</td>
</tr>
<tr>
<td>Corr</td>
<td>1.0000</td>
<td>0.9624</td>
<td>0.6237</td>
<td>0.7884</td>
<td>0.9863</td>
<td>0.5971</td>
<td>0.9624</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.8126</td>
<td>0.9258</td>
<td>0.9049</td>
<td>0.3566</td>
<td>0.9997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.9723</td>
<td>0.4879</td>
<td>-0.2546</td>
<td>0.8117</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.6771</td>
<td>-0.0224</td>
<td>0.9251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.7191</td>
<td>0.9049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.3577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autocorr</td>
<td>0.9599</td>
<td>0.9778</td>
<td>0.9982</td>
<td>0.9956</td>
<td>0.9498</td>
<td>0.9353</td>
<td>0.9777</td>
</tr>
<tr>
<td></td>
<td>0.9221</td>
<td>0.9562</td>
<td>0.9953</td>
<td>0.9902</td>
<td>0.9030</td>
<td>0.8749</td>
<td>0.9560</td>
</tr>
<tr>
<td></td>
<td>0.8846</td>
<td>0.9343</td>
<td>0.9914</td>
<td>0.9839</td>
<td>0.8570</td>
<td>0.8158</td>
<td>0.9339</td>
</tr>
</tbody>
</table>

46
Table 1b

Business Cycle Statistics, PI

<table>
<thead>
<tr>
<th></th>
<th>z</th>
<th>$\log(Y)$</th>
<th>$\log(K)$</th>
<th>$\log(C)$</th>
<th>$\log(I)$</th>
<th>MPK</th>
<th>MPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.0004</td>
<td>0.4766</td>
<td>3.0830</td>
<td>0.1280</td>
<td>-0.7485</td>
<td>0.0266</td>
<td>2.7765</td>
</tr>
<tr>
<td>Std</td>
<td>0.0257</td>
<td>0.0390</td>
<td>0.0501</td>
<td>0.0275</td>
<td>0.0875</td>
<td>0.0007</td>
<td>0.1080</td>
</tr>
<tr>
<td>Corr</td>
<td>1.0000</td>
<td>0.9259</td>
<td>0.5773</td>
<td>0.5476</td>
<td>0.9927</td>
<td>0.2624</td>
<td>0.9262</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.8431</td>
<td>0.8188</td>
<td>0.8998</td>
<td>-0.1216</td>
<td>0.9996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.9900</td>
<td>0.5314</td>
<td>-0.6363</td>
<td>0.8418</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.4870</td>
<td>-0.6529</td>
<td>0.8173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.3097</td>
<td>0.8998</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
<td>-0.1198</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autocorr</td>
<td>0.9599</td>
<td>0.9825</td>
<td>0.9983</td>
<td>0.9966</td>
<td>0.9687</td>
<td>0.9605</td>
<td>0.9825</td>
</tr>
<tr>
<td></td>
<td>0.9221</td>
<td>0.9656</td>
<td>0.9957</td>
<td>0.9931</td>
<td>0.9373</td>
<td>0.9227</td>
<td>0.9654</td>
</tr>
<tr>
<td></td>
<td>0.8846</td>
<td>0.9484</td>
<td>0.9923</td>
<td>0.9892</td>
<td>0.9047</td>
<td>0.8847</td>
<td>0.9481</td>
</tr>
</tbody>
</table>
Table 2
Dispersion in Beliefs

| | $\tau^i_{t|t}$ | $\log \left(\bar{K}^i_{t|t} \right)$ | $\tau^i_{t|t}$ | $\eta^i_{t|t}$ | $\log \left(\bar{R}^i_{t+1|t} \right)$ | $\log \left(\bar{w}^i_{t+1|t} \right)$ |
|-------|----------------|--|----------------|---------------|--|--|
| PI | 0.003 | **0.0143** | 0.5016 | 0.0454 | **0.0104** | 0.4762 |
| FI | 0.0 | **0.0** | 0.5048 | 0.05 | **0.0** | 0.4760 |
Figure 1: Aggregate shock z_t and capital K_t
Figure 2: Aggregate consumption and investment

\[C_t \]

\[I_t \]
Figure 3: Decomposition of aggregate consumption

Filtered C_t from 2 to 6 periods

Filtered C_t from 6 to 32 periods

Filtered C_t from 32 to 1000 periods
Figure 4: Cross-sectional expectation (1)

Cross sectional expected $z^t_{i,t|t}$ (PI econ)

Cross sectional expected log $K^t_{i,t|t}$ (PI econ)
Figure 5: Cross-sectional expectation (2)

cross sectional expected $\varepsilon^i_{t|t}$ (PI econ)

cross sectional expected $\eta^i_{t|t}$ (PI econ)
Figure 6: Cross-sectional expectation (3)

cross sectional expected $\log(\text{MPK}^i_{t|t})$ (PI econ)

cross sectional expected $\log(\text{MPN}^i_{t|t})$ (PI econ)
Figure 7: Cross-sectional standard deviation

SD of expected $z_{i|t}$

SD of expected $\eta_{i|t}$

SD of expected $\log(K_{i|t}^j)$

SD of expected $\log(R_{i|t+1|t})$

SD of expected $\log(w_{i|t+1|t})$

SD of expected $\varepsilon_{i|t}$

SD of expected $\eta_{i|t}$
Figure 8: Impulse response in PI economy (1)
Figure 9: Impulse response in FI economy

- z_t (FI econ)
- $\log(K_t)$ (FI econ)
- $\log(MPK_t)$ (FI econ)
- $\log(MPN_t)$ (FI econ)
- C_t (FI econ)
- I_t (FI econ)
Figure 10: Impulse response in PI economy (2)
Figure 11: Aggregate capital
Figure 12: Asymmetry of savings

\[r^* = \frac{\beta^{-1} - 1 + \delta}{K^* / N} \]

Asset Market Equilibrium

[Graph showing the relationship between \(r^* \), \(K^* / N \), and \(\beta^{-1} - 1 + \delta \).]
Figure 13: Wealth concentration

Lorenz Curve for Wealth

Gini_{FI} = 0.42038
Gini_{PI} = 0.36401
Figure 14: Consumer sentiment

Consumer Expectations and Output

-25 -20 -15 -10 -5 0 5 10 15 20

Consumer Sentiment
Industrial Production
Figure 15: Consumer sentiment

![Graph showing consumer sentiment trends over time. The graph includes a line for average belief and a dashed line for realized sentiment. The y-axis represents the average belief, ranging from 0.42 to 0.58, and the x-axis represents time from 3000 to 3500.]