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Abstract

Using an endogenous growth model with physical and human capital accumulation, this

paper considers the sustainability of economic growth when the use of a polluting input (e.g.,

fossil fuels) intensifies the risk of capital destruction through natural disasters. We find that

growth is sustainable only if the tax rate on the polluting input increases over time. The long-

term rate of economic growth follows an inverted V-shaped curve relative to the growth rate of

the environmental tax, and it is maximized by the least aggressive tax policy from among those

that asymptotically eliminate the use of polluting inputs. Moreover, welfare is maximized under

an even milder environmental tax policy, especially when the pollutants accumulate gradually.
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Figure 1: Economic Damage from Natural Disasters Worldwide (in billions of 2005 US

dollars). Source: Damage estimates in current US dollars are from EM-DAT, the International Disaster

Database, CRED, the Université Catholique de Louvain. Present value estimates in 2005 US dollars

calculated using the implicit GDP price deflator from the Bureau of Economic Analysis.

1 Introduction

Natural disasters have a substantial impact on the economy, primarily through the de-

struction of capital stock. For example, Burton and Hicks (2005) estimated that Hur-

ricane Katrina in August 2005 generated commercial structure damage of $21 billion,

commercial equipment damage of $36 billion, and residential structure and content dam-

age of almost $75 billion. These are not negligible values, even relative to the entire U.S.

physical capital stock.1 Figure 1 depicts the time series of the total economic damage

caused by natural disasters throughout the world. Although the magnitude of damage

caused by Hurricane Katrina may not appear typical, the figure clearly shows a steady

and significant upward trend in economic damage arising from natural disasters.

One obvious reason behind this upward trend is the expansion of the world economy.

As the world economy expands, it accumulates more capital, which means that it has

1In another study of the estimated costs of Hurricane Katrina, King (2005) reported that total eco-

nomic losses, including insured and uninsured property and flood damage, were expected to exceed $200

billion. See Gaddis et al. (2007) for the full cost estimates.
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more to lose from a natural disaster of a given physical intensity. However, this simple

account cannot fully explain the overall growing trend in damages. To see this, we plot

the ratio of the damage from natural disasters to world GDP in Figure 2. As shown,

this ratio has been increasing since 1960. On this basis, the figure suggests that each

unit of installed capital is facing an increasingly higher risk of damage and loss from

natural disasters over time. This observation may then have serious implications for the

sustainability of economic growth. Also, observe from Figures 1 and 2 that most economic

damage is caused by weather-related disasters.2 Accordingly, if economic activity is to

some extent responsible for climate change, and if climate change affects the intensity

and frequency of weather-related disasters,3 economic growth itself poses a threat to

capital accumulation and the sustainability of future growth.

This paper theoretically examines the long-term consequences of the risk of natural

disasters on economic growth in a setting where economic activity itself can intensify the

risk of natural disasters. We introduce polluting inputs, such as fossil fuels, into a Uzawa–

Lucas type endogenous growth model, and assume that the use of polluting inputs raises

the probability that capital stocks are destroyed by natural disasters. In the model, we

show that as long as the cost of using polluting inputs is constant, economic growth is

not sustainable because the risk of natural disasters eventually rises to the point at which

agents do not want to invest in capital any further.

Given this result, we introduce a time-varying environmental tax on polluting input,

which is shown to have both positive and negative effects on economic growth. On one

hand, the faster the environmental tax rate increases, the lower the asymptotic amount

of pollution and, therefore, the lower the probability of disasters. This gives households

2Specifically, we calculate the sum of damage from storms, droughts, extreme temperatures, floods,

mass movements because of climate change, and wildfires.

3There is an ongoing scientific debate about the extent to which natural disasters and global warming

relate to human activity. The Intergovernmental Panel on Climate Change Fourth Assessment Report

(IPCC 2007, p.6) notes, “Anthropogenic warming over the last three decades has likely had a discernible

influence at the global scale on observed changes in many physical and biological systems.” According

to Emanuel (2005) and Webster et al. (2005), increasing sea surface temperatures are suspected of

increasing both the frequency and the intensity of hurricanes. We simply assume causality between the

emission of greenhouse gases and the frequency of natural disasters. Scientific examination of the validity

of this causality is beyond the scope of this paper.
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Figure 2: Ratio of Damage from Natural Disasters to World GDP (percent). Data source:

World GDP (in current US dollars) is from World Development Indicators, World Bank Data Group.

a greater incentive to save, which promotes growth. On the other hand, the increased

cost of using the polluting input by private firms reduces their (effective) productivity

at each point in time, and this has a negative effect on growth. This paper shows that

these opposing effects give rise to a nonmonotonic relationship between the long-term

rate of economic growth and the speed with which the environmental tax increases. We

characterize the policy that maximizes the long-term growth rate and examine how it

differs from the welfare-maximizing policy. We also examine how the market equilibrium

and the optimal policy are affected by the way in which pollutants accumulate.

1.1 Relationship to the literature

The literature on the link between natural disasters and economic growth is relatively

new. However, there is an increasing amount of work investigating the theoretical and

empirical relation.

On the empirical side, a seminal study by Skidmore and Toya (2002) found using

cross-sectional data that the higher frequency of climatic disasters leads to a substitu-

tion from physical capital investment toward human capital. Consistent with their find-

ing, our model shows that under appropriate environmental policies, agents accumulate

3



human capital stock much faster than output and physical capital, enabling sustained

growth under limited use of the polluting input. Skidmore and Toya (2002) also found

a positive correlation between the frequency of disaster and average growth rates over

the period 1960–90, though subsequent studies have shown that this finding may depend

on model specification and data. Notably, Raddatz (2007) considered a vector autore-

gressive (VAR) model for low-income countries with various external shocks, including

climatic disasters, and his estimates showed that climatic and humanitarian disasters

result in declines in real per capita GDP of 2% and 4%, respectively. Using panel data

for 109 countries, Noy (2009) also found that more significant natural disasters (mainly

in terms of direct damage to the capital stock) lead to more pronounced slowdowns in

production.

The theoretical part of the literature is even more recent.4 For instance, Soretz (2007)

explicitly introduced the risk of disasters into an AK-type one-sector stochastic endoge-

nous growth model and considered optimal pollution taxation. Hallegatte and Dumas

(2009) considered a vintage capital model and showed that under plausible parameter

ranges, disasters never promote economic growth through the accelerated replacement

of old capital. Lastly, using numerical simulations, Narita, Tol, and Anthoff (2009)

quantitatively calculated the direct economic impact of tropical cyclones. Our analysis

complements these studies by considering both human and physical capital accumulation

in addition to the polluting input. This is an important extension, not only because the

substitution to human capital accumulation in the presence of disaster risk is empiri-

cally supported, but also because theoretically it is the key to sustained and desirable

growth.5 In addition, our methodology can analytically clarify the mutual causality be-

tween economic growth and the risk of natural disasters and how this relationship can

4Although not directly concerned with disasters, some previous studies analytically examined the

effect of environmental quality on economic growth. Bovenberg and Smulders (1995) and Groth and

Schou (2007), for example, considered where environmental quality affects productivity. Alternatively,

John and Pecchenino (1994), Stokey (1998), and Hartman and Kwon (2005) introduced the disutility of

pollution into endogenous growth models.

5Using a growth model with pollution and physical capital, Stokey (1998) showed that sustained

growth is not desirable even when it is technically feasible. However, Hartman and Kwon (2005) found

that Stokey’s (1998) result is overturned when human capital is introduced.
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be altered by environmental tax policy.6 Rather than merely considering the optimal

tax policy, we consider arbitrary dynamic tax policies and find both welfare-maximizing

and growth-maximizing policies.

Finally, our analysis is technically related to Palivos, Wang, and Zhang (1997). In

theoretical studies of long-term growth, it is common to focus only on balanced growth

paths (BGP). However, it turns out that the risk of capital destruction makes the system

of the economy inevitably nonhomothetic, implying that any BGP may not exist. We

overcome this problem by extending the method in Palivos et al. and consider a broader

than usual family of equilibrium paths that asymptote to a BGP only in the long run.

The rest of the paper is organized as follows. Section 2 constructs the model and shows

that growth cannot be sustained if the cost of (tax on) the polluting input is constant.

We then derive the (asymptotically) balanced growth equilibrium path under a time-

varying environmental tax in Section 3. The welfare analysis is in Section 4. Section

5 considers a general version of the model in which pollution accumulates gradually.

Section 6 concludes. The Appendix contains the proofs and derivations.

2 The Model

2.1 Production technology and the risk of natural disasters

Consider an Uzawa–Lucas growth model where the economy is populated by a unit mass

of infinitely lived homogeneous households owning physical and human capital, and a unit

mass of homogenous competitive firms owning a production technology. One difference

in our model from Lucas (1988) is that production requires not only physical capital

Kt and human capital Ht, but also a polluting input Pt, such as fossil fuels that emit

pollutants and greenhouse gases. (For compact notation, we employ subscript t rather

than (t), even though time is continuous.) Specifically, the production function of the

6Narita, Tol, and Anthoff (2009) assume that the savings rate is exogenous, while in our model it

reacts endogenously to the risk of disasters. In Hallegatte and Dumas (2009), the long-term rate of

growth is ultimately determined by the exogenous growth in total factor productivity (TFP), while in

our model it is determined by endogenous human and physical accumulation.
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representative firm is given by:

Yt = F (Kt, utHt, Pt) = AKα
t (utHt)1−α−βP β

t , (1)

where ut ∈ [0, 1] is the fraction of time devoted to the production of goods, A is a

constant productivity parameter, α ∈ (0, 1) represents the share of physical capital, and

β ∈ (0, 1 − α) is the share of the polluting input. Note that the production function (1)

exhibits constant returns-to-scale with respect to all inputs, including Pt. All output is

either consumed or added to the physical capital stock.

