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a b s t r a c t

This paper develops and implements a practical simulation-based method for estimating
dynamic discrete choice models. The method, which can accommodate lagged dependent
variables, serially correlated errors, unobserved variables, and many alternatives, builds
on the ideas of indirect inference. The main difficulty in implementing indirect inference
in discrete choicemodels is that the objective surface is a step function, rendering gradient-
based optimization methods useless. To overcome this obstacle, this paper shows how to
smooth the objective surface. The key idea is to use a smoothed function of the latent
utilities as the dependent variable in the auxiliary model. As the smoothing parameter
goes to zero, this function delivers the discrete choice implied by the latent utilities,
thereby guaranteeing consistency. We establish conditions on the smoothing such that
our estimator enjoys the same limiting distribution as the indirect inference estimator,
while at the same time ensuring that the smoothing facilitates the convergence of gradient-
based optimization methods. A set of Monte Carlo experiments shows that the method is
fast, robust, and nearly as efficient as maximum likelihood when the auxiliary model is
sufficiently rich.

© 2018 Published by Elsevier B.V.

1. Introduction

Many economic models have the features that (i) given knowledge of the model parameters, it is easy to simulate data
from the model, but (ii) estimation of the model parameters is extremely difficult. Models with discrete outcomes or mixed
discrete/continuous outcomes commonly fall into this category. A good example is themultinomial probit (MNP), inwhich an
agent chooses from among several discrete alternatives the onewith the highest utility. Simulation of data from themodel is
trivial: simply draw utilities for each alternative, and assign to each agent the alternative that gives them the greatest utility.
But estimation of the MNP, via either maximum likelihood (ML) or the method of moments (MOM), is quite difficult.
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foundations of the method had not been firmly established. The present paper provides these foundations and fills this gap in the literature.
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The source of the difficulty in estimating theMNP, aswithmany other discrete choicemodels, is that, from the perspective
of the econometrician, the probability an agent chooses a particular alternative is a high-dimensional integral over multiple
stochastic terms (unobserved by the econometrician) that affect the utilities the agent assigns to each alternative. These
probability expressions must be evaluated many times in order to estimate the model by ML or MOM. For many years
econometricians worked on developing fast simulation methods to evaluate choice probabilities in discrete choice models
(see Lerman and Manski, 1981). It was only with the development of fast and accurate smooth probability simulators that
ML or MOM-based estimation in these models became practical (see McFadden, 1989, and Keane, 1994).

A different approach to inference in discrete choicemodels is themethodof ‘‘indirect inference’’. This approach (see Smith,
1990, 1993; Gourieroux et al., 1993; Gallant and Tauchen, 1996), circumvents the need to construct the choice probabilities
implied by the economic model, because it is not based on the likelihood, or on moments based on choice frequencies.
Rather, the idea of indirect inference (II) is to choose a statistical model that provides a rich description of the patterns in
the data. This descriptive model is estimated on both the actual observed data and on simulated data from the economic
model. Letting β denote the vector of parameters of the structural economic model, the II estimator is that β̂ which makes
the simulated data ‘‘look like’’ the actual data — in the sense (defined formally below) that the descriptive statistical model
estimated on the simulated data ‘‘looks like’’ that samemodel estimated on the actual data. (Themethod of moments is thus
a special case of II, in which the descriptive statistical model corresponds to a vector of moments.)

Indirect inference holds out the promise that it should be practical to estimate any economic model from which it is
practical to simulate data, even if construction of the likelihood or populationmoments implied by themodel is very difficult
or impossible. But this promise has not been fully realized because of limitations in the II procedure itself. It is very difficult
to apply II to models that include discrete (or mixed discrete/continuous) outcomes for the following reason: small changes
in the structural parameters of such models will, in general, cause the data simulated from the model to change discretely.
Such a discrete change causes the parameters of a descriptive model fit to the simulated data to jump discretely, and these
discontinuities are inherited by the criterion function minimized by the II estimator.

Thus, given discrete (or discrete/continuous) outcomes, the II estimator cannot be implemented using gradient-based
optimization methods. One instead faces the difficult computational task of optimizing a multidimensional step function
using much slower derivative-free methods. This is very time-consuming and puts severe constraints on the size of the
structural models that can be feasibly estimated. Furthermore, even if estimates can be obtained, one does not have
derivatives available for calculating standard errors.

In this paperwe propose a ‘‘generalized indirect inference’’ (GII) procedure to address this important problem (Section 3).
The key idea is to generalize the original II method by applying two different descriptive statistical models to the simulated
and actual data. As long as the two descriptive models share the same vector of pseudo-true parameter values (at least
asymptotically), the GII estimator based on minimizing the distance between the two models is consistent, and will enjoy
the same asymptotic distribution as the II estimator.

While the GII idea has wider applicability, here we focus on how it can be used to resolve the problem of non-smooth
objective functions of II estimators in the case of discrete choice models. Specifically, the model we apply to the simulated
data does not fit the discrete outcomes in that data. Rather, it fits a ‘‘smoothed’’ version of the simulated data, in which
discrete choice indicators are replaced by smooth functions of the underlying continuous latent variables that determine the
model’s discrete outcomes. In contrast, the model we apply to the actual data is fit to observed discrete choices (obviously,
the underlying latent variables that generate actual agents’ observed choices are not seen by the econometrician).

As the latent variables that enter the descriptive model applied to the simulated data are smooth functions of the
model parameters, the non-smooth objective function problem is obviously resolved. However, it remains to show that
the GII estimator based on minimizing the distance between these twomodels is consistent and asymptotically normal. We
show that, under certain conditions on the parameter regulating the smoothing, the GII estimator has the same limiting
distribution as the II estimator, permitting inferences to be drawn in the usual manner (Section 4). Our theoretical analysis
goes well beyond merely deriving the limiting distribution of the minimizer of the GII criterion function. Rather, in keeping
with computational motivation of this paper, we show how the proposed smoothing facilitates the convergence of standard
derivative-based optimizers, providing results for selected line-search and trust-region methods.

Finally, we conduct a set of Monte Carlo experiments to assess the performance of the GII estimator, in terms of bias,
efficiency, and computation time, for a range of examplemodels (Section 5). For models of onlymoderate complexity (i.e. on
the order of 10 parameters), GII significantly outperforms conventional II (computed using the downhill simplex), in terms
of both computation time and efficiency.We look at some cases where simulatedmaximum likelihood (SML) is also feasible,
and show that efficiency losses relative to SML are small. We also show how judicious choice of the descriptive (or auxiliary)
model is very important for the efficiency of the estimator. This is true not only here, but for II more generally.

Proofs of all theoretical results stated in the paper are given in the Supplementary Material.

2. The model

We first describe a class of (dynamic) discrete choice models, which motivate the estimation method developed in this
paper. However, the ideas underlying the method could be applied to almost any conceivable model involving discrete
outcomes, including models with mixed discrete/continuous outcomes (such as Model 5), and even models in which
individuals’ choices solve forward-looking dynamic programming problems.
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Suppose we have a panel of n individuals, each of whom selects a choice from a set of J discrete alternatives in each of T
time periods. (We shall always assume that T is ‘small’ relative to n; all our asymptotic results hold T as fixed as n → ∞.)
Let uitj be the (latent) utility that individual i attaches to alternative j in period t . Without loss of generality, set the utility of
alternative J in any period equal to 0. In each period, each individual chooses the alternative with the highest utility. Let yitj
be equal to 1 if individual i chooses alternative j in period t and be equal to 0 otherwise: that is,

yitj = 1
{
uitj ≥ max

k̸=j
uitk

}
=

{
1 if uitj ≥ max

k̸=j
uitk;

0 otherwise.
(2.1)

Collect uit := (uit1, . . . , uit,J−1) and yit := (yit1, . . . , yit,J−1). The econometrician observes the choices {yit}Tt=1 but not the
latent utilities {uit}

T
t=1.

The latent utilities themselves follow a stochastic process

uit = f (xit , yi,t−1, . . . , yi,t−l, ϵit; β), t = 1, . . . , T , (2.2)

where xit is a vector of (observed) exogenous variables.1 For each individual i, the (unobserved) disturbances ϵit := (ϵit1, . . . ,
ϵit,J−1) follow a Markov process

ϵit = g(ϵi,t−1, ηit; β), t = 1, . . . , T (2.3)

where {ηit}
T
t=1 is a sequence of (unobserved) i.i.d. random vectors having a specified distribution (which does not depend

on β), and which are also independent of {xit}Tt=1. The initial values {yit}0t=1−l and ϵi0 are fixed exogenously. The functions f
and g depend on the structural parameters β ∈ B ⊂ Rdβ : the econometrician’s problem is thus to estimate β , using data on
the outcomes {yit}Tt=1 and exogenous variables {xit}Tt=1, for i ∈ {1, . . . , n}.

