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Abstract

This paper argues that sample-based analyses of individual longitudinal
behavior can normally do well without sampling weights. Instead of worrying
about such weights, it pays to concentrate on the modelling of behavior and on
drawing inference about features of the model. One-should not feel confined to
finite population totals and means, finite population regressioﬁ coefficients,
and other finite population statistics. Also, some of the claims about the

good properties of conventional weighting seem exaggerated.
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1. IRTRODUCTION

Many social sclentists and most survey statisticlans display great
unease when anyone analyzes survey data without using conventional sam-
pling weiénts. Such unease 1s‘ certainly warranted when the analysis con-
sists in estimating population-level statlistics in the finite population
from which the sample was drawn. Currently, however, the feeling alsc ex-
tends to cases where it 1s misplaced, for instance to situations where the
analysis 1s evidently based on probabllistic models of human behavior,
say, and where you must really force your lmaginatloh to find counterparts
to model parameters and other characteristics in finite population statis-
tics. This is particularly clear in sample-based event-history analyses
and panel studies. It is hard to see what meaningful finite population
' statistics are estimated by occurrence/exposure rates, Nelson-Aalen p;ots.
loglstic regression coefficients, or the estiméted cﬁefflcients of hazard
regression analysis, all of which are used with samples as well as with
complete sets of life history segments. Introducing sampling weights in
-such analyses can complicate matters, for the standard statistical theory
of inference procedures of this nature then collapses and special theory
mst be applied. Such theory has been developed for models of contingency
tables (see Rao énd Scott 1984; Smith 1984, Sectlion 4.2; and their refer—
ences; for a computer program, see Fay 1982) and indeed for genemllzéd
linear models (Binder 1983; Chambless and Boyle 1985). Some consclentious
empirical investigators have computed values for estimators and test sta-
tistics both with and without welghts, and have often been rellieved to
find that the outcomes have largely been the same (Schirm et al. 1982;
Rindfuss, Swicegood, and Rosenfeld 1986, footnote 1; and others). The
Position taken in this paper is that such worrles and such computing exer-
cilses can be superfluous in sltuations where the investigator 1s really

involved in modelling human behavior rather than ln calculating descrip-




tive statistics for the finite population, and that they may divert atten-
tion away from more important concerns of modelling and ahalysls.

In the considerable disagreement on the issue of weighting in the
caorent statistical literature, there is a standing dispute between those
who would apparently really like to see standard welghts (reciprocal se-
lectlon probabilities) applied in "most" circumstances and otl s who feel
~that {1f the analyst wishes to use the [sample] data to estimate a proper—
1y specified model, then the case for welghting is much weaKer, since the
model rresumably "contreols for" the effects of the factors which lead to
. the ‘need for weights in the first place» except apparently for particular
dependent variables in the model. (This typical quotation from the PSID
User Guide, 1983, p. Ai3, catches the spirit of many other formuiations in
the literature.) Some welghting protagonists seem to see the latter posi-
tion as quite 1&n1ent in this spectrum, perhaps as a concession to model
bullders. To me (and to some others), even that standpoint is too mich in
favour of the use of sampling weights In the situations of thls paper. Our
aprroach is to follow general statistical notions, to regard the sampling
mechanism as part of the total model of the "random experiment® which
produces the sample data, and to incorporate it into the likelinood with
normal consequences for the statlistical analysis.

Since I take issue with much that 1s found in contrilkutions from
sample theory practitioners and teachers (Kalton 1981; O’Muircheartaigh
and wWong 1981i; Hansen, Madow and Tepping 1983; the PSID Usef Gulide 1983;
Kish 1981; and others), I should perhaps make clear from the outset that I
reallize that they do not all have the same positlon on all relevant is-
sues, that opinions may develop over time, and that no one can be expected
to present the full Ireadth of his reasoning on any single occasion, let
alone the reasoning of others. There 1is no collectlve responsibility for
arguments and recommendations presented. Let me also state unequivocally

that I do not question the appropriateness of common welghtmg procedures
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in inference to finite population statistics. However, I want to line up
with those who feel that the thirnKing on the matters raised here has been
maduly doMted by the spirit of finlte population descrlptions. One can-
not allow comments on the modelling of behavior to be confined to krief
asldes (see Section S.i1 of Hansen, Madow and Tepplng, 1983, for a typlcal
example), nor 1is it sensible to relegate infinite population modelling
concepts to the role of mot-ivatoré of definitions of new finite popu_lation
parameters to be studied ﬁy the design-based approach, the way Binder
(1983) and Chambless and Boyle (1985) as well as Folsom, Lavange, and
Willlams (1986) invite us to do.

The modelling approach induces us to focus on 1ssues that have re-
celved insufficient attention or less than lucid treatment in the sampling
literature. For instance, 1t 1s ilmportant to distinguish between the vari-
ous elenments of the compr‘enerlslﬁe model of the feal-llfe Fhenomenon inves-
tiga’ced by means of the sample data. Likewise, one needs to Keep these el-
ements separate from the varicus statistical procedures avallable and from
the functions which the procedures have in the analysis. We have in mind
collections of records of segments of individual 1ife histories, so one
part of the total model 1is the sub-model of individual behavior. S@-@@l
misspecification is one issue and the use of sampling weights is another,
and an operative comnection between them remains to be demonstrated. Sam-
pling weights have not been devised to correct for or protect against such
misspecification in ﬁodel4based analysis, and we know of no proof that
théy can serve this function in general, as seems implied by many formula-
tions in the literature. Whether the sampling mechanism is informative
(1.e., whether it depends on the random outcome of the real-iife phenomena
under analysis) is a separate question again. For instance, the examples
offered by Hansen, Madow and Tepping (1983, Sectlon 2) and Duncan (1982,
Appendix 2) in support of the supremacy of me.design-based approach have

sampl ing mechaniéms that are manifestly informative and therefore are not
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relevant for the issue of robustness against dbehavioral medel misspecifi-
catlon nor for the separate issue of rokustness against informatory sta-
tus.

The informatory status of the sampling plan depends on the model, for
the model defines which variables are seen as stochastic. Model mis-
specification at this level may result in an unrealistic declaration that
the sampling plan is noninformative when 1t 1s not, which may lead into
the well-Known dangers of outcome-based sampling. In this coméctlon.
weighting does seem to have a function as a guard against model misspeci-
fication in certain cases. Holt, Smith and Winter (1980) and Nathan and
Holt (1980) have shown that welghting may produce a robust though ineffi-
clent estimator for a linear regression ccoefficlent when the sampling plan
is informative. (See also Jewell 1985.) Unfortunately, one does not seem
to really know wny this is so nor to what extent current results can be '
generalized.

