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Abstract

In a field experiment in Uganda, we find that demand after a free distribu-
tion of three health products is lower than after a sale distribution. This con-
trasts with work on insecticide-treated bed nets, highlighting the importance of
product characteristics in determining pricing policy. We put forward a model
to illustrate the potential tension between two important factors, learning and
anchoring, and then test this model with three products selected specifically
for their variation in the scope for learning. We find the rank order of shifts in
demand matches with the theoretical prediction, although the differences are
not statistically significant.
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1 Introduction

A long literature in marketing, psychology, and economics investigates how prices
may affect demand through channels other than the budget constraint. The refer-
ence price literature shows that price histories or even arbitrary prices can directly
influence potential buyers’ willingness to pay for a product.1 The empirical litera-
ture from marketing and psychology, built largely on classroom and lab experiments
as well as supermarket scanner data, finds a large role for price anchors.2 In con-
trast, a number of recent field experiments, particular those related to the hotly
contested issue of pricing health goods in low-income countries, find no evidence for
such non-budget-constraint effects of prices on demand and usage.3

Reconciling these two seemingly divergent sets of findings has implications for
many questions of pricing policy, with particular relevance to the debate in the
development aid community over the pricing of health products. These factors are
also highly relevant for agriculture, where government policy often includes free
or subsidized inputs and learning is a major issue. We argue theoretically and
show empirically that differences in the scope for learning about the value of an
experience good—for which utility is revealed through use—may explain some of
these differences and help explain how current prices shape future demand.

To understand the core intuition, note that reducing short-term prices has two
distinct effects. On one hand, lower prices, including “free trial” periods, increase

1In psychology, there is a long history of studying the effect of reference points in absolute
judgments. See, for example, See, for example, Sherif et al. (1958). Doob et al. (1969) proposed a
theory of cognitive dissonance to explain results from a series of field experiments demonstrating
that low introductory prices of new brands generated lower sales in the long run than introducing
the product at its normal selling price. A range of studies have demonstrated anchoring effects in
estimation tasks (e.g., Tversky and Kahneman 1974; Jacowitz and Kahneman 1995; Chapman and
Johnson 1999; Epley and Gilovich 2001). The role of such anchors in the formulation of individuals’
values has since received considerable attention (Ariely et al., 2003; Mazar et al., 2013), although
the robustness of such non-budget-constraint effects of prices on demand has recently been called
into question (Fudenberg et al., 2012; Maniadis et al., 2014).

2Classroom and lab experimental examples include Winer (1986); Kalwani and Yim (1992);
Raghubir and Corfman (1999); Adaval and Monroe (2002); Kopalle and Lindsey-Mullikin (2003);
Anderson and Simester (2004); Adaval and Wyer Jr (2011) and Rao and Monroe (1989). Mayhew
and Winer (1992), Dekimpe et al. (1998), and Kalyanaram and Little (1994) demonstrate reference
price effects with scanner data. Nunes and Boatwright (2004) provide evidence for the role of inci-
dental prices in a range of settings, and Simonsohn and Loewenstein (2006) demonstrate behavior
consistent with price anchors in the apartment rental decisions of individuals moving to new cities.

3Most directly related are Cohen and Dupas (2010) and Dupas (2014) in the context of
insecticide-treated bed nets and Ashraf et al. (2010) in the context of home water purification.
Heffetz and Shayo (2009) also find no evidence of large non-budget-constraint effects of prices on
food purchases in either a lab or field experiment.
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demand during the low-price period. In addition to any direct benefit from this,
those who purchase the product have an opportunity to learn directly about the
product’s effectiveness. Depending on prices and individuals’ prior beliefs about the
value of the product, this learning effect can either increase or decrease subsequent
demand. On the other hand, lower current prices may serve as reference points or
“anchors” that affect subsequent demand independently of intrinsic value.

We first develop a simple model of purchase decisions that combines the learning
aspect of experience goods with reference-dependent preferences. The model makes
several predictions about the effect of prices and how they may interact with the
potential for learning about experience goods with different degrees of uncertainty
or potential biases in beliefs about the product’s value. In aiming to illustrate the
tension between learning and reference-dependent preferences, we abstract from a
number of potentially important factors such as income effects, externalities, and
habit formation. We return to these in discussing the generalizability of our results.

Using this theoretical framework, we designed a field experiment in northern
Uganda where health products were distributed door-to-door either for free or for
sale at market prices. We offered three products that differed in their scope for
learning: Panadol, a pain reliever widely known to consumers and for which we
expect no scope for learning; Elyzole, a deworming drug that was moderately well-
known and for which we expect negative learning due to side effects; and Zinkid, an
improved treatment for childhood diarrhea that was largely unknown and for which
we expect positive learning. Approximately ten weeks after our initial distribution,
representatives from an unrelated, for-profit firm offered the households either the
same or a new health product for sale at market prices. Our key outcome measure
is households’ purchase decisions in this second distribution.

For health products in low-income countries, where free or heavily subsidized
distribution is a common but controversial practice, the tension between learning
and price anchors is particularly important. Health products are a canonical expe-
rience good, where in addition to any aggregate uncertainty relating to the product
there may be significant variation in the benefits or side effects across individuals. As
such, they have been much studied in the recent empirical literature on the dynamic
pricing of experience goods. In low-income countries, the quality of medical advice
may be low (Das et al., 2008) so experiential learning may be especially important
for long-run demand.

We find evidence supporting the presence of price anchors, consistent with mod-
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els of reference-dependent preferences (Kőszegi and Rabin, 2006; Mazar et al., 2013;
Heidhues and Kőszegi, 2014) where comparison effects dominate. Across all three
products, demand in the second wave is lower following a free distribution than after
a distribution at market prices. For the well-known product with little scope for
learning, Panadol, demand in the subsequent sale is nearly 12 percentage points (14
percent) lower. We can rule out several alternative mechanisms for the difference,
including the mechanical effect of having more of the product on hand if it had been
previously distributed for free. Households’ qualitative responses also support our
empirical conclusions: those who received free distribution are more likely to report
that they do not want to purchase the product because they or someone in their
community had received it for free in the past.

As predicted by the theory, the relative reduction in demand in percentage point
terms is even larger when there was scope for negative learning about the product
(Elyzole) and less negative when there was scope for positive learning (Zinkid). In
the latter case, demand following the free distribution is marginally lower than after
the sale distribution, but the difference is not statistically distinguishable from zero.
The pattern of effects is consistent with the theoretical prediction that any negative
demand effects from price anchoring can be offset by positive learning; however, we
note that none of the differences across products is statistically significant at con-
ventional levels. This relative ranking across products is dependent on whether one
analyzes the percentage point change or the percent change. A firm may be more
interested in percents, which relate directly to elasticity and thus profit calculations.
We focus on percentage point changes as this is typically the policy-relevant object.
For example, measurement of the Millennium Development Goals focuses exten-
sively on the proportion of populations covered by crucial health services (UNDP,
2009). It is also the norm in the experimental literature on health product pricing
in developing countries (Cohen and Dupas, 2010; Ashraf et al., 2010; Dupas, 2014;
Tarozzi et al., 2014).

These findings build on the results of Dupas (2014), which found that in the
case of insecticide-treated bed nets (ITNs) in Kenya, a one-time subsidy had a
positive impact on subsequent willingness to pay. Of the three products in our
study, the closest comparable is Zinkid, which, like ITNs, has significant potential
for positive learning. Like Dupas we put forward a parsimonious, latent-utility
model for non-durable experience goods with the potential for reference-dependent
utility. The three products in our study were specifically chosen to map to this
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model by spanning a range of potential learning effects. They also have limited
scope for income effects, helping us isolate the tension between learning and price
anchors.4

To test auxiliary hypotheses about the mechanisms through which price anchors
may affect subsequent demand, we also experimentally varied the identity of the
organization distributing the products in the first wave between either a for-profit
pharmaceutical company or a non-profit NGO. For-profit companies often offer free
samples or steep introductory discounts with no expectation that these will continue.
Therefore, we hypothesized that free distribution by a for-profit firm would shift
price reference points less than distribution by an NGO from whom individuals
could reasonably expect future free distributions. Contrary to our hypothesis, we
find no evidence of a differential effect; free distribution by either reduces demand.

However, distributor identity does matter for the contemporaneous sale of the
relatively unknown product. Households are 14 percentage points (50 percent) more
likely to purchase Zinkid from the non-profit than from the for-profit firm selling at
the same price and providing the same product information. We find no difference
for the more well-known products. The finding that NGOs are more effective at
stimulating demand for unknown products has important policy implications but
was not one of our ex ante hypotheses. Furthermore, this difference does not persist:
there is no discernible difference in the subsequent purchase decisions between those
who were originally offered the product by the NGO or for-profit marketers.

Finally, we find no evidence that the price anchoring effect of free distributions
for one product spills over to the demand for other health products. There is no
discernible effect of having received a product for free in the first wave on the demand
for Aquasafe, a new product offered only in second wave. However, we note that
confidence intervals for the cross-product effect are large.

We find overall negative effects on subsequent demand from prior free distri-
bution, but we stress that taking policy implications from our findings requires a
number of assumptions about context and objectives that are beyond the scope of
this paper. Nonetheless, while context and product characteristics may differ greatly
and governments, firms and other organizations may have different objective func-

4The use of bed nets reduces the incidence of malaria and may thereby increase households’
income and, in turn, future demand for additional bed nets (see footnote 27 of Dupas (2014) for
more discussion). In our context, as discussed in Section 4, we do not believe any income effects
would be substantial. We also would expect income effects to lead to increases in demand from free
distribution, which is not what we find.
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tions when distributing products, our results demonstrate that the tension between
price anchors and learning is likely to be a critical factor in many cases.

2 Experimental design & data

2.1 Experimental design

Setting and sampling. We conducted our experiment in Gulu District in northern
Uganda.5 We selected 120 villages for the study and from each of these villages
randomly selected approximately 50 households from the household list kept by the
village chief.6 Each village was divided geographically into three groups and each
group assigned to a marketer.7

First wave of marketing. The first wave of marketing (Wave 1), conducted
in October-November 2011, employed a two-level clustered randomization design,
with randomization both at the village and individual level. First, villages were
randomly assigned to one of four treatment groups in a two-by-two design.8 The

5We selected the Gulu District in order to conduct this study in conjunction with a method-
ological study that compared the accuracy of data collected by professional surveyors hired and
trained by Innovations for Poverty Action to data collected by “community knowledge workers”
(CKWs), local community members hired by Grameen Foundation to both disseminate and collect
information. The Gulu District was destabilized by an insurgency from 1987 until 2006. In the
wake of the insurgency, the area received a large amount of NGO and government attention. Many
NGOs were active in reconstruction and service provision, including providing free health care and
health products. Relative to other regions in Uganda, the Gulu District is likely at the upper end
of the distribution in terms of prior exposure to free or heavily-subsidized distributions of health
goods. We believe this represents a conservative test for the effect of past prices on current demand
based on our expectation that prior exposure to free distributions would mute the effect of any
single subsequent distribution; however, demand could be particularly sensitive in an environment
with high NGO activity.

