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1. INTRODUCTION

The development of the techniques of analysgs for discrete choice models
has p;oceeded rapidly over the last decade. Original work by McFadden (1976)
and others concentrated on static.choice frameworks and were developed and
applied in the context of cross-section data. More recent work by Heckman
(1981) focuses on general dynamic discrete choice models in the context of
panel data. In this paper we attempt to provide a firmer theoretica] base for
this recent literature by specifying the explicit dynamic stochastic
optimization problem that uriderlies the decision rules which are the starting

point for the analysis by Heckman.” Moreover, we offer two methods of

‘estimating the fundamental taste and constraint parameters of the optimization

problem and provide an application.

A general dynamic discrete choxce mode for pane] data is carefully

described by Heckman (1981) as follows:
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where mz js the discrete choice variable for person i (5= 1,...,1) for his

lifetime period t(t =1,...,T) such that
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the initial conditions of m and y are assumed to be fixed outside

the model, v, (L) = vg * et Kk, e = [ el + ... + 699 and

€t is a normally dxstrxbuted error with mean zero. The distribution of the

vector e = (cl,...,cT)' is fully characterized by the assumpt1on
A B _ o

where § is a T x T positive definite covariance matrix.

The ¢''s are independent across people and components of the vector

Z: are independent of e Z; js a vector of exogenous

variables. Tnis is the most general linear discrete choice model that is

" described in the literature.

In this model Y; represents the difference between the lifetime

utility of a person at t<me t. given an action (mt =1) is taken and

the lifetime utility of the person given the action (m: = 0)is not

taken, under the assumption that the decisions in the future are optimal.

These types of prbblems include labor force participation (Heckman and Willis,
1977), fertility (Heckman and Willis, 1975) and purchase of a durable

(McFadden, 1976). In each application of this general model a set of specific

~{ssues are raised both of a practical and more abstract nature. For example:

what is the lifetime optimization problem that is behind this intuitively
appealing moael Z what is the lag length for each term in the model and what
do these lags represent } what are the underlying sources of the stochastic
térm, of state dependency and of heterogeneity ?

The stochastic model does predict the change in the probability of

m1 ¥s, given a change in the exogenous variables at time t andf/or &

s’
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change in the parameters in the model. However, it is impossible to interpret
the particular change in terms of a policy experiment unless the 1nd1v1dua1 S
lifetime problem is carefully described (Marschak, 1953, Lucas, 1976).
One way of providing at least a nartial answer to the above questions is
to consider the explicit dynamic stochastic optimization problem that the

person is supposed to solve. This paper formulates explicitly a lifetime

< optimization problem that a person faces at each period t and suggests two

methods of estimating the underlying parameters of the preferences and the
constraints. Some of the issues ‘that are raised above are solved 1mmedxate1y

by the assumptions made about the preferences and the constraxnts. Given the

“fmportant empirical issues of state dependency and heterogeneity we emphasize

these dynamic stochastic aspects in the context of the three behavioral

_examples, fertility, schooling, and labor force participation. Some other

1ssues, such as the length of the endogenous lags, are not solved except by
computatﬁona] 1imits, but they can be interpreted in terms of the econom*
model. |

Estimation of our model's parameters depends on the ability of the
econometrician to find an algorithm that can be used to calculate the
probabilities of mi (t =1,...,T) conditional on past rea]izafions, and
wh‘ch is cons? stent with optimization. In this way the likelihdod function of
each sequence of m's can be computed as a product of condxtxona]
probabilities. Heckman s statistical model is formulated in a way that
enables a straightforward calculation of the conditional probabilities that
form the likelihood functicn, put that. formulation is not necessarily

consistent with any optimization problem of content. The focus of our work is




on building a bridge between the individual optimization problem and a
decision rule that for the econometrician can be stated as a conditional
probability for the discrete choice at each t.

We provide two ways of calculating these conditional probabilities. The

first is based on the way Heckman (1981) motivates his model, that is, given

optimal decisions in the future the probability of m; =1 can be

_..calculated from the difference between the lifetime utility level of a person

where m! =1 and the lifetime utility where my = 0. We refer to

this method as "Full Solution Method“; since it requires that we solve

"completely the dynamic optimization problem of each agent at each time in

order to calulate the 1ik1ihood function. The computétiona] burden of this

method is obvious.

