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Abstract

I show that malaria misdiagnosis, common in resource-poor settings, decreases the expected
effectiveness of an important new therapy–since only a fraction of treated individuals have
malaria–and reduces the rate of learning via increased noise. Using pilot program data from
Tanzania, I exploit variation in the location and timing of survey enumeration to construct
reference groups composed of randomly chosen, geographically and temporally proximate
acutely ill individuals. I show that learning is stronger and adoption rates are higher in vil-
lages with more misdiagnosis. Subsidizing diagnostic tools or improving initial targeting of
new technologies may thus accelerate uptake through learning.
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1 Introduction

That learning plays an important role in the adoption of new technologies has been demon-
strated in a variety of empirical contexts1. Equally important, and perhaps less understood, is
the nature of the learning process–what determines when, how well or how quickly individuals
learn. For example, how do institutional arrangements, cultural norms and distribution policies
change the way individuals learn? Can targeted roll-out of a new technology generate faster
uptake for the population as a whole?

The answers to these questions may be particularly relevant in the developing world, where
effective technologies are sometimes adopted at low rates, and where their widespread adoption
could spur substantial increases in productivity and welfare. A large literature has documented
this fact as it relates to agricultural innovations, and recent studies have shown that the same
is true for the case of health technologies, as well. From piped water (Michael Kremer, Jessica
Leino, and Alix Zwane 2010) to insecticide-treated bed nets (Jessica Cohen and Pascaline Dupas
2010; Dupas 2010) to de-worming drugs (Kremer and Edward Miguel 2007) to less polluting
stoves (Mark Pitt, Mark Rosenzweig and Md. Nazmul Hassan 2006; Esther Duflo, Michael
Greenstone and Rema Hanna 2008), there is a long list of health innovations which have been
shown to have high returns but are adopted slowly or not adopted at all. To understand the
learning processes in these contexts may be to gain some insight into–and ultimately to deliver
solutions for–the reasons underlying non-adoption.

In this study, I examine how the rates of learning and adoption are linked to the way in
which new technology is allocated. The question of the allocation of new technology is of par-
ticular relevance to medical innovations, which are often distributed on the basis of a diagnosis:
healthcare professionals–doctors, nurses and health workers–are often tasked with allocating
treatment to individuals according to the results of disease diagnosis. I show that the extent to
which a new technology is misallocated–that is, the extent to which it is given to individuals for
whom its use is inappropriate–is negatively related to the rates of learning and adoption.

To formalize this notion, I introduce misdiagnosis into an otherwise standard social learning
model, in which individuals learn over time about the effectiveness of a new therapy from the
outcomes of past adopters. In this context, I show that misdiagnosis affects learning and adop-
tion behavior in two ways. First, misdiagnosis scales down the expected benefits of adoption,
since even if the new therapy were fully effective, individuals would only realize its benefits if
they really had the disease. Second, misdiagnosis, as it generates noise, makes it more difficult
for individuals to extract information about the new therapy’s effectiveness from past adopters’
outcomes.

1See, for example, Andrew Foster and Mark Rosenzweig (1995), Kaivan Munshi (2004), Oriana Bandiera and
Imran Rasul (2006) and Timothy Conley and Christopher Udry (2010).
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I test the model’s predictions empirically using data on the adoption of a new malaria ther-
apy in Tanzania. Studying the link between diagnosis and learning in this context is fitting
for at least two reasons. First, malaria has large economic consequences (Jeffrey Sachs and Pia
Malaney 2002; Sok Chul Hong 2007; Hoyt Bleakley 2010; Adrienne Lucas 2010; David Cutler et
al. 2010). Studies have highlighted the central role of effective malaria treatment in alleviating
the loss of life and productivity due to malaria, yet in much of Africa and Southeast Asia, exist-
ing malaria therapies are ineffective due to the development of parasitic resistance (Baird 2005).
New, effective therapy thus has the potential to generate large returns if it is used appropriately
on a wide scale.

Second, misdiagnosis of malaria (which spurs the misallocation of treatment) is overwhelm-
ingly common in the developing world, particularly in contexts in which appropriate diagnostic
tools are not available (Reyburn et al. 2007). Studies of this phenomenon thus far have fo-
cused on documenting two negative consequences of misdiagnosis: 1) patients who have other
diseases (which require specific treatment, e.g. antibiotics for pneumonia) are often inappro-
priately treated with antimalarials, leading to prolonged bouts of illness (Amexo et al. 2004);
and 2) that the misallocation of therapy leads to the rapid spread of resistance (Kenneth Arrow,
Claire Panosian and Hellen Gelband 2004). This study is the first to my knowledge to identify
a behavioral channel by which misdiagnosis adversely affects the usefulness of new therapies: it
decreases the speed of learning and thus discourages adoption.

Artemisinin-based combination therapy (ACT), the new treatment I study, is a highly im-
portant innovation for malaria control, because it is the most effective treatment available for
the prevalent type of malaria parasite in many parts of the developing world (Arrow, Panosian
and Gelband 2004). The allocation of ACT should ideally be based on an accurate diagnosis of
malaria. If an individual tests positive for malaria, she should receive the therapy; otherwise,
she should receive alternate care for the underlying cause of her symptoms. However, in areas
of the developing world where malarial prevalence is high and adequate diagnostic tools are in-
accessible, it is common for health professionals to allocate therapy based solely on the presence
of fever, the primary symptom of malaria. Presumptive diagnosis, as this allocation policy is
termed, has been shown to lead to a high rate of over-diagnosis of malaria (Reyburn et al. 2004).

Using household survey data from a pilot program in Tanzania, through which ACT was
distributed at health facilities, I develop an empirical strategy to test the model’s predictions.
My strategy does two things to disentangle social learning from other sources of correlation
between current health outcomes and future adoption choices. First, I exploit the plausibly ex-
ogenous timing of survey enumeration to construct reference groups for learning based on the
geographic and temporal proximity of self-reported acute illnesses. Second, I compare the corre-
lation in current outcomes and future healthcare choices across sick individuals in treatment and
comparison districts, and before and after the new therapy’s introduction. The results show that
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the probability of future adoption increases by about 5 percentage points when current adopters
are sick for 1 less day than current non-adopters.

To test for the role of misdiagnosis, I categorize villages in the sample as high- and low-
misdiagnosis locales using village-level baseline malarial prevalence data. This categorization
is based on the observation that since misdiagnosis (in the context of this pilot program) can
be measured by the fraction of fevers which are not malarial, places with lower prevalence will
misdiagnose fevers more often. I show that apart from prevalence of malaria, these two groups
are not statistically different from one another on observable dimensions. I find, as the theory
predicts, that the rate of adoption and rate of learning are lower in villages with greater misdi-
agnosis.

This paper makes three main contributions. First, while empirical investigations of learning
are increasingly common in the economics literature, few studies have sought to examine the
determinants of the rate of learning. Understanding what drives variation in the magnitude of
the learning effect across contexts is an important endeavor as policymakers seek new ways to
encourage the rapid take-up of effective technologies.

Second, the results of this study have implications for policies related to the distribution of
new medical technologies. Especially in parts of the world with a deficit of accurate diagnostic
tools, my findings suggest that improving the quality of diagnosis can generate faster take-up
and acceptance of new and useful treatments. This implication has particular relevance for the
distribution of ACT in Africa and Southeast Asia. Ensuring that ACT reaches at-risk populations
and is accepted as an effective therapy is a virtual necessity for adequate malaria control. This
study’s results suggest that subsidies for rapid diagnostic tests for malaria may be effective in
promoting the widespread acceptance of ACT.