6Of these 120 villages, 72 were participating in the contemporaneous methodological study.
These villages were selected based on their availability of certain administrative data. The remaining
48 villages were selected randomly from an administrative government list of villages in Gulu. The
number of households drawn in each village depended on the number of respondents from the
parallel study, which in turn was determined by the number of households for which institutional
data were available. The sample of the parallel study consisted of names of recipients for NGO and
government services, including free bed nets, free seedlings, and tarpaulins, as well as clients of a
local bank. All 859 such individuals were included in the sample, and the remaining households
were randomly selected from household lists maintained by local village leaders in order to arrive
at a sample of approximately 50 households per village. In Uganda, the village chief is referred to
as Local Council 1 Chairperson (“LC1”).

7Grouping was done based on logistical ease. Groups were not always of equal size, but rather
defined so as to minimize distances between respondents for each marketer.

8Village assignment to treatment was block randomized according to two variables. The first,
price environment, included information about pricing and drug availability with three possible
categories: (1) no drug outlets or none of our drugs; (2) no prices above the median or distributed
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first treatment dimension was the price of the product, either free (“Free”) or sold
(“Sale”). The second dimension was the type of distributing organization: either
a not-for-profit, non-governmental organization (“NGO”) or a for-profit business
(“For-Profit”). Thirty villages were assigned to each of the four treatment cells.
Table 1 illustrates balance across our village treatment assignments.

Then, at the household level, we randomly assigned one of three products to be
offered to each household: Panadol (paracetamol, a painkiller), Elyzole (albenda-
zole, a deworming medication), and a combination pack of Restors and Zinkid (oral
rehydration salts, “ORS” and zinc supplements, the World Health Organization’s
recommended treatment for childhood diarrhea). For the Sale treatment group, we
used the same price for the entire study. We set the price for the Sale group to
be slightly above the average perceived price (from a price perception survey, see
below) in order to minimize the chance that respondents were purchasing only in
order to resell and to approximate a market price (i.e., the perceived price plus a
small add-on for the convenience of buying at one’s home).9

In order to maximize the likelihood that individuals perceived the various mar-
keting and sales interactions as natural rather than experimental artifacts, we part-
nered with real Ugandan organizations involved in the provision of health products.
For the NGO treatment group, we worked with the Uganda Health Marketing Group
(“UHMG”), a large Kampala-based NGO largely funded by USAID and focused on
the distribution and promotion of health products. For the For-Profit distribution,
we worked with Star Pharmaceuticals Ltd (“Star”), a large, Kampala-based com-
pany that imports, distributes and markets medicines and other products for sale
throughout Uganda. Although the marketers were employed by UHMG and Star,
we recruited, trained and monitored the marketers using the same protocols for both
NGO and For-Profit distribution. Marketers wore branded t-shirts and displayed

for free; and (3) at least one price above the median. The second, remoteness, also had three
categories: (1) easy to travel and close to health center; (2) difficult travel or far from health
center; and (3) difficult travel and far from health center.

9In earlier circulated versions of this paper, we referred to this as selling above the market price,
but we have changed the language to refer to it as perceived price for two reasons. First, because
there are no posted prices, most individuals’ set their final prices through a process of bargaining.
Fitzpatrick (2014) finds that 48 percent of customers at informal drug shops successful bargain over
the price of anti-malarial medicines. Second, though our prices may have been slightly higher than
the average perceived price, our door-to-door distribution also builds in transport and convenience,
which we would expect to influence households’ perception of how competitive our prices are relative
to other alternatives. The prices set in the first wave were as follows: Panadol: UGX 500 ($0.20)
for a strip of ten tablets, Elyzole: UGX 1,800 ($0.71) for a pack of six tablets, Restors/Zinkid
combination pack: UGX 2,000 ($0.79) for one sachet of Restors and ten tablets of Zinkid.
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ID-cards from the relevant partner organization. The field marketers were all locally
recruited, reducing communication barriers.

To mitigate potential liquidity constraints in the Sale treatment arm, several days
beforehand the marketers distributed flyers throughout the village to announce the
upcoming marketing visit. The aim was to reduce short-term liquidity constraints.
In order to minimize potential for differential response rates, a similar flyer was
distributed in the Free treatment arm announcing a distribution but not detailing
whether products would be free or sold.

Marketers delivered product- and entity-specific sales pitches and answered ques-
tions about the product. A pharmacist trained the marketers on how to explain us-
age and dosage guidelines.10 See Appendix B.1 and B.2 for details on the marketing
scripts.

In Wave 1, we offered one unit of the assigned product to households in the
Free treatment arm and five units to those in the Sale treatment.11 Prices were
non-negotiable. Once this transaction had been completed, marketers administered
a questionnaire to respondents in the Sale treatment group about why they decided
to buy or not to buy and who might use the product.12 In all cases, marketers had
only one day to reach all respondents in each village. Marketing was not continued
on a second day in order to reduce the possibility of spillovers of information or
expectations across respondents.

Out of the original 5,708 households identified to be in the study, 3,884 were
found in this first wave of marketing. Although this is a higher level of attrition
than often found in studies in developing countries, it was a deliberate methodolog-
ical decision to adhere to a more natural marketing process. We wanted to avoid
marketing procedures that deviated considerably from normal operating practices
of NGOs or firms, so that the observed reactions of respondents would also be more
natural. In particular, we expected that returning on several consecutive days to
a remote village to search for a specific respondent by name would be perceived as

10Marketers gave respondents information on dosage, storage and recommended use of the re-
spective product both verbally and in writing in Acholi, the local language. This information was
based on the instruction sheet of the drug and formulated in consultation with a pharmacist and
board member of the Ugandan National Drug Authority.

11One unit corresponds to the smallest amount of each product that could be sold separately.
For Panadol this was 10 tablets, for Elyzole this was 6 tablets, for Restors/Zinkid this was 1 sachet
of Restors and 10 tablets of Zinkid, and for Aquasafe this was 8 tablets. Prices are given above.
Only 2.5 percent of households in the Sale treatment purchased five units, suggesting that the cap
on the quantity of units for sale was only rarely, if ever, binding.

12This survey was not conducted in the Free group in order to keep the interaction more natural.
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atypical behavior for an ostensibly profit-maximizing firm. In each attempt to locate
specific respondents we found approximately 75 percent of targeted individuals.

The three products were chosen deliberately to capture a range of potential
learning effects that could influence purchase decisions. Panadol is a common pain
reliever and was by far the most well-known product. Most respondents were likely
to have been familiar with the product (95 percent) although only few with the
brand itself (10 percent). The generic version of Panadol is widely available in most
drug shops, and we expect little scope for learning. Elyzole was less well-known
as a brand, but other brands of deworming medication with the same active in-
gredient (albendazole) have been widely distributed. Based on the relative salience
of immediate side-effects, we expected that any learning effects would be negative
despite potential for long-run benefits (Miguel and Kremer, 2004). Zinkid was sold
in combination with Restors, an oral-rehydration salt, following clinical recommen-
dations (World Health Organization, 2005). While Restors was a new brand,13 the
generic version (ORS) was widely used, recognized and freely available from health
centers.14 However, the importance of zinc supplements in combating diarrhea had
only recently been established in the global health literature.15 As such, Zinkid
represents a new brand and product for which we expect there to be scope for posi-
tive learning. In a study carried out with Zinkid users by our partner the Ugandan
Health Marketing Group in 2012, 93 percent of zinc users believed that the product
was an effective treatment for diarrhea, citing a quick end to diarrhea and fast re-
covery by the child as primary reasons for this belief.16 Table 2 presents descriptive

13Restors is an ORS formulation with lower osmolarity which was recommended by the WHO in
2006 (WHO 2006). The lower osmolarity results in lower stool output by children with diarrhea,
as compared to the old formulation Hahn et al. (2002).

14One concern about bundling ORS and zinc is that children and caregivers often cite the bad
taste of ORS as a reason for not using it (Freedman et al., 2010). However, ORS is a widely known
therapy recommended by the WHO since 1980 (da Cunha and Cash, 1989). If any learning occurs
with ORS in our sample it occurs because the formulation we distributed had lower osmolarity
and therefore may have had a slightly improved taste and because the low osmolarity formulation
results in reduced stool output.

15Zinc became part of the WHO guidelines for the treatment of diarrhea in 2006. Larson et al.
(2009) find that use of zinc supplements in rural areas lags adoption among urban and high income
individuals. Evidence from studies in Tanzania and Benin suggest that while the prescription of
zinc for childhood diarrhea is increasing, the majority of diarrhea cases are not yet treated with
zinc (Sanders et al., 2013).

16The three products also differ in terms of who would be the target user, which could affect the
scope for learning. The type of Panadol used was aimed at adults only; children under 12 were not
allowed to use it. Although Elyzole could be used by people of any age (except babies), parasitic
infestations are most acute amongst children. Zinkid was a product specifically aimed at children,
with a target age group of six months to five years.
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results from the price perception and product awareness survey.
Second wave of marketing. We conducted the second wave of marketing

(Wave 2) on average ten weeks after Wave 1, in December of 2011.17 The sole pur-
pose of Wave 2 was to get an outcome measure of respondents’ willingness to pay for
health goods. In order to avoid reputation effects from the first stage, we partnered
with a different for-profit firm, Surgipharm Uganda Ltd (“Surgipharm”). Again,
marketers were employed by the partner, but recruited, trained and monitored by
the study team. In order to reduce association between the two waves, we changed
the wording of all scripts without significantly affecting the content. In order to
reduce the probability that respondents associated Wave 2 with Wave 1, we also
assigned marketers to villages such that individual marketers did not visit the same
village twice. While there may be time trends in the demand for health products,
we do not believe there is any reason to expect seasonal fluctuations in demand to
vary according to treatment status.18

As a further test of the scope of price anchoring effects, we investigate whether
having received any product for free affects demand for other health products. We
therefore assigned 25 percent of households to be offered a fourth product not offered
in Wave 1, Aquasafe, a product designed for home water purification. The concept
of water purification was well-known and understood; however, although Aquasafe
is one of the two leading brands for water purification, the name itself was not well
known by respondents (only 16 percent recognized the brand, as shown in Table 2).
Since no learning about specific product characteristics takes place across products,
the cross-product test allows us to assess whether price anchoring will occur for
broadly construed product categories, such as “health products”.19 In the second

17The minimum number of weeks between marketing waves was 6, the maximum 12 weeks, and
the median is 10 weeks. Timing varied for logistical reasons, such as weather and holidays. We do
not find any evidence that observed effects are correlated with differences in the number of days
between waves.