The second method is based on the fact that the optimal individual
i
t
Therefore, we call this estimation procedure the “"Necessary Condition

program for m 'should satisfy -certain first order conditions.
Method". Here we demonstrate a method for calculating the conditional
probabf]ities without fully characterizing the future decisions. We assume,
however, that these decision§ are made optimally and are predicted optimally
by the person (rational expectations). ‘.
' Sinée the first method has been used recent]y (Wolpin, 1982) for
estimating a fertility model using Malaysian data, we compare the estimation
methods by a Moﬁte Carlo experiment conducted on the Malaysian fertility
model. Using this Monte Carlo data on fertility we estimate the parameters of
the model with the necessary condition method.

The remaining parts of the paper are organized as follows: 1In Section 2

we present the model and the three examples. In Section 3 the two estimation

’




methods are discussed. The results of the Monte Carlo experiment are

presented in Section 4 and some remarks are given in Section 5.

2. THE MODEL
. L _

In this section we describe a class of estihab]é dynamic models of
behavior in Qgich the indiyidual makes a discrete (zero-one) decision in each
life cycle period and where the cumulated value; of prévious choices may
affect currenf welfare andfor costs. An individual is assumed to choose a
lifetime contingency plan for the sequence {mi] , where 1 refers to the
individual and t to the 1ife cycle period, so zzoto maxim{ze |

i T .t i i
Ep Ligf V(Mes Co a;)

t

(1) Vo

subject to:

(2) L *'ﬁi - ¢

(3) m e 0, 1, (mi‘, a}) £ (0, 0, (1, 0), (1, 1)y
(4) ¢! - ' om0l 1)

(5) Mil.'given —

In (1) 8 {s the discount factor, 0 < 8 < 1, and preferences are a function

of the stock of the control variable (M:), and a composite consumption

- good (Ci), with a: a vector of exogenous preference shifters
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that may vary across individuals and over the life cycle of the same
jndividual. The stock of the control variable (Mi) evolves according
to (2) with mz, '

discrete decision variable, - and di a discrete exogenous variable

the

realized after the decision on mt has been made; the set of feasible
values of (mz, d;) is given in (3). The budget constraint is

described in (4); NY(+) is net income, i.e., income less expenditures on
‘. _

t.

value of the current decision var1ab]e, life cycle period (t), and a set of

m Net income may depend upon the stock of the control variable, the

exogenous individual and/or 1ife cyc]e characteristics (ht) The
initial value of the stock is given and is non-stochastic. E(¢) 1is the
expectations operator and Ei(-) = E( l 11) where 12 is the
information set of individual i at life cycle stage tl.

Dynamics are incorporated- into the model both through the utility
function and-through the net income function. It would, 6f course, be more
general to permit each prior period discrete choice to enter current utility
and net income rather than the stock,vbdt that complete generality does not
- appear tractable to estimate. A feature of the model, due to computational
Atractability, that is not particularly satisfactory is that we consider only
. one decision variable. Most econometric applications do so. However, in
doing this we are forced to assume that the individual is unable to transfer
physical resources between periods. Introducing savxngs requires solving for
an additional decision variable and creates further dynamic interactions.2
We view this as an important limitation and as a challenge for future work.

Both U(+) and NY(+) are assumed to be continuous and differentiable

in the decision variables (mz, CI) at all points on the real line




even though m: is dichotomous.3 Existence of a maximum for (1) is
guaranteed by the discrete nature of the decision variable, but uniqueness
requires some additional regularity conditions on the preference and net
income functions. Uniquéness is guaranteed if, upon substituting (2) into (8)
and the rgsu]t into (1) the function

'T-tii+*_i i TR TR
Et iJ"tB U (MJ"I mj dj, NY(MJ-l, mj" hJ’ J)’ aJ)

js strictly concave in mi for all t = 1,;..,T.

B

To motivate the above structure, we now provide three examples which have
pbeen of major interest to researchers. The reader can doubtless provfde many

others.

1. A Fertility Model with Exogenous Infant Mortality

Equations (1)-(5) correspond to & model of fertility choice over the 1ife

cycle under the following definitions:

Mi = the stock of surviving children at the end of period t

mi

t = unity if a child is born at t, and is zero otherwise

d: = unity if a child born at t dies at t with some probability 1,

and is zero otherwise.

i i 4

i i
NY; = Yo - €3¢M eZt(mt - dt)’ where
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Yl = exogenous household income (poséib1y'}andom)f
éit = a fixed cost of child bearing at periodv t,
€y = a maintenance cost of a child during ité first period Qf iife that

arises only if the child survives.