Finally, this study emphasizes the optimal initial allocation of technology as a mechanism to
promote adoption via learning, which has thus far been ignored. The basic insight that misallo-
cation and adoption are linked through learning may be applicable to a variety of technological
innovations. For example, the adoption of high-yielding variety (HYV) maize has been studied
extensively, particularly since the new varieties have still not been adopted on a wide scale in
many developing countries. Since HYV maize grows best only in certain types of soil, allocation
rules which are not based on soil type may generate significant heterogeneity in the returns to
the new variety. When soil type is unobserved, this heterogeneity makes learning about the
quality of the new variety noisier, and thus the speed of learning decreases. Similarly, if farmers
themselves do not fully know if their soil type will be compatible with the new HYV, the het-
erogeneity in returns will lower the expected benefit of adopting. Designing better allocation
policies based on testing for soil type could thus improve the speed of learning as well as the
rate of adoption.

The rest of the paper is organized as follows. Section 2 develops the model. Section 3 de-

4



scribes the pilot program, the data, and the context. Section 4 develops an empirical strategy to
test the model’s predictions. Section 5 reports the results, and section 6 concludes.

2 Model

In this section, I develop a simple social learning model of adoption behavior in which individu-
als learn about the effectiveness of new malarial treatment from their own health outcomes and
those of their neighbors who have adopted in the past. In each period, acutely ill individuals
make adoption choices based on the common prior on the new treatment’s effectiveness and
the costs and (potentially heterogeneous) returns to adoption. Part of this return depends on
the misdiagnosis of malaria, which occurs with known probability. I show that in this context,
misdiagnosis negatively affects the rate of adoption and the speed of learning.

2.1 Setup

The model is in discrete time, and time periods are indexed by t. Consider a village composed
of a set N of individuals, indexed by i, with |N | = n. In each period, a randomly chosen subset
Nt ⊆ N of individuals (|Nt| = nt ≤ n) falls acutely ill, and each individual in Nt makes an
adoption decision. Each acutely ill individual in each period realizes a health outcome, which
is observed, along with his adoption choice, by all villagers.

The model begins in period 0, at which time a new therapy of unknown quality θ ∈ {0, 1}
is introduced. Individuals learn about this quality (or alternatively, effectiveness) parameter
over time by observing the history of adoption choices and realized health outcomes. Since
information is observed perfectly, all individuals update in the same way.2 For every period
t > 0, the timing of the model is as follows:

1. All individuals enter period t with a common belief distribution, summarized by qt, over
quality.

2. A subset Nt of villagers fall acutely ill, and each draws an unobserved malarial status Mit.

3. Each acutely ill individual makes an adoption choice hit.

4. The resulting outcomes and adoption choices {Dit, hit|i ∈ Nt} are observed by all individ-
uals.

5. The common belief distribution is updated, and a posterior belief qt+1 on the probability
of effectiveness is formed.

6. Period t+ 1 begins, and the process repeats.
2For simplicity of exposition, we also assume a common initial belief q0.
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2.2 Definitions

Let hit denote the binary adoption choice, where hit = 1 denotes adoption, and hit = 0 denotes
non-adoption.

For simplicity, consider only two possible health outcomes: good (Dit = Dg) and bad (Dit =

Db). If we think of D as the length of illness in days, then a reasonable ordering would be
Dg < Db.

We denote the unknown quality (or effectiveness) of the new treatment as θ ∈ {0, 1}. The
common period-t belief about the new therapy’s effectiveness is qt = Pr(θ = 1|qt−1, {hit−1, Dit−1|i ∈
Nt−1}).

Mit ∈ {0, 1} is unobserved malarial status: Mit = 1 indicates the presence of malaria, and
Mit = 0 indicates no malaria, and m = Pr(Mit = 1) ∈ (0, 1), which does not vary across i or t.

The probability of good and bad health outcomes being realized depends on the effective-
ness of treatment, adoption choice, and malarial status:

Dit = hit

(
Mit

(
θDg + (1− θ)(pDg + (1− p)Db)

)
+ (1−Mit)

(
p̃Dg + (1− p̃)Db

))
+(1− hit)

(
Mit

(
pDg + (1− p)Db

)
+ (1−Mit)

(
p̃Dg + (1− p̃)Db

))
. (1)

If the individual adopts the new therapy (hit = 1) and has malaria, he will recover quickly if
θ = 1 (i.e., if the new therapy is effective). If it is ineffective, he will recover with probability p,
capturing the possibility that even ineffective therapy works some of the time.

If the individual does not adopt (hit = 0), he recovers quickly with probability p < 1, reflect-
ing the fact that alternative antimalarial treatments are relatively ineffective.3

If the individual does not have malaria, regardless of adoption, he will recover quickly (de-
spite having adopted the wrong therapy) with probability p̃. This parameter captures the fact
that of acutely ill individuals without malaria, some may recover regardless of intervention–for
example, those who caught a common cold–while some may need specific treatment for the
underlying causes of their fevers, e.g. in the case of pneumonia.

The impact of misdiagnosis on the learning process, as it turns out, depends on the relative
magnitudes of p and p̃. Note from above that the lower is the effectiveness of the outside op-
tion (i.e., of existing therapy), the smaller p will be. The magnitude of p̃ depends on the most
prevalent causes of non-malarial fevers. This may differ significantly depending on geography,
climate, demographic characteristics and baseline health of the population in question.

Evaluated over the distribution of Mit, the probabilities of receiving good or bad outcomes

3Note that for simplicity, we equate the effectiveness of non-adoption conditional on malaria with the effective-
ness of adoption when θ = 0 conditional on malaria.
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when the therapy is of high or low are the following:

P (Dit = Dg|θ = 1) = m+ (1−m)p̃ (2)

P (Dit = Dg|θ = 0) = mp+ (1−m)p̃ (3)

P (Dit = Db|θ = 1) = (1−m)(1− p̃) (4)

P (Dit = Db|θ = 0) = m(1− p) + (1−m)(1− p̃). (5)

2.3 Expected utility maximization

Utility is given as ui(C) − P (h), where the function ui is increasing in consumption, C, and
varies across individuals i. P (h) is the price of health care at option h, and is measured in utils.
The budget constraint is C = wi(Ωi − D), where wi is the individual’s wage rate and Ωi is the
amount of time he would work if fully healthy. This individual-level heterogeneity is perfectly
observed by all individuals. The individual’s expected utility maximization problem is thus
maxh∈{0,1} E (ui(C)− P (h)) subject to C = wi(Ωi −D).

Define ūi = ui(wi(Ωi −Dg)) as utility under the good health outcome, and ui = ui(wi(Ωi −
Db)) as utility under the bad outcome. Expanding the expected value above using the definition
of D from equation 1 and collecting terms, we can express the maximization problem as the
following: individual i adopts in period t if and only if

qtm(1− p) (ūi − ui) > P1 − P0. (6)

Define ∆ui = ūi − ui and ∆P = P1 − P0. The utility maximization problem can then be
expressed as a simple cutoff rule: the acutely ill individual adopts if and only if the current-
period prior on effectiveness exceeds a person-specific cutoff value:

hit = 1

(
qt >

∆P

m(1− p)∆ui

)
. (7)

We will denote κi = ∆P
m(1−p)∆ui

. This cutoff responds in intuitive ways to changes in the
model’s parameters. An increase in the relative cost of adoption (∆P ) increases κi (i.e. makes
adoption less likely). An increase in the rate of misdiagnosis (1 −m) increases κi. An increase
in the effectiveness of the outside option p also increases the cutoff. Finally, an increase in the
utility difference between quick and slow recovery from illness decreases κi.

2.4 Misdiagnosis and the adoption rate

In each period, let us denote the number of individuals who adopt as n1t =
∑

i∈Nt
1 (qt > κi)

and those who do not as n0t = nt − n1t. Define the period-t rate of adoption as rt = n1t
nt

, that is,
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the fraction of sick individuals who adopt in a given period. Proposition 1 below states that as
the rate of misdiagnosis (1−m) increases, the rate of adoption decreases.

Proposition 1 rt is weakly decreasing in (1−m).