The representative firm can use an arbitrary amount of the polluting input Pt;7

however, the use of the polluting input raises the risk of natural disasters. Specifically,

the accumulated stock of pollution determines the frequency of natural disasters as well

as the probability distribution of their intensity, and hence affects the proportions of

human and physical capital that are lost due to natural disasters. Let us start from a

simpler case where the depreciation of the pollution stock is fast enough that we can

use the current use of the polluting input Pt interchangeably with the stock of pollution.

(We maintain this assumption until we explicitly consider the accumulation process in

Section 5). Given Pt, let Q(Pt) denote the frequency of natural disasters per unit time,

and Φ(r; Pt) the distribution function of the proportional damage r ∈ [0, 1] to physical

capital, and Ψ(r; Pt) denote that to human capital. We assume that physical and human

capital are distributed across infinitely many areas in the economy, and that the damages

by natural disasters are uncorrelated across areas.8 Then, by the law of large numbers,

the aggregate losses of physical and human capital stocks per unit time are

∆Kt =
∫ 1

0
Q(Pt)rKtdΦ(r; Pt) and ∆Ht =

∫ 1

0
Q(Pt)rHtdΨ(r; Pt). (2)

Observe that these losses are linear functions of Kt and Ht, respectively, multiplied by

7We ignore the finiteness of polluting inputs (e.g., fossil fuels), as our focus is on their effect on the risk

of natural disasters. Sustainability of economic growth in endogenous growth models with nonrenewable

resources has been examined by, for example, Grimaud and Rougé (2003), Tsur and Zemel (2005), and

Groth and Schou (2007). Eliasson and Turnovsky (2005) examined the growth dynamics with a resource

that recovers only gradually. This paper complements these studies.

8This assumption may not be appropriate when a large-scale disaster takes place. In this case, the law

of large numbers does not apply and the disaster causes a short-term fluctuation. However, as we focus

on the long-term behavior of the economy, the analysis of such fluctuations is left for future research.
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functions of Pt. As the (stock of) pollution Pt increases, ∆Kt and ∆Ht increase due to

both the increase in the frequency Q(Pt) and the upward shifts of intensity distributions

Φ(r;Pt) and Ψ(r; Pt). Throughout the paper, we focus on the case expressions in (2) can

be approximated by linear functions of Pt as follows:

∆Kt = (δK + ϕPt)Kt and ∆Ht = (δH + ϕPt)Ht, (3)

where constants ϕ > 0 and ψ > 0 represents the marginal effects of Pt on the expected

proportional damages to physical and human capital, respectively.

By incorporating the expressions for damages (3) into Lucas (1988)’s specification

for the resource constraints for the physical and human capital stocks, we obtain

K̇t = F (Kt, utHt, Pt) − Ct − (δK + ϕPt)Kt, (4)

Ḣt = B(1 − ut)Ht − (δH + ψPt)Ht, (5)

where Ct, B, and 1−ut are aggregate consumption, the constant productivity of human

capital accumulation, and the fraction of time devoted to the production of human

capital, respectively. Note that constants for depreciation δK and δH now include both

constants for expected damage (δK and δH) and also the depreciation of capital for other

reasons as assumed in Lucas (1988). Equations (4) and (5) show that the risk of natural

disasters effectively augments the depreciation rates of physical and human capital stocks

in proportion to the use of the polluting input.

Observe that, unlike standard endogenous growth models, the right-hand sides of

equations (4) and (5) are not homogenous of degree one in terms of quantities (i.e., in

Kt, Ht, Pt, and Ct). This implies that a BGP that exhibits the homothetic expansion of

all of these variables is not feasible. This has important implications for the possibility

of sustained growth, as we discuss below.

2.2 The market economy

We start the analysis with the market economy where the government levies a per unit

tax τt in terms of final goods on the use of polluting inputs. The tax revenue Tt = τtPt

is equally distributed among households in a lump-sum fashion. At the beginning of the

economy, the government announces the tax rate τt for all t, and it is assumed that the

government can commit to this tax policy.

7



2.2.1 Behavior of households

Each household is faced with the risk of damage by natural disasters to its physical

capital stock, kt, and its human capital stock, ht. The insurance market is assumed

complete. Under this assumption, it is optimal for the household to take out insurance

that covers all of the losses associated with natural disasters. The insurance premium for

fully covering the physical and human capital damages, respectively, are equal to their

expected losses: (δK + ϕPt)kt and (δK + ψPt)ht from (3). Then, the budget constraint

of the household can be written as:9

k̇t = rtkt + wtutht − (δK + ϕPt)kt − ct + Tt, (6)

ḣt = B(1 − ut)ht − (δH + ψPt)ht, (7)

where rt, wt, and ct denote the real interest rate, the real wage rate, and the amount of

consumption, respectively. Note that in our setting, the costs associated with deprecia-

tion and insurance are paid by the owner of the capital.

The utility function of the representative household is given by:∫ ∞

0

c1−θ
t − 1
1 − θ

e−ρtdt, (8)

where θ > 1 is the inverse of the elasticity of intertemporal substitution and ρ is the rate

of time preference. We assume B − δH > ρ so that households have sufficient incentive

to invest in human capital. Given the time paths of rt, wt, Pt, τt, and Tt, each household

maximizes (8) subject to the constraints (6) and (7). From the first-order condition for

the maximization problem, we obtain the Keynes–Ramsey Rule (see the Appendix for

the derivation):

−θ
ċt

ct
= ρ + ϕPt + δK − rt. (9)

This condition is similar to that obtained in the original Uzawa–Lucas model, except

that the depreciation rate is augmented by the risk of natural disasters, ϕPt.

9Equation (7) implicitly assumes that both the insurance payment and the compensation for human

capital damage are in the form of human capital. Obviously, a more realistic setting is that they are in

the form of goods (or money). This will not change the equilibrium outcome at the aggregate level as

long as the amounts of the insurance payments and the compensation in terms of goods are calculated

using the appropriate price of human capital, wt/B.
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In the household’s problem, the shadow prices of the physical and human capital

stocks are c−θ
t and (wt/B)c−θ

t . This means that the value of human capital in terms of

physical capital (final goods) is wt/B, which changes at the rate of ẇt/wt. We find in

the Appendix that the household is indifferent between physical capital investment and

human capital investment when the following equation holds:

ẇt

wt
= rt − (ϕ − ψ)Pt − (δK − δH) − B. (10)

In (10), the left-hand side (LHS) is the rate of change in the value of human capital

in terms of physical capital, while the right-hand side (RHS) represents the difference

between the marginal return to investment in physical capital and human capital. In

the long run, condition (10) must be satisfied because if it is not, the solution is either

ut = 0 or ut = 1 for all agents, and therefore one of the two kinds of aggregate capital

stock approaches zero because of depreciation. However, this raises the shadow price of

that type of capital stock, which is at odds with the decision of agents not to invest in

it. Finally, the respective transversality conditions (TVCs) for the physical capital stock

and the human capital stock are:

lim
t→∞

ktc
−θ
t e−ρt = 0, (11)

lim
t→∞

ht(wt/B)c−θ
t e−ρt = 0. (12)

2.2.2 Behavior of firms

All markets are perfectly competitive. Therefore, the representative firm maximizes

profit, taking as given the rental rate rt and the wage rate wt, along with the tax rate

of the polluting input τt. For simplicity, we assume there is no cost associated with the

extraction and/or production of the polluting input besides the tax. Then, the firm’s

problem is written as:

max
Kt,Nt,Pt

F (Kt, Nt, Pt) − rtKt − wtNt − τtPt,

where the production function F (Kt, Nt, Pt) is given by (1), and Nt ≡ utHt represents

the amount of human capital employed by the firm. The first-order conditions for this

problem are:

rt = α
Yt

Kt
, wt = (1 − α − β)

Yt

Nt
, (13)

9



and τt = βYt/Pt. Note that the final condition means that the profit maximizing amount

of the polluting input is Pt = βYt/τt. Substituting this back into the production function

(1), output can be written as:

Yt =
(
Ãτ

− β
1−β

)
Kbα

t N1−bα
t , (14)

where Ã ≡ ββ/(1−β)A1/(1−β) and α̂ ≡ α/(1 − β). When written in the form of (14), it

becomes clear that the environmental tax lowers the effective TFP, Ãτ−β/(1−β).

2.3 Equilibrium conditions

Now we can summarize the equilibrium conditions in terms of the motions of five vari-

ables: Kt, Ht, ut, Ct, and Pt. Note that as the population is homogenous and normalized

to unity, Kt = kt, Ht = ht, Ct = ct, and ut = Nt/Ht hold in equilibrium. Substituting

factor prices (13) as well as the lump-sum transfer Tt = τtPt into the budget constraint

of households (6) yields the evolution of the aggregate physical capital stock:

K̇t

Kt
=

Yt

Kt
− Ct

Kt
− (δK + ϕPt). (15)

From the production function of human capital (7), the evolution of the aggregate human

capital stock is given by:

Ḣt

Ht
= B(1 − ut) − (δH + ψPt). (16)

Substituting factor prices (13) into the arbitrage condition (10), we obtain the evolution

of the fraction of time devoted to production ut:

Ẏt

Yt
− u̇t

ut
− Ḣt

Ht
= α

Yt

Kt
+ (ψ − ϕ)Pt − (δK − δH) − B. (17)

The consumption dynamics are given by the Keynes–Ramsey Rule (9) where rt is replaced

by (13):

−θ
Ċt

Ct
= ρ − α

Yt

Kt
+ δK + ϕPt. (18)

Finally, from the firm’s first-order condition (see the previous subsection), the amount

of polluting input is determined by:

Pt = βYt/τt. (19)

10



The equilibrium dynamics are determined by equations (15)-(19), the TVCs (11) and

(12), exogenously given time path of τt, and initial levels of K0 and H0.