18Panadol is a pain-killer that is used frequently to treat a variety of illnesses year-round, es-
pecially as it often means avoiding a visit to the health center. The Ugandan Ministry of Health
suggests preventative deworming of children every three to six months, so we would expect partic-
ipants to demand more deworming medication at the time of our second visit (Ministry of Health,
Republic of Uganda, 2012). Childhood diarrhea is more common during the rainy season (Ahmed
et al., 2008), therefore we might expect higher demand for Zinkid to treat diarrhea in Wave 1 when
rains were more common.

19The mechanisms of any such cross-product effects could include beliefs about the general quality
of products marketed in a particular way (i.e., door-to-door or by a for-profit entity) or categorical
price judgments, whereby individuals judge utility of purchase by comparing price of product to
endpoints or distributions within the product category. For discussions of the latter mechanism,
see, for example, Alba et al. (1999) and Mazar et al. (2013).
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marketing wave, the only randomization was the household-level assignment of the
product: 25 percent of households were marketed the new product, Aquasafe, and
75 percent the same product from Wave 1. Figure A1 summarizes the experimental
design.

2.2 Data

Village and drug outlet data. Before Wave 1, we surveyed community leaders
and drug outlets. We first asked the village chief about the number and type of drug
outlets (including drug shops, clinics and hospitals) in each village, the distance (in
time and kilometers) to the most popular and nearest facilities and any recent free
distributions of health products. We then visited every drug outlet (including both
private drug shop and local health clinics) in each village and asked about the price,
availability and preferred brand for a list of common drugs. There were drug outlets
in 64 of the 120 villages and, when a drug outlet was present, an average of 2.4 outlets
per village. We used these data to determine the relevant “shop price” for the drugs
we were offering, stratification, and to test for treatment effect heterogeneity.

Price perception survey. Immediately prior to offering the product, mar-
keters administered a price perception survey to 50 percent of respondents in Wave
1. After introducing themselves, marketers showed respondents the two products
other than the one assigned to that individual to avoid potential anchoring effects
on the product about to be offered for sale or gift. After a brief description of the
use of the product in general, respondents were asked about their familiarity with
the product and brand. If they were familiar with the product, they were asked
where they could purchase it and what price they would expect to pay. In Wave 1,
we solicited price perceptions of the three goods distributed in the wave. In Wave
2, individuals were asked only about the new product, Aquasafe.

Post marketing survey. In order to understand the mechanisms influencing
purchase decisions, we conducted a short survey (Appendix C) of all individuals
who were offered products for sale (those assigned to the Sale group in the Wave
1 and all individuals in Wave 2). The survey was designed to mimic traditional
marketing research in order to ensure that participants’ experience was natural.
The survey asked respondents in an unprompted way to explain why they did or
did not purchase the product.

Observational usage data from physical observation of packaging. Dur-
ing Wave 1, all respondents who had received a product, whether for free or pur-
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chased, were informed that that they had also been entered into a lottery. If selected,
they would need to present the product packaging (blister packs) in order to claim
their prize. It was clearly stated that the prize did not depend on how much of the
product was used, only on whether they presented the blister packs. Six to eight
weeks after Wave 1 (two to four weeks before Wave 2), surveyors made unannounced
visits to a sample of 329 households that received a product in Wave 1 and recorded
how many tablets were remaining in the blister packs.20

3 Theoretical framework

We put forward a model of households’ decisions to purchase non-durable health
products that includes both price anchoring and learning. With our focus on these
elements, we abstract away from other potentially important issues, such as health
externalities, learning from one’s neighbors, expectations about product quality,
knowledge of price distribution, risk aversion, and habit formation. While the mech-
anisms we describe are applicable to repeated purchase opportunities, the key fea-
tures can be seen in a simple two-period, latent utility model. This set-up differs
from typical settings in which experience goods are analyzed in that (1) rather than
constrain the distributor to be a profit maximizer, we remain agnostic regarding
its objective function and (2) similar to Dupas (2014), we enrich the latent utility
framework to allow for gain-loss utility. Where required, additional derivations and
proofs appear in Appendix A.

In each period, a household chooses to purchase a health product if and only
if its expected utility from the product exceeds the utility cost. In any period t, a
household i purchases the product if and only if

vit ≡ Eit (vi) > εit + apt +R (pt − prt ) , (1)

where Eit(v) is the expected value (vi) of the product to household i at time t; εit
is a normally-distributed, household- and time-specific preference shock with mean
zero and variance σ2

ε ; pt is the price at which the product is offered in period t; a
is the marginal utility of income, which we normalize to 1; and R(pt − prt ) is the

20Surveyors were given details about how many units of the product each respondent had re-
ceived, and so were able to verify whether all packaging was present. Furthermore, all blister packs
distributed by marketers in Wave 1 had been discretely marked so that they could be identified as
packaging distributed by our marketers, rather than the same product obtained from elsewhere.
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gain-loss utility from purchasing at price pt relative to reference point prt (Kőszegi
and Rabin, 2006; Heidhues and Kőszegi, 2014). We specify that prt = pr(pt−1, d),
that is, the reference point is a function of both the immediately preceding price and
the identity of the distributor, d, which can be either an NGO (N) or a for-profit
enterprise (F ). We allow for any general form of gain-loss utility such that R′ ≥ 0
and ∂prt/∂pt−1 > 0. This simply implies that an increase in current prices will
increase the future price reference point, and utility is increasing in this reference
point as any realized future price represents a “better deal”. Likewise, a decrease
in current price implies the opposite. It will be convenient to define the adjusted
price as p̃t = pt + R (pt − prt ) , that is, the current price plus the gain-loss utility
from purchasing at that price. For notation, if household i purchases the product
in period t, Pit = 1; if she does not, Pit = 0. We denote by πit the probability that
household i purchases the product at time t, and by πt the expected share of the
population that purchases.

Households are heterogeneous and differ in their true value of the product, vi,
where vi = v̄ + σiv. For analytical tractability, we assume that this true value
is normally distributed, vi ∼ N(v̄, σ2

v). In period 0, a share of the households,
α0 ∈ [0, 1], is informed of their true values. The remaining households receive a
signal of their value, ṽit = v̄ + bit, where bit ∼ N(b, σ2

b ) and b captures the mean
bias in the population.21 Note that we are explicitly allowing for the possibility
that the expected value of the product in the uninformed population may differ
from the truth. If households tend to be optimistic about the value of a product, b
will be positive; for pessimistic beliefs, b will be negative. For informed households,
vit = vi, i.e., the true value. For uninformed households, vit = v̄ + b + σitb. As in
other literature on experience goods pricing (Bergemann and Välimäki, 2006), if a
household receives the product, we assume they become perfectly informed about
its value to them.

21This is an alternative representation for the definition of pessimistic and optimistic customers
used by Shapiro (1983).
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The share of individuals purchasing in period t can be expressed as follows:22

πt = αtE (πt| Informed) + (1− αt)E (πt|Uninformed) . (2)

The expected share of informed individuals purchasing in any period can be calcu-
lated simply as:

E (πt| Informed) = Pr(vi > εit + p̃t)

= Pr(v̄ + σiv − εit > p̃t)

= 1− Φ
(
p̃t − v̄
σI

)
= Φ

(
v̄ − p̃t
σI

)
,

where σ2
I = σ2

v + σ2
ε . Similarly, the expected share of uninformed individuals pur-

chasing in any period can be calculated as:

E (πt|Uninformed) = Pr(ṽit > εit + p̃t)

= Pr(v̄ + b+ σbit − εit > p̃t)

= Φ
(
v̄ + b− p̃t

σU

)
,

where σ2
U = σ2

v + σ2
b + σ2

ε . This implies that there is more variation in the signal
households receive about the true value of the product than in the underlying true
value, and hence σ2

U > σ2
I .23

The key predictions of the model are all derived from differentiating (2) with
respect to the price in the preceding period, pt−1. This leads to:

22Note that this model implicitly assumes that individuals cannot store the product. They do not
buy today with the intent of consuming in a subsequent period. This assumption is important. If
individuals could store the product for later consumption, individuals who received the product for
free in round 1 may carry over stock into round 2, mechanically reducing demand. In Section 4.3 we
discuss the empirical support for the assumption and show that individuals in our experiment indeed
do not appear to be storing the product for future consumption. We also assume, consistent with
the work of Shapiro (1983), Milgrom and Roberts (1986), Tirole (1988) and Villas-Boas (2004), that
consumers do not have an experimentation motive for purchases. Such experimentation is analyzed
in Bergemann and Välimäki (1996, 2006) and would not substantively alter the predictions of this
theoretical framework.

23While it is possible for uninformed priors to be tightly distributed around a common mean and
posterior beliefs, informed by experience, to be more dispersed, we consider situation unlikely in
this context and do not pursue it further.
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∂π2
∂p1

= ∂α2
∂p1

[
Φ

(
v̄ − p̃2
σI

)
− Φ

(
v̄ + b− p̃2

σU

)]
− ∂R
∂p1

[
α2
σI
φ

(
v̄ − p̃2
σI

)
+ 1− α2

σU
φ

(
v̄ + b− p̃2

σU

)]
. (3)

The first term on the right-hand side of (3) is the information effect. It can be
either positive or negative depending on households’ starting beliefs and the value
of the product relative to its price. The second term is the price anchoring effect,
which operates through the gain-loss utility term. It serves to reduce demand by
increasing the effective price for both the informed and uninformed as the period-1
price falls. The strength of this effect depends on the shape of the loss function R.
Note that the shape of this loss function also affects the effective price in period 2,
p̃2.

Before we proceed with a discussion of the total effect of prices on subsequent
demand, we draw the link to the existing literature on experience goods and consider
the effect of prices in the absence of gain-loss utility.