Proof. Consider two levels of misdiagnosis, 1−m′ > 1−m′′. From above, we know that κi is in-
creasing in 1−m; thus κi|1−m′ > κi|1−m′′ . But this implies that for a given qt,

∑
i∈Nt

1 (qt > κi|1−m′) ≤∑
i∈Nt

1 (qt > κi|1−m′′), or n1t|1−m′ ≤ n1t|1−m′′ . Dividing by nt on both sides, we obtain the de-
sired result: rt|1−m′ ≤ rt|1−m′′ .

2.5 Misdiagnosis and the rate of learning

Next, we investigate how beliefs evolve over time through learning, and how misdiagnosis
changes the learning process. Define the log-likelihood ratio of qt as

λt = log

(
qt

1− qt

)
. (8)

From period to period, the log-likelihood ratio (equivalently, the belief qt) evolves as indi-
viduals update the prior by incorporating new information contained in {hit−1, Dit−1|i ∈ Nt−1}.
Applying Bayes’ rule, we can express the updating equation as:

λt+1 = λt +
∑
i∈Nt

hit log

(
P (Dit|θ = 1)

P (Dit|θ = 0)

)
. (9)

Using the expressions for the probabilities above from equations 2 through 5, we can write
the updating equation as:

λt+1 − λt = ng1t log

(
m+ (1−m)p̃

mp+ (1−m)p̃

)
+ nb1t log

(
(1−m)(1− p̃)

m(1− p) + (1−m)(1− p̃)

)
, (10)

where ng1t =
∑

i∈Nt
hit1(Dit = Dg) and nb1t =

∑
i∈Nt

hit1(Dit = Db), so that ng1t + nb1t = n1t.
Intuitively, if an individual adopts and realizes the good health outcome, the common prior

on effectiveness should be revised upwards; if the adopter realizes the bad outcome, the oppo-
site should happen. Finally, if the individual does not adopt, then no new information about
effectiveness is revealed, and thus beliefs should not change.

To determine how misdiagnosis changes the rate of learning, following Christophe Chamley
(2004), we examine the expected drift (taking the expected value over the distribution of Mit) in
the log-likelihood ratio, conditional on θ = 1: E(λt+1 − λt|θ = 1). Conditioning on θ = 1 reflects
the fact that the drift should be calculated for the true state, which in the case of effective therapy
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is θ = 1. Denoting xg = log
(

m+(1−m)p̃
mp+(1−m)p̃

)
and xb = log

(
(1−m)(1−p̃)

m(1−p)+(1−m)(1−p̃)

)
, from equation 10

the expected drift can be expressed as:

E(λt+1 − λt|θ = 1) = xgE(ng1|θ = 1) + xbE(nb1|θ = 1). (11)

Now, we study how this expected drift varies with the rate of misdiagnosis, 1 −m; this ex-
ercise enables us to understand how the rate of learning changes when misdiagnosis increases.
The following proposition states that the way in which the expected drift varies with the misdi-
agnosis rate depends on the magnitudes of p and p̃, i.e., the extent to which the existing malarial
treatment (the outside option) is effective, compared to the rate at which non-malarial fevers
resolve without intervention. Intuitively, the proposition states that if the existing treatment is
sufficiently ineffective, higher misdiagnosis will generate slower learning.

Proposition 2 For p, p̃ such that p < p̃, E(λt+1 − λt|θ = 1) is weakly decreasing in 1−m.

Proof. Using equations 2 and 4, we can express E(ng1|θ = 1) and E(nb1|θ = 1):

E(ng1|θ = 1) = (m+ (1−m)p̃)n1t (12)

E(nb1|θ = 1) = (1−m)(1− p̃)n1t. (13)

Substituting the above expected value expressions into equation 11, we obtain

E(λt+1 − λt|θ = 1) =
(
xg (m+ (1−m)p̃) + xb(1−m)(1− p̃)

)
n1t. (14)

Consider first the derivative of B := xg (m+ (1−m)p̃) + xb(1−m)(1− p̃) with respect to m
in equation 14 above. This derivative can be expressed as

∂B

∂m
=
∂xg
∂m

(m+ (1−m)p̃) +
∂xb
∂m

(1−m)(1− p̃) + (xg − xb)(1− p̃). (15)

Evaluating ∂xg

∂m and ∂xb
∂m and plugging the expressions into expression 15 above, we obtain

∂B

∂m
= (p̃− p)(exg − exb) + (xg − xb)(1− p̃). (16)

Thus when p < p̃, ∂B
∂m > 0, since xg > xb.

Now consider equation 14. Take two levels of misdiagnosis, 1−m′′ < 1−m′. The difference
in E(λt+1 − λt|θ = 1) evaluated from 1−m′′ (initial) to 1−m′ (final) is

∆E(λt+1 − λt|θ = 1) = ∆B
(
n1t|1−m′′

)
+ ∆n1t

(
B|1−m′′

)
. (17)
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We know ∆B < 0, since ∂B
∂m > 0 for p < p̃. Proposition 1 demonstrates that ∆n1t ≤ 0. Finally,

n1t|1−m′′ ≥ 0 and B|1−m′′ > 0. Thus, ∆E(λt+1 − λt|θ = 1) ≤ 0, as we set out to show.

2.6 Summary of predictions

In summary, this model makes two key predictions:

1. Greater misdiagnosis discourages adoption via the lower expected benefits of adoption.

2. Greater misdiagnosis decreases the rate of learning by introducing excess noise in the
learning process.

In the following sections, I test these predictions in the context of the introduction of ACT in
Tanzania.

3 Pilot program and data

3.1 Pilot program

The ACT pilot program, named the Interdisciplinary Monitoring Project for Antimalarial Com-
bination Therapy in Tanzania, was implemented by The Centers for Disease Control and Pre-
vention (CDC) and the Ifakara Health Institute in Rufiji, a rural district in southeast Tanzania,
from February 2003 to the end of 2006.4 Under the auspices of the program, the piloted ACT
therapy, artesunate plus sulphadoxine pyrimethamine, was prescribed to all individuals seek-
ing care at government- or NGO-operated health facilities with fever or a recent history of fever.
ACT was not available at any health care provider or store outside of government and NGO
health facilities in the treatment district (Joseph Njau et al. 2008). Using this fact, I later define a
proxy for ACT adoption based on health facility usage for individuals with self-reported acute
illness.

3.2 Data

This study uses data from household surveys conducted before and after the introduction of
ACT, in Rufiji, the treatment district, and in two comparison districts, Kilombero and Ulanga.
Households in villages which were part of the Demographic Surveillance Systems in the treat-
ment and comparison districts were sampled randomly to be surveyed. I use two years of data
preceding the ACT intervention (2001 and 2002), and three years of post-intervention data (2004,

4For more details on the pilot and household survey, please refer to S. Patrick Kachur et al. (2001), Kachur et al.
(2004) and Joseph Njau et al. (2008).
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2005 and 2006). There was no survey round in 2003, the year that the new therapy was intro-
duced. The treatment and comparison districts are geographically contiguous but separated by
a large game reserve (the Selous Reserve).

I focus my analysis on the sample of individuals who reported being acutely ill with fever
in the past two weeks. The individual module of the household survey asks questions about
treatment-seeking following an episode of fever; I construct the dependent and independent
variables of interest based on the answers of individuals who were acutely ill in the recent past
to questions about their health care choices and health outcomes.

Table 1 reports the means and standard deviations of variables used in analysis for the sam-
ple of individuals who reported being acutely ill with fever starting in the two weeks prior to
survey. I present summary statistics for the whole sample, and split by treatment versus com-
parison districts and high- versus low-misdiagnosis villages. High (low) misdiagnosis village is
defined as a village in which the prevalence of P. falciparum was below (above) the median level
at baseline (2001).