We give four examples of discrete choice models that fall within this framework below, and which will be used as test
cases for GII. Three of these (Models 1, 2, and 4) can be feasibly estimated using simulated maximum likelihood, allowing us
to compare its performance with that of GII. In each, the functions f and g take the linear index form

f (xit , yi,t−1, . . . , yi,t−l, ϵit; β) = (xit , yi,t−1, . . . , yi,t−l, ϵit )′βut (2.4)
g(ϵi,t−1, ηit; β) = (ϵi,t−1, ηit )′βϵt , (2.5)

where βut and βϵt are sub-vectors of β . Our theoretical results will also implicitly rely on this linearity, in the sense that the
low-level conditions presented in Appendix B are mostly easily verified for a model in which (2.4)–(2.5) hold.

Model 1. J = 2, T > 1, and uit = bxit + ϵit , where xit is a scalar, ϵit = rϵi,t−1 + ηit , ηit ∼i.i.d. N[0, 1], and ϵi0 = 0. This is a
two-alternative dynamic probit model with serially correlated errors; it has two unknown parameters b and r .

Model 2. J = 2, T > 1, and uit = b1xit +b2yi,t−1 +ϵit , where xit is a scalar and ϵit follows the same process as inModel 1. The
initial value yi0 is set equal to 0. This is a two-alternative dynamic probit model with serially correlated errors and a lagged
dependent variable; it has three unknown parameters b1, b2, and r .

Model 3. Identical to Model 2 except that the econometrician does not observe the first s < T of the individual’s choices.
Thus there is an ‘‘initial conditions’’ problem (Heckman, 1981).

Model 4. J = 3, T = 1, and the latent utilities obey:

ui1 = b10 + b11xi1 + b12xi2 + ηi1

ui2 = b20 + b21xi1 + b22xi3 + c1ηi1 + c2ηi2,

where (ηi1, ηi2) ∼i.i.d. N[0, I2]. (Since T = 1 in this model, the time subscript has been omitted.) This is a static three-
alternative probit model; it has eight unknown parameters {b1k}2k=0, {b2k}

2
k=0, c1, and c2.

Models involving a mixture of discrete and continuous outcomes, and indeed mixed discrete/continuous outcomes, are
also amenable to the estimation procedure proposed in this paper. One example is provided by the following:

Model 5. A static selection model with two equations; the first determines an individual’s wage and the second his/her
latent utility from working:

wi = b10 + b11x1i + c1η1i + c2ηi2 (2.6a)
ui = b20 + b21x2i + b22wi + ηi2, (2.6b)

1 The estimationmethod proposed in this paper can also accommodate models in which the latent utilities in any given period depend on lagged values
of the latent utilities.
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where (ηi1, ηi2) ∼i.i.d. N[0, I2]. The unknown parameters are {b1k}1k=0, {b2k}
2
k=0, c1, and c2. Let ei := 1{ui ≥ 0} indicatewhether

individual i works. The econometrician observes the outcome ei, but not the latent utility ui, and observes the wage if and
only if the individual works (ei = 1). Thus the observed outcomes are

yi = (ei, eiwi)T.

3. Generalized indirect inference

We propose to estimate the model in Section 2 via a generalization of indirect inference. First, in Section 3.1 we exposit
the method of indirect inference as originally formulated. In Section 3.2 we explain the difficulty of applying the original
approach to discrete choice models. Section 3.3 presents our generalized indirect inference (GII) estimator that resolves
this difficulty. The proposed estimator involves a smoothing procedure, which introduces a bias: we accordingly provide a
discussion of how this bias may be reduced (Section 3.4), and suggest a procedure for selecting the parameter that regulates
the degree of smoothing (Section 3.5). An overview of related literature appears in Section 3.6.

To simplify the exposition, we shall suppose that the structural model to be estimated falls within the class of models
delimited by (2.1)–(2.3); but the reader should bear in mind that the proposed estimation method and the results of this
paper do not rely upon this restriction. (A set of low-level conditions that are sufficient for our results, andwhich encompass
such models as Model 5, are given in Appendix B.)

We shall use the following notation. Let yi := (yTi1, . . . , y
T
iT )

T collect the outcomes from every period (t ∈ {1, . . . , T })
for individual i, and y := {yi}ni=1 denote the aggregate of outcomes for all individuals (i ∈ {1, . . . , n}) in the sample. The
quantities xi, ηi, x and η are constructed analogously from the underlying {xit} and {ηit}. (Recall that all limits are taken as
n → ∞, with T (and later,M) held fixed.)

3.1. Indirect inference

Indirect inference exploits the ease and speed with which one can typically simulate data from even complex structural
models. The basic idea is to view both the observed data and the simulated data through the ‘‘lens’’ of a descriptive statistical
model – henceforth, the auxiliary model – characterized by a set of dθ auxiliary parameters θ . The dβ ≤ dθ structural
parameters β are then chosen so as to make the observed data and the simulated data look similar when viewed through
this lens.

To formalize these ideas, assume the observed choices y are generated by the structural discrete choicemodel (2.1)–(2.3),
for a given value β0 of the structural parameters (i.e. the structural model is ‘‘correctly specified’’). An auxiliary model can
be estimated using the observed data to obtain parameter estimates θ̂n. Formally, θ̂n solves:

θ̂n := argmax
θ∈Θ

Ln(y, x; θ ) = argmax
θ∈Θ

1
n

n∑
i=1

ℓ(yi, xi; θ ), (3.1)

where Ln(y, x; θ ) is the average log-likelihood function (or more generally, some statistical criterion function) associated
with the auxiliary model.

Let ηm
:= {ηm

i }
n
i=1 denote a set of simulated draws for the values of the unobservable components of the model, with

these draws being independent across m ∈ {1, . . . ,M}. Then given x and a parameter vector β , the structural model can be
used to generate M corresponding sets of simulated choices, ym(β) := {ymi (β)}

n
i=1. (Note that the same values of x and ηm

are used for all β .) Estimating the auxiliary model on themth simulated dataset yields

θ̂m
n (β) := argmax

θ∈Θ

Ln(ym(β), x; θ ). (3.2)

The average of these estimates will be denoted by

θn(β) :=
1
M

M∑
m=1

θ̂m
n (β). (3.3)

Under appropriate regularity conditions, as the observed sample size n grows large (holdingM and T fixed), θn(β) converges
uniformly in probability to a non-stochastic limit θ (β), which Gourieroux et al. (1993) term the binding function.

Loosely speaking, indirect inference generates an estimate β̂n of the structural parameters by choosing β so as to make
θ̂n and θn(β) as close as possible, with consistency following from θ̂n and θn(β0) both converging to the same pseudo-true
value θ0 := θ (β0). To implement the estimator we require a metric for the distance between θ̂n and θn(β). There are three
approaches to choosing such ametric, analogous to the three classical approaches to hypothesis testing: theWald, likelihood
ratio (LR), and Lagrange multiplier (LM) approaches.2

2 This nomenclature is due to Eric Renault. TheWald and LR approaches were first proposed in Smith (1990, 1993) and later extended by Gourieroux et
al. (1993). The LM approach was first proposed in Gallant and Tauchen (1996).
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The Wald approach to indirect inference chooses β to minimize the weighted distance between θn(β) and θ̂n,

QW
n (β) := ∥θn(β) − θ̂n ∥

2
Wn

, (3.4)

where ∥b ∥
2
A := bTAb, andWn is a sequence of positive-definite weight matrices.

The LR approach forms a metric implicitly by using the average log-likelihood Ln(y, x; θ ) associated with the auxiliary
model. In particular, it seeks to minimize

Q LR
n (β) := −Ln(y, x; θn(β)) = −

1
n

n∑
i=1

ℓ(yi, xi; θn(β)). (3.5)

Finally, the LM approach does not work directly with the estimated auxiliary parameters θn(β) but instead uses the score
vector associated with the auxiliary model.3 Given the estimated auxiliary model parameters θ̂n from the observed data, the
score vector is evaluated using each of theM simulated datasets. The LM estimator then minimizes a weighted norm of the
average score vector across these datasets,

Q LM
n (β) :=

 1
M

M∑
m=1

L̇n(ym(β), x; θ̂n)


2

Vn

, (3.6)

where L̇n denotes the gradient of Ln with respect to θ , and Vn is a sequence of positive-definite weight matrices.
All three approaches yield consistent and asymptotically normal estimates of β0, and are first-order asymptotically

equivalent in the exactly identified case in which dβ = dθ . In the over-identified case, when the weight matricesWn and Vn
are chosen optimally (in the sense of minimizing asymptotic variance) both the Wald and LM estimators are more efficient
than the LR estimator. However, if the likelihood of the auxiliary model is correctly specified, then all three (optimally
weighted) estimators are asymptotically equivalent.