Remark 1. In the absence of gain-loss utility (R′ = 0), if households are not
perfectly informed (α1 < 1) and have unbiased beliefs about the value of the product
(b = 0), then reducing the price in period 1 will (a) reduce demand in period 2 (π2) if
the period 2-price is above the average value of the product, p2 > v̄, and (b) increase
π2 if p2 < v̄.

Reducing the price in any period will increase contemporaneous demand and
thereby the share of the population that has experience with the product. When
some of the population is uninformed, a lower price in the current period increases
the share of the population that knows the true value in the next period. The
effect of this increase in experience on future demand depends on how the future
price compares to the value of the product. When the period-2 price is above the
average value, this learning effect tends to decrease demand. Intuitively, when price
is above the average value, demand for the product is coming from individuals with
positive idiosyncratic shocks (σbit) to their beliefs about the true value. When more
individuals are informed, it is relatively less likely that any given individual will
have received shocks large enough to induce them to buy. Expected demand falls.
Naturally, the reverse holds when the period-2 price is below the expected value:
increasing the informed share of the population increases demand.
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We now consider the effect of biased beliefs about the product’s value.

Remark 2. In the absence of gain-loss utility (R′ = 0), if households are not
perfectly informed (α1 < 1) and have biased beliefs about the value of the product
(b 6= 0), then reducing the price in period 1 (p1 = 0) will (a) reduce demand in period
2 (π2) if p2 > v̄ − σI

σU−σI
b and (b) increase demand in period 2 if p2 < v̄ − σI

σU−σI
b.

The additional term in the price cutoff rule, σI
σU−σI

b, reflects the debiasing effect.
Increasing the share of informed individuals not only reduces uncertainty but also
reduces the share of individuals with biased beliefs. This makes it more likely that
demand in period 2 will decrease if beliefs are optimistic and more likely that demand
will increase if they are pessimistic.

We are now in a position to make a prediction about the effect of free distribution
on purchase behavior.

Proposition 1. If individuals are fully informed about the value of the product
(a1 = 1) and there is no gain-loss utility (R′ = 0), then free distribution will have
no effect on subsequent demand relative to a distribution at a positive price.

Intuitively, if individuals are already fully informed and there is no gain-loss
utility, then both channels through which prior prices can affect future demand will
be shut down. This leads immediately to a hypothesis regarding the presence of
gain-loss utility (price anchors) that we can test with the distribution of Panadol,
a well-known product for which we can reasonably assume that everyone knows the
value.

Assumption 1. Price reference points are more sensitive to updating after a dis-
tribution by an NGO than by a for-profit, that is, ∂prt/∂pt−1|d=N > ∂prt/∂pt−1|d=F .

The justification for this assumption was described in the introduction: for-profit
companies may be known to offer free samples or steep introductory discounts, but
no one expects them to keep giving the product away for free. It leads immediately
to our first prediction.

Prediction 1. In the presence of gain-loss utility, free distributions by an NGO will
have a relatively more negative effect on subsequent demand than free distributions
by a for-profit.

It will be useful to define the concept of scope for learning by which we mean
that (i) at a particular future price the expected demand for a currently informed
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individual differs from that of an uninformed individual and (ii) not all individuals
are informed. We say there is scope for positive learning if E (π2| Informed, p̃2) >
E (π2|Uninformed, p̃2), i.e., at a given price, individuals who are informed about
the value of the product would be more likely to purchase than those who are not.
Note that this depends on the price. To see this, consider the case where uninformed
individuals have unbiased beliefs about the product’s value but are simply more
uncertain. When the period-2 price is below the average value, it is only those with
particularly negative idiosyncratic shocks (σbit) to their beliefs about the true value
who do not buy. When more individuals are informed, it is relatively less likely that
any given individual will have received a negative shock large enough stop her from
buying. Naturally, having a pessimistic bias implies that there is more scope for
positive learning.

We say there is scope for negative learning if E (π2| Informed, p̃2) <

E (π2|Uninformed, p̃2), i.e., at a given price, individuals who are informed about
the value of the product would be less likely to purchase than those who are not.
For example, again consider the case where uninformed individuals have unbiased
beliefs about the product’s value but are simply more uncertain. When the period-2
price is above the average value, demand for the product is coming from individuals
with particularly positive idiosyncratic shocks (σbit) to their beliefs about the true
value. When more individuals are informed, it is relatively less likely that any given
individual will have received a sufficiently positive shock to induce her to buy and
demand falls. Naturally, having an optimistic bias implies that there is more scope
for negative learning.

As described in Section 2.1, we make the following assumption about the scope
for learning in the three products tested.

Assumption 2. There is no scope for learning with Panadol, scope for positive
learning with Zinkid, and scope for negative learning with Elyzole.

Taken together, this leads to two additional predictions.

Prediction 2. The relative effect of the free distribution for Zinkid should be more
positive than for Panadol.

When there is scope for positive learning, an increase in the share of uninformed
individuals (a decrease in α1) will further increase the scope for positive learning. If
uninformed individuals are generally pessimistic about a product’s true value and
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a relatively high share of the population is uninformed (as we believe is the case
for Zinkid), we expect the effect of a free distribution to be relatively more positive
(less negative) than for a free distribution of a well-known product for which there
is no scope for learning. Intuitively, as described above, for the well-known product
Panadol, if free distribution has any effect on subsequent demand it will be through
price anchoring, which will reduce demand. For the product where we would expect
to see positive learning, Zinkid, this effect would be offset by increasing the share
of informed individuals and hence increasing expected demand.

Prediction 3. The relative effect of free distribution for Elyzole should be more
negative than for Panadol.

When there is scope for negative learning (e.g., uninformed individuals have
optimistic beliefs about the product’s value), an increase in the share of uninformed
individuals (a decrease in α1) will further increase the scope for negative learning and
amplify the effects of free distribution. For example, if uninformed individuals are
generally optimistic about a product’s true value and a relatively high share of the
population is uninformed, we expect the effect of a free distribution to be relatively
more negative than for a free distribution of a well-known product for which there
is no scope for learning. Intuitively, because there is scope for negative learning
for Elyzole, free distribution will tend to decrease subsequent demand through the
learning channel in addition to any effect of price anchors.

These predictions highlight the potential importance of price anchors in deter-
mining the optimal pricing for experience goods. Lowering the current price will
increase the share of individuals who purchase in the current period and hence who
are informed about product quality in the future. The effect of this learning de-
pends on the share of uninformed, the mean bias in the population and the value of
the product relative to the price. However, the price anchoring effect can offset the
potential increase in demand from learning, thus depressing demand in aggregate.

4 Results

In our setting, free health goods can affect demand through two different mecha-
nisms: price anchoring and learning. We generated exogenous variation along three
dimensions: whether a product was offered for free or for sale in Wave 1, whether
it was offered by an NGO or a for-profit company in Wave 1, and the product a
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household was offered. The product price and the type of distributing organization
were randomly assigned at the village level, while the product type was assigned at
the household level. To estimate our treatment effects, we run the basic specification

yijt = β0 + β1NGOij + β2Freeij + β3Freeij ×NGOij + γXij + εijt, (4)

where y is a measure of demand (either a binary indicator of take-up or the total
quantity purchased/received), i represents households, j represents villages, and t

represents time (Wave 1 or Wave 2). NGO is a dummy variable that takes the
value 1 if a household was approached by a representative of an NGO in Wave 1
and 0 if approached by a for-profit. The dummy variable Free takes the value 1 if a
household was offered the product for free in Wave 1 and 0 otherwise. Coefficients
of interest are the betas. β1 captures the effect of an NGO being the distributing
organization in Wave 1, β2 the effect of being offered a product for free in Wave 1,
and β3 the effect of the interaction, i.e., being offered a free product by an NGO
in Wave 1. Xij is the vector cross product of the two stratification variables: a
price index and a remoteness index. εijt represents the idiosyncratic error, which
we cluster at the village, the level of randomization.24 We estimate equation (4) for
the pooled sample and for each product individually.

4.1 Take-up in Wave 1

Table 3 shows the results, by product, from estimating equation (4) for Wave 1. The
odd numbered columns show the effects of treatment assignment on take up defined
as a binary variable equal to 1 if a household purchased or accepted any quantity
of the offered product and 0 otherwise. The even numbered columns report the
quantity effects as measured in units of the product.25

Unsurprisingly, take up was much higher among those who were offered health
products for free compared to those offered them for sale. As the odd-numbered
columns show, among households in the for-profit group, being offered the product
for free increased binary take up by 43.5 percentage points for Elyzole, 23.4 per-

24Stratification was primarily done to ensure balance. Although power is limited for subsample
analyses, we do examine whether results are heterogeneous regarding remoteness and price levels.
The results do not exhibit any significant heterogeneity along these dimensions.

25The unit for Panadol is a strip of ten pills, the unit for Elyzole is one dose for an adult, which
corresponds to three boxes of two tablets each, and the unit for Zinkid/ORS is a pill strip of ten
Zinkid tablets combined with one sachet of oral rehydration salts.
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centage points for Panadol, and 68.6 percentage points for Zinkid. All coefficients
are statistically significant with p-values below 0.01.26

The effect of free distribution on the quantity received follows a similar pattern
for Elyzole and Zinkid: those in the Free treatment were not only more likely to
receive any of the assigned product but also received more of the product on average.
However, the average quantity of Panadol obtained by those in the Sale treatment
is 0.721 units (or 42 percent) higher than for those in the Free treatment. As
described above, households in the Sale treatment could purchase up to five units
of the assigned product while distribution in the Free treatment was limited to one
unit per household. In the case of Panadol, this leads to a reversal in the sign of
the treatment effect between the binary and quantity regressions. While not all
of the households in the Sale treatment purchased the product, those who did so
purchased more than one unit on average.

Table 3 also shows that in the case of the unknown product (Zinkid), households
were substantially more likely to purchase the product when it was offered for sale by
a NGO rather than a for-profit entity. This difference is both statistically and eco-
nomically significant: a 15.3 percentage point increase in take up and a 60.3 percent
increase in total quantity purchased. Recall that the marketing scripts differed only
in their description of the seller’s identity and motives. All information presented
about the product itself was identical across the four treatment arms. Differences in
the take-up rate could result either from differences in how households interpreted
marketing information about product quality (e.g., the NGO was considered more
accurate or trustworthy) or from how they perceived the offer prices (e.g., when of-
fered by the NGO a price was considered a “better deal”). For the more well-known
products, no such difference is evident.