The total number of individuals sampled is just above 50,000, divided roughly evenly across
the treatment and comparison districts. Of these individuals, 5826 reported being ill with fever
that began in the two weeks preceding survey.

The unit for the age variable is years. It is constructed by subtracting the survey date from
the date of birth of the individual, and dividing by 365.25. I all regression analyses, I include
age decile fixed effects, as well as a quadratic in age, as controls. The average age in the sample
is about 24.

The average years of completed education of household heads is approximately 4.5. The
household survey only asked for the educational attainment of the household head. This at-
tainment is reported in years, but for all analyses, I divide education into four categories, and
include dummy variables for each category in the regressions (the omitted category is zero years
of education):

1. No formal education: household head has zero years of formal education (28.9%)

2. Less than primary education: household head has greater than 0 and less than 7 years of
formal education (23.3%)

3. Primary education: household head has exactly 7 years of education (39.3%)

4. More than primary education: household head has greater than 7 years of education (8.45%).

Pre-intervention (in 2001 and 2002), approximately 14 percent of the sample reported fever
in the 2 weeks preceding survey. Among these individuals, about 30 percent sought care at
a formal-sector health center, hospital or dispensary (public and NGO). In the treatment dis-
trict, those who sought treatment at a health facility after acute illness received ACT. I thus use
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formal-sector care usage as a proxy for ACT adoption in the treatment district. Njau et al. (2008)
confirm, via surprise visits to health facilities and drug stores in the treatment district, that 1)
there was no leakage of ACT into the informal sector, and 2) that all individuals presenting with
fevers at government and NGO health facilities were prescribed ACT.

The rest of the individuals, those who did not visit the aforementioned options but who
reported being acutely ill with fever, went to a medicine shop, street doctor, general store, kiosk,
traditional healer, private laboratory, or could have used modern or traditional medicines from
home or from a neighbor, or could have sought no treatment at all.

Among these individuals who sought health facility care, the length of their illness was just
over 4 days. They reported about 1.5 additional symptoms besides fever. Among those who did
not choose health facility care, the length of illness is shorter–just over 3 days–and the number
of additional symptoms is approximately the same.

Columns 2 and 3 of Table 1 report summary statistics separately for the treatment and com-
parison districts. The average age among acutely ill individuals is slightly higher in the treat-
ment district compared to the comparison, and the average educational attainment of household
heads is lower. I address this imbalance in the empirical strategy section. On all the treatment-
seeking and health outcome variables, the two samples are similar on average.

Columns 4 and 5 report summary statistics separately for high- and low-misdiagnosis vil-
lages. High (low) misdiagnosis village is defined as a village in which the malarial prevalence
level is below (above) the median level at baseline. I use this distinction to test for the role of
misdiagnosis in learning and adoption. A more complete definition is provided in section 4.
Besides the mean malarial prevalence rate, which is by definition significantly larger in the low-
misdiagnosis group, the two groups are similar across all the demographic and health variables
on average.

4 Empirical strategy

The goal of this section is to develop an empirical strategy to test the implications of the learning
model using data from household surveys before and after the introduction of the ACT pilot
program. The main implications of the model are that where misdiagnosis of malaria is more
prevalent, the adoption rate should be lower and learning–that is, the relationship between
current-period adoption and previous-period health outcomes of adopters–should take place
more slowly.
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4.1 Defining high and low misdiagnosis villages

I construct areas of greater and lesser extents of misdiagnosis by exploiting baseline data on
village-level malarial prevalence. Out of the 57 villages in the sample, 54 have baseline preva-
lence data. I divide these 54 villages into two groups–high and low prevalence–based on whether
they fell above or below the village-level median of malarial prevalence in 2001. Since malaria
treatment is prescribed presumptively at health facilities in both areas, higher malarial preva-
lence will imply a lower rate of misdiagnosis.

The main potential worry in making this classification is that high- and low-prevalence areas
may be different on a variety of dimensions; these differences may generate variation in the rates
of adoption and learning that are not due to misdiagnosis alone. At the end of this section, I
present a set of analyses in support of the validity of this classification. In particular, I show that
the villages in the high- and low-prevalence groups are not significantly different on average
on observable dimensions, including the incidence of fever. We might be concerned that since
misdiagnosis is defined as the proportion of fevers that are not malarial, if the fever rate highly
correlates with malarial prevalence, then the effective rate of misdiagnosis will not be dissimilar
across high- and low-prevalence areas. But in fact the correlation between malarial prevalence
and fever at the village level is 0.0027; at the end of this section, I also show that there is no
evidence that the trends in fever prevalence are differential across high and low misdiagnosis
villages.

4.2 Misdiagnosis and the adoption rate

To test the prediction that misdiagnosis should decrease the ACT adoption rate, I estimate the
extent of differential adoption in high versus low misdiagnosis villages. I use a difference in
differences approach to measure the adoption rate, comparing health facility usage in the treat-
ment and comparison groups before and after the intervention. I proxy for adoption with health
facility usage for individuals reporting fever, since ACT was administered only at government
and NGO health facilities, and was prescribed to all individuals presenting with a fever or his-
tory of fever. As noted above, ACT was not available in the informal sector and was indeed
prescribed for fever or a history of fever at government and NGO health facilities (Njau et al.
2008).

I attribute the differential change in health facility usage over time in the treatment vis-a-vis
the comparison group to the introduction of ACT. This differential change is thus a measure of
the adoption rate in the sample of acutely ill individuals. The checks presented at the end of this
section ensure that the differential trends across groups are not due to differential selection into
acute illness.

To examine whether the adoption rate was different across high and low misdiagnosis vil-
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lages, I first estimate the following difference in differences specification separately in the two
samples:

hijw = γTjPw + αw + βj + X′ijwδ + εijw. (18)

The coefficient of interest is γ, the difference in differences estimate of the impact of ACT
introduction on health facility usage. Here i denotes individual, j denotes village (and βj are
village fixed effects), w denotes round (wave) of survey (and αw are round fixed effects), and
Xijw is a vector of individual- and village-level controls, including the following variables: week
of survey dummies to capture week-by-week seasonal variation; dummies for categories of
educational attainment of the household head; and age decile dummies. We denote the dummy
variable for health facility usage among acutely ill individuals as hijw, which equals 1 if the
individual sought care at a health facility, and 0 if the individual sought care at an informal care
option or did not seek care at all. Tj is a treatment district dummy and Pw is a post-intervention
dummy, which equals 1 in post-intervention rounds.

I then interact the treatment x post-intervention term with a dummy for high misdiagnosis
village (Mj equals 1 if the individual lives in a high misdiagnosis village, 0 otherwise), include
the second-order interactions, and estimate a triple interaction specification in the pooled sam-
ple, measuring the differential adoption rate across high and low misdiagnosis villages:

hijw = γ1MjTjPw + γ3MjPw + γ4TjPw + αw + βj + X′ijwδ + εijw. (19)

Here the coefficient of interest is γ1, measuring the differential adoption across high- and
low-misdiagnosis villages. Note that MjTj and Mj will both be absorbed by the village fixed
effects (βj).

4.3 Identification of the learning effect

4.3.1 Definitions

We begin by defining the variables of interest. Suppose an individual i in village j falls sick
with acute illness on date t. He makes an adoption choice, hijt ∈ {0, 1} after falling ill, and
his eventual health outcome, Dijt, is measured as the length of illness in days. Note that if the
individual is still ill when surveyed, the length of his illness will not be recorded (i.e., it will be
coded as missing). I discuss the ramifications of this right-censoring of the distribution of the
length of illness at the end of this section, and present evidence that it does not bias the estimate
of the learning effect.

In line with the theory, the empirical model should reflect the intertemporal nature of the
learning process: sick individuals should use the past health outcomes of adopters in their learn-
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ing reference groups to update their priors on the quality of the new therapy. To construct the
empirical analog, we must first define reference groups for learning.