OQutcome-based sampling does not appear as much of a problem in the
selection of the initial target sample for prospective panel swveys of
individuals, for the sample is typically drawn at the beginning of the ob-
servational period (at "time 0v) and therefore jJust cannot be influenced
by the later benavior of the (potential) respondents. On the other hand,
since the extent of nonresponse may depend on such behavior, it may intro-
duce an element of outcome-dependence in the effective sample, as 1is well
recognized. (See for instance Fay 1986.) This gives leeway to all the
usual ingermity of survey samplers in estimating nonresponse probabilities
and applying their reciprocals to the various response groups, but in 1t-
self 1t glves no opening for the reciprocals of the sampling probabllities
of the target sample,.

This reserved attitude to the use of sampling welghts 1s not weakened
by the fact that 1t 1s sensible to use all information available about the

members of the target population at the time of sample selection. If we
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conditicn on whatever has happened up to and inciuding time 0 and
concentrate on investigating whatever happens after that point, the
sampling plan can be ocutcome-independent even. 1f population characteris-
tics at time 0 is used extensively when the sample is drawn. To the extent
that such "starting data" have a bearing on the topic of the investiga-
tion, the information should be included in the model and tins be one of
the guides of subsequent analysis. Post-stratificatlion into behavlorally
distinct groups can be sensible, across prior stratum boundaries 1f this
is suitable. Concomitant variables should be exploited as usual. (See
Sugdeﬁ and Smith 1984, for a discussion of problems which arise if the
analyst has less information than the sampler.)

It is important t6 be careful about features like post-stratification
according. to behavior or other outcomes after time 0, however. Such
Frocedures are rrone to introduce selection biases of a form characteris-
tlc of outcome-dependent sampling. Iﬁ an example below, we discuss the
role of sampling welghts in counteracting such biases in panel studies.

One mist exercise similar care in the analysis of data for respon-
dents who are included in the sample after time 0. In general, 1t will be
unproblematic to utillze- individual-level data for periods after entry of
such individuals provided they are homogeneous with those who nhave been in
the study from the outset. (Teéhnlcal'ly speaking, entry should be rerre-
sentable by a non-informative left-truncation mechanism; see Wellek 1986,
and Keiding and G111 1987, Section Sa.) The use of retrospective data for
periods before entry may be another matter when entry into the sample is
part of the life course outcome under analysis, as Lillard (1986, final
page) evidently suspects. In the PSID, for instance, non-sample individu-
als may enter the sample because they become members of existing sample
households. when such entry is through marriage to a sami:le household mem-
ber, then the analysis of the process leading up to marriage needs to take

into account that it actually ends in the upcoming niar'riage. Sample entry
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- then represents a form of outcome-based sampling. (See Hoem 1969, and
Keiding and Gill 1987, {for some discussion of technical aspects.) If one
is able to compute the real inclusion pfoba.blllty of such an entrant,
there 1s a legitimate place for reciprocal probability welghts in the ana-
lysis (Hoem 1985, Section 2.2). This probablility will be a much more comp- '
lex entity than merely the initial inclusion probability of the household
entered, however.

The panel medium is typically geared to the collection of data about
the respondents’ situation at fixed tixﬁes during the observational period.
'ﬁus sets the stage for a particularly simple model presentation, and we
use the time-discrete Markov chain as an uncomplicated prototype of panel
models to convey the essentials of our notions with a minimum of distur-
bance by mathematical or circumstantial complexity. We extend this simpli-
. cliy further by mostly assuming that data collection 1s by a two-wave pa-
nel only. In practical applications, more complex models and more exten-
sive observational plans are bound to be needed. (A kroader catalogue over
various issues of design and usages of panel data has been given by Duncan
and Kalton, 198S.) Indeed, much richer analyses can ke made 1f data are
obtained for contimous life histories, for then the whole tool-bag of
event-history studies is avallable. This 1is parftlcularly‘useful 1f the
timing of events or the dﬁration of spells are important for an understan-
ding of the dynamics of behavior, as it is bound to be in most fields.
(See Allison, 1982, for a discussion of the pros and cons of contimous-
time and discrete-time methods. ) 'lhe panel vehicle can be used to obtain
retrospective information for periods before time 0 and between other
times of data col l_ectlon. and 1s used in this mamner by some major data
agencies. The issue of welghting does not change in character by such an
extension.

Much of the reasoning presented here has basically been given before,
though usual 1? with different emphases and not ‘with the special issues of
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panel studies in mind. Some recent references are'Fienbefg (1980, pp. 335-
338), Little (1982), Smith (1983, 1984), and Hoem (1985). Lest I be
accused like -so many others of being a meddling theorist with no ground
contact and therefore nothing useful to tell sampling practitioners (cf.
O'Muircheartaigh and Wong 1981, p. 487; Kish 1981), let me note as a cre-
dential that I got interested in the weighting issue in comnection with my
own empirical research in demography based on panel and event-history
data, and as a discussion partner with a rumber of colleagues working in

demography, soclology, economics, and epidemiology.

2. SAMPLING MARKOV CHAIN SAMPLE PATHS

‘.2.1 Framework

Here 1s the very simple mathematical frémeworx in which our arguments
will be dressed. Assume that the N individuals of a population move
independently between states in the finite state space } of a time-homoge-
neocus Markov chain model. Suppose that the state xi occupled by individual
1 at time t is observed at discrete times t = 0, 4, 2, --:, and let the
| unit time transition probability be

P © Pl 7 KIE F 30
Suppose to begin with that x¢ ls observed for each individual only at
times 0 and 1, and regard Xy as exogenous, l.e., as determined before the
"experiment" whose outcome is observed by the investigator. Let Xy(J) = 4

1f individual 1 is In state J at time 0, and let X3(J) = O otherwise. Then

the X3 (J) are nonstochastic indicators, and the number
N I;:I X3 (J)
372

of population members in state J at time 0 1s also nonstochastic and per-
haps known to the investigator. Let Njk of the latter be in state K at
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time i, and suppose for now that the (pjyi have no particular structure,
i.e., that all that is essentially Known about these probabilities is that -
Tkey pJK' = 1 for all j€3, with the possible exceptlion that some transi-
tions may be impossible and the corresponding pjx may equal 0. If all po-
pulation data {Njk] were avallable, then the maximum likelihood estimator
of a (nonzero) pjk would of course be the multinomial proportion

ij = Njp/Nyo (2.1)
- and we would have

var py : Pk (1-Pyk)/Hj. - (2.2)
Now suppose, however, that a sample S of individuals 1s drawn at time 0
according to some Known sampling plan p(s) = P{S=s}. (If sampilng is with
replacement, then our S is tne sample after the removal of any doubles.)
The probabillty that individual 1 1S a member §f S 1s Wy = Dig; 1es] P(S)
which we assume to be po§1t1v¢ for all 1. Suppose that the estimation of
the (py} 1S to be based on the sample data