Note that the TVCs can be simply stated using the equilibrium conditions. From

(15) and (18), the growth rate of ktc
−θ
t e−ρt is (1− α)(Yt/Kt)− (Ct/Kt). Similarly, from

(9), (10), and (16), the growth rate of ht(wt/B)c−θ
t e−ρt is −But. Therefore, a sufficient

condition for the TVC is that these growth rates are negative in the long run:

(11), (12) ⇐ lim
t→∞

((1 − α)(Yt/Kt) − (Ct/Kt)) < 0, lim
t→∞

ut > 0. (20)

Condition (20) implies that the TVCs are satisfied when more than fraction 1 − α of

output is consumed and the fraction of time used for production converges to a strictly

positive value. For use later, we also present the necessary conditions for the TVCs:

(11) ⇒ lim
t→∞

((1 − α)(Yt/Kt) − (Ct/Kt)) should not be positive, (21)

(12) ⇒ lim
t→∞

u̇t/ut should not be negative. (22)

Condition (22) is slightly weaker than the sufficient condition limt→∞ ut > 0 in that it

allows for the possibility that “limt→∞ ut = 0 and limt→∞ u̇t/ut = 0”. In other words,

condition (22) states that if the fraction of time used for production converges toward

zero, it must do so very slowly.10

2.4 Sustainability of growth under a constant tax rate

Let us examine the long-run property of the economy under a simple environmental

policy where the government sets a constant per unit tax rate on Pt. Under this policy,

and from (19), pollution increases in proportion to output Yt. Given that the increasing

use of the polluting input makes natural disasters increasingly more frequent, it appears

that economic growth is not sustainable under such a static environmental policy. The

following proposition formally shows that this insight is correct.

10If limt→∞ u̇t/ut < 0, the rate of change in ht(wt/B)c−θ
t e−ρt, which is −But, converges towards zero

very rapidly. In that case, ht(wt/B)c−θ
t e−ρt cannot reach zero in the long run, and therefore the TVC

(12) is violated. To show this statement mathematically, define V h(t) ≡ log(ht(wt/B)c−θ
t e−ρt). Given

the growth rate of ht(wt/B)c−θ
t e−ρt is −But, it follows that V̇ h(t) = −But. The TVC (12) is equivalent

to limt→∞ V h(t) = −∞. For arbitrary T > 0, limt→∞ V h(t) = V h(T ) − B
R ∞

T
ut dt. The first term is

finite. In addition, when limt→∞ u̇t/ut < 0, the integral of the second term is also finite. Therefore, the

TVC is violated if limt→∞ u̇t/ut < 0.

11



Proposition 1 If the per unit tax on the polluting input is constant, then economic

growth is not sustainable in the sense that aggregate consumption cannot grow in the

long run.

Proof: The proof goes via reductio ad absurdum. Suppose that the government sets

a constant environmental tax rate (i.e., τt = τ0 for all t) and consumption grows in the

long run (i.e., limt→∞ Ċt/Ct > 0). The Keynes–Ramsey Rule (18) can be rewritten from

(19) as:

−θ
Ċt

Ct
= ρ + δK −

(
α − ϕβ

τ0
Kt

)
Yt

Kt
. (23)

For the LHS to be negative, the sign of the value in the parentheses on the RHS must be

positive. Hence, physical capital Kt must be bounded above by a constant value τ0α/ϕβ

(i.e., limt→∞ Kt < τ0α/ϕβ).

Next, let us consider the amount of human capital used for production, Nt = utHt.

Note that from (14), Ẏt/Yt = α̂K̇t/Kt + (1 − α̂)Ṅt/Nt when τt is constant. In addition,

αYt/Kt = θĊt/Ct+ρ+δK+ϕPt from (18). Substituting these into the arbitrage condition

(17), we obtain:

α̂
Ṅt

Nt
= −ψPt + α̂

K̇t

Kt
− θ

Ċt

Ct
+ B − δH − ρ. (24)

For consumption Ct to grow, output Yt must also grow. This means that Pt = βYt/τt →

∞ under the constant tax rate. On the RHS of (24), the first term diverges to minus

infinity, the second and third terms are zero or lower in the long run, and the remaining

terms are constants. Therefore, Ṅt/Nt is negative in the long run, implying that the

human capital eventually shrinks.

Given the boundedness of Kt and Nt, (14) means that production cannot grow in the

long run. This clearly contradicts the initial assumption that consumption grows in the

long run. ¥

Intuitively, the proof of the proposition explains that under a constant environmental

tax rate, agents eventually lose their incentive to save. As long as firms face a constant

tax rate on the polluting input Pt, the risk of disasters rises proportionally with output

(see equation 19). Then, the insurance cost rises, ϕPt = ϕβYt/τ0, and the marginal rate

of return of holding capital falls to ρ + δK , where agents no longer want to save.11 This

11Recall from (13) that the rental price of physical capital is rt = αYt/Kt. Thus, the last term on the

RHS of (23) represents the marginal rate of return of holding capital net of the insurance cost. As Kt
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result suggests that, to sustain economic growth, it is necessary to increase the rate of

environmental tax over time to prevent the risk of disasters increasing excessively when

output grows. In the remainder of the paper, we consider such a time-varying tax policy.

3 Asymptotically Balanced Growth Paths

In the present model, the economy does not typically have a BGP, primarily because the

structure of the model is intrinsically nonhomothetic. This is because of the introduc-

tion of the endogenous risk of natural disasters (and therefore the endogenous effective

depreciation rate of capital). Nonetheless, it does not rule out the possibility that, under

an appropriate tax policy, the growth rates of the variables converge, or asymptote, to

constant values.

Specifically, we seek to find a tax policy under which the equilibrium path satisfies

the following property, originally introduced by Palivos et al. (1997).

Definition 1 (NABGP) An equilibrium path is said to be an asymptotically BGP if the

growth rates of output, inputs, and consumption converge to finite constant values; that

is, if g∗ ≡ limt→∞ Ẏt/Yt, gK ≡ limt→∞ K̇t/Kt, gH ≡ limt→∞ Ḣt/Ht, gu ≡ limt→∞ u̇t/ut,

gP ≡ limt→∞ Ṗt/Pt, and gC ≡ limt→∞ Ċt/Ct are well defined and finite. Furthermore,

an asymptotically balanced growth path is said to be nondegenerate if gC ≥ 0.12

In the remainder of the paper, we focus on nondegenerate, asymptotically balanced

growth path(s), referred to as NABGP(s). Note that the requirements for a NABGP

also restricts the asymptotic behavior of the tax rate τt because Pt = βYt/τt (equation

19) must be satisfied in the long run. In particular, for g∗ and gP to be well-defined and

finite, the asymptotic growth rate of the tax rate

gτ ≡ lim
t→∞

τ̇t/τt

increases, this term falls to ρ + δK and Ċt/Ct becomes zero.

12Palivos et al. (1997) call an asymptotically BGP nondegenerate when every production input grows

at a positive rate. Note that our definition of nondegeneration is weaker as we only require aggregate

consumption not to fall. Indeed, we show that an important case in the analysis is where the growth rate

of one production input (namely, the polluting input Pt) is negative and converges to zero. Even in this

case, the growth rates of output and consumption can be positive if the growth rates of the other inputs

are positive and more than offset the declining use of a certain type of input.
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must also be well defined and finite. This means that in the long run, the per unit tax rate

on the polluting input must change at a constant rate. The main task of this section is to

examine the dependence of the long-term rate of economic growth g∗ on the (long-term)

growth rate of the environmental tax gτ . In the first subsection, we present the conditions

that must be satisfied for the NABGP. In the second and third subsections, we examine

two different possibilities for long-term growth. The final subsection summarizes.

3.1 Conditions for nondegenerate asymptotically balanced growth paths

We first show that, in the long run, the economy cannot grow faster than the growth

rate of the environmental tax.

Lemma 1 On any NABGP, g∗ ≤ gτ .

Proof: in Appendix.

Intuitively, if production grew faster than the tax rate, the use of the polluting input

Pt = βYt/τt would increase without bound, and natural disasters would be increasingly

frequent. In such a situation, however, both physical and human capital deteriorate at an

accelerating rate, contradicting with the initial assumption that output can grow. One

implication from Lemma 1 is that gτ must be nonnegative (gτ ≥ 0) to support NABGPs.

In particular, sustained growth (with g∗ > 0) is possible only when gτ > 0; i.e., only

when the per unit tax rate increases at an asymptotically constant rate. This confirms

the expectation provided at the end of Section 2.4.

Another implication is that g∗ ≤ gτ leads to gP ≡ limt→∞ Ṗt/Pt ≤ 0 from (19). Given

that the amount of polluting input Pt is nonnegative, this means that Pt converges to

a constant value in the long run. We denote this asymptotic value by P ∗ ≡ limt→∞ Pt.