My definition exploits the plausibly exogenous timing and location of survey enumeration
to construct groups based on geographic and temporal proximity to the sick individual i. For
geographic proximity I use the individual’s village j, under the assumption that when individ-
uals make healthcare choices, they learn from their fellow villagers who made similar choices
in the past.5 For temporal proximity, I use information on the date the individual’s acute illness
began (t, as defined above). In particular, I assume that individuals falling sick on date t look
back in time m days at the outcomes of adopters and non-adopters in their village who fell sick
and made healthcare choices from date t −m to date t − 1. At the end of this section, I present
evidence that the order of survey enumeration was plausibly random.

LetNjt be the set of individuals who fell ill in village j on date t. LetN1
jt ⊆ Njt denote the set

of all individuals with fever in village j on date t who adopted the new therapy, and N0
jt ⊆ Njt

denote those who did not adopt, such that N1
jt ∪ N0

jt = Njt. Then D̄1
j,(t−m,t) and D̄0

j,(t−m,t), the
average length of illness for adopters and non-adopters, respectively, from dates t −m to t, are
defined as follows:

D̄1
j,(t−m,t) =

∑m
a=1

∑
i∈N1

j,t−a
Dij,t−a∑m

b=1 |N1
j,t−b|

(20)

D̄0
j,(t−m,t) =

∑m
a=1

∑
i∈N0

j,t−a
Dij,t−a∑m

b=1 |N0
j,t−b|

. (21)

I make four notes regarding these definitions. First, defining the reference group in this way
implies that the group’s choices and outcomes vary in general at the village x day level. Second,
I only average over observations for whom the length of illness is recorded, i.e., for those whose
acute illnesses are complete by the date of survey. At the end of this section, I check that right-
censoring of the length of illness is non-differential across treatment and control districts and
misdiagnosis categories.

Third, if, for some village j, choice k ∈ {0, 1}, and time span (t −m, t),
∑m

b=1 |Nk
j,t−b| = 0, I

replace the missing value of D̄k
j,(t−m,t) with the average length of illness for all individuals who

chose k between t −m and t as calculated across the health facility catchment area (a group of
spatially proximate villages). If this value is missing as well, then I replace it with the same
average across the entire district (further broadening the definition of the individual’s reference
group for these observations). This process is necessary for less than 10 percent of acutely sick
individuals.

5The survey instrument did not include data on social networks, which would have better reflected individu-
als’ reference groups. On the other hand, the endogenous formation of social networks arguably introduces larger
upward bias on the learning effect estimate than the endogenous formation of villages.
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Fourth, in the estimates presented in section 5, I use a lag of 6 weeks (m = 42 days). I discuss
the factors influencing this choice of lag length at the end of this section. As a check, I rerun
the main analyses using lag lengths from 4 to 8 weeks, and the results are qualitatively similar
(results available upon request).

4.3.2 Strategy

The theoretical model predicts that the learning process should generate a relationship between
the past outcomes of adopters (D̄1

j,(t−m,t)) and the adoption choices of sick individuals in the
current period (hijt). Of course, regressing the latter on the former would yield a biased learn-
ing effect estimate due to what Manski (1993) terms correlated effects. Individuals likely share
common preferences for health with their reference group; have similar stocks of health as well
as options for healthcare; and are exposed to the same local disease environment. Moreover,
since this disease environment is often highly seasonal, outcomes and healthcare choices could
be locally autocorrelated due to, for example, persistently heavy rainfall or high temperatures.

My empirical strategy aims to disentangle learning from the correlated effects described
above. I take several steps to address bias arising from the fact that sick individuals and their
reference groups have similar characteristics (health stocks, common shocks, preferences, avail-
ability of healthcare options, etc.).

First, I include village x round-of-survey fixed effects (denoted ηjw, where w indicates sur-
vey round), which allow for flexible, village-specific trends in unobservables which may simul-
taneously affect current-period adoption and past-period health outcomes. Each survey round
lasted approximately 3 to 4 months; thus there exists substantial day-to-day variation in hijt,
D̄1

j,(t−m,t) and D̄0
j,(t−m,t) within fixed effect cells.

But even within village-by-survey-round cells, geographically and temporally local shocks–
epidemics, weather fluctuations, drug stock-outs and the like–could potentially bias learning
effect estimates. To deal with this possibility, the second aspect of the empirical strategy is to dif-
ference the past outcomes of adopters and non-adopters: ∆D̄j,(t−m,t) :=

(
D̄1

j,(t−m,t) − D̄
0
j,(t−m,t)

)
.

To the extent that sick adopters and non-adopters in the same reference group are affected
equally by these common shocks, differencing their outcomes will remove the effect of the com-
mon shock from the health outcome measure.6

Finally, we must deal with the possibility that the health outcomes of adopters and non-
adopters may indeed not react in the same way to shocks. Adoption is inherently driven by
choice, and the unobserved characteristics of sick individuals–for example, the severity of their

6Thus we are positing that individuals learn from the differential outcomes of adopters as compared to non-
adopters in their reference groups. Note that although this distinction cannot be made in the theoretical model,
as for simplicity we assumed only one individual making an adoption choice per period, it is nevertheless crucial to
make in our empirical setting, in which common autocorrelated shocks may generate significant bias in estimates of
the learning effect.
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illness or their preferences for health–likely drive their adoption choices, and will also be cor-
related with the way in which they react to a common shock. As a result, shocks which affect
current-period choices may be correlated with ∆D̄j,(t−m,t) as well.

To account for this possibility, I exploit data on the choices and outcomes of 1) individu-
als in the comparison districts, and 2) individuals before the introduction of the new therapy.
The intuition behind my strategy is that, for these individuals, the correlation between current-
period healthcare choices (hijt) and previous-period (differential) health outcomes (∆D̄j,(t−m,t))
should represent only the spurious effects induced by common shocks, since the therapy was
not introduced to these individuals, so no learning effect should be present for these groups.
To purge the coefficient on ∆D̄j,(t−m,t) of these spurious effects, I interact the variable with a
treatment x post-intervention dummy (denoted TjPt), as well as the main effects–treatment (Tj)
and post-intervention (Pt). The resulting triple difference specification is:

hijtw =
(
γ1TjPw + γ2Tj + γ3Pw + γ4

)
∆D̄j,(t−m,t) + ηjw + X′ijwδ + εijtw. (22)

The learning effect is captured by the coefficient γ1. As mentioned before, ηjw are village
x survey round fixed effects, and Xijt is a vector of individual and time-varying controls. X
includes the following variables: week of survey dummies to capture week-by-week seasonal
variation; dummies for categories of educational attainment of the household head; and age
decile dummies. Finally, X includes lagged health average facility usage in the village, h̄j,(t−m,t),
and its interactions with treatment, post and treatment x post dummies.

4.4 Misdiagnosis and the rate of learning

To test the prediction that misdiagnosis decreases the rate of learning, I first estimate equation 22
separately in the high and low misdiagnosis samples. Then, I estimate a similar specification in
the pooled sample to test for the difference in the learning effect across these samples, in which
the coefficient of interest (α1) is on the interaction of the high misdiagnosis village dummy with
the learning effect estimate. The specification estimated in the pooled sample is:

hijt =
(
α1TjPt + α2Tj + α3Pt + α4

)
∆D̄j,(t−m,t)Mj

+
(
γ1TjPt + γ2Tj + γ3Pt + γ4

)
∆D̄j,(t−m,t) + ηjw + X′ijtδ + εijt. (23)

Note that the main effect of the high misdiagnosis village dummy and its interactions with
treatment, post-intervention and treatment x post-intervention are absorbed by the village x
survey round fixed effects (ηjw).
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4.5 Checks

4.5.1 Validity of classification of high- and low-misdiagnosis groups

Areas with different malarial prevalence rates may also be different in other ways associated
with learning about and adopting new malaria therapy. I provide several pieces of evidence
that the differences across these two groups (high and low misdiagnosis villages) along most
dimensions are not large.