Qualitative results from the post-marketing survey suggest a potential mecha-
nism. Those offered Zinkid for sale by the NGO were more likely than those in the
for-profit treatment to cite the product’s health benefits as a reason for purchase (p-
value: 0.059); however, they were no more likely to state “I purchased this because
I trust you.” We speculate that the results may still reflect a greater trust in the
NGO when considering new products, but individuals are not explicitly aware of the
NGO’s role in forming their impressions. The magnitude of this effect is large: take-

26The results in Table 3 for “any purchase” (the odd columns) are robust to using a Probit
specification for the binary outcome variable. Those for the quantity purchased (the even columns)
are robust to the Tobit specification, which accounts for left censoring of the dependent variable at
zero and right censoring at 1 or 5 units, depending on the treatment group.
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up increases from 29 percent to 46 percent. This is consistent with other emerging
work that points to the potential role of non-profit organizations as trust builders
and may have important policy implications for organizations seeking to encourage
the adoption of new technologies (Cole et al., 2013; Karlan, 2014). While our study
design does not allow us to speak further to the mechanisms behind this effect, we
believe future research into the role played by NGOs in stimulating demand for new
products would be valuable.

4.2 Demand in Wave 2

Next we investigate the core question of the study: what is the impact on future
demand of distributing the products for free. As described in Section 3, in our
setting, the impact of free distribution consists of two basic effects: a price anchoring
effect that may depress demand and an information effect whose direction depends
on whether the potential for learning is primarily positive or negative.

First, we examine the results pooled across all three products. Table 4 column 1
presents the effect on the extensive (Panel A) and intensive (Panel B) margins. In
both cases, we find that the provision of free products depresses demand approxi-
mately ten weeks later, with take-up after a free distribution 10 percentage points
lower than after a distribution at market prices. However, note that the pooled
result is a pool of three products that we deliberately chose, not a pool of some
naturally occurring set of products. The pooled test demonstrates evidence of price
anchors, but naturally cannot shed insight into the tradeoff between learning and
reference points. For that, we must examine the products individually.

For each of the three products offered in Wave 1, subsequent demand is lower
in Wave 2 if the product was initially offered for free. For Panadol and Elyzole, the
results are substantial and statistically significant. As shown in columns Panel A,
columns 2 and 3, those previously receiving the product for free are 11.8 percentage
points (s.e.=3.6) and 12.4 percentage points (s.e.=6.0) less likely to purchase any of
the product in Wave 2. In the case of Zinkid, for which there is scope for positive
learning, the effect is muted. Demand for Zinkid in the Free treatment group remains
5.9 percentage points (s.e.=5.5) lower than in the Sale treatment, but the difference
is not statistically significant (column 4). Panel B displays results for the quantity
of units purchased. Again, the relative reduction of demand caused by prior free
distribution is largest for Elyzole, followed by Panadol and then Zinkid. While
the pattern of coefficients is consistent with the theoretical prediction that any

21



negative demand effects from price anchoring could be opposed or even reversed
by the potential for positive learning, we note that none of the differences across
products are statistically significant at conventional levels.

We cannot compare the purchase rate across time in order to determine whether
the free distribution reduced demand in absolute terms or merely relative to a sales
distribution. Unfortunately, such an analysis would not be valid as the two distribu-
tion waves occurred at different times in the year and demand is subject to seasonal
variation. Furthermore, when considering pricing policy, the counterfactual of no
distribution at any price is not relevant. Rather, the relative difference between high
and low prices—or between positive and zero—represents the critical parameter of
interest.

Finally, we do not find evidence that the anchoring effect of free distributions
spills over to other health products. Column 4 reports the effect of Wave 1 treatment
status on the Wave 2 purchase decisions for a new product, Aquasafe. Note that
because there is no reason to suspect cross-product learning, this is a test of whether
free distribution of one health product moves the reference point for another. Nat-
urally, this is not dispositive. We are testing potential cross-product spillovers from
one of three particular products to another product offered by a different organi-
zation. We cannot reject the null of no effect. While the 95%-confidence interval
rules out a cross-product effect as large as the own effect of free distribution for
Panadol or Elyzole, it remains quite large with a 95%-confidence interval from -7.8
to +15.4 percentage points. We also do not see statistically significant differences
between prior distribution by an NGO and prior distribution by a for-profit, though
our estimates are imprecise.

4.3 Discussion and alternative explanations

The empirical results show that demand following a free distribution can be lower
than following distribution at a market price. Here we first consider the qualitative
evidence in support of price anchors and then consider alternative mechanisms.

Qualitative evidence from the post-marketing questionnaire supports the role
of price anchors in reducing relative demand following a free distribution. After
the Wave 2 distribution, the marketers asked all respondents why they made their
purchase decisions. The question was asked in an open-ended way, and survey-
ors coded the responses into predetermined categories based on piloting of survey
questions. As is shown in Figure 1, among those who decided not to purchase the
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offered good in Wave 2, 10.4 percent of respondents in the Free treatment stated
that they did not purchase the product because either they or others whom they
knew had previously been given it for free. In contrast, only 2.2 percent of those
in the Sale treatment responded similarly (p-value: 0.000). A further 4.1 percent
of the Free treatment group stated that the product was too expensive versus 1.7
percent in the Sale group (p-value: 0.027). While these responses are subject to all
the usual qualifications regarding self-reported explanations for behavior, the Wave
2 distributors were affiliated with a different entity than either of those seen in Wave
1, ameliorating concerns over experimenter demand effects. Furthermore, there is
little reason to expect differential survey effects across treatment groups. Taken at
face value, these responses would explain the entire difference in Wave 2 purchase
behavior between the Free and Sale treatments.

Next, we assess the plausibility of eight alternative mechanisms that could ex-
plain differential effects between free and priced distributions. These include (i)
stock on hand, (ii) expectations of a pricing regime change, (iii) income effects, (iv)
liquidity constraints, (v) externalities, (vi) habit formation, (vii) prices as a signal
of quality, and (viii) cognitive costs. Below we consider each in turn.

First, we consider what is perhaps the most obvious alternative mechanism
through which free distribution could reduce future demand: stock. Those peo-
ple who received a product for free in Wave 1 may not purchase in Wave 2 simply
because they still have a stock of the relevant product at home. Our usage measures
and qualitative surveys were designed to assess the importance of this mechanism.
Both speak against stock driving the results.

Table 5 reports measures of experimentally-provided stock on hand before Wave
2. For Panadol and Elyzole, the two products for which we saw a significant neg-
ative effect from prior free distribution, stock in the Free treatment group is no
higher than in the Sale group. In fact, due to differences across treatments in the
maximum quantity available per household (see Section 4.1 for details), average
experimentally-provided stock-on-hand in the Sale treatment of the Panadol group
was actually larger than in the Free treatment. To the extent that stock-on-hand
did affect demand, it would have made households who were offered Panadol for free
in Wave 1 slightly more—not less—likely to purchase in Wave 2, suggesting that
our estimate is a lower bound on the magnitude of the effect.

In the case of Zinkid, those in the Free treatment did have more tablets remain-
ing. To the extent that stock affects demand, this should lower relative demand for
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those in the Free treatment. In contrast to the other two products, this suggests
that our estimates would be an upper bound on the magnitude of the effect. How-
ever, Zinkid, the product for which we expected some scope for positive learning, is
the product for which we do not find a statistically significant negative effect of free
distribution on Wave 2 demand.

The preceding results examine only the remaining experimental stock and do not
consider the household’s overall stock, which could be obtained from other sources.
To address this, we asked respondents in a post-marketing survey why they did not
purchase products in Wave 2. As Figure 1 shows, we do not find a higher share of
respondents in the Free group giving “I already have enough of it” as reason for not
purchasing. If anything, the share is higher in the Sale group, but the differences are
not statistically significant. Taken together, we consider this convincing evidence
that stock is not driving the reduction in demand following a free distribution.

A second potential alternative mechanism is a regime change story. Suppose
that prior to our intervention people believed that Panadol was always sold and
never given away for free.27 Suppose further that there was significant uncertainty
about the pricing regime for Zinkid. Since it is a largely unknown product, people
could believe it may or may not be given away for free. If the individuals who re-
ceived Panadol for free in Wave 1 believed that this indicated a regime change—that
Panadol would now be distributed occasionally for free—this may have had a larger
effect on their price reference point than for Zinkid. While we consider this a plau-
sible mechanism following free distribution by an NGO, we do not find it credible in
the case of for-profit distribution. There is no reason to think that for-profits would
shift to a give-it-away-for-free-always regime. Yet, we do not find a difference in
treatment effects between the NGO and the for-profit group for Zinkid (see column
4 in Table 4). Thus, we rule out regime change.

A third potential mechanism is income effects. People who received the health
products may have lost fewer work days due to illness during the ten weeks between
the two waves and thus may have had more disposable funds to purchase products
in the second wave of marketing. If an income effect existed, this would have in-
creased relative demand in the Free group and would therefore imply that we are
underestimating the price anchoring effect. It is worth noting that in contrast to
insecticide-treated bed nets, where income effects could exist, we expect any income

27Indeed, according to our village leader survey, only in 1 out of 120 villages had Panadol ever
been distributed door-to-door for free.
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effects of the products in this study to be relatively modest.
Fourth, liquidity may have affected demand. Since households who received the

product for free effectively received a transfer, they may have had more money avail-
able when marketers appeared in Wave 2. However, any effect along this dimension
would tend to increase demand in the Free treatment. We would also expect any
effects to be quite small. The magnitude of the transfer was low—about $0.80 per
household. Moreover, villages were revisited approximately ten weeks later and this
future visit was not announced at the time of the first. It seems implausible that
people kept the funds they would have otherwise spent on drugs in Wave 1 for a full
ten weeks. Finally, to mitigate liquidity constraints, flyers were distributed a few
days prior to each marketing visit to allow respondents to get money ready.

A fifth possible mechanism affecting demand is positive externalities. The ar-
gument here would be that higher take-up in Wave 1 reduced disease prevalence
and hence the utility from purchasing the product in Wave 2. However, an exter-
nality argument cannot explain the negative effect on demand in Wave 2 from free
distribution for Panadol, since it is implausible that pain killers have externalities.
On the other hand, the deworming medicine Elyzole does have positive externali-
ties. Dewormed children are less likely to transmit worms to their siblings and peers
(Miguel and Kremer, 2004; Ozier, 2011), which could explain a negative effect of free
distribution on later demand. However, to the extent that such effects were present
in our study, we expect that they were quite small. On average, we distributed
Elyzole to only about five percent of households per village in Wave 1. As such, any
reduction in disease loads and hence the utility of purchase in Wave 2 would have
been quite small.