D = (S [Nyjx 1€S, J€3, K€},
where Njjx = {1 1f individual 1 is in state J at time O as well as in state
K at time i, with Ny = O otherwise. Assume that the individunal transi-
tions after time 0 are independent of membership in the sample, l.e., that
the sampling (and subsequent observatlion) does not affect individual be-
havior. Then strict adherence to conventional sampling theory would lead

to the estimation of Nlj by

Ry = T Ny /Ty,
Jk = B Nigk/Ty

N* ~
and correspondingly t0-Pyk = HJK/HJ as an estimator (predictor) of the
*
population statistic pj (1f Ny 1s known).
In a superpopulationist vein one may note that
E{N S=s} = X (J) if 1€8. (2.3)
1JR! 1 ka
If we define
By = T %y 03)/7y4,
3 1€S ! i
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therefore,
N* ~
E(p |S=s) =p N/,
JKl J J ] .
so p Jjk 1s not an unblased estimator for the parameter pjk when the
sample is given, in contrast to, say,

Py = ﬁJK/ﬁJ. (2.4)
vhich may be used even 1f Nj 1s unknown to the investigator. On the other
hand, ' '

EN; = Ep(s) T X3V gxu) iz (s) n

- P(s w z ) P(s = ’
37 s 1€s t TR b ist'1esy 3
so ’
lv* ~

Epjk = EPjk = Pik
when E denotes the exXpectation operator in the model which accounts for
the randomness of both S and the population data Nggg: 1 =4,
J€F; K€}, unless a conditional expectation is indicated explicitly. In
the total model, therefore, (i1.e., when all currently random elements are

N* . A
included), both estimators pjg and pjk are unblased.

The two-wave set-up does not really explolt the Markovian propertles
of the chain model. All we have used so far 1s its notation. In reality,
we are only dealing with a set of related contingency tables, one for each
starting state j€3. As we noted at the begiming of Section i, the mathe-

matics for dealing with inference in such models, with or without weight-

ing, 1s already avallable,

2.2 The Likellhood Approach

These estimators are based on S\JI"VBY sampling notions and their su-
Perpopulationist extension. A classical statistical approach woﬁld e to
establish the total llkellhood corresponding to the observed data 3, and
to maximize 1t. The likelihood is A’ = p(S) A, where

A=T 0 T (pydE), (2.5)
1€S €7 KED

with N(1, J,K) = Ny gk in the exponent. If Ng(J K) :lgsuuk 1s the number of
. t .
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J = K transitions observed in the sample, and if

(J) = EHs(LK) = T Xy (J) C (2.8)
feld) s gys 1€st _

1s the number of sample members who start out In state j at time 0, then
the MLE of Pk ‘ls

Bk = Ng(J. Ki/ng(J), (2.7)
provided that p(-) 1s functionally independent of the {[pjx}, as we will
V assume throughout. Hote that (2.7) has precisely the same structure as
(2.1), 1.e., ﬁJx is the estimator whicn elementary statistical theory
will lead to 1f the sample is treated as if it where the whole population.
Beyond the fact that the sample is the vehicle which provides the data,
the form of the estimator is not influenced by the sampling mechanism. In
particular, no sampling weights are involved.

By (2.3) and (2.6), we easily derive the unbiasedness results

E{pjxlsfs}. = E{PJK} = PJK-
In parallel with (2.2),

B S:= = i- '
varipjkl s} PK( pr)/ns('”

J
and consequently
var Pyjg = Pyx(1-Pik) E(1/ng (1)1, | (2.8)

with similar results for covariances. Formula (2.8) shows that the proper-
ties of ﬁjk are certainly influenced by the sampling mechanism, for p(-)
determines the final item in the formula. The likelihood approach allowé
us to construct estimators whose form is not influenced by the sampling,
but we cammnot ignore the fact that a sample has been drawn when we study

(unconditional) estimator properties.

2.3 A Welghted "Likelihood”
The 1iKelihood approach 1s sometimes interpreted in a manner diffe-

rent from the one which lead to (2.5), namely as follows. (See , e.g,
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Chambless and: Boyle 1985.) If all population data were available, then the
1iKelihood would be

= I H(Jn k)'
Aot 167 Ke3 Pkl

- with N(J,K) = Njyk. When one is restricted to the sample data 5, then each
member 1 in the sample “represents" 1/m; of the members in the population.
It seems logical then to maximize an “"estimate" of Ay,¢ given by

A = I (Ag)1/T(L)
Atot BB

where w(l) = 7wy, and where

Ay =TI 1 N(i, J, K)
170 kﬂ[PJx] .

is the 1likelihood contribution of individual -1. Such maximization leads to
the estimator ﬁjx of (2.4), which thus gets a Kind of legitimization as

a pseudo-maximum-~1iKelihood estimator. However, given S, ﬁJK of (2.7) is
known from general theory to have minimal variance among unbiased estima-
tors, ahd this property carries over to the unconditional variance in

(2.8). Using ﬁJK instead of ﬁJK must entall some loss in efficiency.

2.4 Concomitant Information

We have stuck to' the very simple situation above to minimize the
effort of presentation. The maln outcome of our argument is retained in
cases with more extensive observational plaﬁs or a more complex structure
in the transition probabllities. Assume for instance that for individual
1, the J 9 K transition probablility is Py = ¢jk(21, 8), where z; is this
individual’s value on a vector of concomitant varlables; 6 1s some unknown
multidimensional parameter; and the function ¢k may perhaps specify a
logistlc regression, it may have a simple form as in our Section 4 below,
or it may be of some quite different complexity.

Assume that the 2z; are exogenous and that the sampling mechanism is

independent of 8, though it may depend on Z4s e 25 perhaps thI‘OU.gh some
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systeﬁ of stratification of the members of the population. 'Ihen'the l1iKe-
lihoecd of 3 contimues to have the form A’ := p(S)A, where A is given in
(2.5), except that pjx 1s now replaced by ¢3k(2;, 8). Maximization again
proceeds without regard to any sampling welghts {i/m;} and the MLE for €
is constructed as if the sample members constitute the whole populiation of
interest.

Some lnvestlga;clons will. oversample certain minoritlies. This in 1t-
self 1s hardly a sufficient reason to use sampling welghts in the estima-
tion of parameters of behavioral models. Let us distinguish three situa-
tions:

(1) If the behavior of the mlnorlty' is the same as that of. other
people, then applying reciprocal sampling probabillities Just gives more

welght to some observations than to cothers of the same Kind, which cannot

be efficient under any approach.