First, medical evidence suggests that the introduction of ACT does not affect a region’s
malarial ecology, including prevalence rates (Bousema et al. 2006). Second, as reported in Table
1, apart from malarial prevalence, which differs by definition across the two groups, along de-
mographic and socioeconomic variables as well as healthcare choices and health outcomes (save
for self-reported fever), the two groups are not different on average. Third, self-reported fever
and village-level malarial prevalence are very weakly correlated: the correlation coefficient is
0.0027. The lack of correlation is necessary for the validity of the empirical strategy, since if
fever and baseline malarial prevalence were very highly correlated in the sample, the rate of
misdiagnosis (1 −m over the prevalence of fever) would not vary enough across villages with
differing malarial prevalence rates.

Fourth, I check that the trends in fever prevalence (which in my empirical context is equiva-
lent to inclusion in the sample) are not differential across high and low misdiagnosis villages. If
trends in sample selection were different across these two groups, we may worry that differen-
tial trends in ACT adoption may be due to differences in selection into acute illness rather than
differences in the extent of misdiagnosis.

To check that this not indeed the case, I first estimate the following specification separately
in the high and low misdiagnosis samples, and then in the pooled sample:

sijw = γTjPw + αw + βj + X′ijwδ + εijw. (24)

sijw is a dummy which equals 1 if individual i reported having fever in the 2 weeks preced-
ing survey, and 0 otherwise. The results are reported in columns 1-3 of Table 2. The treatment
x post-intervention interaction term is similar in magnitude across high- and low-misdiagnosis
villages (columns 1 and 2), and is insignificantly different from 0 in both groups, as well as in
the pooled sample regression (column 3).

Finally, I interact the treatment x post-intervention term with a dummy for high misdiagno-
sis village (Mj equals 1 if the individual lives in a high misdiagnosis village, 0 otherwise), and
include the second-order interactions:

sijw = γ1MjTjPw + γ2MjTj + γ3MjPw + γ4TjPw + αw + βj + X′ijwδ + εijw. (25)
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The results are reported in column 4 of Table 2. Based on the triple difference estimates, we
find no evidence of differential selection into sickness across the two misdiagnosis groups.

4.5.2 Plausible randomness of survey enumeration

My strategy to estimate a learning effect relies on the fact that the ordering of survey enumera-
tion was uncorrelated with observable household characteristics, the propensity for acute illness
or treatment choice. We test this assumption directly, by regressing the date of survey (specif-
ically the number of days since Jan. 1, 1960) on these variables. The econometric model we
estimate is the following:

dijt = δ′Xijt + ηjw + εijt. (26)

d is the date of survey; X are observable characteristics of individuals and households; η are
village x survey round fixed effects, which, as described below, are a key part of the identifica-
tion of the learning effect. The results of this estimation are are reported in Table 3. In column
1, I estimate the above specification using the whole sample, and include a dummy variable for
self-reported acute illness, in addition to observable characteristics (categories of educational
attainment of the household head and a quadratic in age). The results in column 1 show that
within village x survey round cells, there is no significant relationship between the date of sur-
vey and self-reported acute illness, as well as education and age.

Column 2 reports results of a similar specification estimated on the sample of acutely ill
individuals, examining the relationship between date of survey and healthcare choice (a binary
variable for seeking treatment at a formal-sector health facility), as well as the same education
and age variables used in the previous specification. Again the results show no significant
association between date of survey and these variables.

Columns 3 and 4 replicate columns 1 and 2, respectively, but use the actual integer ordering
of survey enumeration (based on date of survey) within village x wave cells. That is, for each
village in each wave, I order individuals according to when they were surveyed, with 1 being
the earliest individual surveyed, 2 being the second earliest, and so on. This variable is then
regressed on the same set of observable characteristics as before, as well as a village x wave
fixed effect. The results, reported in columns 3 and 4, again show no systematic association
between the order of survey enumeration and these variables.

Taken in sum, these results provide support for the plausible randomness of the timing of
survey enumeration.
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4.5.3 Non-differential trends in length of illness non-response

As mentioned above, since the length of illness is only recorded for those whose illnesses are
complete, the right tail of the true distribution of this variable will be coded as a non-response.
That is, conditional on the number of days prior to survey the illness began, the longest illnesses
will be coded as missing and thus will not be used when calculating the average. This implies
the average days of illness for the reference groups used to construct learning estimates will be
underestimated.

Since my empirical strategy relies on a differencing approach, this underestimation will only
be a problem if it occurs differentially across the treatment and comparison districts over time
(and across high and low misdiagnosis villages when using a triple difference specification). To
check that this is not the case, I construct a dummy variable cijw for individual i in village j
surveyed in round w that equals 1 if the length of illness is not recorded due to right-censoring
(i.e. due to the fact that the individual was still ill at the time of survey). I then estimate the
following specification:

cijw = γTjPw + αw + βj + X′ijwδ + εijw. (27)

The coefficient of interest, γ, measures the extent to which trends in non-response in the
length of illness were differential across treatment and comparison districts. The coefficient
estimates are reported in column 1 of Table 4. The coefficient on treatment x post-intervention
is small and not significantly different from 0.

In column 2, I report estimates of a triple difference specification, through which we can test
whether the (difference in) trends in non-response in the length of illness was differential across
high- and low-misdiagnosis villages:

cijw = γ1MjTjPw + γ2MjTj + γ3MjPw + γ4TjPw + αw + βj + X′ijwδ + εijw. (28)

The estimate of γ1 reported in column 2 shows that this difference is not significantly differ-
ent from 0. Thus, we find no evidence that the underestimation of average length of illness for
reference groups is differential across treatment and comparison districts, and across high- and
low-misdiagnosis groups.

4.5.4 Choice of lag length (m)

The choice of m = 42 reflects a balancing of two concerns. First, for a given lag length, there
exist fewer observations of length of illness at the beginning of each survey round (which lasted
3-4 months for each year) than at the end. For example, if an individual is surveyed 1 week after
the survey enumeration begins in a particular wave, the lagged variables for this individual is
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calculated using only the outcomes of her fellow villagers who were surveyed in the previous
week. For an individual surveyed near the end of a survey round, the lagged variables will use
observations from the entire lag length. Therefore, the longer the lag length, the more relatively
error-ridden the estimates at the beginning of the survey round will be compared to the end.

Second, while shorter lag length (i.e., a more temporally proximate reference group) may
more accurately reflect reality, it also increases measurement error, for two reasons. First, with
a smaller m, the number of observations included in the construction of the lagged variable de-
creases. Thus, when the number of observations over which I average to construct the lagged
variable is low, the estimate of length of illness becomes more error-ridden. Second, if there are
no observations in the given lag length, I fill in this missing number with the constructed aver-
age across a larger space than the village (first the health facility catchment area, and then the
district on the whole). Thus, if the village-level average is missing and is filled in with a broader
average, this value is less likely to reflect the individual’s actual reference group outcomes in
the previous period.

The 6-week (m = 42) lag length balances these two concerns. As mentioned above, I have
rerun the main analyses using lag lengths of 4, 5, 7 and 8 weeks, and the results are qualitatively
similar. These results are available upon request.

4.5.5 Controlling for lagged demographic and illness differences

Finally, I address the potential concern that the (differential) composition of adopters vis-a-vis
non-adopters changed as a result of ACT introduction, rendering comparisons in the health
outcomes of the two over time invalid. To the extent that these changes occurred on observable
dimensions, we can control for the differential composition of adopters versus non-adopters, in
terms of their demographic characteristics and the characteristics of their acute illnesses.