3.2. Indirect inference for discrete choice models

Discontinuities arise naturally when applying indirect inference to discrete choice models because any simulated choice
ymitj(β) is a step function of β (holding fixed the random draws ηm). Consequently, the sample binding function θn(β) is
discontinuous in β , and these discontinuities are inherited by the II criterion functions (3.4)–(3.6).

Thus in such models, it is difficult to ensure that a gradient-based optimization procedure will converge to an (approxi-
mate)maximizer of the II criterion function. Onemust therefore instead rely on derivative-freemethods (such as theNelder–
Mead simplex method); random search algorithms (such as simulated annealing); or abandon optimization altogether, and
instead implement a Laplace-type estimator, via Markov Chain Monte Carlo (MCMC; see Chernozhukov and Hong, 2003).
But convergence of derivative-free methods is often very slow; while verifying the convergence of MCMC routines is often
a challenging task. Thus, the non-smoothness of the criterion functions that define II estimators render them very difficult
to use in the case of discrete data.

Despite the difficulties in applying II to discrete choice models, the appeal of the II approach has led some authors to
push ahead and apply it nonetheless. Some notable papers that apply II by optimizing non-smooth objective functions are
Magnac et al. (1995), An and Liu (2000), Nagypál (2007), Eisenhauer et al. (2015), Li and Zhang (2015) and Skira (2015). Our
work aims to make it much easier to apply II in these and related contexts.

3.3. A smoothed estimator (GII)

Here we propose a generalization of indirect inference that is far more practical in the context of discrete outcomes. The
fundamental idea is that the estimation procedures applied to the observed and simulated datasets need not be identical,
provided that both are consistent for the same binding function. (Genton and Ronchetti, 2003, use a similar insight to
develop robust estimation procedures in the context of indirect inference.) We exploit this idea to smooth the function
θn(β), obviating the need to optimize a step function when using indirect inference to estimate a discrete choice model.

Returning to the framework of Section 2, let um
itj(β) denote the latent utility that individual i attaches to alternative

j ∈ {1, . . . ,J − 1} in period t of the mth simulated dataset, given structural parameters β (recall that the utility of the
Jth alternative is normalized to 0). Rather than use the simulated choice

ymitj(β) := 1
{
um
itj(β) ≥ max

k̸=j
um
itk(β)

}
=

∏
k̸=j

1
{
um
itj(β) − um

itk(β) ≥ 0
}

when computing θn(β), we propose to replace it by the following smooth function of the latent utilities,

ymitj(β, λ) := Kλ[um
itj(β) − um

it1(β), . . . , um
itj(β) − um

itJ (β)], (3.7)

3 When the LM approach is implemented using an auxiliary model that is (nearly) correctly specified in the sense that it provides a (nearly) correct
statistical description of the observed data, Gallant and Tauchen (1996) refer to this approach as efficient method of moments (EMM).
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where K : RJ−1
→ R is a smooth, mean-zero multivariate cdf, and Kλ(v) := K(λ−1v).4 If the choice utilities {um

itj(β)}
J
j=1

are distinct – which in these models occurs with probability one – then as the smoothing parameter λ goes to 0, ymitj(β, λ)
converges to ymitj(β, 0) = ymitj(β).

5

Let ymi (β, λ) and ym(β, λ) be constructed from {ymitj(β, λ)}, in the same manner as yi and y were from {yitj} (see p. 5).
Defining

θn(β, λ) :=
1
M

M∑
m=1

θ̂m
n (β, λ) (3.8)

where

θ̂m
n (β, λ) := argmax

θ∈Θ

Ln(ym(β, λ), x; θ ), (3.9)

we may regard θn(β, λ) as providing a smoothed estimate of θ (β), for which it is consistent so long as λ = λn → 0 as
n → ∞. Accordingly, an indirect inference estimator based on θn(β, λn), which we shall henceforth term the generalized
indirect inference (GII) estimator, ought to be consistent for β0.6

Each of the three approaches to indirect inference can be generalized simply by replacing each simulated choice ymitj(β)
with its smoothed counterpart ymitj(β, λn). For the Wald and LR estimators, this entails using the smoothed sample binding
function θn(β, λn) in place of the unsmoothed estimate θn(β). (See Section 3.4 for the exact forms of the criterion functions.)

The GII approach was first suggested in an unpublished manuscript by Keane and Smith (2003), but they did not derive
the asymptotic properties of the estimator. Despite this, GII has proven to be popular in practice, and has already been
applied in a number of papers, such as Gan and Gong (2007), Cassidy (2012), Altonji et al. (2013), Morten (2013), Ypma
(2013), Lopez-Mayan (2014) and Lopez Garcia (2015). Given the growing popularity of the method, a careful analysis of its
asymptotic properties is obviously needed.

3.4. Bias reduction

GII inherits the consistency of the II estimator, provided that λn → 0 as n → ∞. However, as smoothing necessarily
imparts a bias to the sample binding function θn(β, λn), and thence to the GII estimator, we need λn to shrink to zero at a
sufficiently fast rate if GII is to enjoy the same limiting distribution as the unsmoothed II estimator. In general, the smoothing
imparts a bias that is of the order ∥θ (β0, λ)− θ (β0, 0)∥ = O(λ); hence this will be dominated by the estimator variance only
if n1/2λn → 0. On the other hand, if λn → 0 too rapidly, derivatives of the GII criterion function will become highly irregular,
impeding the ability of derivative-based optimization routines to locate the minimum. (For precisely what this may entail
for λn, see Proposition 4.1.) To allow these conflicting requirements on the smoothing sequence to bemore easily reconciled,
we introduce the following refinements of the proposed estimator.7

3.4.1. Jackknifing
One well-known approach to bias reduction is Richardson extrapolation – commonly referred to as ‘‘jackknifing’’ in the

statistics literature – which may be applied directly to the smoothed sample binding function. Provided that the population
binding function is sufficiently smooth, a Taylor series expansion gives

θl(β, λ) = θl(β, 0) +

s∑
r=1

αrl(β)λr
+ o(λs) αrl(β) :=

1
r!

∂θl(β, λ)
∂λ

⏐⏐⏐⏐
λ=0

,

as λ → 0, for l ∈ {1, . . . , dθ }. Then, for a chosen δ ∈ (0, 1), we have the first-order extrapolation,

θ1
l (β, λ) :=

θl(β, δλ) − δθl(β, λ)
1 − δ

= θl(β, 0) + δ

s∑
r=2

(δr−1
− 1)αrl(β)λr

+ o(λs),

4 Keane and Smith (2003) suggested using themultivariate logistic cdf,K(v) := 1/(1+
∑J−1

j=1e
−vj ), and this is used in the simulation exercises presented

in Section 5; but this has no particular advantages over other possible choices.
5 For models in which current utility depends on past outcomes (as distinct from past utilities), the performance of GII may be improved through a

further refinement to the basic smoothing procedure outlined here: see Appendix A.1 for details.
6 To implement this procedure in Model 5, which has mixed discrete/continuous outcomes, we would set

yi(β, λ) = [Kλ(ui(β)),Kλ(ui(β))wi(β)]T

where (ui(β), wi(β)) are as in (2.6).
7 Independently of our own work on this problem, Kristensen and Salanié (2016) propose two methods for bias reduction that are applicable to a

wide range of ‘approximate’ estimators (which includes simulation-based estimators): one based on a kind of jackknifing procedure, and the other on a
Newton–Raphson iteration.While the latter is evidently closely related towhat we propose in Section 3.4.2, the former is somewhat different from our own
jackknifing procedure (Section 3.4.1). In particular, the structure of the indirect inference problem allows us to apply jackknifing directly to the binding
function (so that the bias correction can be ‘built in’ to the GII criterion function), whereas in our setting, Kristensen and Salanié’s (2016) jackknife would
have to be implemented by taking an appropriate linear combination of GII estimators computed using different values of λ.
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for every l ∈ {1, . . . , dθ }. By an iterative process, for k ≤ s − 1 we can construct a kth order extrapolation of the binding
function, which satisfies

θ k(β, λ) :=

k∑
r=0

γrkθ (β, δrλ) = θ (β, 0) + O(λk+1), (3.10)

where the weights {γrk}
k
r=0 (which can be negative) satisfy

∑k
r=0γrk = 1, andmay be calculated using Algorithm 1.3.1 in Sidi

(2003). It is immediately apparent that the kth order jackknifed sample binding function,

θ
k
n(β, λn) :=

k∑
r=0

γrkθn(β, δrλn) (3.11)

will enjoy an asymptotic bias of order Op(λk+1
n ), whence only n1/2λk+1

n = op(1) is necessary for the bias to be asymptotically
negligible (relative to the estimator variance).8

Jackknifed GII estimators of order k ∈ N0 may now be defined as the minimizers of:

Q e
nk(β, λn) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∥θ

k
n(β, λn) − θ̂n ∥

2
Wn

if e = W

−Ln(y; x, θ k
n(β, λn)) if e = LR

∥
1
M

M∑
m=1

L̇mk
n (β, λn; θ̂n) ∥2

Vn if e = LM

(3.12)

where L̇mk
n (β, λ; θ̂n) :=

∑k
r=0γrkL̇n(ym(β, λ), x; θ̂n) denotes the jackknifed score function; the un-jackknifed estimators may

be recovered by taking k = 0.