_ (11) If minority behavior differs from oﬂief behavior (and of course
Knowledge or a suspicion of this is the reason why ’c.hey were oversampled
in the first place), then it should be reflected in sufficliently accurate
modelling. Elther the model has one or more parameters whese values are
different for the minority, in which case likelihood maximization (or
something similar) will'plck up these differentials. Or altermatlvely a
different model 1is needéd for the minority, in which case separate ana-
lysis is more sensible. Who has a proof that welghting can overcome the
inferential errors of an inadequate model which tries to account for beha-
vioral differences?

(111) If minority behavior differs from other behavior and a model 1s
fit which does not have features to pilck this up, then the model is
. misspecified and weighting will not of be much use. Instead of parameter
values (or separéte models) which 1dént1fy the behavioral differences be-
tween population groups, one gets fltted parameter values which represent

some fictitious "mean behavior' which no group has. One has then lost
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sight of Interesting behavioral dlfferéntlals.' Modelling them is more sen-
sible.
© Note that we dlscuss the role of the sampling welghts as an Lssue

separate from the question whether the model ¢;x 1s correctly specified.
The latter question is certainly important for the empirical analysis; but
1t must be addressed directly. There is no a priori reason why the use of
sampling welghts can be expected to compensate for an incorrect specifica-
tion of individual behavior. Anyone who feels that welghts may give some
Frotection against model misspecification of this Kind should demonstrate

1t and explore wny 1t works of it does.

2.5 Three Waves

The character of these arguments does not change 1if thc; observational
Plan 1ls more extenﬁive than the one above. To makKe a2 single step in such a
direction, let us revert to non-‘sbeclﬁed transition probabllities pjg of
© a Markov chain but let the state X4 of each individual be cokserved at time
2 as well as at time 0 and {. For sample member 1, let N(i, J, K £) = 1 1f
this individual has the state sequence Xp=J, X(=K, and ¥p:=4, and let
N({l, J,K £) = 0 otherwise. With a time-homogeneous Markov chain model, the
| likellhood of the sample data now becomes

I {Pjk DL LK L)

pS)y 0 o 1o
1€S J€7 KE€F «4€3

which is maximized by

N Ng(3 K) + Bjeg Igez N(L, 4, 4, K)
pJK b4 . . (2-9)
ng(J) + Tieg Tgep ke N(L 4 4 K)

Properties of this kind of estimator were studied by Anderson and Goodman
(1957). There 1s no role for sampling weights {i/m;} in this estimation
procedure either,

In what follows, we revert to the case where individuals are observed

in two waves only.
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Let us now address the 1ssué of characteristic-dependent nomresponse. '
Consider the simple MarKov chaln‘model again, let sample individuals be
observed at times 0 and 1, and let us make the assumptions |

‘(1) that whether an individual responds at time 1 1is mdependent of
the outcome at time 0 as well as of the transition behavior between times
0 and ¢,

(11) that both at time -0 and {1 each individual in state ] has a re-
sponse probabllity of B and

(111) that individuals choose to respond or abstain independently of
each other,

The response model above 1is sufficlent to serve as an lllustration
for our purposes. In practice, a more complex response model will surely
be needed. For instance, one must often expect the response outcome at
time 1 to depend on what has happened before that time. For a more com-
plete model in a three-state set-up, see Stasny (1986a, b) and her refer-
ences. Marini, Olsen, and Rubin (1979) study a situation with normalily
distributed variables. Both papers use the maximum imelméod approach and
no weighting.

To establish a likelihood, we introduce A(l,t), which equals { if
indivicdual 1 responds when approached at time t, and which equals 0 if
this lndlviéual is 2 nonrespondent at time t. (A is for "answer".) Suppose
that the state at time 0 is Known for all (sample) members; the state at
time 1 1s obtained only for respondents. Then (X3 (J) : 1€S, J€3}1 is exoge~

nous and the sample data consist of S, {A(4,t) : 1€S; t:=0,1}, and

{N(L, J,K): 1€S; J€3; K€ A(L, 1) = i}. The liKelihood of these data 1s
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p(S), I I {[s 1A(L,0) [4-g 117A(L0) &
1€s g€z L 4 J
AL, 1N(Y, J,K) s-acs ]
. I 4 + D - . ,
(xe; ®x P’ ) v, ]
where

Yy =1 -3
J KQPJKBK

1s the probability that an individnal who 1s in state ] at time O will be

a nonrespondent at time i. We Introduce ajx = Pjk Bk, sSee that

Yy = 1 - Ig Gy and reorganize the llkellhood, which becomes

p(S) Ln g JR(30) [4-g (IR, 0')] o
€3 J J

om0 | (TWK) n(J)—R(J.i)],
€3 KET- [[ *®’ vyl |

where

ies

is the rumber of respondents at time t among sample members who were in
state J at time 0O; where

T(JK) = T A(L,1) N(4, L, K
(3 K) 1€S( ) H(4, 3, k)

is the number of J = K transitions actually observed; and where we have
written n(Jj) for ng(J) to facilltate the typing of exponents. Since

Tk T(JK) = Bieg A(1,1) %3(J) = R(J, 1), maximizing the likellhood 1s
straightforward, and we get the MLEsS

QJ = R(J, 0)/ng(J) (3.1)

&3k = T(LK)/ng(d)
which makes &jy/By the current maximum likelihood estimator of Pjy.
Unfortunately, these estimators do not add up to i when we take the sum

Dgep SO the adjusted estimator -
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N T(J k)/Bg -

Pk - - : (3.2)
S_T(J, £)/8y
2€3

1s perhaps preferable. As the population size and sample size go to infin-
ity together, the denominator of.(3,2) will converge to i 1n probabllity
under any reasonable asymptotic.

Adjustment by means of reciprocal response probabllities is of course
an old trick in swrvey sampling analysis. It appears so easlly above
because we have made things simple for ourselves through our assumptions.
Hore complex response models will lead to results of a similar nature,.
however, and the maln message conveyed again 1s that sampling proba-

biiities Just do not enter into the formula for the estimator.

4. OUTCOME-DEPENDENT SAMPLING

4.1 Basic Hotlons

We have assumed that -t.ne sample was drawn at time 0, and of course
that it could only be based on information avallable at that point. This
is the natural situation in prospective panel surveys. In retrospective
surveys, by contrast, one has the option of using whatever information is
available when the sample is drawn at the end of the study period. (In a
retrospective panel study, information would be cbtained concerning the
situation of the respondents at fixed times prior to the time of selec-
tion.) If any informatlion concerning the respondents’ behavior during the
study period is used in the sample selectlon, then the sample S is
outcome-dependent, and subsequent data analysis must be made with great
care to avold the many pitfalls inherent in such a set-up. Even if the

original sample S 1s outcome-lndependent, subsequent post-stratification
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according to the value of an outcome—\.rariable may introduce similar
effects.