For a given characteristic x, define ∆x̄j,(t−m,t) as the difference in x across health facility
users and non-health facility users in village j between dates t − m and t. This difference is
defined equivalently to the difference in the length of illness across adopters and non-adopters:

x̄1
j,(t−m,t) =

∑m
a=1

∑
i∈N1

j,t−a
xij,t−a∑m

b=1 |N1
j,t−b|

(29)

x̄0
j,(t−m,t) =

∑m
a=1

∑
i∈N0

j,t−a
xij,t−a∑m

b=1 |N0
j,t−b|

(30)

∆x̄j,(t−m,t) = x̄1
j,(t−m,t) − x̄

0
j,(t−m,t). (31)

I use age, education of the household head and a wealth index (generated via principal
components analysis), and the number of additional self-reported symptoms (a measure of the
severity of illness) as x variables.
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I augment the baseline specification by adding these new variables (∆x̄j,(t−m,t)) and their
interactions with treatment, post-intervention and treatment x post-intervention dummies. The
resulting specification is:

hijt =
(
γ1TjPt + γ2Tj + γ3Pt + γ4

)
∆D̄j,(t−m,t)

+
(
α1TjPt + α2Tj + α3Pt + α4

)
∆x̄j,(t−m,t) + ηjw + X′ijtδ + εijt. (32)

5 Results

5.1 Misdiagnosis and ACT adoption

Table 5 reports estimates of equations and , the difference in differences estimates of ACT adop-
tion. Columns 1 and 2 report estimates of equation in the high and low misdiagnosis samples,
respectively. The results in these columns show that the differential trend in health facility usage
in high misdiagnosis villages had close to 0 slope, while the differential trend in low misdiag-
nosis villages was positive (though imprecisely estimated). The pooled sample estimates of
equation , reported in column 3, confirm that these differential trends were significantly different
across the two groups. In particular, the adoption rate was approximately 16 percentage points
lower in high misdiagnosis villages.

5.2 Estimates of the learning effect

The estimates of equation 22 are reported in Table 6. Column 1 reports the estimates of this
baseline specification. The learning effect estimate is the coefficient on the interaction of the dif-
ferential illness length across adopters and non-adopters x treatment district x post-intervention.
The learning effect estimate is large relative to the mean health facility usage rate and is precisely
estimated. The interpretation of this estimate is that narrowing the difference in the length of
illness across adopters and non-adopters by 1 day increases the future adoption probability by
about 4.8 points.

Columns 2 and 3 report the results of robustness checks, in which lagged differences in
demographic characteristics and symptoms across adopters and non-adopters, constructed in
the same way as the lagged differences in the length of illness, are interacted with treatment
and post-intervention dummies.

In column 2, I estimate the above specification using age, education of the household head
and a wealth index (generated via principal components analysis) as x variables. The results
make clear that the addition of these lagged differences and their interactions do no affect the
magnitude or significance of the learning effect estimate.
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In column 3, I again estimate the above specification using the demographic characteristics
mentioned above, as well as the number of additional self-reported symptoms, a measure of the
severity of illness. Note that these data were only collected for in 3 of the 5 survey rounds, so
the sample in this estimation is smaller. Nevertheless, the results reported in column 3 show
that the magnitude of the learning effect estimate remains fairly stable (though it is estimated
with less precision than the baseline estimate).

5.3 Misdiagnosis and the learning effect

Table 7 reports estimates of equation 22 separately for the high and low misdiagnosis samples,
and the estimates of equation 23 for the pooled sample. As the results reported columns 1
and 2 show, the learning effect is small (-0.0248) and insignificantly different from 0 in high
misdiagnosis villages, but is larger and precisely estimated (-0.0735) in villages with a lower
rate of misdiagnosis. The pooled sample estimates of equation 23, reported in column 3, confirm
that the learning effect is significantly different in high versus low misdiagnosis villages.

6 Conclusion

In this study, I demonstrate how the acceptance and adoption of effective technologies can hinge
on the way in which they are allocated. In the case of malaria therapy, I show that the misdiag-
nosis of malaria affects individuals’ beliefs and subsequent adoption patterns through learning.
When individuals are uncertain about the effectiveness of new therapy, misdiagnosis of malaria
makes it more difficult to extract a signal about quality from the health outcomes of adopters.
It also scales down the expected benefit of the therapy, since individuals who are unsure that
they have malaria know that even if the therapy is effective, they will only realize its benefits
if they actually have the disease. In both these ways, poor diagnostic policy can discourage the
adoption of new malaria therapy even if the therapy is clinically effective.

I develop a strategy to test these hypotheses empirically, using household survey data from a
pilot program through which ACT was prescribed at health facilities in Tanzania. I find evidence
that 1) places in which misdiagnosis is more common experienced lower adoption rates over
time, and 2) individuals learn from the health outcomes of past adopters, but misdiagnosis
decreases the extent of this learning.

Most new technologies take time to gain acceptance, due to uncertainty about their inherent
effectiveness (Kremer and Miguel 2007) or about their optimal usage (Foster and Rosenzweig
1995, Conley and Udry 2010). Social learning has been shown to be a key mechanism by which
individuals overcome this uncertainty, and come to adopt the technologies which are most pro-
ductive and profitable for them. Yet there remain many examples of beneficial technologies and
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behaviors that are not adopted despite their proven effectiveness. In the developing country
context, these barriers to adoption can stifle technology-driven economic growth in the aggre-
gate. I demonstrate that the inappropriate allocation of new technology is one such barrier,
which can be removed by changing policy to target only those individuals for whom the tech-
nology is intended.

Leaders in the fight against malaria are recognizing the need for the proliferation of better
diagnostic technology. For example, the World Health Organization has called for private man-
ufacturers to produce effective, cheap rapid diagnostic tests (RDTs) for malaria, for use in rural
settings in Africa and southeast Asia (WHO 2008). New evidence shows that subsidizing RDTs
along with ACTs for distribution in the private sector can yield high uptake of ACT even while
limiting its inappropriate use by patients who do not have malaria (Cohen, Dupas and Simone
Schaner 2011). These results, together with this paper’s findings, suggest that investments in
subsidies for diagnostic technology may reap high returns, not only by limiting the inappropri-
ate allocation of ACT to non-malarial patients, but also by encouraging the sustained adoption
of ACT via learning.
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Number of individuals
Number of individuals reporting fever in 2 weeks preceding survey

Mean SD Mean SD Mean SD Mean SD Mean SE
All years:

Age in years 23.882 21.273 24.749 22.738 23.036 19.703 24.163 21.515 23.637 21.057
Educational attainment of household head (years) 4.402 3.314 3.453 3.481 5.303 2.869 4.468 3.346 4.346 3.285

Pre-intervention years (2001 & 2002):
Proportion reporting fever in 2 weeks preceding survey 0.142 0.349 0.141 0.348 0.143 0.350 0.136 0.343 0.147 0.354
Among individuals reporting fever:

Proportion who sought care at health facility 0.291 0.454 0.290 0.454 0.292 0.455 0.325 0.469 0.261 0.439
Among individuals who sought health facility care:

Length of illness (days) 4.260 2.389 4.473 2.613 4.085 2.175 4.462 2.548 4.024 2.169
Number of additional symptoms 1.471 1.115 1.333 1.077 1.645 1.147 1.403 1.134 1.544 1.099

Among individuals who did not seek health facility care:
Length of illness (days) 3.277 2.466 3.205 2.355 3.340 2.557 3.475 2.655 3.118 2.292
Number of additional symptoms 1.426 1.066 1.250 1.012 1.622 1.092 1.404 1.039 1.445 1.091

2630 3196 

Notes: age in years calculated as (date of survey - date of birth)/365.25; additional symptoms besides fever include body pains, headache, diarrhoea, chills, cough, convulsions, vomiting,
fainting, fast breathing, and dizziness; high (low) misdiagnosis village is defined as a village in which the prevalence of P. falciparum was below (above) the median level at baseline
(2001). 
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Summary statistics

Table 1

Low misdiagnosis 
villages

23514 26960

Whole sample High misdiagnosis 
villages

Comparison districts
(Kilombero & Ulanga)

Treatment district
(Rufiji)



High-misdiagnosis 
villages

Low-misdiagnosis 
villages

Whole sample Whole sample

Treatment x post 0.0122 0.0202 0.0161 0.0203
(0.0159) (0.0153) (0.0106) (0.0141)

High-misdiagnosis village x
Treatment x post -0.00940

(0.0223)
Post 0.00673

(0.0173)

Fixed effects

Number of observations 25729 22232 47961 47961

Table 2

Notes: *** p<0.01, ** p<0.05, * p<0.1; all specifications are estimated using OLS; robust standard errors are reported in 
parentheses below coefficient estimates, and allow for correlation in the error term within villages; specifications control for 
week-of-survey dummies to capture seasonal variation, dummies for categories of educational attainment of the household 
head, age decile dummies and a quadratic function in age; note that village fixed effects subsume the high-misdiagnosis 
village dummy and its interaction with treatment district.