Note that P ∗ = 0 if Ṗt/Pt < 0. Even though we limit our attention to nondegenerate

growth paths, we should not rule out this possibility. It is true that output Yt is zero if

Pt = 0 given the Cobb–Douglas function (1), where polluting inputs, such as fossil fuels,

are necessary; that is, a balanced growth path in a conventional sense with Pt = P ∗ = 0

is obviously inconsistent with nondegenerate growth. However, in NABGPs where Pt

asymptotes to P ∗, Pt does not necessarily coincide with P ∗ = 0 at any date. Furthermore,

limt→∞ Pt = 0 does not necessarily mean limt→∞ Yt = 0 as the other production factors

in (1), namely Kt and Ht, may grow unboundedly.
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Given the asymptotic constancy of Pt, the first-order and transversality conditions

determine the growth rates of ut, Kt, and Ct as follows.

Lemma 2 On any NABGP,

(i) ut, zt ≡ Yt/Kt, and χt ≡ Ct/Kt are asymptotically constant.

(ii) gu = 0 and gK = gC = g∗.

The proof is in the Appendix.

Lemma 2 shows that physical capital and consumption grow in parallel with output.13

In contrast, in our model, the growth rate of human capital is not the same as output.

Differentiating the production function (14) logarithmically with respect to time gives

g∗ = − β
1−β gτ + α̂gK +(1− α̂)(gu +gH), where we used Nt = utHt. This equation implies

that the conditions for the NABGP (i.e., gK = g∗ and gu = 0) are satisfied only when:

gH = g∗ +
β

1 − α − β
gτ . (25)

Equation (25) says that on a NABGP, human capital must accumulate faster than

physical capital and output, and the difference is larger when the growth rate of the

environmental tax is higher. To see why agents are willing to accumulate human capital

more quickly in equilibrium, observe that as the tax rate on the polluting input increases

over time, the effective productivity of private firms Ãτ−β/(1−β) gradually falls (see equa-

tion 14). This means that if human capital accumulated at the same speed as physical

capital, output would only be able to grow slower than the speed of physical capital

accumulation, and the rate of return from investing in physical capital, rt = αYt/Kt,

would fall. In this manner, raising the tax rate on the polluting input hinders physical

capital investment, and consequently induces agents to choose human capital investment

an alternate means of saving, as documented by Skidmore and Toya (2002).14

13Observe that property (ii) of Lemma 2 is a stronger statement than (i); i.e., property (i) holds

whenever gu ≤ 0, gK ≥ g∗, and gC ≤ gK . In the proof of the lemma in the Appendix, we show that all of

gu ≤ 0, gK ≥ g∗, and gC ≤ gK must hold with equality as otherwise either the transversality conditions

(their necessary condition are given by equations 21 and 22) or sustainability (gC > 0) are eventually

violated.

14Nonetheless, the interest rate rt is kept constant on the NABGP. This is because as human capital

becomes increasingly abundant relative to physical capital, it raises the marginal productivity of physical

capital and eventually compensates for the decline in effective productivity.
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Now we are ready to summarize the conditions that must be satisfied by any NABGP.

For convenience, let us denote the asymptotic values of the key variables by u∗ ≡

limt→∞ ut ∈ [0, 1], z∗ ≡ limt→∞ Yt/Kt ≥ 0, and χ∗ ≡ limt→∞ Ct/Kt ≥ 0. Substitut-

ing gu = 0, gK = gC = g∗ and (25) for (15)-(19), the equilibrium conditions that must

hold in the long run can be represented as follows.

Evolution of Kt: g∗ = z∗ − χ∗ − (δK + ϕP ∗), (26)

Evolution of Ht: g∗ +
β

1 − α − β
gτ = B(1 − u∗) − (δH + ψP ∗), (27)

Arbitrage condition: − β

1 − α − β
gτ = αz∗ − B + (ψ − ϕ)P ∗ − (δK − δH), (28)

Keynes–Ramsey rule: − θg∗ = ρ − αz∗ + (δK + ϕP ∗), (29)

Asymptotic pollution: P ∗


≥ 0 if g∗ = gτ (Case 1),

= 0 if g∗ < gτ (Case 2).
(30)

Given the tax policy gτ ≥ 0, which is set by the government, the five conditions (26)-

(30) determine five unknowns (g∗, z∗, χ∗, u∗, P ∗) on the NABGP. In the following, we

explicitly calculate the values for the unknowns as a function of gτ . Note that, however,

there is a complementary slackness condition (30), and we cannot know whether g∗ = gτ

or P ∗ = 0 holds in advance. Thus, we need to examine two possible cases in turn, and

then determine which case actually occurs in equilibrium under a particular tax policy.

3.2 Case 1: P ∗ ≥ 0 and g∗ = gτ

Let us first examine the possibility that Case 1 in condition (30) holds. In this case, the

equilibrium long-term rate of growth coincides with the growth rate of the environmental

tax on the steady-state equilibrium path. Substituting g∗ = gτ into (28) and (29), we

obtain the asymptotic value of polluting input:

P ∗ =
1
ψ

[
B − δH − ρ −

(
θ +

β

1 − α − β

)
gτ

]
, (31)

which is decreasing in gτ . Recall that, as shown by (30), the asymptotic value must be

nonnegative: P ∗ ≥ 0. From (31), we can see that this condition is satisfied if gτ is within

the following range:

gτ ≤ (B − δH − ρ)
(

θ +
β

1 − α − β

)−1

≡ gmax, (32)
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where gmax is positive from the assumption that B−δH > ρ. Hence, Case 1 (i.e., P ∗ ≥ 0

and g∗ = gτ ) is possible only if gτ ∈ [0, gmax].

Using g∗ = gτ , we obtain the asymptotic values of the other variables from (26)-(29)

z∗ =
1
α

(θgτ + δK + ϕP ∗ + ρ) , (33)

χ∗ =
1
α

(
(θ − α)gτ + (1 − α)(δK + ϕP ∗) + ρ

)
, (34)

u∗ =
1
B

(
B − (δH + ψP ∗) − 1 − α

1 − α − β
gτ

)
. (35)

Substituting (31) into (33)-(35) and using gτ ∈ [0, gmax], we can confirm that z∗ > 0,

χ∗ > 0, u∗ ∈ (0, 1), and (1 − α)z∗ − χ∗ < 0. The last two inequalities imply that

the sufficient condition for the transversality condition, given by (20), is satisfied. In

addition, we show in the Appendix that under a reasonable restriction of the parameter

values, the NABGP is saddle stable. The following lemma states the results obtained.

Lemma 3 A NABGP with P ∗ ≥ 0 and g∗ = gτ exists if and only if gτ ∈ [0, gmax].

This is characterized by g∗ = gτ and (31)-(35), and satisfies the equilibrium conditions

(26)-(30) and the transversality conditions. In addition, if:

ψ/ϕ < (1 − 2α)/(1 − α − β), (36)

this equilibrium path is locally saddle stable.

The proof of stability is in the Appendix.

Given that the share of physical capital α is around 0.3 in reality, the RHS of condition

(36) is likely to be positive. (When α = 0.3 and β = 0.1, for example, (1− 2α)/(1−α−

β) = 2/3.) In addition, we expect that the ratio ψ/ϕ will typically be low because the

natural disasters affect more directly physical capital than human capital. Therefore, we

reasonably assume that parameters satisfy condition (36) throughout the paper.

3.3 Case 2: P ∗ = 0 and g∗ < gτ

Next, we examine the possibility that Case 2 in condition (30) holds. In this case, the

amount of polluting input asymptotically converges toward zero. Substituting P ∗ = 0

for (28) and (29) yields the asymptotic rate of economic growth:

g∗ =
1
θ

(
B − δH − ρ − β

1 − α − β
gτ

)
. (37)
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Contrary to Case 1, equation (37) shows that the long-term rate of growth is decreasing

in gτ . In particular, for the condition g∗ < gτ to be satisfied, the rate of environmental

tax must be raised faster than gmax, where gmax is defined in (32). However, equation

(37) also implies that the rate of economic growth becomes eventually negative when gτ

is too high: g∗ < 0 if gτ > glim ≡ (1−α−β)β−1(B− δH −ρ). Therefore, a NABGP with

P ∗ = 0 and (0 ≤)g∗ < gτ exists only if gτ ∈ (gmax, glim].

Substituting P ∗ = 0 and (37) into (26)-(29), we obtain the values for the other

variables on the NABGP:

z∗ =
1
α

(
B + δK − δH − β

1 − α − β
gτ

)
, (38)

χ∗ =
( 1

α
− 1

θ

)(
B − δH − β

1 − α − β
gτ

)
+

1 − α

α
δK +

ρ

θ
, (39)

u∗ =
1

Bθ

[
(θ − 1)

(
B − δH − β

1 − α − β
gτ

)
+ ρ

]
. (40)

From gτ ∈ (gmax, glim], we can confirm that z∗ > 0, χ∗ > 0, (1 − α)z∗ − χ∗ < 0, and

u∗ ∈ (0, 1), implying that the transversality condition (20) is satisfied. In addition, we

show in the Appendix that this NABGP is saddle stable. The following lemma states

the results.

Lemma 4 A NABGP with P ∗ = 0 and g∗ < gτ exists if and only if gτ ∈ (gmax, glim].

It is characterized by P ∗ = 0 and (37)-(40), and satisfies equilibrium conditions (26)-

(30) and the transversality conditions. In addition, this equilibrium path is locally saddle

stable.

The proof of the stability is in the Appendix.

3.4 Summary

Lemma 3 and Lemma 4 show that there are two possible patterns of long-term growth.

Observe that those two possibilities are mutually exclusive—Lemma 3 applies only

when the tax policy satisfies gτ ∈ [0, gmax], whereas Lemma 4 applies only when gτ ∈

(gmax, glim]. Therefore, the NABGP is always unique. The following proposition states

the main result.