Properties of the sampling plan will generally enter into a likeli-
hood analysis if the sampling 1s outcome-dependent, and they may help pro-
vide a guard against selection blases otherwise produced. In some situa-
tions, the influence of the sampling plan then works via the (reciprocal)
sampling fractions in outcome-based strata.

We discuss a simple example in Sections 4.2 to 4.4 below, The formal
model there geoes back to Colding-Jgrgensen and Simonsen (1940), and it has
been used for purposes similar to ours by Aalen et al. (1980) and by Hoem
and Funck Jensen (1982, Section 5.3). It 1s a time-continuous Markov chain
model used fér statistical inference from panel data. A review of such is-
sues has been given recently by Kalbfleisch and Lawless (1985), who also
address computational aspects as well as t.he incorporation of covariates.
Among the references that they do not give, are Singer and Spilerman
(1977), Singer (1981), and Allison (1982). Formulas given by Funck Jensen
(1962) for transition probabllitles in terms of transition intensities
will e useful in such analyses.

Cutcome-dependent observational plans and the biases they produce
appear in many shapes in inos£ fields of statistics and have correspon-
dingly many names, such as length blased sampling, prevalence sampling,
seléctlon blases, restriction blases, selection by virtue of swrwival,
pureged sampling, anticipatory observation, and cholce based sampling. We
have reviewed them in the Markov chain setting elsewhere (Hoem and Funck
Jensen 1982, Section 6; Hoem 1985, Sections 2.2 and 2.3). Cohen and Cohen
(1984) recently discussed them for clinical trials. For an account of
thelr appearance in soclology, bullding mainly on previous work in eco- ‘
nomics by A. S. Goldberger and J. J. Heckman, see Berk and Ray (1982) and

Berk (1983). Some further references are Hoem (1969), Cosslett (1981),
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Manski and McFadden (1981), Vardt (1985), Rao (1985), Rindfuss, Bumpass,

‘and Palmore (1985), and Hoem, Rennermalm, and Selmer (1986).

4.2 Example 1: (hildbearing and Promotilon

We now turn to the simt:le example in Flgure 4, which (in one of its
gulses) reflects some central features of the interaction between cnlld-‘
bearing and promdtlon of women in a bureaucratic hierarchy where the
employer 1s not permitted to let rromotion t¢o a higher grade job be influ-

enced by the employee's private life.
[F_lgure { about here.]

In this model, the states are denoted by a two-diglt code (X Y),
where X lﬁdlcates whether she has a'Alower grade 'Job {code x=0) or a higher
grade. job (code x:=1). The second eiement y indicates whether a woman has
had a child (code y=1) or not (code y=0). Thms a woman 1s in state (0, 0)
1f she works in a lower grade job and has not had a child yet. At the
birth of her first chlld, she moves to state (0,1) if she still has a
lower grade job, and so on. A woman camnot have a child and move to a
higher grade job at the same time. Otherwise, she can have her first child
or e prométed at any time. Let (Xg, Y¢) be a woman’s state at time t. The
transition intensities in owr time-contimious Markov chain model for a
particular group of women are the constant parameters A, y, and ¢ indi-
cated in the figure. Thus, v and ¢ are birth intensities for women in
lower and higher grade Jobs, respectively, and A is the rate at which
women are promoted to higher grade jobs. We assume that the bureaucratic
rules ensure that the latter 1s not influenced by the presence or arrival
of a chilld. (In the terminclogy introduced by Schweder, 1970, Xy 1s local-

1y independent of y;.) On the other hand, suppose that women in higher
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grade Jobs may have specific motives for reducing thelir natality, so
v 2 9. We take (Xp, Yg) to be exogenous and let

P (% = P{X =X, Y% = =b} for a b X, €7,

ab Y) i Y1 Y[ o a.YO
with 3:{0,1}. If d=y-¢, 1t follows readily that

Ppo (0. 0) = e”(MV¥), pyg(0,1) = e (1-e7V¥),

Ppo (1, 0) = ™% (1-e”(Md)) s/ (a+d),

Ppi (0, 1) = ™A, pyp(1,0) = e7?,
and. so on. In particular,

Pix =1|% 0, ¥ b} = 1-g’* for b = 0,4, (4.1)
i.e., the probability of getting rromoted to a higher grade job by time {
for a woman who 1s not there at time 0 equals i-e™}, irrespective of her
chlldbearing status at time O.

Assume that a Scandinavian type population register 1s avallable, so
| that the target population may be stratifled by childbearing status when-
ever needed, and suppose that informatlion on Job status at times O and i
1s collected from the members of a sample. Assume that the respondents are

grouped according to childbearing status at time 1, either because the
sample was selected this way in the first place or through post-stratifi-
cation when the data are prepared for analysis. As part of the investiga-
tlon, one may then estimate transition probabilities for the promotion
variable x;, glven the outcome on the childbearing variable, 1l.e., con-~
ditional probabilities of the form

'nby = P{xi=i|x0=0. Y0=b. Y1=Y3 : POb(i.Y)/[POb(O,YHPOb(i,Y)J-
As we demonstrate below, it turns _out that

Moy < Myg = 1-e7X < myg when v > o. (4.2)
This looks as if the arrival of your first child (yg=0, y4=1) reduces your
chances of getting promoted to a higher grade job over the unit time peri-
od, .and'as 1f not having a child (yp=0, y4=0) improves those chances, de-

spite the fact that we have postulated no influence of ch.ildbearing status

on the promotion variable 1n our model. The childbearing-status indepen-
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dence of the promotion variable is well reflected in the unconditional
pr‘obablllties in (4.1), ut l‘t. gets garbled in the conditional transition
rrobabllities, as is apparent from (4.2) The analysis based on such post-
stratification easily induces the investigator to conclude that the arri-
val of a first chiid 1s a hindrance to further rromotion even when 1t is
not. Conditioning on the outcome of one variable in the investlgation of
another in life course analysis 1s a risky business.

To prove (4.2), 1t simplifies matters to study Tpy = 1-mpy and to
demonstrate the eqﬁlvalent relation

figp < figq = e = Ty when &>0.

First note that figg=e™ v/w, fyqze™), and Agize™ (1-v)/(1-w), with
vze™V and w=pgg(0, 0)+pgg (1, 0)ze™V £, (), where

£5(8) = e A+ (ed-e7h) A/ (A+d).

Since botn w and i-w are positive probabllities, O<w<i. Because £, (0)=1
and 3f) (8}/346>0, we get £,(d)>1 and ‘t.he_refore all in all O<v<w<i when &>0.
From this our Inequalities follow directly.