Sixth, habit formation may have influenced demand. Suppose that upon re-
ceiving the health products, households become habituated to using them. Habit
formation would make it more likely that households who received the product in
Wave 1 then purchase the product in Wave 2, regardless of the direction of learn-
ing effects. Since a higher share of households received the products in the villages
assigned to the Free treatment, habit formation should have a positive effect on
demand there. In contrast, our results move in the opposite direction.

Seventh, higher prices may signal higher quality (Milgrom and Roberts, 1986;
Heffetz and Shayo, 2009; Ashraf et al., 2013). All else equal, being offered a prod-
uct for a higher price should then increase later demand just as we would expect
from the price anchoring model. However, the signaling mechanism should have a
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larger effect for products with more uncertainty about the benefits and would have
the exact opposite effect of our model of experience learning, i.e., positive prices
should increase relative demand for the least well-known products. While our point
estimates across products are in line with the anchoring mechanism rather than the
quality signal alternative, we again note that the differences in these estimates are
not statistically significant. We cannot rule out the possibility that prices as a sig-
nal of quality may explain some of the differences in demand following free and sale
distributions. Since these mechanisms have distinct policy implications, we think
further research to distinguish their effects would be useful.

Finally, cognitive costs of determining a product’s value may influence our re-
sults. Suppose that any time individuals are faced with a positive price on a less well
established product, they have some probability of being willing to incur the cogni-
tive cost of determining their own valuation for the product. Without first having
determined their valuation, they do not buy, since they are uncertain whether the
price is above or below their personal valuation of the good. Then, being repeatedly
exposed to a purchase decision should increase purchase rates, since in every subse-
quent interaction fewer and fewer people need to incur the cognitive cost. However,
we find the negative effect of free distribution on Wave 2 purchase decisions also for
Panadol, a product for which beliefs should be well established, thus no cognitive
costs should be necessary to determine its value. This suggests that cognitive costs
are not the only mechanism driving our results.

5 Conclusion

We examine the pricing policy tradeoff between learning and price anchors. To
do this, we design and implement a field experiment in northern Uganda and find
evidence of exactly such a tradeoff. Consistent with models of reference-dependent
preferences (Kőszegi and Rabin, 2006; Mazar et al., 2013; Heidhues and Kőszegi,
2014), free distribution lowers subsequent demand.

To study the tradeoff between learning and price anchors, we then examine in-
dividually three products specifically chosen to span a range of potential learning
effects. For the two products without potential for positive learning (Panadol &
Elyzole, for pain relief and deworming, respectively), we find that subsequent de-
mand is lower after a free distribution than after a sales distribution. For Zinkid,
which we argue has potential for positive learning, we do not find such an effect.
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Positive learning appears to offset the price anchoring effect. However, although
each of the above stated results are statistically significant, the differences across
the products are not. We note that our model correctly predicts the ordering of
the demand effects when computed in percentage point terms, the standard unit
of measurement in this literature, which focuses on coverage rates for their policy
relevance. We rule out plausible alternative mechanisms, most importantly stock,
and report additional, qualitative evidence supporting reference dependence as the
mechanism behind lower demand.

Our results help reconcile empirical findings from marketing and psychology
demonstrating a large role for price anchors with those from recent field experiments
in the context of health goods in low-income countries, which find no evidence
that prices have meaningful non-budget-constraint effects. While lower prices today
can dampen future demand by setting low price reference points, opportunities to
positively update one’s beliefs about a product’s value may blunt this effect. We
also examine whether price anchors for one product spill over to the demand for
another. While we do not find evidence of such spillovers, we also note that this
test is underpowered compared to the other tests put forward. Given the potential
importance of categorical price judgments, such cross-product spillovers remain an
important area for future research.

Surprisingly and in contrast to our expectations, we find that the identity of
the distributor does not affect the degree of price anchoring. The relative drop in
demand following free distributions is the same whether the product was offered by
a for-profit entity or an NGO. However, we find that the identity of the distributor
does matter for the sale of the lesser-known product, Zinkid. Individuals offered
this product for sale by the NGO were 14 percentage points (nearly 50 percent)
more likely to purchase than those who were offered it by the for-profit. The effect
does not persist to the subsequent distribution by a third-party, for-profit; however,
the immediate observed effect is economically large and further research along this
dimension could provide welcome insight into how to most effectively introduce new
products, particularly in low-income countries (Cole et al., 2013; Karlan, 2014).

We contribute to three distinct strands of research. First, we provide additional
evidence for the importance of price anchors in an important, non-laboratory domain
of economic behavior. Second, we build on Dupas (2014) to contribute to the liter-
ature on experience goods pricing (Nelson, 1970; Villas-Boas, 2004; Shapiro, 1983;
Bergemann and Välimäki, 2006) by highlighting the essential tension between learn-
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ing and the potential for prices to directly affect potential consumers’ willingness
to pay. Our study design highlights the insight that the impact of free distribution
on later demand depends critically on whether users have a positive or negative
experience with the product. This mechanism may be particularly important in the
case of pharmaceutical demand (Crawford and Shum, 2005) but is also applicable
to agricultural products and other goods where subsidies or discounts are common
policy instruments.

Third, we directly inform the often controversial debate on subsidized distribu-
tion of health products, particularly in low-income countries. The motivations for
free or subsidized distribution are numerous: to account for positive externalities
(Miguel and Kremer, 2004), to provide people an opportunity to learn about the
value of the good (Dupas, 2014), to account for behavioral biases that lead to sub-
optimal purchase rates (Baicker et al., 2012), and to redress social injustices (Ponsar
et al., 2011). The reasons against free distribution typically focus on concerns about
dampening long-term demand or generating short-term sunk costs effects whereby
a product received for free is not valued and hence not used (Cohen and Dupas,
2010).

Finally, we note several considerations regarding generalizability. The experi-
mental setting of northern Uganda has a large NGO presence and a history of free
distribution. In principle, this could either dampen the effect—because our market-
ing campaign is a small part of individuals’ experience with free distributions—or
amplify it if individuals have become accustomed to the activities of NGOs and thus
more attuned to any deviations from norms regarding which specific products get
subsidized.

Although the experiment was setup in a particular setting, integrating NGO and
for-profit activity in rural Uganda, the theory purposefully abstracts from this and
other potentially important factors in order to highlight the tension between learning
and price anchoring effects. The theoretical model could be extended and subse-
quent experiments designed around testing such extensions. For instance, variation
in income effects, externalities, duration, information, cognitive costs and environ-
mental factors such as prior pricing history are all important considerations for
pricing experience goods. This applies for firms aiming to maximize the net present
value of profits and policymakers aiming to increase social welfare. These considera-
tions as well as a number of other parameters from which we abstract may influence
the answer to the question of whether “to charge or not to charge?”
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Figure 1: Reasons for Not Purchasing, Wave 2

Note. Share of respondents reporting a specific reason for not purchasing the offered product in Wave 2 conditional on not 
purchasing. Multiple responses were allowed. Whisker bars represent 90%-confidence intervals
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Free Sale NGO For-Profit  (1) vs (2)  (3) vs (4)
(1) (2) (3) (4) (5) (6)

Panel A: Wave 1 Respondents
Individual Level
Female 0.529 0.538 0.516 0.550 0.572 0.031 3879

(0.499) (0.499) (0.500) (0.498)

Respondent age 42.984 42.781 43.214 42.545 0.827 0.468 1016 a

(14.579) (14.762) (14.511) (14.813)

Number of children under 16 4.475 4.339 4.378 4.457 0.363 0.596 1016 a

(2.417) (2.287) (2.368) (2.356)

Wealth proxy (cows owned) 1.058 0.874 0.893 1.070 0.228 0.242 1016 a

(2.601) (2.137) (2.365) (2.459)

Visited for usage check 0.080 0.090 0.085 0.085 0.249 0.980 3879
(0.271) (0.287) (0.279) (0.279)

Found in Wave 2 0.747 0.742 0.765 0.723 0.737 0.003 3879
(0.435) (0.438) (0.424) (0.447)

Village Level
Number of drug outlets 1.167 1.367 1.167 1.367 0.483 0.483 120

(1.452) (1.657) (1.520) (1.594)

Panadol availableb 0.383 0.333 0.333 0.383 0.572 0.572 120

(0.490) (0.475) (0.475) (0.490)

Elyzole availableb 0.233 0.250 0.217 0.267 0.833 0.526 120

(0.427) (0.437) (0.415) (0.446)

Zinkid availableb 0.117 0.100 0.100 0.117 0.771 0.771 120

(0.324) (0.303) (0.303) (0.324)

Reports free distribution of any 0.500 0.483 0.433 0.550 0.857 0.204 120

   drug in last 3 mo.c (0.504) (0.504) (0.500) (0.502)

Reports free distribution of any 0.467 0.450 0.383 0.533 0.856 0.101 120

   deworming drug in last 3 mo.c (0.503) (0.502) (0.490) (0.503)

Reports free distribution of 0.050 0.050 0.033 0.067 1.000 0.406 120

   Elyzole in last 3 mo.c (0.220) (0.220) (0.181) (0.252)

Panel B: Wave 2 Respondents
Female 0.509 0.509 0.489 0.530 0.988 0.025 2887

(0.500) (0.500) (0.500) (0.499)

Respondent age 43.507 42.979 43.685 42.783 0.620 0.395 779 a

(14.783) (14.601) (14.184) (15.307)

Number of children under 16 4.523 4.383 4.456 4.470 0.423 0.934 779 a

(2.461) (2.346) (2.413) (2.413)

Wealth proxy (cows owned) 1.097 0.896 1.000 1.023 0.262 0.899 779 a

(2.628) (2.273) (2.577) (2.361)
Visited for usage check 0.083 0.091 0.091 0.083 0.440 0.471 2887

(0.276) (0.288) (0.287) (0.276)

Table 1: Baseline Summary Statistics

Wave 1 Treatment Assignment

Standard deviations reported in parentheses. (a) Variable available only for participants in accompanying methodological study
(see Section 2.1.1). (b) A product is "available" in a village if it is "mostly" or "always" available in at least one
outlet/drugshop of the village. (c) Reports of free distribution based on village chief's (LC1's) answer to the questions "Has
[the product] been distributed for free in the past in this village?" and, if so, "When was the product last distributed for free in
this village?", where "yes" is coded as 1 and "no" or "I do not know" are coded 0.

p-value of 
Means & Standard Deviations

N
(7)