3.4.2. Newton–Raphson iterations
By allowing the number of simulations M to increase with the sample size, we can accelerate the rate at which θ

k
n

converges to the binding function; the ‘effective sample size’ used to compute the derivatives of θ
k
n being nM . Larger values

of M thus permit us to choose smaller values of λ. Since the evaluation of Qnk is potentially costly when M is very large, a
sensible approach is to first minimize Qnk using a very small value ofM (e.g.M = 1) and large λ = λ(0), to produce an initial
estimate β̂ (0). One could then increase M to an appropriately large value M (1), allowing λ to be reduced to some λ(1) < λ(0),
and then compute a new estimate by taking (at least) one Newton–Raphson step, applied to the new criterion: that is, by
computing

β̂NR
:= β̂ (0)

− [∂2
βQnk(β̂ (0), λ(1)

;M (1))]−1∂βQnk(β̂ (0), λ(1)
;M (1)),

where ∂β f and ∂2
β f respectively denote the gradient and Hessian of f : B → R.

Although a rigorous analysis of this ‘Newton–Raphson’ estimator is beyond the scope of this paper (we assume that M
is fixed throughout Section 4), we do study its performance in the simulation exercises of Section 5. These suggest that
its performance is comparable to that of the jackknifed estimator; there is apparently little difference between the two
procedures in this respect.

3.5. Smoothing parameter selection

Regarding the choice of λ in practice, we have the following suggestions. We recommend selecting an initial value of
λ = λ(0) that is sufficiently large to ensure the convergence of derivative-based optimizers, when applied to β ↦→ Qnk(β, λ).
Such aλ could come fromexperimentation, or be generated by the automated selection procedure described inAppendix A.2.
Because of the possibility of multiple local optima, one would generally optimize Qnk from many possible starting values,
before finally settling on at an initial estimate β̂n(λ(0)). (To save on computational time, a very small value of M should be
used in this phase, possibly evenM = 1.)

In the next phase of the optimization, we would choose a smaller value of λ = λ(1) < λ(0), and reoptimize Qnk(·, λ(1)),
using β̂n(λ(0)) as a starting value, to obtain a new estimate β̂n(λ(1)). This process of adjusting λ downwards and reoptimizing
the resulting criterion function could be iterated, with say λ(i)

:= ρλ(i−1) for some ρ ∈ (0, 1) on the ith iteration. We then
need to decide at which point these iterations should terminate. One possibility is to terminate once the associated change
in the parameter estimates falls below some pre-specified tolerance, that is, once

∥β̂n(λ(i)) − β̂n(λ(i−1))∥ < ϵ (3.13)

8 In the case where the auxiliary model estimator can be written as θ̂m
n (β, λ) = g(Tm

n (β, λ)), for some transformation g of a vector Tm
n of sufficient

statistics (i.e. statistics that are sufficient for the auxiliarymodel estimator), jackknifing could be applied directly to these statistics. Thus, if we were to set
θ̂mk
n (β, λn) := g(

∑k
r=0γrkTm

n (β, λn)), then 1
M

∑M
m=1 θ̂

mk
n (β, λn) would also have an asymptotic bias of order Op(λk+1

n ). This approachmay have computational
advantages if the transformation g is relatively costly to compute (e.g. when it involves matrix inversion).
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where ϵ is of the order 10−6, or smaller. Alternatively, since the bias of the GII estimator is ultimately inherited from that
of the (smoothed) sample binding function θn(β, λ), we instead could proceed to a point where the estimated (total) bias in
θn(β, λ) falls below some pre-specified fraction δ of its overall standard error, where both of these quantities are evaluated
at the current estimates. Details of how to compute these quantities via simulation are provided in Appendix A.2.

3.6. Related literature

Our approach to smoothing in a discrete choice model bears a superficial resemblance to that used by Horowitz (1992) to
develop a smoothed version of Manski’s (1985) maximum score estimator for a binary response model. As here, the smooth
version of maximum score is constructed by replacing discontinuous indicators with smooth cdfs in the sample criterion
function.

However, there is a fundamental difference in the statistical properties of the minimization problems solved by Manski’s
estimator, and the (unsmoothed) indirect inference estimator. Specifically, n−1/2-consistent estimators are available for the
unsmoothed problem considered in this paper (see Theorem 4.1, or Pakes and Pollard, 1989); whereas, in the case ofManski’s
(1985) maximum score estimator, only n−1/3-consistency is obtained without smoothing (see Kim and Pollard, 1990), and
smoothing yields an estimator with an improved rate of convergence.

A potentially more relevant analogue for the present paper is smoothed quantile regression. This originates with
Horowitz’s (1998) work on the smoothed least absolute deviation estimator, extended to more general quantile regression
and quantile-IV models by Whang (2006), Otsu (2008) and Kaplan and Sun (2012). The latter papers do not smooth the
criterion function, but rather the estimating equations (approximate first-order conditions) that equivalently define the
estimator. These first-order conditions involve indicator-type discontinuities like those in our problem, smoothed in the
sameway. Insofar as the problem of solving the estimating equations is analogous to theminimum-distance problem solved
by the II estimator, the effects of smoothing are similar: in each case smoothing (if done appropriately) affects neither the
rate of convergence nor the limiting distribution of the estimator, relative to its unsmoothed counterpart.

The motivation for smoothing in the quantile regression case involves the potential for higher-order asymptotic
improvements.9 In contrast, in the present setting, which involves structural models of possibly great complexity, the
potential for higher-order improvements is limited.10 The key motivation for smoothing in our case is computational.
Accordingly, Section 4.3 is devoted to providing a theoretical foundation for our claim that smoothing facilitates the
convergence of standard derivative-based procedures that are widely used to solve (smooth) optimization problems in
practice.

For the class ofmodels considered in this paper, two leading alternative estimationmethods thatmight be considered are
simulated maximum likelihood (SML) in conjunction with the Geweke, Hajivassiliou and Keane (GHK) smooth probability
simulator (see Section 4 in Geweke and Keane, 2001), and the nonparametric simulated maximum likelihood (NPSML)
estimator (Diggle and Gratton, 1984; Fermanian and Salanié, 2004; Kristensen and Shin, 2012). However, the GHK simulator
can only be computed in models possessing a special structure – which is true for Models 1, 2 and 4, but not for
Model 3 – while in models that involve a mixture of discrete and continuous outcomes, NPSML may require the calculation
of rather high-dimensional kernel density estimates in order to construct the likelihood, the accuracy of which may require
simulating the model a prohibitively large number of times.

Finally, an alternative approach to smoothing the II estimator is importance sampling, as in Keane and Sauer (2010)
and Sauer and Taber (2013). The basic idea is to simulate data from the structural model only once (at the initial estimate
of β). One holds these simulated data fixed as one iterates. Given an updated estimate of β , one re-weights the original
simulated data points, so those initial simulations that are more (less) likely under the new β (than under the initial β) get
more (less) weight in forming the updated objective function.

In our view the GII and importance sampling approaches both have virtues. The main limitation of the importance
sampling approach is that in many models the importance sample weights may themselves be computationally difficult
to construct. Keane and Sauer (2010), when working with models similar to those in Section 2, assume that all variables are
measured with error, which gives a structure that implies very simple weights. In many contexts such a measurement error
assumption may be perfectly sensible. But the GII method can be applied directly to the models of Section 2 without adding
any auxiliary assumptions (or parameters).