The above formulas for the iy also show that "100;"111="101=1‘e-)‘ 1f
v=¢. This 1s the unconditional promotion probabllity in (4.1). When chiid-
bearing is not influenced by Job grade, therefore, one is relieved of the
dangers of systematic errors in coﬁclusions (within thils model) otherwise
innherent in outcome-dependent analysis. For the particular value 0 of the
parameter ¢, outcome-dependence 1s still present ut the selection blases
it causes vanish.

Klevmarken (1986) has an example in which not only do the selection
bilases vanish when a par"tlcul'ar' parameter has the value 0, but the entire

outcome-dependence disappears at the same time.

4.3 Example 1 contimed: Likelihood Analysis
The selection biases just described arise because the investigator
supposedly has not used the full informatlion contained in the data, as
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summarized by their likellhood. To see how the llkelihood approach would

work in this particular example, let us assume that all the N members of a

target population start in state (0,0) at time 0, and introduce Pgg

1}
"

Ppo(0.0), Ppg = Ppo(0, 1), P1p = Ppo(1, 0), and pyy = Ppp(d, 1). Let q = Pgo
+ Pyp be the probabllity that a woman has had no child by time i, and let
us a@op the initial subscript 0 in the ms now involved and write my=Tgpy
for y=0, 1. Assume that at time {, t.ne women are grouped into two stirata,
Stratum 0 for those who have had no children and Stratum i for the rest.
Suppose that a simple random sample 1s then drawn from each of these
strata at time i, and that the job grade status at time { 1is ob'.t.alned
(without misclassification error or nonresponse) from all members of the
sample. We now want to establish the liKelihood of these data. wWe usually
follow the convention of denoting random variables by capital Latin let-
ters and their values by the cor'res;ponding lower cas.e letters, ut in the
present commection this would lead us to cover up some correspondences
with survey sampling theorﬁr which we want to display. For the remainder of
this single section, therefore, let random varlables be capltals or lower
case letters typed in boldface and let their values be corresponding capl-
tals or lower case letters given in ordinary typeface. At time {, then, Mg
members .of the target popuiation are in state X, for k = (0,0), (0,1), aﬂd
so on. Of the members, Hp = Mpg + Myg have not had a child, and gizn-gg of
them have had a c¢child. A random sample of ng out of the l!o is dz*a;vn from
Stratum 0, and another random sample of 1y 1s drawn from the Ny members of
Stratum {. (Since the sample sizes are reétrlcted to not exceed the random
mmber of members of the two strata, they are random variables themsel-
ves. ) The number my of members of the sample who are in each state K at
time 1 are registered. The likellhood of obtaining tnesé data 1s then the

observed value of the probabllity
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P{Np=Np, mgo=Mgo: Moy=Moy, Wyg=Myg, and Myy=myy) =

(4.3)
(1, 1) M
1 K‘?b 0) L J
N! (1, 1) M B oy
Ip Iy { _ I =~ ] '
Moo! Mog! Myo! Myq! X=(0.0) [ Moo*M1o |  Moi*Myy
nw )L n

where Ig 1s the sum over all pairs (Mpg, Mpy) for which Mpo+Mgy=Ng and Iy
1s the sum over all pairs (Mpy, Myq) for which Mgi+M(=N;. We show below

that the liKellihood can be rewritten as

(NyH  NHE mg\ myg pByg My ) By DyTWy
L&Jq (1-q) knojmo) EE S R Ln Jmi) EC AR CH?
Ho Ry 11 |

v

which is maximized by the natural estimators

A A A

1= %/ To ® oM and Ty = ma/my.
We substitute these into the one-to-one relations which comnect the para-
meters pg with our current equivalent parameters q vg, and my, namely the

relatlons pgp=d(1-mp). Pip=Ing, and so on, and get the maximum 1ikelihood

estimators
Poo = Mmoo/ (Nfg), Doy = moy/ (Nfy), (4.5)
B1o = myg/(Nfg), and Byy = myy/ (NFy),

vhere fkﬂk/l}x 1s the sampling fraction in Stratum K, for K=0,1. (Let fix=1
in the unlikely case that gK:O.) Provided ng and ny are sensible functi\o«ns
of N and 'Eg, as we can safely assume, these estimators will be consistent
for thelr respective estlménds as N 9 . |

To bring out the close connection between these estimators and what
survey sampling theory would suggest without any appeal to the likelihood
approach, note that Xp=myg is the number of members of Stratum 0 who have
the property of being in State ({,0) at time 1. The corresponding number
of members from Stratum { 1s Xq:=0. A Horvitz-Thompson estimator of the

proportion Myg/N of the target population that 1s in State (4,0) at time

i, can then be written as
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Byo/m = N1 o X/fg

~ e T

which 1s Byg. (The sum is taken from K=0 to K:=1.) By symmetry, the other
probabllit'y estimators can be represented in a‘ similar manner. It tumns
out, therefore; that in this particular case, the maximum 1iKelihood esti-
mators and the Hr-estimators coincide. The reciprocal sampling fractions
serve to balance the sampling blases otherwise irherent in the outcome-de-
rendent sampling plan.

Hote, however, that the sampling fractions ?0 and f4 are not a priori
inclusion probabllities. 'Ever"y member of the target populaticn has the |
same probapbllity of efldlng up in the sample, and that probablliity 1is

q E(:fg) + (1-q) E(-:_E}).
wWe need to know what functions no and ni are to compute this probablility.
™e sampling frac’gion fix 1s "only" the conditional selection probability,
given that a populatipn member has ended up in Stratum K by time 1.

To demonstrate the transition between (4.3) and (4.4), note that

(8 HNo N-Ng

PN :=N } = (@ (1-q) C(4.5)
- «00 (no J
and
(1, 1)
P{_ N (M:=M)| E:=N_} (4.6)
K=(0, 0) “!‘ )4 "’9 [4]
r N \( )Hio(i )No‘ﬁio r Ny \( )Hu(i )Hi‘ﬁu
z n -n m -n
t Myp J ° 0 tﬁu J 1 1

Therefore, the expression in (4.3) can be written as that of (4.9) malti-
prlied by the product of two sums corresponding to Lg and By in (4.3) After

some minor rearrangement, the first sum can ke written as

{00 go ( Nomg y  Myp No Mo

(m ) (t-m )
tmio J Myg=0 Kﬁio‘mio J 0 0
( Moy HNp-mig [ No-ng R+myQ No-mjp~x
: t T J('n ) (t-m ) :
40 X="I40 X 0 0

26




Items in the latter sum are 0 for %<0 and for x>Np-ny (remember that

miging), SO H3is expression reduces to

[ o \( )mio(i )no'mio 1)
M -M . .
| g | T 0

The sum based on Iy 1s quite similar. Therefore, (4.4) results if you mul-
tiply together the expressions in (4.5), (4.7), and the I -based erxmres-
slon corresponding to (4:7), and subsequently substitute Hg, ng, Dy, Byg.