Proposition 2 A NABGP exists if and only if the asymptotic growth rate of the per unit

tax on the polluting input, gτ , is between 0 and glim ≡ (1−α−β)β−1(B−δH −ρ). When
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Figure 3: Growth rate of environmental tax and the NABGP. The upper panel shows the

relationship between the growth rate of the environmental tax (gτ ) and that of human capital (gH),

physical capital (gK), output (g∗), and pollution (gP ). The lower panel shows the level to which pollution

converges in the long run (Pt → P ∗). Parameters: α = .3, β = .2, θ = 2, ρ = .05 B = 1, ψ = .005,

ϕ = .01, δH = .09, and δK = .1.

it exists, it is unique and locally saddle stable. The long-term rate of economic growth

follows an inverted V-shape against gτ ∈ [0, glim], and is maximized at gτ = gmax ≡

(B − δH − ρ)(θ + β
1−α−β )−1.

The asymptotic growth rates of the variables are determined by gτ in the following

way. First, the asymptotic growth rate of output is given by g∗ = gτ for gτ ∈ [0, gmax]

and (37) for gτ ∈ (gmax, glim]. As shown in Lemma 2, gC and gK are the same as g∗, and

gu = 0. Next, given g∗, the asymptotic growth rates of human capital and pollution,

respectively, are determined by (25) and gP ≡ Ṗt/Pt = g∗ − gτ (recall equation 19).

Finally, the asymptotic level of pollution, P ∗, is given by (31) for gτ ∈ [0, gmax] and

P ∗ = 0 for gτ ∈ (gmax, glim]. Figure 3 illustrates these results.

Observe from the figure that when the environmental tax rate is asymptotically con-

stant (i.e., when gτ = 0), the asymptotic growth rates of all endogenous variables are

zero. This means that the economy settles to a no-growth steady state. In this steady

state, the amount of pollution converges to P ∗ = (B − δH − ρ)/ψ ≡ P , which causes the

risk of natural disasters (i.e., the probability of losing physical and human capital) to be
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so high that agents lose the incentive to save. Interestingly, the asymptotic level of Pt

does not depend on the level of the environmental tax rate, τt, as long as the asymptotic

growth rate of τt is zero. Nonetheless, given Yt = τtPt/β from (19), a higher tax rate

induces the economy to converge to a higher output level. This implies that a higher

level of the environmental tax rate promotes growth in the transition, but not in the

long run.

When the government raises the per unit tax rate on polluting inputs at an asymp-

totically constant rate (gτ > 0), the asymptotic level of Pt can be kept below P . When gτ

is increased within the range of [0, gmax], the long-run amount of pollution P ∗ decreases,

as does the risk of natural disasters. The reduced risk of natural disasters encourages

agents to accumulate capital more quickly. As a result, the growth rate of physical cap-

ital gK increases in parallel with gτ (i.e., gK = gτ ). The growth rate of human capital,

gH , also increases with gτ , and more than proportionately to physical capital. (Recall

the discussion in Section 3.1 for why agents are willing to do this.) This makes possible

sustained growth without increasing the use of the polluting input.

The long-tern rate of economic growth is maximized at gτ = gmax, under which the use

of polluting inputs Pt converges asymptotically to the zero level (Pt → P ∗ = 0). However,

a further acceleration of the tax rate does not enhance economic growth because it cannot

reduce the asymptotic risk of natural disasters (because it is already at the lowest level);

rather, it accelerates the fall of the effective productivity of firms, Ãτ−β/(1−β). As a

result, g∗ is no longer increasing in parallel with gτ , but decreasing in gτ . In particular,

if gτ > glim, even though the risk of natural disasters is at its lowest level, the fall

of effective productivity is so rapid that it cannot be compensated for by the faster

accumulation of human capital. This results in negative growth.

4 Welfare-maximizing Policy

In previous sections, we examined the relationship between the environmental policy and

the feasibility of sustained economic growth. Even when production requires polluting

inputs and the use of polluting inputs raises the risk of natural disasters, we showed

that economic growth can be sustained in the long run if the government gradually

increases the tax rate on the polluting inputs. We also found that an environmental policy
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maximizes the long-term rate of economic growth. However, this does not necessarily

mean that such an environmental policy is desirable in terms of welfare. This section

considers the welfare-maximizing policy and examines whether it differs from the growth-

maximizing policy.

Let us consider the social planner’s problem. The social planner maximizes the

representative household’s utility (8) subject to resource constraints (4)-(5). From the

first-order conditions for optimality, we show in the Appendix that the dynamics of Kt,

Ht, ut and Ct in the welfare-maximizing path are exactly the same as those for the

market equilibrium given by equations (15)-(18). The transversality conditions are also

the same. The remaining condition for the social planner’s problem is that the amount

of polluting input should be:

Pt = β

(
ϕ

Kt

Yt
+ ψ

(1 − α − β)
But

)−1

. (41)

Recall that in the market economy, the government sets the tax rate τt and firms

choose Pt according to Pt = βYt/τt, as shown by equation (19). Therefore, if the tax

rate at each point in time satisfies:

τt = ϕKt + ψHt
(1 − α − β)Yt

ButHt
, (42)

then the firms’ decision on Pt in the market equilibrium exactly coincides with the opti-

mality condition (41). Given that the remaining conditions for the social optimum are

the same as those for the market equilibrium, this means that the welfare-maximizing

allocation can be achieved as a market equilibrium when the government set the en-

vironmental tax rate using the following rule (42).15 This policy rule has an intuitive

interpretation: the first term on the RHS of (42) represents the marginal increase in

the expected damage to physical capital with respect to Pt, whereas the second term

represents that to human capital, both measured in terms of final goods (in particular,

15Generally speaking, even when they appear similar, a time-varying policy (a function only of time

as considered in the previous section) and a policy rule (a function of state variables such as equation

42) may result in different outcomes if private agents behave strategically. The literature on differential

games distinguishes these as the open-loop equilibrium and the Markovian equilibrium. Nonetheless,

in the present model, all private agents are price takers and therefore both policies result in the same

outcome.
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Figure 4: Determination of the optimal growth rate of the environmental tax. This

figure plots the RHS and LHS of condition (43) against gτ . The asymptotic growth rate of the optimal

environmental tax is gopt
τ , as given by the intersection, and is lower than the growth-maximizing rate,

gmax. The parameters are the same as in Figure 3.

(1 − α − β)Yt/(ButHt) is the shadow price of human capital in terms of final goods).

Thus, it is optimal to let firms pay the sum of these marginal expected damages on each

use of Pt.

Let us characterize the equilibrium path under the optimal tax policy. Similarly to the

previous section, we limit our attention to NABGP, where the values of Pt, zt ≡ Yt/Kt,

and ut in condition (41) are asymptotically constant and converge to P ∗, z∗, and u∗.

The welfare-maximizing path must satisfy:

P ∗ = β

(
ϕ

1
z∗

+
ψ(1 − α − β)

Bu∗

)−1

. (43)

Recall that u∗ and z∗ on the RHS are functions of the asymptotic growth rate of the

tax rate, gτ (see Lemmas 3 and 4). Thus, the RHS of (43) gives the optimal amount of

pollution as a function of gτ . On the other side, the LHS represents the actual amount

of pollution in equilibrium, P ∗, which is a function of gτ . The optimal growth rate of

the environmental tax, denoted by gopt
τ , must be such that the LHS and the RHS of (43)

coincide.

Figure 4 plots the RHS and LHS of equation (43) against gτ . The actual amount of

asymptotic pollution (the LHS) is positive but decreasing in gτ for gτ ∈ [0, gmax), and is

zero for gτ ≥ gmax. On the other hand, the optimal amount of asymptotic pollution (the

RHS) is positive for all gτ ≥ 0, and at gτ = 0, is lower than P ≡ (B − δH − ρ)/ψ given
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that parameters satisfy:16

(αϕ/(δK + ϕP + ρ) + ψ(1 − α − β)/ρ)P > β. (44)

Therefore, under condition (44), the two curves have an intersecting point gopt
τ ∈ (0, gmax),

at which point the optimality condition (43) is satisfied. The following proposition for-

mally states this result.

Proposition 3 Suppose the parameters satisfy condition (44). Then among the NABGP,

there exists a path that maximizes the welfare of the representative household (8). This

path can be realized by tax policy (42), and the asymptotic growth rate of the optimal per

unit tax, gopt
τ , is strictly positive but lower than the growth-maximizing rate, gmax.

Note that condition (44) is satisfied unless both ρ and β are large. Intuitively, it

pays to enjoy a high level of consumption, production and, therefore, pollution today at

the cost of accepting a higher risk of natural disasters only when the household heavily

discounts the future (large ρ) and production substantially relies on polluting inputs

(large β). If either the household values the future or the dependence of production on

polluting inputs is limited, then sustained economic growth is not only feasible but also

desirable. It is also notable, however, that the optimal policy does not coincide with the

growth-maximizing policy (gopt
τ < gmax). Thus, if the government cares about welfare, it

should employ a milder policy for protecting the environment than when growth is their

only concern. The difference between the growth-maximizing and welfare-maximizing

policies is similar to the difference between the golden rule and the modified golden

rule. Although an aggressive environmental policy that aims to eliminate the emission

of pollutants in the long run (i.e., P ∗ = 0) may maximize the economic growth rate in

the very long run, the cost in the form of the reduced effective productivity that must

be incurred during the transition can overwhelm the benefit that can be reaped only far

in the future.