Percent reporting 
they recognize a 

shown drug

Percent of 
respondents who 
say they recognize 

the brand

Percent giving a 
price estimate 
(any brand)

Percent giving a 
price estimate 
(same brand) N

Drug (1) (2) (3) (4) (5)
Panadol 95.5% 10.2% 87.7% 9.4% 1282

Elyzole 64.4% 7.7% 58.4% 6.5% 1191

Zinkid/ORS 51.4% 5.9% 45.6% 4.5% 1275

Zinkid (lower & upper bound)a 16.3%-45.6% 1.3%-4.5% 1275

Aquasafe 71.4% 15.8% 65.7% 14.3% 2019

Table 2: Summary Statistics of Respondents' Familiarity with Products

These data were collected during the Wave 1 by a marketer. Prior to marketing, we asked respondents about the two products that
would not later be marketed to them. Column 1 reports answers to the question "Do you recognize this product that I have here?
(Briefly describe what the product is, what it does)". Column 3 reports answers to the question, "How much would you expect to
pay for this product [there]?". The available choices were: (a) Don't know, (b) It is free, (c) It is sold at this price: UGX_____
(enter amount), (d) I am not certain, but I would estimate this price: UGX_____. (a) Zinkid and ORS were shown as bundle. In
order to unbundle familiarity with the two products, we exploited whether respondents gave the price estimate in the unit of sachets 
or tablets. A respondent giving a price in the unit of sachets is taken to refer to ORS, since Zinkid is distributed in tablets. Since we
cannot rule out that people knew both drugs but only reported their perceived price of ORS, this estimate is a lower bound. The
upper bounds for familiarity levels with Zinkid are the joint levels presented for Zinkid/ORS. 



Product Offered :

Dependent Variables: Take up Quantityb Take up Quantityb Take up Quantityb Take up Quantityb

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Full sample

NGO in Wave 1 0.053     0.023     -0.007     -0.136     0.001     0.002     0.159*** 0.173***

(0.033)    (0.064)    (0.038)    (0.145)    (0.045)    (0.061)    (0.044)    (0.049)    

Free in Wave 1 0.469*** 0.068     0.237*** -0.732*** 0.463*** 0.233*** 0.699*** 0.666***

(0.023)    (0.045)    (0.024)    (0.097)    (0.029)    (0.040)    (0.033)    (0.038)    

Free*NGO -0.054     -0.019     0.011     0.141     -0.007     -0.012     -0.170*** -0.189***

(0.034)    (0.066)    (0.039)    (0.150)    (0.047)    (0.062)    (0.046)    (0.050)    

Constant N/Ac N/Ac 0.761*** 1.826*** 0.460*** 0.657*** 0.276*** 0.309***

(0.025)    (0.122)    (0.046)    (0.058)    (0.040)    (0.047)    

Observations 3879     3879     1228     1228     1394     1394     1257     1257     

Mean of NGO*Sale 0.580     0.945     0.754     1.599     0.539     0.774     0.460     0.508     

Mean of For-Profit*Free 0.999     0.999     0.997     0.997     1.000     1.000     1.000     1.000     

Panel B: Households found in both waves
NGO in Wave 1 0.060*    0.077     0.010     -0.034     -0.008     0.024     0.170*** 0.201***

(0.035)    (0.073)    (0.043)    (0.168)    (0.051)    (0.078)    (0.052)    (0.053)    

Free in Wave 1 0.461*** 0.070     0.232*** -0.714*** 0.443*** 0.206*** 0.702*** 0.686***
(0.023)    (0.050)    (0.028)    (0.115)    (0.034)    (0.048)    (0.036)    (0.035)    

Free*NGO -0.063*    -0.072     -0.008     0.045     0.002     -0.035     -0.180*** -0.213***
(0.036)    (0.076)    (0.044)    (0.177)    (0.053)    (0.079)    (0.053)    (0.055)    

Constant N/Ac N/Ac 0.781*** 1.863*** 0.480*** 0.678*** 0.281*** 0.304***

(0.040)    (0.167)    (0.049)    (0.064)    (0.046)    (0.050)    

Observations 2887     2887     926     926     1027     1027     934     934     
Mean of NGO*Sale 0.595     0.996     0.777     1.688     0.548     0.812     0.467     0.515     
Mean of For-Profit*Free 1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     

Table 3: Demand in Wave 1
Pooled

Village assignment to treatment was block randomized according to two variables. The first, price environment, included information about
pricing and drug availability with three possible categories: (1) no drug outlets or none of our drugs; (2) no prices above the median or
distributed for free; and (3) at least one price above the median. The second, remoteness, also had three categories: (1) easy to travel and close to
health center; (2) difficult travel or far from health center; and (3) difficult travel and far from health center. All regressions include controls for
stratification cell. Standard errors clustered by village in parentheses. * Denotes significance at the 10-percent level; ** at the 5-percent level; and
*** at the 1-percent level. (a) The generic names for the three drugs are: paracetamol for Panadol, albendazole for Elyzole, zinc for Zinkid. (b) The
"quantity" dependent variable is the number of units (defined as doses) received or purchased. Respondents in the Free group were offered one
unit, respondents in the Sale group were able to purchase up to five units. (c) Includes product-specific intercept. 

Panadola Elyzolea Zinkida



Product Offered in Wave 2 Pooled Panadola Elyzolea Zinkida Aquasafea

Same As Wave 1? Same Same Same Same Different

(1) (2) (3) (4) (5)

Panel A: Take-up
NGO in Wave 1 0.017     0.033     0.027     -0.002     0.054     

(0.032)    (0.040)    (0.056)    (0.051)    (0.059)    

Free in Wave 1 -0.100*** -0.116*** -0.118*    -0.052     0.044     

(0.036)    (0.036)    (0.061)    (0.054)    (0.060)    

Free*NGO 0.017     0.051     -0.004     -0.002     -0.106     

(0.051)    (0.058)    (0.086)    (0.074)    (0.078)    

Constant N/Ac 0.862*** 0.388*** 0.234*** 0.457***

(0.054)    (0.062)    (0.065)    (0.066)    

Observations 2150     687     786     677     737     

Test of equality of Free coefficient w.r.t.

   Panadol 0.094     N/A     0.980     0.228     0.003     

   Elyzole 0.208     0.980     N/A     0.325     0.037     

   Zinkid 0.798     0.228     0.325     N/A     0.176     

Mean of NGO*Sale 0.555     0.866     0.521     0.276     0.571     

Mean of For-Profit*Free 0.480     0.709     0.379     0.233     0.566     

p-value of Free = 0 0.007     0.001     0.057     0.330     0.463     

p-value of Free + Free*NGO = 0 0.017     0.131     0.038     0.295     0.216     

Panel B: Quantity b

NGO in Wave 1 -0.004     -0.086     0.048     0.022     0.052     

(0.069)    (0.172)    (0.096)    (0.059)    (0.092)    

Free in Wave 1 -0.214*** -0.429*** -0.154     -0.060     0.101     

(0.073)    (0.151)    (0.097)    (0.057)    (0.111)    

Free*NGO 0.110     0.376     -0.056     0.021     -0.176     

(0.114)    (0.237)    (0.138)    (0.095)    (0.142)    

Constant N/Ac 1.813*** 0.510*** 0.216*** 0.512***

(0.181)    (0.108)    (0.067)    (0.098)    

Observations 2150     687     786     677     737     

Test of equality of Free coefficient w.r.t.

   Panadol 0.006     N/A     0.099     0.010     0.000     

   Elyzole 0.788     0.099     N/A     0.330     0.029     

   Zinkid 0.258     0.010     0.330     N/A     0.129     

Mean of NGO*Sale 0.845     1.720     0.688     0.312     0.714     

Mean of For-Profit*Free 0.729     1.363     0.495     0.240     0.762     

p-value of Free = 0 0.004     0.005     0.116     0.302     0.367     

p-value of Free + Free*NGO = 0 0.198     0.754     0.031     0.607     0.370     

Village assignment to treatment was block randomized according to two variables. The first, price environment, included
information about pricing and drug availability with three possible categories: (1) no drug outlets or none of our drugs; (2) no
prices above the median or distributed for free; and (3) at least one price above the median. The second, remoteness, also had three
categories: (1) easy to travel and close to health center; (2) difficult travel or far from health center; and (3) difficult travel and far
from health center. All regressions include controls for stratification cell. Standard errors clustered by village in parentheses. *
Denotes significance at the 10-percent level; ** at the 5-percent level; and *** at the 1-percent level. (a) The generic names for the
three drugs are: paracetamol for Panadol, albendazole for Elyzole, zinc for Zinkid, and sodium dichloroisocyanurate for Aquasafe. (b)
The "quantity" dependent variable is the number of units (defined as doses) received or purchased. Respondents in the Free
group were offered one unit, respondents in the Sale group were able to purchase up to five units. (c) Includes product-specific
intercept. 

Table 4: Demand in Wave 2



Sale Free p-value N Sale Free p-value
(1) (2) (3) (4) (5) (6) (7) (8)

Number of tablets distributed in Wave 1
Panadol 21.38 10.00 0.00 98 75.2% 16.08 10.00 0.00
Elyzole 8.76 6.00 0.00 84 54.4% 4.77 5.99 0.00
Zinkid & ORS 11.03 10.00 0.12 67 39.2% 4.32 9.97 0.00

Mean tablets remaining from experimental stock
Panadol 2.53 1.03 0.05 98 75.2% 1.91 1.03 0.17
Elyzole 0.16 0.04 0.43 84 54.4% 0.09 0.04 0.64
Zinkid & ORS 5.34 4.86 0.69 67 39.2% 2.09 4.84 0.00

Proportion of tablets used
Panadol 0.90 0.90 0.88 98 75.2% N/A N/A N/A
Elyzole 0.99 0.99 0.66 84 54.4% N/A N/A N/A
Zinkid & ORS 0.53 0.51 0.90 67 39.2% N/A N/A N/A

Share of respondents who have positive experimentally provided stock
Panadol 0.36 0.18 0.05 98 75.2% 0.27 0.18 0.24
Elyzole 0.03 0.02 0.87 84 54.4% 0.01 0.02 0.80
Zinkid & ORS 0.59 0.61 0.88 67 39.2% 0.23 0.60 0.00