v~

and myy for Ng, ng, ny4, Mg, and myy4.
Cv v
4.4 Example 2: Maternal and Infant Mortality ’

The model in Figure i may be reinterpreted in a manner which maKes it
suitable for the analysis of the impact of the death of a mother on the
survival of her baby in historical data. Conslder a mot.her—and—lnfant
pair, let %y be 0 as long as the mother is allve, and let x; Jump to { 1f
the mother dies. Similarly, let yy be an indicator of whether the child is
dead at time t. L.ejt the interval between times 0 and 1 be such that both
mother and child have (acceptably) constant mortality during it, let A be
the mother’s force of mortality, and let ¢ and ¢ be the forces of mortali-
ty of the Infant before and after any death of the mother. Suppose that
the two cammnot die simultaneously. Assume that the child is sufficiently
dependent on the mother's personal care that the infant's (force of) mor—
tality Jumps to a higher level 1f the mother dies, i.e., ¢ > v, but that
the mother’s mortality is not simllarly influenced by the death of the
child. Then all inequalitles in (4.2) are reversed. If the data for the
mother-and-1infant pairs are sorted according to whether the child is alive
at time 1, therefore, the investigator 1s invited to conclude erroneously
that the death of the child adversely affects the mother’s chances of sur—
vival in this model. Furthermore, the mother's swvival chances will be

estimated as better than they really are from data on pairs with infants
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sur'viving to time i, Pri.or stratification or post-stratification according
to the infants’ survival status at time i should be avolded.

Sorting the pairs according to the mother'’s survival status at time {
is less dangerous for concluslons. about the infant's survival chances.
Such grouping corresponds to working with conditional rrobabilitles of the
form

L * PUT X sa ¥ s0,x =X} = p_ (X 1)/[P_ (X 0)0P_ (X 1)]
instead of ea S P[y1:1|x0:a. yo:O}. A simple argument similar to the one
which established (4.2) shows that

Lopsi-e™V <_‘eo < Loy < fqq = 84=1-e7? when w<o. ’ (4.6)
Trms, 1t 1s less dangerous for the infant to have a surviving mother than
to lose her during the unit interval, and the latter event 1s less adverse
than being without the mother tnroughout the interval, all of which con-

clusions are correct.

4.5 Intraclass Correlations in Clusters

Papers by welghting advocates contain many admenitions to use welgh-
-ting procedures to counteract the adverse effects of "intraclass correla-
tlons due to cluster sampling”. It remains to be demonstrated, however,
how welighting can have such a function in the analysis of panel data for
individual kehavior, or how 1t can replace direct attention to intraclus-
-ter interaction, as it surely is intended to do. Again, weighting must be
an issue separate from that of model misspecification, which could now
reappear ln the guise of an "assumption" that individuals in ciusters be-
have independently.

To 1llustrate interaction behavior, let us return again to Flgure 1,
and let the two dimensions com‘espond to the two members of a two-person
household in a manner simllat; to that of our example of mother-and-infant
mortality (Sectlion 4.4). Regard person i as the head of the household, and
disregard household dissolutlions for the sake of this argument. In the
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model of the figure, heads of households behave independently of any part-
.ners because the mtensltles correspoﬁding to the two vertical arrows are
the same (namely A); There is complete within-household independence 1if

vz, otherwise not. A no-interaction misspecification would consist in an-
alyzing the data as 1f y:=¢ even if the two intensities really were diffe-
rent from each other. How can conventional sampling welghts balance the

biases caused by this error? Even 1f they could, would it not be more in-

teresting to find out what goes on in the Cll_J.StEI‘S?

S. CORCLUDIEG DISCUSSION

The previous sections embed some very general lssues into some very
'straightforwar‘d' settings. The question of whether to use weights in the
investigation of models for panel data 1s itself a special case of a more
general lssue concerning the role of weights in any analysls of sample
data which involve the parameters of statistical models. Let us relterate
some general results here for the case of panel studies.

In a population of N independent individuals, let Y; he a description
of the life course of xﬁember 1 over a finite set of time points tg:=0 < %4
< v+ < tp < @ Since we have sample paths of time-discrete Markov chains
particularly in mind, assume for simplicity that for each Yy there are
only a finite rumber of possible paths, let y be one of them, and in-
troduce g4(y) = P{Yy=y}. Note that y = {¥(tg), -+, ¥(tp)}, so the probabii-
ity law g4 1s a mﬁlti-dimenslonal distribution function. It reflects our
notions about the possible behavior of individual i over the finite time
set {ty}. It may depend in any way whatsoever on individual-specific val-
ues of exogenous variables, including the value Y;(0) of Y at time G,
which we take as nonstochastic but not necessarily Known to the investi-

gator before the sample is drawn. (If real lndividuals come in independent
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clusters with internal interaction, like households, then redefine an "in-
dividual®” to be such a cluster for the ptn"poses.of the general theory. If
- clusters can recombine over time, we need a more general framev)ork than
the present one. Conditlioning on the Y;(0) is convenient and useful In
panel studies, ut it 1s not essential for our argument.)

From this population, a sample S is selected according to the samp-
ling mechanism p(s) = P{S:zs}. We allow p(-) to depend on the same exoge-
ﬁous variables as the £1 -do, including the given values Y;(0) 1f they are
Known, ut p(-) may not depend on the outcomes of the Yy after time 0. Es-
sentially, the sample is drawn at time 0, and then the investigator cannot
utiiize anything that happens later. We assume that observatlon ls unob-
trusive, in the sense that- membership in the sample does not influence an
individual'‘s behavior. (Alternatively, the investigator can have a theory
for the influence of observatlbn on behavior, The problem of obtrusive opb-
servation is common to all statistical analysis. See Section 4'of Duncan
and Kalton, 1985, for .a Irief review of current experience with 1t' in |
Panel studies.) On the other hand, we allow for nonresponse by letting
this feature be an integral part of Yy, i.e., one of the possible values
for Yi(tk) at any time it may be an indication that data are missing be-
cause of nonresponse.