16When gτ = 0, equations (31), (33), and (35) show that P ∗ = (B−δH−ρ)/ψ ≡ P , z∗ = (δK+ϕP+ρ)/α

and u∗ = ρ/B. Substituting these into both sides of (43) shows that the intercept of the LHS is lower

than that of the RHS if (44) holds.
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5 General Model with Stock of Pollution

In reality, the risk of natural disasters is often affected not only by how much current

firms emit pollution, but also how much they emitted in the past. For example, the use

of fossil fuels in the past increases the the stock of greenhouse gases in the atmosphere

today, and this affects tropical sea surface temperature, and therefore the risk of disas-

trous hurricanes. To this point, for simplicity we do not distinguish between the flow of

pollution and its stock. This section examines how the long-term properties obtained in

previous sections change when pollution stocks affect the risk of natural disasters.

As before, we assume that firms use a polluting input (e.g., fossil fuels), causing them

to emit pollution. Let Et denote the emission of pollution by firms per unit of time. One

unit of polluting input yields one unit of emission, and thus Et also represents the amount

of polluting input used by firms. Then, the production function (1) should be modified

to:

Yt = F (Kt, utHt, Et) = AKα
t (utHt)1−α−βEβ

t , (45)

where we substituted Et for Pt. The emission adds to the pollution stock Pt, which is

now defined by:

Pt ≡ γ

∫ t

−∞
Ese

−δP (t−s)ds. (46)

There are now two parameters in the accumulation process: γ represents the marginal

impact of emissions on the pollution stock, and δP denotes the depreciation rate of the

pollution stock (e.g., the fraction of greenhouse gases being absorbed by the oceans

during a unit of time). If δP is smaller, use of a polluting input today has an impact

on the environment for a longer period in the future. We assume the risk of natural

disasters is affected by the pollution stock Pt, as described by (3). The law of motion for

physical capital can then be written as:

K̇t = F (Kt, utHt, Et) − Ct − (δK + ϕPt)Kt, (47)

whereas that for human capital stock remains the same as (5). Note that Pt in these

equations should now be interpreted as the pollution stock at t rather than the amount

of polluting input used at t.
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5.1 Market economy under stock pollution

In the market economy, the government levies an environmental tax τt on each unit

of polluting input Et used by the firm. Similar to the analysis in Section 2.2.2, the

first-order conditions for firms are (13) and:

Et = βYt/τt. (48)

The behavior of households is exactly the same as described in Section 2.2.1. In this

setting, the equilibrium dynamics of {Kt,Ht, ut, Ct, Et, Pt} are characterized by condi-

tions (15)-(18), (46), and (48). Let us consider the NABGP, where the growth rates of

all inputs, output, and consumption are asymptotically constant in the long run (Re-

call Definition 1). The following proposition shows that the long-run property of the

equilibrium is unaffected by the introduction of accumulated pollution.

Proposition 4 In an economy where pollution accumulates through (46) and (48), a

NABGP exists if and only if the asymptotic growth rate of the per unit tax on polluting

input, gτ , is between 0 and glim ≡ (1− α − β)β−1(B − δH − ρ). This is characterized by

g∗ = gτ and (31)-(35) if gτ ∈ (0, gmax], and by P ∗ = 0 and (37)-(40) if gτ ∈ (gmax, glim].

The level of emission is asymptotically constant at E∗ = (δP /γ)P ∗.

The proof is in the Appendix.

The asymptotic growth rate of the economy is again an inverted V-shape against

the growth rate of the environmental tax, as illustrated in Figure 3. Note that the

long-run amount of pollution stock P ∗ does not depend on the parameters of pollution

accumulation (γ and δP ). This is interesting because if δP is smaller, the effect of

emissions on the pollution stock remains for a longer time, and therefore Pt would become

higher, provided that the amount of emissions is the same; i.e., independence of P ∗ from

these parameters implies that the amount of emissions must change with the parameters.

In fact, from (48) and Proposition 4, we see that the level of output asymptotes to

Yt = τtEt/β → τtδP P ∗/(βγ), which is lower when the effect of pollution remains for a

longer time.17 This means that the amount of production, and therefore the amount

of emissions, is adjusted so that the pollution stock becomes asymptotically P ∗, which

17When δP is lower and the amount of production is the same, the pollution stock becomes higher and

disasters occur more frequently. This reduces the capital stocks (Kt and Ht) because the capital stocks are
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depends on the growth rate of τ but not on δP and γ. As a result, the difference in the

accumulation process (δP and γ) has level effects on output, but not growth effects.

5.2 Welfare-maximizing policy under stock pollution

Next, let us turn to welfare maximization. The social planner maximizes welfare (8)

subject to resource constraints (5), (46), and (47). In the Appendix, we solve the dy-

namic optimization problem and again find that the dynamics of Kt, Ht, ut, and Ct in

the welfare-maximizing path are exactly the same as those for the market equilibrium

(equations 15-18). The optimal amount of emissions is given by:

Et = −βYtC
−θ
t

γλt
,

where λt = −
∫ ∞

t
C−θ

s

(
ϕKs + ψ

(1 − α − β)Ys

Bus

)
e−(ρ+δP )(s−t)ds

(49)

which represents the shadow value of one additional unit of polluting stock, which is, of

course, negative. The optimal stock of pollution is obtained by substituting (49) into

(46).

Observe that the only difference between the market equilibrium and the welfare-

maximizing path is between (48) and (49). In particular, when the government sets the

tax rate by:

τt =
−γλt

C−θ
t

= γ

∫ ∞

t
e−δP (s−t)

(
ϕKs + ψ

(1 − α − β)Ys

Bus

) (
C−θ

s e−ρ(s−t)

C−θ
t

)
ds, (50)

the market economy coincides with the welfare-maximizing path; i.e., (50) gives the

optimal policy when pollution accumulates. When a firm emits pollution in year t, it has

negative effects on the environment for all years s ≥ t. The integral on the RHS represents

the cumulative negative effects of emissions for year t. More precisely, the first part of

the integral, e−δP (s−t), is the portion of emissions remaining by year s. The second part,

ϕKs + ψ(1 − α − β)Ys/(Bus), is essentially the same as (42), representing the marginal

negative effect of the polluting stock in year s. The final part, C−θ
s e−ρ(s−t)/Cθ

t , is the

destroyed more frequently by disasters and because households lose the incentive to accumulate capital

stocks when they face a higher probability of disasters. Lower capital stocks imply lower production and

thus lower emissions. The same holds when γ is larger.
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Figure 5: Optimal tax policy when pollution accumulates.

intertemporal marginal rate of substitution between year s and t, and represents how we

discount the future.

While equation (50) has a natural interpretation, the implementation of the optimal

policy is not obvious because the optimal tax rate in year t depends on the whole time

path of the economy in the future, which in turn depends on the whole path of the tax

rate in the future. Following Section 4, we solve this problem by focusing on the family of

NABGPs. In the NABGPs, Ys = Yte
g∗(s−t), Cs = Cte

g∗(s−t), Ks = Kte
g∗(s−t), ut = u∗,

Ys/Ks = z∗ hold asymptotically. Substituting these for (50) and calculating the integral,

we can see that on a NABGP, the tax rate should be:

τt =
γYt

(θ − 1)g∗ + ρ + δP

(
ϕ

z∗
+ ψ

1 − α − β

Bu∗

)
. (51)

This implies that from equation (48) and Proposition 4, the amount of pollution should

asymptotically be:

P ∗ =
γE∗

δP
=

γβYt

δP τt
= β

(
1 +

(θ − 1)g∗ + ρ

δP

) (
ϕ

z∗
+ ψ

1 − α − β

Bu∗

)−1

. (52)

Recall that g∗, u∗, and z∗ on the RHS are functions of the asymptotic growth rate of the

tax, gτ (see Proposition 4). Thus, the RHS of (52) gives the optimal amount of pollution

stock as a function of gτ . On the other side, the LHS (the actual amount of pollution

stock in equilibrium, P ∗) is also a function of gτ . The optimal gτ is such that the LHS

and the RHS coincide.

The figure plots the RHS and the LHS of condition (52) against gτ , for the three

different levels of δP . Observe that when δP is infinitely large, the term ((θ−1)g∗+ρ)/δP
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vanishes and condition (52) coincides with (43). Intuitively, when the effect of emission

depreciates very quickly, only the current use of the polluting input affects the risk of

natural disasters, as we considered in previous sections.18 Thus, the optimal policy is

the same as in Section 4.

However, when δP is finite (i.e., when the effects of emissions remain for some time),

the RHS is higher than in the previous case. Accordingly, the intersecting point in Figure

5 moves toward the upper left. The following proposition summarizes this finding.

Proposition 5 Suppose that pollution accumulates through (46) and (48), where δP is

finite. Then, the asymptotic growth rate of the optimal tax rate, gopt
τ , is lower than

in Proposition 3. Moreover, as δP becomes smaller (i.e., when the effects of emissions

remain for a longer time), gopt
τ falls and the asymptotic pollution, P ∗, rises. The optimal

long-tern rate of economic growth is also lower than in Proposition 3 and falls as δP

becomes smaller.

Previously, we have shown in Proposition 3 that in the case where pollution does not

accumulate, the welfare-maximizing environmental policy is less strict than the growth-

maximizing policy. Proposition 5 shows that, when emissions have a longer-lasting effect,

it is optimal to adopt an even less strict environmental tax policy. This implies that the

gap between the growth-maximizing policy and the welfare-maximizing policy is even

larger when pollution accumulates.

We can again interpret this apparently paradoxical result in terms of time preference.

When emissions have a longer effect, the larger part of the social cost of using the

polluting input comes long after the benefit of using the polluting input (i.e., larger

output) is realized. Thus, as long as the agent discounts the future, there is more

social gain in accepting a high level of pollution stock and lower growth in the long run

than where pollution does not accumulate. As a result, it is optimal to increase the

environmental tax more slowly.19

18Formally, when both γ and δP are infinite (γ = δP → ∞), Proposition 4 shows E∗ = P ∗ holds. This

implies that we can consider emissions and the pollution stock interchangeably, as in Section 4.