Thus, at any period 1, given its stock 6% surviving children, the
household decides whether or not td augment its stock of chi]dren~by one,
.. based upon future survival prospects, future (uncertain) income, and future
child costs. This model has been estimated by Wolpin (1982) and is capable of
generating child spacing and in distributing children ovér different life

cyile stages (timing). It is also capable of generating alternative

replacement pattérns, i.e., reactions to child deaths.

2. A Model of Schooling Attainment

The theoretical analysis of schooling attainment has, since Ben-Porath
(1967), been conducted in a life cycle framework as a component of a complete
human capital accumulation model. Empirical implementation of human capital
models have been concerned mostly with estimation of parameters of the humarn
capital productfon (cost) function (Haley (1976), Brown (1977), Heckman
(1976)) using earnings data. School'achievement models have not generally
been implemented with as careful a connection to underlying theory, though the

Wallace and Ihnen (1975) simulation model and the work by Orazem (1982) are

exceptions.




The discrete choice dynamic programﬁing framework presented above
provides a natural setting within which to consider the schooling choice. To

see this, define the variables as follows:

Mi = the stock of schooling (schooling att#inment) at the.end of period t

m: = unity if the jndividual attends school during period t, 2ero
otherwise v - | —

d: = unity if the individual fails to complete the school pefiod due to

unforeseen factors, €.g., exogenous illness.

NY = Y(Mt 1° t’ t, ht) - etmt where

ey = the direct cost of 2 per1od of schooling at time t
Y; = - gross income during period t

‘The gross income generating function Y(°) depends positively on the stock of
schooling and negatively on current school attendance (foregone earnings). It
is also permitted to have an age gradient as well as to be influenced by
indxvxdua] and/or calendar time characteristics (hz) some of which may

be viewed as random by the individual.

Given tnat M, enters into (1), this specification captures both .
{nvestment and consumption components ofAschoo1ing choice. The model can
clearly generate alternative schooling patterns. In particular, individuals
will optimally accumulate schooling as rapidly as possible given either a
large enough positive return to schooling at low initial) ]eve]s
—_ ijs large at Mt-l small), or a large enough consumption value of

t-1
schooling. The individual in making a current schooling choice considers
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the current attainment level, and current and (anticipated) future direct and

foregone earnings costs.

3. A Model of Labor Force Participétion and Wage Determination With

Endogenous Experience

Economic models of labor force participation arise naturally from labor
supply models in which hours are freely variab]é. (Heckman and Willis,
1977). With fixed hours, labor force participation models closely resemble

job search models, although with costless wage offers during periods of

émploymént. However, the latter models are based on income maximization. The

preceding framework with the following definitions can be interpreted either
as a labor force participation model or as a job search model. Unlike
previous examples, we assume that it is current participation rather than the

stock of past leisure that enters preferences. Thus, we modify (1) to:

(6) u(mi, cl, af)

where'fﬂ% < 0. In addition,
Am

.M

t
2 « the number of years of labor force experience
m: = un? ty if the individual participates in period t, zero otherwise
d: = unity if the individual is (exogenously) laid off, zero otherwise
' 1 i i 1 {
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where income Y(+) (or the wage rate given fxxed hours) is 1ncreasxng in
experience (Mi_l) and in current participation (mt - dt)‘ o
There is a fixed cost of work e, (Cogan (1980)). d, may be viewed by
the individual as a random (exogenous) variable. The participation or job
acceptance decision et any period depends, therefdre,'on the stock of -
accumulated experience, on (expected) future income or wage rate determinants,
and on (expected) future layoff propensxt1es.

We have presented these examples to 111ustrate the applicability of the

basic model. It is interesting to note that each of the models contains some

form of state dependence (Heckman (1981)) in that current decisions are

"

affected by past states (decxsxons) in a structural sense. There are major
'simp]ifications in each examp]e, but extensxons are best explored in the
context of the specific problem. It is probab]y unnecessary to point out that
few seduential decision-making models have been estimated directly from

_theoretical foundations.

3. ESTIMATION STRATEGY

‘The objective of the empirical work is to estimate the parameters that
. T
determine the individual choice of {mllt=0. These parameters consist of the
discount factor (8), the parametérs of the preference function (u{+)) and of

the income generating function (Y(+)), and the parameters of the distributions

of the random variables that affect preferences and income. Estimation
obviously requires choosing a particular parameterization of the preference

and income functions.
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One strategy involves choosing a specification that enables the
researcher to solve for the complete characterization of the optimal decision
under uncertainty. Assuming that some variables are observed by the
_ fndividual but not by the researcher (e.g., the preference shifter az)
allows for an error in predicting the individual decision. In this way,
maximum likelihood estimation can be integrated into the solution of the
optfmization problem. This procedure corresponds to a fu]l'solution
estimation method. R |

Alternafive]y, és we show below, it is possible to specify a set of
necessary conditions which must be satisfied at the maximum of problem (1).
Although the decision variable is not continuous, the derivative 6%‘the
objective function evaluated at an appropriate point can be used to form a set
of inequality restrictions that determine the discrete choice. We demonstrate
a method for transforming these restrictions into probability statements about
any arbitrary sequence of decisions, which leads naturally to a maximum

‘Vikelihood approach.