Dependent var: 1 if individual reported having fever in two weeks preceding survey, 0 otherwise

Sample selection

Village & survey round



Dependent variable:

Whole sample Acutely ill individuals Whole sample Acutely ill individuals

Reported fever in two weeks preceding survey 0.326 -1.019
(0.463) (1.122)

Sought treatment at health facility -0.255 1.055
(0.202) (2.691)

Educational attainment of household head:
Less than primary (< 7 years) -1.397 0.0249 -0.572 -2.021

(1.672) (0.0856) (1.691) (2.177)
Completed primary school (= 7 years) 0.530 -0.122 -0.714 -0.337

(0.338) (0.167) (2.055) (2.048)
More than primary school (> 7 years) 0.557 0.00558 -1.318 -3.441

(0.358) (0.165) (2.362) (3.880)
Age in years 0.114 0.0127 -0.00139 0.0587

(0.114) (0.0106) (0.0255) (0.121)
Age squared -0.00123 -0.000154 -0.000163 -0.00186

(0.00126) (0.000139) (0.000481) (0.00165)

Fixed effects

Number of observations 47961 5505 47961 5505
Notes: *** p<0.01, ** p<0.05, * p<0.1; all specifications are estimated using OLS; robust standard errors are reported in parentheses below 
coefficient estimates, and allow for correlation in the error term within village x survey round; specifications control for week-of-survey 
dummies to capture seasonal variation, dummies for categories of educational attainment of the household head, age decile dummies and a 
quadratic function in age.

Village x survey round

Timing of survey enumeration

Table 3

Date of survey 
(number of days since January 1, 1960)

Integer order of survey
(within village x survey round cell)



Whole sample Acutely ill individuals

Treatment x post 0.0359 -0.0187
(0.0379) (0.0540)

High-misdiagnosis village x
Treatment x post 0.112

(0.0685)
Post -0.00200

(0.0483)

Fixed effects

Number of observations 5,500 5,500

Dependent var: 1 if length of illness right-censored for individual (i.e. individual's acute illness was 
not complete on the day of survey), 0 otherwise

Village & survey round

Trends in length of illness non-response

Table 4

Notes: *** p<0.01, ** p<0.05, * p<0.1; all specifications are estimated using OLS; robust standard 
errors are reported in parentheses below coefficient estimates, and allow for correlation in the error 
term within villages; specifications control for week-of-survey dummies to capture seasonal 
variation, dummies for categories of educational attainment of the household head, age decile 
dummies and a quadratic function in age; note that village fixed effects subsume the high-
misdiagnosis village dummy and its interaction with treatment district.



Triple difference 
estimates

High misdiagnosis 
villages

Low misdiagnosis 
villages

Whole sample

Treatment x post -0.0254 0.117 0.120*
(0.0578) (0.0687) (0.0672)

High misdiagnosis village dummy x
Treatment x post - - -0.161*

(0.0834)
Post - - 0.0428

(0.0705)

Fixed effects

Number of observations 2471 3034 5505

Table 5

Trends in ACT adoption over time for high and low misdiagnosis villages

Dependent var: 1 if individual sought care at a government or NGO health facility, 0 otherwise

Notes: *** p<0.01, ** p<0.05, * p<0.1; all specifications are estimated using OLS; robust standard errors are 
reported in parentheses below coefficient estimates, and allow for correlation in the error term within 
villages; specifications control for week-of-survey dummies to capture seasonal variation, dummies for 
categories of educational attainment of the household head, age decile dummies and a quadratic function in 
age; note that village fixed effects subsume the high-misdiagnosis village dummy and its interaction with 
treatment district.

Difference in differences estimates

Village & survey round



Baseline specification
Baseline + lagged differences 

in demographics

Baseline + lagged differences 
in demographics and 

symptoms

Treatment*Post dummy -0.0475*** -0.0452*** -0.0428*
(0.0164) (0.0168) (0.0259)

Treatment dummy 0.0303*** 0.0335*** 0.0268
(0.0101) (0.0101) (0.0182)

Post dummy 0.0287** 0.0272** 0.00946
(0.0114) (0.0116) (0.0185)

-0.0178*** -0.0221*** -0.0101
(0.00652) (0.00649) (0.0136)

Fixed effects

Number of observations 5294 5166 2958

Village x survey round

Notes:  *** p<0.01, ** p<0.05, * p<0.1; all specifications are estimated using OLS; reference group for learning is the individual's village; 6-week lags 
are used, beginning on the day the individual reported falling ill; proportion of ref group who visited health facility, and its interactions with post, 
treatment, and treatment x post dummies, are included in the specification; robust standard errors are reported in parentheses below coefficient 
estimates, and allow for correlation in the error term within village x date of survey; additional controls are week-of-survey dummies to capture seasonal 
variation, dummies for categories of educational attainment of the household head, age decile dummies and a quadratic function in age; column 1 
reports results from the baseline learning effect specification; columns 2 and 3 test robustness to addition of lagged differences (across facility users 
and non-users) in demographics (age, education and asset index) and number of symptoms, respectively; columns 1 and 2 are estimated on full 
sample; column 3 is run on the sample of individuals from 2001, 2004 and 2006, for whom symptoms data were collected.

Table 6

Estimates of the learning effect

Dependent var: 1 if individual sought care at a government or NGO health facility, 0 otherwise

Difference in lagged sickness length in days (health facility 
users - non-health facility users)

Difference in lagged sickness length in days (health facility 
users - non-health facility users) x



High misdiagnosis 
villages

Low misdiagnosis 
villages

Whole sample

-0.0248 -0.0735*** -0.0789***
(0.0232) (0.0229) (0.0226)

- - 0.0634**
(0.0316)

Fixed effects

Number of observations 2346 2948 5294
Notes:  *** p<0.01, ** p<0.05, * p<0.1; all specifications are estimated using OLS; reference group for 
learning is the individual's village; columns 1 and 2 report learning effect estimates, which are the 
coefficients on the difference in lagged sickness length in days (health facility users - non-health facility 
users) interacted with treatment x post dummy in high and low misdiagnosis villages, respectively; main 
effect of this difference and its interactions with treatment and post-intervention dummies are included in all 
specifications; prop visiting health facility in ref group and its interactions with post, treatment, and treatment 
x post are included in all specifications; column 3 reports results of an interaction specification, in which the 
learning effect is interacted with a high misdiagnosis village dummy; robust standard errors are reported in 
parentheses below coefficient estimates, and allow for correlation in the error term within village x date of 
survey; additional controls are week-of-survey dummies to capture seasonal variation, dummies for 
categories of educational attainment of the household head, age decile dummies and a quadratic function in 
age.

Table 7

Estimates of the learning effect for high- and low-misdiagnosis villages

Dependent var: 1 if individual sought care at a government or NGO health facility, 0 otherwise

Learning effect estimate

Learning effect x high misdiagnosis 
village dummy

Village x survey round
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