19To understand this argument intuitively, let us consider two extreme cases where the argument in

the text does not hold. First, observe that (θ−1)g∗ +ρ in condition (52) represents the rate of fall in the

marginal utility C
−(θ−1)
t e−ρt. If this expression were zero, there would be no benefit from frontloading
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6 Conclusion

In this paper, we analyzed the sustainability of economic growth in a two-sector en-

dogenous growth model when taking into account the risk of natural disasters. Here,

polluting inputs are necessary for production, though they also intensify the risk of nat-

ural disasters. In this setting, we obtained the following results.

First, economic growth can be sustained in the long run only if the per unit tax on the

polluting input increases over time. Although economic growth ceteris paribus induces

private firms to use more of the polluting input, this environmental policy can lead firms

to use more human capital (e.g., by investing in alternative technologies), which decreases

their reliance on polluting inputs, and thereby prevents the risk of disaster from rising to

a critical level. However, it should be noted that we do not consider the cost associated

with extracting resources or the finiteness of these inputs. If the cost is significant and

changes for some reason, the environmental tax rate must be adjusted to absorb these

changes. A next step in our research agenda would be to integrate the analysis of natural

disasters with a study of the finiteness of natural resources. This is clearly beyond the

scope of this first attempt.

Second, the long-term rate of economic growth follows an inverted V-shaped curve

relative to the growth rate of the environmental tax. When the rate of environmental

tax is currently slowly growing, its acceleration will reduce the asymptotic level of emis-

sions and the risk of natural disasters. This process enhances the incentive to save and

hence promotes economic growth. When the rate of environmental tax is already fast

growing, the asymptotic level of pollution is fairly small so that further acceleration of

the environmental tax excessively impairs the productivity of private firms. This works

against economic growth. Therefore, economic growth can be maximized with the choice

of the most gradual increase in the environmental tax rate that minimizes the amount

of pollution in the long run.

Third, social welfare is maximized under a milder (i.e., more slowly increasing) envi-

output. In fact, condition (52) would become the same as (43) if (θ − 1)g∗ + ρ were 0. Second, observe

that δP = ∞ means that the whole negative effect of emissions is realized immediately; i.e., there is no

gap in time between the increased output and the increased risk of disasters. Thus, (52) becomes the

same as (43) when δP = ∞. Except for these two extremes, (52) always implies a lower gopt
τ than (43).
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ronmental tax policy than the growth-maximizing policy. This may appear paradoxical

in that welfare considerations justify more pollution than when growth is the foremost

policy concern. This is because maximization of the long-term rate of growth requires

the minimization of the asymptotic level of pollution, but this can only be achieved

only in the long run. As long as people discount the future, aiming for this ultimate goal

would be too costly in terms of the efficiency loss that must be incurred in the transition.

Thus, a milder environmental policy is more desirable in terms of the discounted sum of

expected utility. Moreover, when pollutants accumulate gradually and remain in the air

for longer, the transition process takes more time and, therefore, the welfare-maximizing

environmental tax policy is even milder.

Appendix

Optimization of the household (Section 2.2.1)

The current value Hamiltonian for the household’s maximization problem is:

H =
c1−θ
t − 1
1 − θ

+ νt (rtkt − (δK + ϕPt)kt + wtutht − ct + Tt)

+ µt (B(1 − ut)ht − (δH + ψPt)ht) ,

where νt and µt are the shadow prices associated with the accumulation of physical and

human capital, respectively. The first-order conditions for this problem is given by:

νt = c−θ
t , (53)

µt =
wt

B
νt, (54)

ν̇t

νt
= ρ + ϕPt + δK − rt, (55)

µ̇t

µt
= ρ − νt

µt
wtut − B(1 − ut) + δH + ψPt. (56)

Differentiating the log of (53) with respect to time gives ν̇t/νt = −θċt/ct. Substituting

this into (55) gives the Keynes–Ramsey rule (9) in the text. Differentiating the log of

(54) with respect to time gives µ̇t/µt = ẇt/wt + ν̇t/νt. Substituting it and (55) into (56)

gives the arbitrage condition (10) in the text. Finally, the transversality conditions for

this problem are limt→∞ ktνte
−ρt = 0 and limt→∞ htµte

−ρt = 0. Eliminating µt and νt

from these conditions by (53) and (55) gives (11) and (12) in the text.
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Proof of Lemma 1 (Section 3.1)

Suppose that g∗ > gτ (i.e., limt→∞ Ẏt/Yt > limt→∞ τ̇t/τt). Then, Pt = βYt/τt → ∞.

From (16) and ut ≤ 1, this means Ḣt/Ht ≤ B − δH −ψPt → −∞. This contradicts with

the definition of the NABGP, in which gH ≡ limt→∞ Ḣt/Ht is finite.

Proof of Lemma 2 (Section 3.1)

On the NABGP where Ḣt/Ht and Pt are asymptotically constant, equation (16) implies

that ut must also be asymptotically constant. This means that the growth rate of ut is

zero or negative (i.e., in the case of ut → 0), but from (22) we know that the TVC for

human capital accumulation is satisfied only when the growth rate of ut is nonnegative.

Therefore, gu = 0. Next, as Ċt/Ct and Pt are asymptotically constant, equation (18)

implies that the value of Yt/Kt must also be constant in the long run. This means that

the growth rate of Yt/Kt is zero or negative. However, if Yt/Kt → 0, equation (15)

states K̇t/Kt < 0, which means that Yt = (Yt/Kt) · Kt → 0. This is inconsistent with

our definition of a NABGP, where gC ≥ 0. Therefore, the growth rate of Yt/Kt must be

zero; i.e., gK = g∗. Finally, given that K̇t/Kt and Yt/Kt are asymptotically constant,

equation (15) in turn implies that Ct/Kt must also be asymptotically constant. Recall

that the TVC for physical capital (21) requires that Ct/Kt must not be smaller than

(1−α)(Yt/Kt), which converges to a strictly positive constant as shown above. Therefore,

the growth rate of Ct/Kt must not be negative rather zero; i.e., gC = gK = g∗.

Proof of Lemmas 3 and 4 (Sections 3.2 and 3.3)

In this subsection, we establish the stability of the equilibrium path stated in Lemma

3 and Lemma 4. The equilibrium path is characterized by a four-dimensional dynamics

system of {Kt,Ht, ut, Ct}, where the laws of motion for these variables are given by (15)-

(18).20 In this dynamic system, Kt and Ht are predetermined state variables, whereas

ut and Ct are jumpable. Therefore, the system is both stable and determinate when it

has a stable manifold of dimension two.

20Note that by making use of (14), (19), and Nt = utHt, Yt and Pt appearing in the LHS of (15)-

(18) can be expressed in terms of Kt, Ht, ut and τt, where the motion of τt is given exogenously by the

government.

31



For convenience, we transform this system into another four-dimensional system in

{ut, χt, zt, Pt}, where χt ≡ Ct/Kt, z ≡ Yt/Kt and Pt ≡ βYt/τt. This transformed system

is equivalent to the original system, as {Kt,Ht, ut, Ct} can be represented in terms of

{ut, χt, zt, Pt}.21 Therefore, saddle stability (and determinacy) can be established by

confirming that this transformed system has a two-dimensional stable manifold. Using

(14) and (15)-(19), we can write the dynamics of the system as:

u̇t = ut

(
But − χt + βzt + ΛPt +

1 − α − β

α
(B + δK − δH) − β

α
gτ

)
, (57)

χ̇t = χt

(
χt −

θ − α

θ
zt +

θ − 1
θ

ϕPt −
ρ

θ
+

θ − 1
θ

δK

)
, (58)

żt = zt

(
−(1 − α − β)zt + ΛPt +

1 − α − β

α
(B + δK − δH) − β

α
gτ

)
, (59)

Ṗt = Pt

(
−χt +

α + (1 − α − β)β
1 − β

zt + ΩPt +
1 − α − β

α
B − α + β

α
gτ

+
(1 − 2α − β)δK − (1 − α − β)δH

α

)
(60)

where Λ and Ω are constants defined by Λ ≡ (1 − α − β)(ϕ − ψ)/α and Ω ≡ ((1 − 2α −

β)ϕ − (1 − α − β)ψ)/α.

We first examine the stability of the NABGP for the case of gτ ∈ [0, gmax]. As exam-

ined in Section 3.2, the steady state of the transformed system, denoted by {u∗, χ∗, z∗, P ∗},

is given by (31) and (35)–(33). Applying a first-order Taylor expansion of equations (57)–

(60) around this steady-state yields:
u̇t

χ̇t

żt

Ṗt

 ≃


u∗B −u∗ βu∗ Λu∗

0

0 J1

0




ut − u∗

χt − χ∗

zt − z∗

Pt − P ∗

 , (61)

where,

J1 ≡


χ∗ − θ−α

θ χ∗ (θ−1)ϕ
θ χ∗

0 −(1 − α − β)z∗ Λz∗

−P ∗ α+β(1−α−β)
1−β P ∗ ΩP ∗

 .