3.1. The Full Solution Method (Wolpin, 1982)

The full solution method utilizes Bellman's (1957) principle. We first
solve for the last period decision and work backwards to the initial period.

Using Bellman's equation, at any period t, the expected utility from the

choice m. =1 is given by (we omit the index i):
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(7) Eg(Lu]mg = 1, M g) = £ (U|m = 1o Mey)

+ BEt max[Et+1(LUt+1l mt+l = 1, mt = 1, Mt—l)’ .

Epag (Wpag | meey = O My = 1o Moy

the expected utility for the opposite choice is

- similarly,
(8) Ej(Luyfmy =0, M y) = Ey (Ug|my = 05 Mgy
_+ 8Et maX[Et+1(LUt+l‘mt+l = 1, mt = 0, Mt"'l)’

Eyeq(Wisy Jmpey = 00 M = 05 Mg_p)]

where

- T
(9) LU, = Ij¢8 UMy, G a;)

{.e. LU is lifetime utility at t subject to the conditions (2), (3) and

-(4) and M, 5 is given. t is determined by the difference between (7) and

(8), namely:

(10) m, = 1 §ff Jp = £, (LU |my = 1o Mey) - Ey(LUg|my = 00 M y) 20

m, = 0 otherwise
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In general, ca]culatxng (7) and (8) for t = 1,...,7 is, even
numerically, an intractable task. An enormous simplification is achieved if

the utility function is assumed to be quadratic and the constraint (7) i

. linear (see equations (24) and (25) below). In this case all quadratic terms

4n random variables in Jy (10) vanish, so that knowledge of conditional

means alone is required. Even more important, if the random preference
parameter (at) js in the linear terms in the utility function (see
equatxon (24)) it turns out that it is add1t1ve1y separable and monotonically

increasing in a Since a is a real number, there a]ways exxsts an

t.
*

a ‘such that J; = 0. The importance of this result for estimation

will become apparent.

Estimation proceeds in the following manner. For each t (for a given

jndividual) one can find the unique value a: for which J =0, i.e.,

for which the individual is exactly indifferent between mg =1 and m =
0. Given a distribution for at,Athe probability of the event occurring is
(11) pr(ng = 1|M,_1) = Prag > a)

The joint probability of any given sequence of events

Et,k = (m,, -'-n_t*rl"'."?".t'fk) is

{12) Pr(mt,k\Mt—l) = Pr(mt+k|Mt+k_1)Pr(mt+]_1 Mt+k;2) .- Pr(mt Mt—l)

and the sample lxkelxhood function for any set of indi vxdua]s is the product
of the probabilities of sequences such as (12) over the individuals. Notice

that for each set of parameters, a new set of at s are found by solving
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the dynamic programming problem; each evaluation of the 1ikelihood function
requires resolving the dynamic program. Optimization must preceed numerically

since decision rules are not analytic even in the linear-quadratic case.

3.2. The Necessary Conditions Method

Any viable alternatxve to the fu11 so1utxon estxmat on method shou]d
mitigate some deficiencies of tnat method, namely (1) the necessity for "
simplified structures in order to permit economical numerical solution, and
(2) the large computational burden of evén the simplest of mdde]s. The
netessary condition approach formulated in this secfion.meets both of these

criteria, although not without cost.

To demonstrate this estimation method it is useful first to define the

*desired" stock as

(13) Mt = Mt + dt = Mt-l +m

" which implies that M, = Mt t TR Substituting (2)-(4) into (1) the

problem can now be written as (ignoring the i superscript)
T tum ~
' (14) Max Vg = Eg It _o® UM, - gy, NY(Mt_l-dt_l, Mt Mt_.1 di_10 Ny t), a,)

by choice of M, }I 0

Differentiating (14) with respect to M at any arbitrary life cycle

period t yields:
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v

]
(1) = —=
]

t t+1, v t*1 t+1
- 2 (NY1 + NY, )11}

te +
£, 6LV} ¢ ubnr$l + st 1y

o*

K are the partial derivative of the jth element of the

.
here U, d

w j an NYJ

and net income functions respectively, at age k. Let

’,

utility function

trot o byt t+1 gt t+l
(16) ZF =8 [U] + UZNYZ] +p0 [Ny - NY, )]

= 2Amgs Meags Mp_ps Mo N 90 Gl t, 8)

and define the random variable 4, as

(17) ¢, = Et(Zt) -1

from which it is clear that

(18) Etot = E¢t = 0.