Let 8 = {Iy, -+, In(g)} and s = {1y, -+, 1ip(g)}, and let us write
I(J) for Iy and 1(J) for 1j in subscripts. Then the sample data

D = {S; Yy:1€S] have a probabllity distribution given by

P[ {S=s}] & [Yi:yl for all 1€S} ]

n(s) n(s)
=Pl (n(S)=n(s)t & N {I =L1& N (Y =y i ]
[ : 3=1 J J J=1 I3y I(3)
n(s) n(s)
: P[ nS)=n(s)} & Nn {Ir=11& n (Y- =y 1 ]
J=1 J 3 3=1 1) 1)
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n(s) n(s)
z P[{n(s =n(s)} & N (I =1} n (Y B 3] -P[’
) 374 1) 71

n(s) ]
J J=1

N {Y = }
J=1  1Q]) Yi(J)

n(s) n(s) '
= P{S:zs] °J1:I1 Py (3)s¥i)d = PUs) B ey Fan)

when we use the stochastic independence between S and the collection
{ ¥y ¢ 1=4,---,N } to reduce the big conditional probabllity to P{S=s} in
the next to final line above. Thus we have Just proved that

: n(s)
P{ Y‘l:yl for a1_1 1€8 | S=s } = 11

£ vy b {(6.1)
J=t 1Q1) 14 .

l.e., glven the sample S, the distribution of the sample observations
{¥y(5)} 1s the same as it would be in an imagined exhaustive census whose
data had the same stochastic rroperties as those in the sample survey. The
likelihood of the sample data 9 1s

D(S) T €4 (Yy). (6.2)
1€ttt

Since p(-) must be mdependeni of the unknown parameters .and other unknown
characteristics of the {g4}, likellhood maximization does not invoive p(-)
in any way, and 1n particular it does not involve any reciprocal inclusion
. probablilities i/m;. The sample S is an ancillary statistic, and inference
may be based on (6.1) alone if you follow the ancillarity principle.

The essentlial role of the sampling plan is to provide a randomizing
vehicle to determine which 1ife histories to include in the sample in a
way which induces cost-effective analysis and helps maKe sure that S actu-
ally 1is stochéstical 1y independent of the life courses Yy after time 0.
Lack of such a randomizing mechanism entalls the risk that S becomes in-
formative, as well as the usual rroblems of generalizabllity of results.
(See Smith 1983, and Royall, 1985, for critical assessments of the need
for randomization, and Smith, 1984, for a discussion of its meaning. )

Any likelinhood anaiysls depends of course on the specification of the

{gg}. If the model ¢y of Individual behavior ls incorrect or wweallstic,
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then the outcome of tne analysis must be affected unfavourably. Indeed, as
everybody rrofesses to¢ realize, any model 1s incorrect or unrealistic in
many respects. This is inherent :Ln-all analyses which use statistical
models, and the analysls of sample survey data i1s no exception. One must
not let this fact stifle one’s ability to use models productively for the
analysis of sample data any more than for other Kinds of data. The value
of a model lles in its abillty to plgk up lmportant aspects of behavior
and to serve as a guide to owr inference about reality. Some sampling
rractitioners display an évident ampivalence (or even averslén) towards
behaviorai modelling, but an investigator interested in analyzing a
particular aspect of behavior by means of sample data should not let this
dictate his own cholce of method. The preparation of the information in a
major data set for publication in a book of official statlsti_cs, say, 1s
quite a different operation than the penetration of a sub-area for an
analytical purpose. The concerns of data producing agencies are certainly
real and important enough, but there is no need let them dominate the
Plcture the way they have done so far. There 1s little reason why others
should feel restiricted by the same considerations.

In response to the need for "infinite population” modelling concepts
in the analysis of swrwey samples, some statlsticlans have begun to rro-
vide a Kind of half-way house where new finite population statistics are
defined 1n terms of model parameters but the properties of their estima-
tors are studied as 1f there were no model but only the finite populatloh.
For instance, Chambless and Boyle (1985) have suggested that a parametric

1iKelihood

N
A(B) = IT Ay (B)
- 1=1

that would apply to the entire finite population (of size N) under a given

behavioral model, be estimated by its sample counterpart
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A®) = I A (BT
-~ 1€s v

for individual lnclusién probébllltles {w(i1)y. If A(@) is mazimized when
9‘? they suggest that ? be regarded as the finite population quantity of
interest, and that the value B of B which maximizes A(8) be regarded
as an estimator of B. Tnis is in line with previous suggestions for gener—
alized linear models by Binder (1983) and his predecessors. It has been
followed up by Folsom, LavVange, and Williams (1986), wno have also exten-
ded the theory to the (nonparametric) Kaplan-Meler mfochict limit estima-
tor. |

We discussed an application of these 1ldeas to the estimation of
HMarkov chain transition pr'obabilltles in Section 2.3. In that setting, B
1s a set of (unobserved) transition proportions in the finite population,
which 1t may certainly maKe sense to estimate. Similarly, the (unobserved)
Kaplan-Meler product limit function for the finite population describes
the distripution - of a positive variable over the members of that popula~
tion, and again it may make sense to estimate it from the sample data. In
a case-by-case consideration of other situatlons, we are bound to find
more models where a finite population estimator B is a meaningful statls-
tic in 1ts own right for which the sample counterpart @ is a sensible
estimator. For such situations, the statistical theory developed will be
useful. Admitting this is a far cry however from accepting that

(a) a finite population estimator B always 1s a meaningful desérlp—
tive statistic, irrespectlive of any appeal to an underiying model, or that

(b) one should restrict one’s analysis of survey sample data to
situations where B is meaningful in this manner, or indeed that

(c) statistical inference from survey samples must be only to the
finite populatlon level.

Individual statisticians may hold or reject any one of these views; I

disagree with all three of them. I find it particularly puzzling that
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statisticians should insist on 1item (¢) above, the way Ralirh Folsom and
Rick Williams have done in conversations during the washington Symposium
on Panel Surveys to which earlier versions of this paper and theirs were
contrirutions.

Be that as it may, it is lmportant to maintain that the specificatlion
of a model of individual behavior is an 1ssue separate from the role of
sampling weights. Whether the investigator has got g3 right or not, the
l1ikelihood has the form in (6.2) so long as sampling and analysis are not
outcome-dependent. Of course, there is no compulsion to rely on the like-
lihood approach. One is free to use any inference procedure available,
subject only to the assessment of the statistical properties of the proce-
dure. Some such procedures may involve sampling weights., In fact, proper—-
tles of the sampling plan will generally enter into likelihood analysis 1f

the sampliing 1s outcome-based, for then the liKelihood has a form like

Az [T Ei(Y )12 [{ e (y )} P(S]Y1:1€S; y1:1£S)],

‘\es 1 1gs y L1gs1 s

where the double sum l1s taken over all 1¢S and over all values y; that
the sample path of target population member 1 ocutside the sample can at-
tain, and where p(slyi, N YH) =z P{S:leizyi for 1=4, -+, N} 1s the condi-
tional probability of drawing the sample s when the sample path outcomes
are as specified,

In certain cases, the sampling mechanism turns out to enter the like-
l1inood only via the sampling fractions of ocutcome-dependent strata. The
example of our Section 4.3 1s a case in point. However, welghting 1s no
panacea wnhich can sclve most problems of survey analysis, including model
misspecification, nér can 1t replace modelling and make behavioral models

superfluous,
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