We want to show that the Jacobian matrix of (61) has two positive and two negative

eigenvalues. From the block-triangular structure of the matrix, one eigenvalue is u∗B > 0,

21Equivalence is confirmed in that the inverse transformation is well defined. Specifically, Kt =

τtPt/(βzt), Ct = τtPtχt/(βzt), and Ht =
“

τ1/(1−β)−bα/ eA
”1/(1−bα)

z
bα/(1−bα)
t Pt/(βut).
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and the other three are given by the eigenvalues of the submatrix J1. The characteristic

equation for J1 is:

−λ3 + tr(J1)λ2 − M(J1)λ + det(J1) = 0, (62)

where tr(J1) is the trace of J1, M(J1) the sum of the principal minors, and det(J1) the

determinant. These are given by:

tr(J1) =
{

θ + β − α

α
− (1 − 2α)ϕ

αψ

(
θ +

β

1 − α − β

)}
gτ +

β

α
δK +

α + β

α
ρ

+
{

(1 − 2α)ϕ
αψ

− 1 − α − β

α

}
(B − ρ − δH),

M(J1) =
χ∗ − θ−α

θ χ∗

0 −(1 − α − β)z∗
+

−(1 − α − β)z∗ Λz∗

α+β(1−α−β)
1−β P ∗ ΩP ∗

+
χ∗ (θ−1)ϕ

θ χ∗

−P ∗ ΩP ∗
,

= −1 − α − β

α

{
(ϕ − ψ)(z∗ − χ∗) +

αϕχ∗

θ(1 − α − β)

}
−1 − α − β

α
· z∗

P ∗
{
(θ − α)gτ + (1 − α)δK + (1 − 2α)ϕP ∗ + ρ

}
,

det(J1) =
ψ(1 − α − β)

θ
z∗χ∗P ∗,

We determine the sign of the real parts of the roots of (62) based on Theorem 1 of

Benhabib and Perli (1994).

Theorem 1 (Benhabib-Perli) The number of roots of the polynomial in (62) with

positive real parts is equal to the number of variations of sign in the scheme

−1 tr(J1) − M(J1) +
det(J1)
tr(J1)

det(J1).

Under the assumption that ψ/ϕ < (1−2α)/(1−α−β), we have tr(J1) > 0,22 M(J1) < 0,

and det(J1) > 0. Thus, the above theorem implies that there is only one eigenvalue with

positive real parts in the matrix J1. Combined with Bu∗ > 0 obtained before, we have

two positive eigenvalues in total. This completes the stability analysis for the case of

gτ ∈ [0, gmax] (and therefore the proof of Lemma 3).

Turning to the case of gτ ∈ (gmax, glim], the (asymptotic) steady state of the trans-

formed system for this case is given by P ∗ = 0 and (38)–(40) in Section 3.3. The Taylor

22This can be confirmed by noting that tr(J1) is linear in gτ and that it is positive at both ends (i.e.,

tr(J1) > 0 at gτ = 0, gmax.)
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expansion of equations (57)–(60) around this steady state yields essentially the same

expression as (61), with the only difference that submatrix J1 is replaced by:

J2 =


χ∗ · · · · · ·

0 −z∗(1 − α − β) · · ·

0 0 g∗ − gτ

 ,

where g∗ is the asymptotic growth rate of output, which is defined by (37). As J2 is

a triangular matrix, its eigenvalues are simply given by its diagonal elements. Observe

that g∗−gτ represent the asymptotic growth rate of Pt = βYt/τt. As discussed in Section

3.3, it is negative in this case (i.e., when gτ ∈ (gmax, glim]). Therefore, J2 has one positive

eigenvalue (χ∗) and two negative ones (−z∗(1−α− β) and g∗ − gτ ). This completes the

stability analysis for the case of gτ ∈ (gmax, glim] and the proof of Lemma 4.

¥

Details of welfare maximization (Section 4)

The current value Hamiltonian for the social planner’s problem is:

H =
C1−θ

t − 1
1 − θ

+ νo
t [AKα

t (utHt)1−α−βP β
t − Ct − (δK + ϕPt)Kt]

+ µo
t [B(1 − ut)Ht − (δH + ψPt)Ht],

where νo
t and µo

t are the planner’s shadow prices associated with the accumulation of

physical capital and human capital, respectively. The first-order conditions are:

νo
t = C−θ

t , (63)

ν̇o
t

νo
t

= ρ + ϕPt + δK − α
Yt

Kt
, (64)

µo
t =

(1 − α − β)Yt

ButHt
νo

t , (65)

µ̇o
t

µo
t

= ρ − νo
t

µo
t

(1 − α − β)
Yt

Ht
− B(1 − ut) + δH + ψtPt. (66)

βYt

Pt
= ϕKt + ψt(µo

t/νo
t )Ht, (67)

The resource constraints for the social planner’s problem are (15) and (16). Differentiat-

ing the log of (65) with respect to time, eliminating ν̇o
t /νo

t and µ̇o
t/µo

t by (64) and (66),

and then eliminating νo
t /µo

t by (65) gives condition (17). Similarly, differentiating the log
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of (63) with respect to time and eliminating ν̇o
t /νo

t by (64) gives (18). The transversality

conditions for this problem are limt→∞ Ktν
o
t e−ρt = 0 and limt→∞ Htµ

o
t e

−ρt = 0, which

are the same as those for the market equilibrium. Finally, eliminating (µo
t/νo

t ) from (67)

by (65) yields condition (41).

Proof of Proposition 4 (Section 5.1)

The proof is essentially similar to the discussion in Section 3. Note that equation (48)

implies τ̇t/τt = Ẏt/Yt − Ėt/Et, the RHS of which is asymptotically constant from the

definition of NABGPs. Thus, the growth rate of τt is also asymptotically constant and

written as gτ = g∗−gE , where gE is the asymptotic growth rate of emission. From this, we

can show that the asymptotic growth rate of economy g∗ cannot exceed gτ . Observe that

if g∗ > gτ , the previous equation implies gE > 0. This means emission Et grows without

bound, stock Pt also grows without bound from (46), natural disasters occur increasingly

frequently, and physical and human capital are destroyed at an ever-increasing rate. As

this is obviously incompatible with NABGPs, g∗ ≤ gτ must hold.23

Given g∗ ≤ gτ , it results that the asymptotic growth rate of emissions is zero or

negative (gE = g∗ − gτ ≤ 0). In fact, Et > 0 and gE ≤ 0 means that the amount of

emissions Et is asymptotically constant: Et → E∗ ≥ 0. Moreover, from (46), the stock

of pollution is also asymptotically constant: Pt → P ∗ ≡ (γ/δP )E∗ ≥ 0. It is easy to see

that P ∗ = 0 holds when g∗ < gτ , because gE < 0 and therefore P ∗ = (γ/δP )E∗ = 0.

Thus, we have:

P ∗


≥ 0 if g∗ = gτ (Case 1),

= 0 if g∗ < gτ (Case 2),
(30)

which is exactly the same as what we attained in Section 3.1. The remaining conditions

that characterize the NABGP are also the same (conditions 26 to 29) because they are

derived from (15)–(18), which were not changed by the introduction of pollution stocks.

Therefore, the discussions in Sections 3.2 and 3.3) are still valid, which yield (31)–(40).

23See the proof of Lemma 1 in the Appendix for a formal discussion.
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Details of welfare maximization with stock pollution (Section 5.2)

Note that the definition of pollution stock (46) implies that Pt evolves according to

Ṗt = γEt − δP Pt. Using this, the current value Hamiltonian for the social planner’s

problem can be written as:

H =
C1−θ

t − 1
1 − θ

+ νo
t [AKα

t (utHt)1−α−βEβ
t − Ct − (δK + ϕPt)Kt]

+ µo
t [B(1 − ut)Ht − (δH + ψPt)Ht] + λt[γEt − δP P ],

where λt is the shadow price of pollution stock. The first-order conditions are given by

(63)–(66) and:

βYt

γEt
=

−λt

νo
t

(68)

λ̇t

λt
=

νo
t

λt
ϕKt +

µo
t

λt
ψHt + ρ + δP . (69)

The TVCs are limt→∞ Ktν
o
t e−ρt = 0, limt→∞ Htµ

o
t e

−ρt = 0, and limt→∞ Ptλte
−ρt = 0.

Similar to the analysis for Section 4 (see above), it can be shown that conditions (63)–

(66) and the first two TVCs are the same as the market equilibrium. Note that Ps ≥

Pte
−δP (s−t) holds for all s ≥ t from Ṗt = γEt − δP Pt and Et ≥ 0. This inequality and

the TVC for Pt jointly imply:

0 = lim
s→∞

Psλse
−ρs ≥ lim

s→∞
λsPte

−δP (s−t)e−ρs = Pte
−ρt lim

s→∞
λse

−(ρ+δP )(s−t) ≥ 0

which means24

lim
s→∞

λse
−(ρ+δP )(s−t) = 0. (70)

In the following, we derive the value of λt from (69) and (70). Substituting s for t in

(69) and multiplying both sides by λte
−(ρ+δP )(s−t) gives:

λ̇se
−(ρ+δP )(s−t) − (ρ + δP )λse

−(ρ+δP )(s−t) = (νo
sϕKs + µo

sψHs) e−(ρ+δP )(s−t). (71)

Observe that the LHS of (71) is the derivative of λse
−(ρ+δP )(s−t) with respect to s. Thus,

we can calculate the definite integral of the LHS from s = t to s → ∞, which becomes:[
λse

−(ρ+δP )(s−t)
]∞
s=t

= lim
s→∞

λse
−(ρ+δP )(s−t) − λt = −λt,

24Note that Pt cannot become 0 in finite t, although it may asymptote to 0.
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where the second equality follows from (70). As this must coincide with the definite

integral of the RHS of (71), we obtain:

−λt =
∫ ∞

t
(νo

sϕKs + µo
sψHs) e−(ρ+δP )(s−t)ds. (72)

Eliminating νo
t and µo

t from (68) and (72) using (63) and (65) gives (49) in the text.
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