Using (17), it is possible to write (15) as

avt
(19) —_—= Et(zt) =1, %4
o,

Now, if the V function is symmetric, it should be clear that an individual

will wish to augment the stock, i.e., to choose m, = 1, if and only if
(19) is positive when evaluated at m, = 1/2 and all other yariables are

evaluated at their actual realizations. Thus,
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(20) m =1 iff Zy(m = 1/2) + 6y 20
m =0 ff Zy(m =1/2) * ¢ <0
- where as noted, Z,(m = 1/2) = Zy(my = /2y Myyps Mt-l"")f

One can ask about the exact distr%bution of oy given the distributions
of ht and 2. This distribution is not easy to find and theré is no
need, in fact, to explicitly calculate it. It is assumed that h, and
a, come from the.samé distribution over 511 jndividuals and in all
life-cycle periods. The distributions of h, and a; are independent
ovef él] individuals and periods. Therefore, ¢, is also independent over.

individuals and time. Using a particular distribution for ¢, we can write

the following probability statement for the choice my = 1:

- (21) Pr(m, = 1‘mt+1, M;_j» Other exogenous variables)

The inequality sign in (2) is reversed for the m, =0 probability
_ statement. MNote that at T, M4y = 0 (terminal condition) so that we can

calculate from (21)

(22) i Pr(m; = j|M;_y, other exogenous variables) j = 0,1.
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For any given-observed sequence of choices for an jndividual, (mg,

ﬁi,...,ﬁﬁ), the probability of observing that sequence may be written as

(23)  Prifg,...,m7) = pr(mriMT-1) Pr(‘ﬂTT-ﬂMT-z)---Pr(ﬁolM-ﬂ

where we ignore other exogenous variables and where we USE the fact that in
the current model only the cumulative value of past decisions are relevant for
the current choice.6 Unfortunately, our necessary conditions tead to
probability statements that, except for the last period, are dxfferent from
those required to form the probabi]ity.statement given in (23). For all
periods other.than T, the probabi]ities we directly derive are conditional on
the one-period ahead choice, i.€.s Mi4q for the tth period choice. We
prove in Appendix A, hOWever, that (23) can be derived from (21) and (22)

which are themselves calculable. The sample 11ke11hood function can thus be

formed as products of probabi1ities‘of choice sequences OVer individuals.

3.3. A Comparison of the Two Methods

The two models differ with respect to the restrictions that are imposed
on the conditional probabi1ities that are calculated for each m,. In the
full so]utwon method the dynamic programming problem is completely solved such

that there is no error involved due to future decisions. The only source of

.uncertainty in calculating the probability of my is due to the unobserved

_preference shifter at time t, 3. Hence, all the restrictions of the

theory are imposed in calculating the likelihood value of observing the
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particular sample. Therefore, it is the most efficient method of estimation.

As ‘long as the model is correctly Specif{;a::khe maximum 1ikelihood
estimates should be consistent for both the full solution and the necessary
condition ;pproaches. However, the second method is not as efficient as the
first. Using the necessary conditions method we gg_ggg_calculate optimal
future decis{ons. In fact we_calculate only their condifional.probabi]ities
and we do not use all the information from the theory. The uncertainty that
is included in the forecast error of the future endogenous variables depends
upon the parameters of the model and the distributions of the exogenous
variables. Hence, thé likelihood value of the second method should be higher
than the 11ke11hood value of the full solution, if everything eise is the
same. However, we cannot map this difference 1nto a statistical test sxnce
there is no clear way to specify the asymptotic likelxhood ratio test.
‘Hence, there is+no way to make a formal comparison or to measure the closeness
of the estimated parameters using the two methods.

The full solution method does not, however, easify admit to extensions.
Since it is necessary to solve for all conditional expectations, nonlinear
functions create extreme computational difficulties. The necessary condition
_ approach avoids that problem by exploiting the information from the
first-order conditions and the rational expectation assumption that is
fmplicitly 1mbedded into the solution of the dynamic programming problem. In
addition, as we will see in the example presented below, the full solution

approach is several times more computationally burdensome.