4. Asymptotic and computational properties

This section presents our results on the asymptotic and computational properties of the GII estimator. These follow from
the high-level and regularity conditions stated below (see Assumptions H and R). We shall only provide results for theWald

9 While potential computational benefits have been noted in passing, we are not aware of any attempt to demonstrate these formally, in the manner of
Theorem 4.3.
10 This is particularly evident when the auxiliary model consists of a system of regression equations, as per Section 5.2.1. For while smoothing does

indeed reduce the variability of the simulated (discrete) outcomes ymit (β, λ), this may increase the variance with which some parameters of the auxiliary
model are estimated, if yit appears as a regressor in that model: as will be the case for Models 2 and 3 (see Sections 5.2.3 and 5.2.4). (Note that any such
increase, while certainly possible, is of only second-order importance, and disappears as λn → 0.)
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and LR estimators, when these are jackknifed as per (3.11); but it would of course be possible to extend our arguments to
cover the LM estimator. All asymptotic results concern limits taken as n → ∞, for fixed values of M and T ; and for this
reason, we shall generally suppress the t subscript throughout.

Our high-level conditions could be satisfied by a very broad class of models: but verifying that this is so presents a
considerable challenge. Appendix B.1 accordingly provides some low-level conditions (Assumption L) that are sufficient for
our high-level conditions, and thus for the results of this section. (The statement and discussion of these low-level conditions
has been deferred to the Appendix, so to allow our main results to be presented without imposing a further notational
burden upon the reader.) Appendix B.2 verifies that our low-level conditions are satisfied by each of Models 1–5, when the
auxiliarymodel is a Gaussian systemof seemingly unrelated regressions (see e.g. Section 10.2 inGreene, 2008),whichmay be
estimated either by ordinary least squares, (feasible) generalized least squares, or maximum likelihood. This is a particularly
convenient and flexible auxiliary model, and is used throughout the simulation exercises of Section 5.

4.1. High-level conditions

Recall that ym(β, λ) denotes the complete set of smoothed outcomes generated by the mth simulation of the model,
for m ∈ {1, . . . ,M}. If the model is correctly specified, as per R1, we may regard the observed outcomes y as having been
generated by a ‘0th’ simulation of themodel (without smoothing), denoted y0(β0, 0).We shall accordingly allow the indexm
to range over {0, 1, . . . ,M}, which will permit some of our assumptions and results to be more concisely stated. This device
also allows us to write θ̂n = θ̂0

n (β0, 0), where θ̂n denotes the auxiliary model estimate yielded by the observed outcomes.
Let intX denote the interior ofX ⊆ Rk. The smoothing parameter sequence {λn} belowmay be sample-dependent, i.e. it

is not assumed to be a ‘‘given’’ deterministic sequence. Let Λ denote the set of allowable values for λn, this may be taken to
be [0, 1] without loss of generality.

Assumption R (Regularity Conditions).

R1 The structural model is correctly specified: y = y0(β0, 0) for some β0 ∈ int B;
R2 θ0 := θ (β0, 0) ∈ intΘ;
R3 the binding function θ (β, λ) is single-valued, and is (k0 + 1)-times differentiable in β for all (β, λ) ∈ (int B) × Λ;
R4 β ↦→ θ (β, 0) is injective;
R5 the order k ∈ {0, 1, . . . , k0} of the jackknifing is chosen such that n1/2λk+1

n = op(1); and
R6 Wn

p
→ W , for some positive definiteW .

Remark 4.1. R4 formalizes the requirement that the auxiliary model be ‘‘sufficiently rich’’ to identify the parameters of the
structural model; dθ ≥ dβ is essentially necessary for this to be satisfied. R5 ensures that, in conjunction with the choice of
λn, the order of the jackknifing is such as to ensure that the bias introduced by the smoothing is asymptotically negligible.

Define Ln(θ ) := Ln(y, x; θ ), L(θ ) := ELn(θ ) and

ℓmi (β, λ; θ ) := ℓ(ymi (β, λ), xi; θ ).

ℓ̇mi and L̈n respectively denote the gradient of ℓmi and the Hessian of Ln with respect to θ . Let

φm
n :=

1
n1/2

n∑
i=1

ℓ̇mi (β0, 0; θ0)

denote the standardized score vector for the mth simulation (at λ = 0). ∂β f denotes the gradient of f : B → Rd (the
transpose of the Jacobian), and ∂2

β f the Hessian; see Section 6.3 of Magnus and Neudecker, 2007, for a definition of the latter
when d ≥ 2.

Assumption H (High-level Conditions).

H1 Ln is twice continuously differentiable on intΘ;
H2 [Ln, L̇n, L̈n](θ )

p
→ [L, L̇, L̈](θ ), and

1
n

n∑
i=1

ℓ̇
m1
i (β1, λ1; θ1)ℓ̇

m2
i (β2, λ2; θ2)T

p
→ Eℓ̇

m1
i (β1, λ1; θ1)ℓ̇

m2
i (β2, λ2; θ2)T

uniformly on B × Λ and compact subsets of intΘ , for everym1,m2 ∈ {0, 1, . . . ,M};
H3 for any random sequences βn = β0 + op(1) and λn = op(1),

n1/2
[θ̂m

n (βn, λn) − θ (βn, λn)] = −H−1φm
n + op(1) (4.1)

where H := EL̈n(θ0) = L̈(θ0), for every m ∈ {0, 1, . . . ,M};
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H4 φm
n ⇝ φm jointly form ∈ {0, 1, . . . ,M}, where {φm

}
M
m=0 is Gaussian with mean zero and

6 := Eφm1φm1T = Eφm1
n φm1T

n R := Eφm1φm2T = Eφm1
n φm2T

n (4.2)

for everym1,m2 ∈ {0, 1, . . . ,M}; and
H5 {λn} is such that for some l0 ∈ {0, 1, 2}, and everym ∈ {0, 1, . . . ,M},

sup
β∈B

∥∂ l
β θ̂m

n (β, λn) − ∂ l
βθ (β, 0)∥ = op(1)

for all l ∈ {0, . . . , l0}.

Remark 4.2. H2 helps to ensure that the limiting variance of the GII estimator can be consistently estimated. H3 gives an
asymptotically linear representation of the auxiliary model estimator, which is standard except for our requirement that
this representation holds uniformly over a shrinking neighborhood of (β0, 0). H4 states that (standardized) auxiliary model
score is asymptotically Gaussian, as will follow straightforwardly from a central limit theorem.

Remark 4.3. H5, with l0 = 0, underpins our proof of the consistency of GII. The stronger forms of this condition, which
require that the l0th (and lower) derivatives of the sample binding function also converge uniformly to their population
counterparts, shall be needed principally to ensure the convergence of derivative-based optimization routines to a (near)
minimizer of the GII criterion. That is to say, these stronger forms of H5 are more relevant to the computation of the GII
estimator than they are to its limiting distribution.

Of all the preceding conditions, it is H5 that will in general impose the most stringent requirements on the smoothing
sequence {λn}. This is evident from the following result, which relates our high-level conditions to the low-level sufficient
conditions given in Appendix B.1 (as Assumption L); its proof appears in Section E of the Supplementary Material. (That
these low-level conditions are satisfied by each of Models 1–5 is then verified in Appendix B.2.) The value of p0 ∈ [2, ∞)
below depends largely on the number of moments that the covariates x are assumed to possess: larger values of p0 are more
restrictive on x, but lead to weaker conditions on {λn}.

Proposition 4.1. Suppose Assumption L (in Appendix B.1) and R hold. Then Assumption H holds with l0 = 0 in H5. Further, if
λn > 0 for all n, with

n1−1/p0λ2l−1
n /log(λ−1

n ∨ n)
p

→ ∞ (4.3)

for some l ∈ {1, 2}, then H5 holds with l0 = l.

4.2. Limiting distributions and asymptotic variance estimation

Assumptions H and R shall be maintained throughout the following, even if not explicitly referenced. However, we shall
always identify the weakest form of H5 – and implicitly, of (4.3) – that is required for each of our results. The proofs of all
the results that follow appear in Section D of the Supplementary Material.