Conditional on 
receiving any in Wave 1

% in Sale 
receiving 

any in 
Wave 1

Scaled to include non-
takeup in Wave 1

Table 5: Observed Usage Summary Statistics

Households that did not receive the a product in Wave 1 were not included in the sample for usage checks of experimentally provided product. The
share receiving the product in Wave 1 for the Free treatment is approximately 100% for all products. In a previous version of this paper we
misreported that 329 individuals were "selected" for usage checks and 251 were "found," implying that "found" refereed to the usage checks. The
variable "found" should have indicated "found in Wave 2" and the variable "selected" should have indicated "contacted for usage checks". Because
our interest in usage checks is to understand the mechanism behind the Wave 2 results, we restrict the sample frame for analysis to only those
individuals reached in Wave 2. Results on the full sample of 329 households reached in the usage checks are statistically identical (results available
from the authors on request). We note that the attrition rate of 24% from the usage check to Wave 2 is higher than often found in developing
country studies and reflects a deliberate methodological decision to adhere to a more "natural" marketing process, rather than persistently return to
households to, in this case, adjudicate their eligibility for a marketing prize. See Section 2 for more discussion of study design and attrition.
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A Derivations and proofs

As described in Section 3, the key predictions of the model are all derived from
differentiating

πt = αtE (πt| Informed) + (1− αt)E (πt|Uninformed)

= αtΦ
(
v̄ − p̃t
σI

)
+ (1− αt)Φ

(
v̄ + b− p̃t

σU

)
= αtΦ

(
v̄ − pt −R (pt − prt )

σI

)
+ (1− αt)Φ

(
v̄ + b− pt −R (pt − prt )

σU

)
with respect to the price in the preceding period. This leads immediately to equation
(3):

∂π2
∂p1

= ∂α2
∂p1

[
Φ

(
v̄ − p̃2
σI

)
− Φ

(
v̄ + b− p̃2

σU

)]
− ∂R
∂p1

[
α2
σI
φ

(
v̄ − p̃2
σI

)
+ 1− α2

σU
φ

(
v̄ + b− p̃2

σU

)]
.

We can further expand the first term by noting that α2, the share informed at the
time of the period-2 purchase decision, equals α1 + (1 − α1)Φ

(
v̄+b−p1
σU

)
. Hence,

∂α2/∂p1 = − (1−α1)
σu

φ
(
v̄+b−p1
σU

)
< 0. The intuition is natural: lowering the price in

period 1 increases the share of the population that is informed in period 2.
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B Marketing scripts

B.1 Treatment-specific marketing information

• [NGO] UHMG is a Ugandan-based non-governmental organization based in
Kampala. UHMG believes that every person in Uganda should have access to
affordable health products. UHMG is motivated by the desire to save lives.
It is a charity, which means that it makes no profits, and it is funded by
international donors.

• [SALE] Today UHMG’s beneficiaries are asked to pay a small amount to share
the cost of distribution, which allows the good work to be extended to a greater
number of needy people.

– [FREE] Today I am distributing health products for free throughout the
village.

• [FOR-PROFIT] Star Pharmaceuticals is a large for-profit company based in
Kampala. We sell drugs and health products throughout Uganda. We believe
everyone should pay for health products they want, and we believe making
profits is a good way to drive progress. We want to become the most successful
company in Uganda, and we do this by offering good prices to our customers.

– [SALE] Today you have the opportunity to buy your normal products at
the great prices Star Pharmaceuticals offers, right at your doorstep.

– [FREE] Today, however, we are distributing our products for free, right
at your doorstep, to raise our profile in Gulu.

B.2 Product-specific marketing information

PANADOL

Have you ever returned home from the garden with a pounding headache, or aches
in your muscles and joints? Has your child ever woken you in the middle of the
night, complaining that their head or stomach is aching? Imagine if one of these
things occurred tomorrow, what would you do? You have to run to a drug shop or
medical center. But what if that is far away, or there is a long queue, or they are
closed or out of stock? That is a bad solution. As both you and I know, one of
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the best pain killers is Panadol, and yet it is often hard to find. So today, I have
Panadol tablets for sale/for free right here! [Take out one unit] I am selling this
sheet of 10 tablets for the great price of 500 shillings. I am giving you one sheet of
10 tablets. [Dosage/usage instructions] So, how many sheets will you buy? So, will
you accept this product?

ELYZOLE

Do you sometimes drink water that has not been boiled or treated? Do you ever
eat fruits directly from the trees, without washing them first? This kind of behavior
can lead to worm infections of the stomach. Does anyone in your household ever
complain about stomach pains or itchy skin? These are symptoms experienced by
someone who has worms. But symptoms often take some time to appear, and so
doctors usually advise people to deworm once every three months. The only problem
is that it is sometimes hard to access deworming tablets. But today, I have Elyzole
deworming tablets for sale/for free right here! [Take out one unit] These three boxes
contain a full dose of deworming tablets. There are six tablets in here. These tablets
can kill almost all types of worms that can attack humans. I am selling them at the
great price of 1500 shillings for one dose of three boxes. I am giving you one dose
of three boxes. [Dosage/usage instructions] So, how many full doses do you want to
buy? Will you accept this product?

RESTORS & ZINKID

Do you remember a time when your child suffered from diarrhea? Do you remember
how weak they became, and how worried that made you? When a child becomes ill
with diarrhea, it is important to quickly replenish all the salts and nutrients that
they are losing. I’m sure you have heard of oral rehydration salts. Giving these to
a sick child is the first stage of combating the effects of diarrhea. So for that, I am
selling/giving away Restors - a high quality brand of ORS. The second step is to
provide them with zinc supplements which can stop the diarrhea sooner and reduce
the chance of diarrhea returning. For that, I have a brand new product, Zinkid,
which is to be taken in combination with ORS. Taking these two products together
is a great way to reduce the duration and severity of diarrhea in children. Therefore
I am selling one strip of 10 Zinkid tablets with one Restors sachet in combination
as one item for the great price of , to equip you with the means to combat diarrhea
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in your children. Therefore I am giving away one strip of 10 Zinkid tablets with one
Restors sachet in combination as one item, to equip you with the means to combat
diarrhea in your children. [Dosage/usage information] So how many will you buy
today? So will you accept this product?

AQUASAFE

Today I am selling Aquasafe – a high quality brand of water treatment right at
your door! Often water from wells and boreholes is not suitable for drinking; it can
contain harmful bacteria, parasites and other contaminated substances. Drinking
this water can cause various illnesses, including diarrhea which can be very damaging
for children. I am offering you a simple solution to this problem. Aquasafe is a fast
and effective way of purifying your water – you simply add it to a jerry-can of water
and in no time it is safe to drink. [Take out one unit] I am selling this sheet of
8 tablets for the great price of 800 shillings. [Dosage/usage instructions] So, how
many sheets will you buy?

Wave 2 introduction

Good morning/afternoon! [Generic pleasantries] My name is ____, I am from
Surgipharm Uganda Limited. Have you heard of Surgipharm Uganda Limited be-
fore? Surgipharm Uganda Limited is a health care company specializing in the
importation, exportation, distribution and marketing of pharmaceutical products.
We believe everyone should pay for health products they want, and we believe mak-
ing profits is a good way to drive progress. We want to become the most successful
company in Uganda, and we do this by supplying quality goods. I hope you will
remember the name of Surgipharm Uganda Limited. [Move on to Aquasafe Price
Perception Survey if Aquasafe is not assigned product, then to the sales pitch.]
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C Post-Marketing Survey 

M  A  R  K  E  T       F  E  E  D  B  A  C  K 

Intended Respondent’s Name: __________________________________________________          Gender: M   F      Date of Birth:_____________ 

I met:    this person    spouse    Spouse Name: ___________________________ (If spouse was met)  Enumerator Name:___________________________ 

Product:  Deworming    Panadol    ORS/Zinkid      Aquasafe         Date:                   Subcounty:                Parish:                  Village:               
 

IN ADDITION TO CIRCLING THE RESPONSE, PLEASE WRITE COMPLETE SENTENCES TO EXPLAIN THE RESPONDENT”S ANSWER MORE THOROUGHLY  
 
Before filling in this form, you must: 

1. Introduce yourself, conduct the Price Perception Survey, and deliver the sales pitch.  
2. Answer any questions the respondent may ask about the product to the best of your ability.  
3. Wait until the respondent has made a decision to purchase or not purchase. If they purchased, any change must be handed over. 

 
Inform the respondent that you would now like to ask them a few brief questions that will help your organization improve in the future. To learn more 
about why they did or did not buy the product, ask the following questions: 
 

1) Did the respondent make a purchase? Yes No 
If ‘Yes’ move to Question 2. 
If ‘No’ move to Question 3. 
 

2)  [If they made a purchase]  Ask Questions a) to c) below: 
a. Can you tell me more about why you bought this product?  CIRCLE ALL THAT APPLY 

1---I ran out of my supply                                                                  __________________________________________ 
2--- I trust you (ASK WHY AND WRITE ANSWER OPPOSITE)      __________________________________________ 
3---The price is cheaper than what I can get it for here  __________________________________________ 
4--- I want to sell it on to others    __________________________________________ 
5--- I would have to travel far to find this elsewhere  __________________________________________ 
6--- I want it in case someone becomes sick   __________________________________________ 
7---Other (FILL IN OPPOSITE) 
99--- Didn’t answer 

b. For whom did you buy this for? CIRCLE ALL THAT APPLY 
1--- Myself  2--- Adults                           3---Grandparents / Elderly 
4---Children/babies     4---Other: _______________________________________ 
99-- Didn’t answer 

c. When do you expect to start using the product? 
1---This week 
2--- Next week   
3---In the next month                     
4---In the next 2-3 months 
5---6 months or more 
6--- Other_________________________________ 
99—Didn’t answer 
 

3) [If did not make a purchase] Can you tell me more about why you did not buy this? CIRCLE ALL THAT APPLY 
1--- I got it for free previously, why should I buy it now?  
2--- Other people in this village have previously got it for free. 
3--- I’d like to buy it, but don’t have the money here.  
4--- I think it is too expensive.  
5--- It’s not essential.  
6--- I already have enough of it. 
99—Didn’t answer 

7--- I need to ask my spouse. 
8--- I don’t trust you or I’m uncomfortable buying this from you. 
9--- Don’t know 
10--- Didn’t answer 
11--- Other: __________________________________________ 

       __________________________________________ 
 

 
4) [Ask everyone] Is this the type of product that people in your village would resell or trade?  

1---Yes     If yes, how much do you think they could sell/trade it for?    |_________| UGX   --or---   Item to trade with:  ____________________ 
2---No 
99—Didn’t answer 

 
Leave the respondent’s home and fill out the Tracking Sheet 
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