20

4. A MONTE CARLO ESTIMATION USING THE NECESSARY CONbITION METHOD

In order to compare the two methods we performed a Monte Carlo experiment
with the necessary condition method, using as a basis the fertility model
discussed in section two. That model was chosen 55 it has been estimated by
Wolpin (1982) using the full solution method on Malaysian data on fertility
and child mortality, and so we have some knowledge about the properties of |
that model. That data (1976 Malaysiaﬁ Family Life History) is described in
wolpin (1982) and is used in this exercise as well. “

As noted in the previous section, numefica] so]ution of the dynamfc
programming problem is greatly simplified in the linear—quadratic case. We

therefore use the following functional forms:

I N i\ d 12, A i2 i i
(24) ul,clal) = (ag + oMy - oM+ Bl - 80T T Oy T T
where in addition to the previously defined terms (see section 2.1), Si' is

the schooling level of the mother and

: i i i i 1
(25) Ye = Cp vepem * e2(mt - d;)
Following Wolpin (1982) we assume that ey, (the fixed cost of a birth) has
the time profile: ' ' |

(26) ej =€) + eft + eft? + eyd; * ety
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where d; and dé are equal to unity if it is the first and second

period in the 1ife cycle respect1ve1y and zero otherwise.7 The income
generating function (for the husband alone as the wife is assumed not to work)
is

' R 1,2 4 f

(27) LnY; = by * byt *+ bpt + vy

where Etvi = Evi -0 for all i and t; it is estimated for.

each household in the samp'le.8 The exogenous survival probabi]ity is
assumed to be related only to calendar time and is given by‘the logistic
formulation | ~ V '

| 1

x 3
(28) log ;E——-= n + nlt + n;tz + ui

with Etul = Eu; =0 for all i and t;' jt is estimated from time-series

observations on infant mortality for each of the eleven states in Malaysia.

Households are assumed to know the parameter vector (bg» by» by, ngs M1
0 1
N2s 01, By» Bos Y10 Yo» €1» €1 €11 912, B, €95 at) but do

not know the current draws (at t) on t’ dt’ ”1 nor the future

. draws on az Given the assumption that vl and ui are

{.i.d., the household revises its decision at each period t on the basis only

of the mortality outcome dl and the random preference parameter

a:, The researcher observes the state variable Mt—l at t as does
the household, but does not observe al. Except for al the

researcher would predict the fertility decision without error. As discussed

{n the previous section, the full solution estimation
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method proceeds by finding critical values for az at each‘; which makes
the household indifferent between mz ; 1 and mz = 0 and which,
given a distribution for a:, can be used to formulate the likelihood of
observing any particular sequence of choices.

The data on the exogenous variables used in the Monte Carlo experiment
was obtained from actual Malaysian data for 188 womenAand their husbands.
Income and survival probability data came d1rect1y from the sample data (1 e.
.the ‘b's and n's). Fertility outcomes were generated by the dynam.c
programming solution in the following manner. For a particular set of '
parameters, taken to be the "true" parameter values (those actua]]y used are
shown in Table 1), in each period and for each household en i.i.d. random draw
for a: was obtained from a standard normal density. If, given
az, it was optimal to have a child at t as a result of the dynamic
optimizafion, an infant death was randomly generateq using the sample death
probability. This determined the number of survafng children entering the
subsequent period. In this way, we generated a sequence of births (and
deaths).for each household over the number of periods each household was
actually observed in the Malaysian sample. Together with the life cycle
income and survival probability forecasts, the fertility and mortality
.outcomes comprised the data available to the researcher. The az are,
of course, observed only by the nousehold (at t).

We then used this data to estimate the parameters with the necessary
condition approach of the previous section. With the linear-quadratic

structure, equation (15) becomes
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where tﬁe o's are defined in terms of the fundamental Pérameters as
6 = o - sl(eé + ey )(1-8)
0 = % +'£e2‘+.e1tl('2’l * ey - Bz(ézi ege))
o, = 8ley * eyel)len ™ él; * )
63 = ~ap - *1}e2 + elt)(l;a)
(30) 6y = ap * v182 ¥ (€2 f ej¢)(Boer * v1(1-8))
o = (ep + e1)a(epy * m1)
% =" Bylep * eg¢)
& = fﬁéz(ez *eyy)
€g = v2

Equation (19) now becomes
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with ¢ given by €, &, corresponding to the term in equation (21).