Our first result concerns the limiting distributions of the minimizers of the Wald and LR criterion functions, as displayed
in (3.12). For e ∈ {W, LR}, let β̂e

nk be a near-minimizer of Q e
nk, in the sense that

Q e
nk(β̂

e
nk, λn) ≤ inf

β∈B
Q e
nk(β, λn) + op(n−1). (4.4)

The limiting variance of both estimatorswill have the familiar sandwich form. To allow the next result to be stated succinctly,
define

Ω(U, V ) := (GTUG)−1GTUH−1VH−1UG(GTUG)−1 (4.5)

where G := [∂βθ (β0, 0)]T denotes the Jacobian of the binding function at (β0, 0), H := EL̈n(θ0), and U and V are symmetric
matrices.11

Theorem 4.1 (Limiting Distributions). Suppose H5 holds with l0 = 0. Then

n1/2(β̂e
nk − β0) ⇝ N[0, Ω(Ue, V )], (4.6)

where

Ue :=

{
W if e = W
H if e = LR V :=

(
1 +

1
M

)
(6 − R). (4.7)

11 A more general version of the following result, appropriate to the case when θ̂m
n maximizes a different criterion from that used to define the LR

estimator, was given in Remarks 5.10 and 5.11 in an earlier version of this paper, available as arXiv:1507.06115v1.

http://arxiv.org/abs/1507.06115v1
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Remark 4.4. In view of Proposition 4.1, Theorem 4.1 does not restrict the rate at which λn
p

→ 0 from below; indeed, it
continues to hold even if λn = 0 for all n, in which case the estimation problem is closely related to that considered by Pakes
and Pollard (1989). Note also that the order of jackknifing does not affect the limiting distribution of the estimator: this has
only a second-order effect, which vanishes as λn → 0.

H5,with l0 = 1, implies that the derivatives of the smoothed criterion function canbeused to estimate the Jacobianmatrix
G that appears in the limiting variances in Theorem 4.1. The remaining components, H and Ve, can be respectively estimated
using the data-based auxiliary log-likelihood Hessian, and an appropriate transformation of the joint sample variance of all
the auxiliary log-likelihood scores (i.e. using both the data- and simulation-based estimates). Define

AT
:=

[
Idθ

−
1
M Idθ

· · · −
1
M Idθ

]
sTni :=

[
ℓ̇0i (θ̂n)

T ℓ̇1i (β̂
e
nk, λn; θ̂1

n )
T

· · · ℓ̇Mi (β̂e
nk, λn; θ̂M

n )T
]
,

where θ̂m
n := θ̂m

n (β̂e
nk, λn), and ℓ̇0i (θ ) denotes the gradient of ℓ(yi, xi; θ ). Then we have

Theorem 4.2 (Variance Estimation). Suppose H5 holds with l0 = 0. Then

(i) Ĥn := L̈n(θ̂n)
p

→ H;
(ii) V̂n := AT

( 1
n

∑n
i=1snis

T
ni

)
A

p
→ V ; and

if H5 holds with l0 = 1, then

(iii) Ĝn := ∂βθn(β̂e
nk, λn)

p
→ G, for e ∈ {W, LR}.

4.3. Convergence of derivative-based optimization procedures

Theorem 4.1 provided the limiting distribution of a near-minimizer of the GII criterion, ignoring how such a minimizer
might actually be computed. Ideally, in keepingwith themotivation of this paper, it should bepossible to achieve this through
the application of a derivative-based optimizer (DBO). This section accordingly provides (in Theorem 4.3) conditions on the
smoothing {λn} to ensure that if a DBO were applied to the GII criterion:

(i) it would converge to an approximate root of ∂βQ e
nk(β, λn) = 0; and

(ii) the sequence of approximate roots thus generated would have the limiting distribution given in Theorem 4.1.

(i) will follow principally from the smoothness of Q e
nk, whereas (ii) will require uniform convergence of the first – and for

certain procedures the second – derivatives of Q e
nk. This will in turn impose a lower bound on the rate at which λn

p
→ 0,

something conspicuously absent from Theorem 4.1.
In large samples, Q e

nk inherits the stationary points of its probability limit Q e
k . To avoid complications that would arise

due to inconsistent roots – which would otherwise interfere with (ii) – we restrict the initialization β (0) of the DBO to some
B0 ⊂ B. The precise requirements on B0 depend on the procedure being analyzed, and are given in Assumption O. We
consider two popular line-search procedures – Gauss–Newton (GN), and quasi-Newton (QN) with BFGS updating – and a
trust-region (TR) algorithm (see Appendix C).12 Let ϱmin(D) and σmin(D) respectively denote the smallest eigenvalue and
smallest singular value of a matrix D and recall G(β) := [∂βθ (β, 0)]T, the Jacobian of the binding function. Then

QW
k (β) := QW

k (β, 0) = −∥θ (β, 0) ∥2
W Q LR

k (β) := Q LR
k (β, 0) = Eℓ(yi, xi; θ (β, 0)).

Assumption O (Optimization Routines). Let Q ∈ {QW
k ,Q LR

k }. Then B0 = B0(Q ) may be chosen as any compact subset of int B
for which β0 ∈ int B0 and B0 = {β ∈ B | Q (β) ≤ Q (β1)} for some β1 ∈ B; and either

O-GN ∥G(β)TWθ (β, 0)∥ ̸= 0 for all β ∈ B0 \ {β0} and infβ∈B0σmin[G(β)] > 0;
O-QN Q is strictly convex on B0; or
O-TR for every β ∈ B0 \ {β0}, ∥∂βQ (β)∥ = 0 implies ϱmin[∂

2
βQ (β)] < −ϵ < 0.

Remark 4.5. Both O-GN and O-QN imply that Q has no stationary points in B0, other than a minimum at β0; O-TR permits
such points to exist, provided that they are not local minima. In this respect, it places the weakest conditions on Q , and does
so because the trust-region method utilizes second-derivative information in a manner that the other two methods do not.

To state our result on the convergence (and limiting distribution) of these optimizers, wemust first specify the conditions
governing their termination. Let {β (s)

} denote the sequence of iterates generated by a given routine r , from some starting
point β (0). When r ∈ {GN,QN}, we terminate the optimization at the first iterate, denoted s∗, for which an approximate root

12 Note that Gauss–Newton can only be applied to the Wald criterion, since only this criterion has the least-squares form required by that method.
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is located; if no such root is ever found, we record the initial value β (0) as the outcome of the optimization. This motivates
the definition, for r ∈ {GN,QN}, of

β
e
nk(β

(0), r) :=

{
β (s∗) if ∥∂βQ e

nk(β
(s))∥ ≤ cn for some s ∈ N

β (0) otherwise,
(4.8)

where cn = op(n−1/2). For r = TR, we terminate only at those approximate roots at which the second-order sufficient
conditions for a local minimum are also satisfied. In this way, s∗ now becomes the smallest s for which ∥∂βQ e

nk(β
(s))∥ ≤ cn

and ϱmin[∂
2
βQ

e
nk(β, λn)] ≥ 0; β

e
nk(β

(0), TR) may then be defined analogously to (4.8).

Theorem 4.3 (Derivative-based Optimizers). Suppose r ∈ {GN,QN, TR} and e ∈ {W, LR}, and that the corresponding part of
Assumption O holds for some B0. Then

sup
β(0)∈B0

∥β
e
nk(β

(0), r) − β̂e
nk∥ = op(n−1/2)

holds if either

(i) (r, e) = (GN,W) and H5 holds with l0 = 1; or
(ii) r ∈ {QN, TR} and H5 holds with l0 = 2.

In particular, n1/2
[β

e
nk(β

(0), r) − β0] has the limiting distribution given in (4.6).

Remark 4.6. Convergence of the Gauss–Newton procedure occurs under the weakest conditions. This is because the
approximate Hessian used by that routine involves only the Jacobian Gn(β) := [∂βθ

k
n(β, λn)]T (see (C.3)): thus the uniform

convergence of Gn(β) is sufficient in this case, whence only H5 with l0 = 1 is required.

The proof of Theorem 4.3 relies on the derivatives of the sample criterion Qnk converging uniformly to their population
counterparts, which follows directly from H5.13 Low-level sufficient conditions for this convergence were provided by
Proposition 4.1: notably, when l0 ∈ {1, 2}, (4.3) imposes exactly the sort of lower bound on λn that is absent from
Theorem 4.1. However, the convergence of these derivatives is not alone sufficient: the smoothness ofQnk is itself important.
This smoothness – together with the conditions on B0 specified in Assumption O – facilitates the application of existing
results on the convergence of DBOs to approximate roots in deterministic settings (see Proposition D.6 in the Supplementary
Material).

5. Monte Carlo results

In this sectionwe conduct a set ofMonte Carlo experiments to assess the performance of theGII estimator, in terms of bias,
efficiency, and computation time. We divide the analysis into two parts: In Section 5.1 we explore computational aspects of
GII. First, we study the performance of implementations of GII based on alternative search algorithms (quasi-Newton (QN) in
conjunction with various bias reduction techniques). Second, we study the behavior of the automated bandwidth selection
procedure described in Appendix A.2 (using the MSE appropriate for the level of the binding function). Third, we compare
the performance of GII to the conventional II approach that seeks to optimize a non-smooth objective function using the
simplex algorithm. Then, in Section 5.2, we analyze the efficiency of GII: specifically, how efficiency depends on the choice
of auxiliary model, and (when possible) how it compares to maximum likelihood.