Table 1 shows the “true" parameter values (column 1) and the estimated

-

parameters using the necessary conditions estimation approach. A single
experiment amounts to choosing an az for each household over its fife
cycle. There are 3086 household periods in all. We performed two such
experiments for the given “true" parameter values. They are reported
separately in columns 2 and 3. Ideally, one would like to perform many more
such experiments at alternative sets of "true" values, but the computational
burden of such an exercise is prdhibitive.

It is difficult to obtaiﬁ a summary measure of the "closeness" of the
approximate approach to the full solution method. Although the former model
“{s nested in the latter, the actual restrictions imposed are not apparent.
Restrictions that are automatically taken into account in the full dynamic
.programming solution are not used in the necessary condition solution. Thus,
although the 1In 1likelihood value in the full solution is -1920.3 which is
substantially higher (in absolute value) than fhe 1n likelihood values
reported in Table 1, we do not know the number of restrictions and so cannot
perform the usual likelihood ratio test.9

It is evident, however, from Table 1 that the discount factor is not

particularly robust to the estimation method; in the first "experiment" its

estimated value is outside any reasonable range. Eyeballing the differences
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suggests that the necessary condition approach is possibly quite inaccurate.
In both experiments parameters are often orders of magnitude different than
the true values. On the other hand, we can evaluate the results independently
pf the value of the true parameters. Given the data, that by assumption have
been generated by optimal dynamic programming, one éan ask whether the
egtimated parameters fit these data well The answer'is that the results are
mixed. In the first estimation (column 2)) 8y has the wrong sign and the
discounf factor g 1is negative. In the second estimation (column (3)) *82:
and -e2A have the wrong sign. However,}the mode? under the necessary
condition method is being much better than a pure chance model since the
latter 1n likelihood vaiue of -2059.5 (see Wolpin (1982)). Hence, the |
hypothesis that all the parameters (besides al) are zero is rejected by any

level of significance.lo

- e Wm we Ee em em m @ e e e s we e

CONCLUDING REMARK

In this paper we have suggested a way of formulating a general estimable
dynamic discrete choice model. Due to the computational limits of the
approach that explicitly specify the iﬁdividua] choice problem, we déveloped
new estimation methods. The full solution method has already proved to be
successful in estimating a complicated dynamic fertility model (Wolpin

(1982)). Here we have tried to evaluate an alternative method which was
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designed to accommodate more complicated dynamic discrete choice models. The
estimation results are not very encouraging and the burden of computation has
been reduced only by 1/3 to 1/2. At this stage of our research we suggest

.using the full solution method but would encourage the interested researchers
to continue the search for estimable models that can accommodate more complex

behavioral assumptions.,
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_TABLE 1

Maximum Likelihood Estimates of the Fertility Model:
The Necessary Condition Method

(1) (2) 3)
True Values '
sy 3.4320107 " 9.905x107L . 3.606x1071
o 2830t Tz 3.390x107
By 6.162x107° o La7exi0” © 1.145x1074
8, 1.074x10716 -1.376x1014 ~1.031x10%°
Y 2.421x10~ 4.607x10~7 1.64x107°
Y, -5.419x1073 -6.788x1072 ~4.050x1072
e, . 1.474x103 . 5.200x103 ~3.554x10°
e -1.947x10° 5.391x10° 5.831x10°
e} -2.861.10 5.926x102 -1.915x102
e  s.417x10" 2.978x101 6.982x10!
ey 1.769x10% 1.023x10° 1.834x10°
e, 8.093x10> 1.533x10° 1.062x10°
8 9.215x10™ ~2.895 5.011x107}

nt -1829.7 - -1837.0
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APPENDIX A
b2
In this appendix we demonstrate a method to transform the conditional
probability statements derived from the necessary conditions (see (21) and
(22) into the probability statements that are used to form the likelihood
function. _ |
We need to derive Pr(m _, = j-Mt—z =;0,...,T-2) for j =1, 0, which
"we will denote by  ¥,_; and 1-v respectively. To do so, first write

o

(A.1) Pr‘(mt__1 =1 ‘ m, = j,-Mt_Z) = Pr(mt_1 \ m = J, Mt-z)'
[Pr(m; = 3| my_y = 0, My_p) Prim_y =0 [ Mep)

+ Pl“(mt = j ‘ mt—l = 1, MT"Z) Pl"(mt_l = 1 ‘ MT"'Z)]

If we sum A.1 over j =1, 0, we get the marginal probability for me_y in

the following form Co-

(A.2) vy = Prim_y =1 | m =1, m_,) [rim =1 [ my =0,

Mr_p)(1-¥_q) * Primg =1 | mey = 1f Me_2)¥e1]

i}

+ Pr(mt_1 =1 ' my 0, Mt-Z) [Pr(mt =0 l me_y = 0, mT_Z)(l-wt_l)