5.1. Computational aspects of GII estimators

The main motivation of our paper is the idea that GII, by smoothing the non-smooth objective functions that arise in
models with discrete outcomes, leads to important computational advantages. In this section we present a Monte Carlo
analysis that explores this claim.

For this analysis we focus onModels 1 and 4 described in Section 2.We compare the following alternative estimators and
optimization methods: First, we report results from the conventional indirect inference approach (II) using the downhill
simplex method to deal with the non-smooth objective function. Then, we report results for GII using the QN search
algorithm. All optimization procedures are initialized at the true parameter values. We report results for alternative choices
of the smoothing parameter λ and number of draws M , both with and without bias correction. All simulation exercises
reported in this subsection use 1000 Monte Carlo replications; the reported (average) running times are for Fortran code
compiled with G77, running on an Intel i7 4770k computer with Windows 10.

13 Here, we are concerned exclusively with the limiting behavior of the analytical derivatives of Qnk , ignoring any errors that might be introduced by
numerical differentiation. Since Qnk is smooth by construction (when λn > 0), it seems appropriate to assume that such numerical errors would be orders
of magnitude smaller than any random variability in Qnk (and its derivatives).
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To implement bias correction we need a reasonable (or more formally, consistent) initial estimate of β . In practice, as
discussed in Section 3.5, such initial estimates be obtained using a rather large value of λ, a small value of M , and no
jackknifing (k = 0). These choices should generate a smooth objective that the QN algorithm can navigate quickly and
easily. The initial estimator, which we denote by β̂0, is consistent, but likely to suffer from significant bias due to the large
value of the smoothing parameter, as well as substantial simulation error becauseM is small.

We consider three forms of bias correction:

(i) One extra NR step: Starting from β̂0, choose a (much) smaller value of λ and larger value of M , and then take one
additional NR step to obtain a new estimate of β . The reduction in λ will reduce bias, while the increase in M helps
to maintain smoothness of the objective function, while also reducing simulation noise (at the cost of increased
computation time). See Section 3.4.2 for more details.

(ii) Jackknife (J/K) after QN: Starting from that same β̂0, we take one further NR step using a (once) jackknifed criterion
function (i.e. k = 1). This requires a choice of the extrapolation parameter δ ∈ (0, 1). See Section 3.4.1 formore details.

(iii) J/K within QN: using the same (large) λ as was used to compute β̂0, directly apply the QN algorithm to the once
jackknifed criterion function (k = 1). Unlike the preceding two methods, this method employs a bias-reduced
estimate of the binding function at every iteration, not merely at the final step.

In numerous applications (here and elsewhere) we have found that the first approach works well; the results below suggest
that the other two procedures perform comparably to the first, in terms of their relative biases and efficiencies.

The QN algorithm employed here is a version of the Davidon–Fletcher–Powell algorithm (as implemented in Chapter 10
of Press et al., 1993); this is closely related to the quasi-Newton routine analyzed in Section 4.3. The initial parameter vector
in the hill-climbing algorithm is always the true parameter vector. Most of the computation time in generalized indirect
inference lies in computing ordinary least squares (OLS) estimates of auxiliary models. The main cost in computing OLS
estimates lies, in turn, in computing the XTX part of (XTX)−1XTY . We use blocking and loop unrolling techniques to speed
up the computation of XTX by a factor of 2 to 3 relative to a ‘‘naive’’ algorithm.14

In all cases, we use the LR approach to (generalized) indirect inference to construct our estimates. Unlike theWald and LM
approaches, the LR approach does not require the estimation of a weight matrix. In this respect, the LR approach is easier to
implement than the other two approaches. Furthermore, because estimates of optimal weightmatrices often do not perform
well in finite samples (see e.g. Altonji and Segal, 1996), the LR approach is likely to perform better in small samples.

Given this background we turn to the Monte Carlo results.

5.1.1. Results for Model 1
Model 1 is a two-alternative panel probit model with serially correlated errors and one exogenous regressor. It has two

unknown parameters: the regressor coefficient b, and the autoregressive coefficient r . We assume T = 5, set b = 1 and
consider r ∈ {0, 0.40, 0.85}.We generate n = 1000 artificial datasets from thismodel. The exogenous variables (the xit ’s) are
i.i.d. draws from a N[0, 1] distribution, drawn anew for eachMonte Carlo replication.We estimate the structural parameters
on each dataset using each of the estimation methods discussed above.

In all cases, we use an auxiliary model consisting of T linear probability models of the form

yit = zTitαt + ξit

where ξit ∼i.i.d. N[0, σ 2
t ], zit denotes the vector of regressors for individual i in time period t , and αt and σ 2

t are reduced form
parameters to be estimated. The natural regressors to include in zit are lagged choices and polynomials in current and lagged
exogenous variables. Here we simply set zit = (1, xit , yi,t−1), t = 1, . . . , T , where the unobserved yi0 is set equal to 0. (We
consider using richer sets of regressors in Section 5.2, wherewe discuss efficiency.) Thus, the auxiliarymodel is characterized
by the parameters θ = {αt , σ

2
t }

T
t=1. We further impose the restrictions αt = αq and σ 2

t = σ 2
q for t = 2, . . . , T . This is because

the time variation in the estimated coefficients of the linear probability models comes mostly from the non-stationarity of
the errors in the structural model,15 and this turns out to be negligible after the first time period. The auxiliary model
parameters are estimated by maximum likelihood, which corresponds to OLS given the distributional assumptions on ξit .16

Table 1 reports, for each method, the means and empirical standard deviations of the estimates, and the computation
time. The first panel of the table reports results for the case of r = 0 (i.e., No serial correlation), while the bottom two panels
correspond to r = 0.4 and r = 0.85, respectively. The first two rows (of each panel) report results for conventional (non-
smooth) II estimators, obtained using the downhill simplex method. In our notation these methods correspond to setting
λ = 0. We consider bothM = 10 and M = 50.

14 To avoid redundant calculations, we also precompute and store for later use those elements of XTX that depend only on the exogenous variables. We
are grateful to James MacKinnon for providing code that implements the blocking and loop unrolling techniques.
15 Note that we do not draw the initial error from the stationary distribution implied by the law of motion for the errors.
16 It is worth emphasizing that we include lagged choices (and lagged x’s) in the auxiliary model despite the fact that the structural model does not

exhibit true state dependence. But in Model 1 it is well-know that lagged choices are predictive of current choices (termed ‘‘spurious state dependence’’ by
Heckman). This is a good illustration of how a good auxiliary model should be designed to capture the correlation patterns in the data, as opposed to the
true structure.
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Table 1
Monte Carlo results for Model 1.

M/λ δ Mean Std. Dev. avg. time (s)

b r b r

b = 1, r = 0

Downhill simplex 10/0 1.002 0.000 0.041 0.069 0.209
50/0 1.003 −0.001 0.039 0.066 0.996

Initial QN estimates 10/0.03 0.955 −0.002 0.039 0.062 0.229
One extra NR step 50/0.003 0.998 −0.001 0.039 0.065 0.316

150/0.003 0.998 −0.001 0.039 0.065 0.499
300/0.003 0.998 −0.001 0.039 0.064 0.899

J/K after QN 10/0.03 0.66 1.001 −0.002 0.041 0.069 0.250
10/0.03 0.33 1.002 −0.002 0.041 0.070 0.294

J/K within QN 10/0.03 0.66 1.002 −0.000 0.041 0.068 0.415
10/0.03 0.33 1.003 −0.000 0.041 0.068 0.513
10/0.005a 0.66 1.002 −0.002 0.041 0.063

b = 1, r = 0.4

Downhill simplex 10/0 1.006 0.403 0.050 0.067 0.215
50/0 1.004 0.401 0.047 0.062 1.011

Initial QN estimates 10/0.03 0.948 0.365 0.045 0.059 0.225
One extra NR step 50/0.003 0.998 0.398 0.046 0.062 0.312

150/0.003 0.998 0.397 0.046 0.062 0.500
300/0.003 0.998 0.397 0.046 0.061 0.888

J/K after QN 10/0.03 0.66 1.002 0.400 0.048 0.065 0.244
10/0.03 0.33 1.003 0.400 0.049 0.065 0.286

J/K within QN 10/0.03 0.66 1.003 0.401 0.049 0.066 0.422
10/0.03 0.33 1.004 0.401 0.049 0.065 0.532
10/0.005a 0.66 1.004 0.401 0.047 0.059

b = 1, r = 0.85

Downhill simplex 10/0 1.020 0.863 0.089 0.073 0.207
50/0 1.009 0.856 0.081 0.069 1.016

Initial QN estimates 10/0.03 0.922 0.786 0.068 0.063 0.268
One extra NR step 50/0.003 0.993 0.845 0.077 0.066 0.348

150/0.003 0.993 0.846 0.077 0.066 0.537
300/0.003 0.992 0.845 0.075 0.065 0.915

J/K after QN 10/0.03 0.66 0.999 0.851 0.081 0.071 0.287
10/0.03 0.33 1.000 0.851 0.083 0.072 0.333

J/K within QN 10/0.03 0.66 1.006 0.852 0.082 0.069 0.510
10/0.03 0.33 1.006 0.853 0.081 0.068 0.650
10/0.014a 0.66 1.004 0.852 0.069 0.060

a Reports the mean λ selected using minimum-MSE procedure described in Model 5, using the MSE for the level of the binding function.