+Pr(mg = 0 [my =1, M plv )
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Solving for Y _ys We get

-

(A3) o q=Pr(m_y=1|m =1, M ) Pr(m_; =1, m_; =0 M _,)

+prim,_y =1 | m =0, M_,) Pr(m =0 m_y=0,M )

ot

| 1+ Pr(mt-l =1 l.m =1, Mt-Z) [Pr(mt =1 ‘ mt—l =0, Mt-Z) -

1, M 5)]

- Pr(mt =1 | m_q

| + Pr(mt"l =1 ' mt 0, Mt-2) [Pr(mt =0 l mt-l = 0; Mt_z) -
- Pr(mt =0 l mt—l =1, Mt_z)]

Now, consider working backwards from T. ¥ is known directly from the

terminal necessary condition (22). From ¥r» One can find

(A.4) Pr(mT =1 mi_y» Moo = X) = Pr(mT =1 mr_y = 1, dT-l =1, MT—Z = X)

+ Pr(mT =1 l mr1 = 1, dT-l =0, MT—Z = x) Pr (dt-l =0)

= Pr(mT x) Pr(d.r_1 =1) + Pr(mT =1 l MT—l = x+1)

L]y

0 | mp_y =0, Mpp)s Pr(mg = 1 | mp =0, M)

and Pr(mT =0 l mr_y = 1, MT-Z)’ Thus, one can find Yol from A.3 given A.4.

and siﬁi]arly for Pr(mT

Given 7y One can follow the same procedure as in (A.4) to find Y2 from

(A.3) etc.
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APPENDIX B

The following table contains some information on the Monte Carlo experiment.

The starting values are 10 percent below the true values. The cost

information is given below the table.

True Values

Final Values

@ - .?'.II'X-'IO”1
o, 2.9 x 107
8y 6.1 x 10’5
B, 1.1 x 10726
v, 2.4 x 1071
e, 1467
s .92
Y 5.4 x 1073
e 1942
el -285
el 837
ey 17610
e, 8062

1n -1912.5

Starting Values. -

3.1 x 107
3.3 x 107
5.5 x 107
.9 x 10716
2.1 x 1071

" 1600

-84
-5.9 x 1073
1700
-310
58.0
19300
7200

-1950.2

" 3.1 x107!
3.2 x 107}
5.9 x 107°
.98 x 1017
2.3 x 107}
1880
.92
-5.8 x 1073
1726
-322
64.5
21000
7816
-1904.1

L = Likelihood

Number of iterations = 19

Convergence criterion alnL = 10

.55 min per evaluation

IBM 4341

-10

25-30 evaluations per iteration
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FOOTNOTES

Here t refers to life cycle period (age) rather than calendar time per
se, although for different cohorts t will also correspond to different

calendar time. We ignore here any calendar time aspect that affects the

indiv{ghaf decision.

pRv Y

Note that the no savings assumption is equivalent to assuming a utility

function that is linear in consumption which is common to some dynamic

estimate model, such as in search models (e.g., Miller, (1983) and

‘Heckman's statistical model that we present in the Introduction).

Actually U(+) and NY(*) need be differentiable only at one point in
the (0, 1) interval of the m: variable, as will be discussed later.

Strictly speaking, this is only true if a, is i.i.d. or if it follows
a permanent-transitory scheme. For a more detailed discussion of these

issues see Wolpin (1982).

Note that in (16) we ignore the unobservable taste elements at'and

2 Those elements, if they exist, cannot enter except additively

t+l®
in Z,, in order to preserve the validity of the method.

That is, Pr(ﬁ% n&_l,...,mo) = Pr(mT_l) for the special case we are
considering, and similarly for other periods.

A period is taken to be eighteen months and the first decision period is

age fifteen.




10.

2

The assumption that v: is serxal]y uncorrelated greatly sxmp]ifies
_:“;.:.nv

the dynamic programming solution since households do not have to update

their forecasts each period. '

The number of restrictions is 1ikely to be large since there is bn.

average sixteen periods per woman and separate restrictxons for each

period. Twice the difference in the 1ikelihood is 181.2 and the null

hypotheses that the parameters in co]qmn 1 are the same as those in 2 or

3 would be accepted at the standard significance ]eve],.only if the

member of restrictions exceeded 150, which seems unlike]yf a4

Additional information on the cost of the estimating the model using the

necessary condition method is given in Appendix B.
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