The next nine rows of each panel correspond to GII estimators, implemented using different optimization methods. The
first row, labeled ‘‘Initial QN estimates’’, reports results for (λ,M) = (0.03, 10). In this model 0.03 is a large value for λ. This
is clear from intuition, as this is a probit model where the errors have a standard deviation of 1.0,17 and it is confirmed by the
optimal bandwidth selection procedure of Section 3.5 that we implement below. Obviously,M = 10 is also a small number
of draws. Thus, these estimates correspond to the initial ‘consistent’ estimator β̂0 discussed above.

The subsequent rows correspond to the three bias correction methods. The first, ‘‘One extra NR step’’, starts from β̂0 and
takes one additional NR step using after reducing the smoothing parameter by an order of magnitude, to λ = 0.003, and
employs a larger simulation size of M = 50, 150 or 300. The second method, ‘‘J/K after QN’’, is the jackknife (with k = 1)
starting from β̂0 and using an extrapolation parameter of δ = 0.66 or 0.33. The third method, ‘‘J/K within QN’’, uses the
same (λ,M) = (0.03, 10) as we used in the ‘‘Initial QN estimates’’, but implements the jackknife bias correction (k = 1)

17 In order to gain intuition for the magnitude of smoothing parameters, it is very useful to imagine that smoothing is induced by optimization error, and
to consider what this implies about the probability an agent makes choices that depart from utility maximization. For example, imagine that for agent i at
time t, option 1 has a utility of 0.10 and option 2 has a utility of 0. Of course, in the absence of smoothing, option 1 is chosen. But, with λ = 0.03, option 1 is
instead assigned a probability of exp(0.10/0.03)/[1 + exp(0.10/0.03)] = 0.9655. Thus, the agent has a 3.45% chance of making the ‘‘wrong’’ choice when
inferior option is within an 0.10 standard deviation taste shock of the preferred option. This is relatively large degree of smoothing.

If instead we were to set λ = 0.003, then this same agent would be assigned a probability of 1 for option 1 (up to machine accuracy). The inferior
option would have to bemuch closer to the preferred option (in terms of standard deviations of the taste shock) to be assigned a non-negligible probability.
For example, an option that was inferior by 0.01 standard deviations would be assigned a 3.45% probability, and any options that are inferior by more than
0.02 standard deviations would be assigned negligible probability.
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Table 2
Distribution of automatically selected λ’s (Model 1).

Mean Median Std. Dev. Max. Min.

b = 1, r = 0 0.005 0.003 0.005 0.029 0.001
b = 1, r = 0.4 0.005 0.003 0.006 0.033 0.001
b = 1, r = 0.85 0.014 0.007 0.017 0.101 0.001

♢ For each Monte Carlo replication, λ is chosen so as to minimize the es-
timated MSE of the (level of the) binding function, evaluated at the values
of the structural parameters from which the optimization commences (see
Appendix A.2). λ is computed via a grid search, using a grid that spans from
0.0005 to 0.635, whose intermediate points are given by 0.0005 × (1.1)i , for
i ∈ {0, 1, . . . , 75}.

throughout every iteration of the QN algorithm (again, using δ = 0.66 or 0.33). Finally, the last row of each panel reports
‘‘J/K within QN’’ estimates obtained when λ is chosen by minimizing the estimated MSE of the sample binding function (see
Appendix A.2).

It is evident from Table 1 that the ‘‘Initial QN’’ estimates exhibit significant biases. While the true value of the regressor
coefficient b is 1.0, the means of the ‘‘Initial QN’’ estimates are 0.955, 0.948 and 0.922 when r = 0, 0.4 or 0.85, respectively;
mean estimates of r in these three cases are −.002, 0.365 and 0.786, respectively. Notice that biases for both parameters
grow larger as serial correlation (r) increases. However, all three proposed bias correction methods do an excellent job of
removing this bias, at all levels of serial correlation. The ‘‘One extra NR step’’method exhibits (very) slightly smaller empirical
standard errors, but the difference is not great enough to make any one method clearly preferable.

While we implement the ‘‘One extra NR step’’ method using three different values of M (50, 150 and 300), both the bias
and efficiency (i.e., the empirical standard deviation of the estimates) are little affected by the choice of M . This is perhaps
not so surprising, since the standard deviation of the GII estimator is proportional to (1 + M−1)1/2, which evaluates to 1.01
when M = 50 (see Theorem 4.1). While computation time for a single iteration is proportional to M , overall computation
time increases much less than proportionately withM , because the larger value ofM is only used in the one final step.

Both variants of the jackknifed estimators were implemented for two values of the extrapolation parameter, δ = 0.66
and 0.33. It is reassuring that the choice of δ has essentially no bearing on the results. Not surprisingly, the ‘‘J/K within QN’’
procedure is almost twice as slow as the ‘‘J/K after QN’’ procedure. This is because the former requires the calculation of a
jackknifed binding function on each iteration (of the search algorithm), while the latter only requires that this be done once,
starting from the ‘‘Initial QN’’ estimates.

Overall, computation times for the ‘‘One extra NR step’’ method with (λ,M) = (0.003, 50) and the ‘‘J/K after QN’’ method
are quite comparable. Thus, there is little to chose between these methods in terms of either bias, efficiency or computation
time. But they may both be preferred over ‘‘J/K within QN’’, which is somewhat slower.

Automated smoothing parameter selection. The final row of each panel of Table 1 reports the estimates obtained when
λ is chosen so as to minimize the estimated mean-squared error of the sample binding function (evaluated at the starting
point of the optimization), as per the procedure described in Appendix A.2. Though the mean value of λ selected by the
procedure varies with r , in all cases the procedure delivers values of λ that are generally consistent with the jackknifed
estimator producing estimates with little bias, and enjoying an efficiency comparable to (indeed slightly better than) those
corresponding to a fixed value of λ (i.e. 0.03).

Table 2 gives further details on the distribution of the λ selected by the procedure. The median selected λ is 0.003 in
Model 1, both when r = 0 and r = 0.40; the standard deviation is a substantial 0.005. When r = 0.85, the median λ

increases to 0.007, and the standard deviation also increases to 0.017. It is interesting that the value of λ = 0.003 that we
chose for the ‘‘One extra QN step’’ procedure, based on both the intuition discussed in footnote 17 and experimentation
with what worked well in practice, is well within the ballpark of the λ selected by this procedure (which were computed
ex post). Our view is that, as a practical matter, an applied researcher using GII would typically start with a rather large λ to
initiate iterations, and then reduce λ until results stabilize, along the lines suggested in Section 3.5. The automated selection
procedure may therefore be more useful ex post as means of checking that one has not settled on a λ that is too large.

5.1.2. Comparison of GII with the simplex method: Model 1
Another notable result in Table 1 is that the conventional II estimator, implemented using a simplex algorithm designed

to optimize non-smooth objective functions, performs as well, in terms of bias, efficiency and computation time, as the
bias-adjusted GII methods. This may seem to contradict the main premise of this paper. However, it should be unsurprising
that the simplex has no difficulty maximizing a non-smooth objective functions with respect to only two parameters. In
more complex models, as we will now show, conventional II is liable to perform poorly.

To examine how II performs in a model with more parameters, in Table 3 we report results for an expanded version of
Model 1 in which the regressor xit is now a vector of fourteen i.i.d. N[0, 1] random variables. Thus, the model has fifteen total
parameters. We consider only the case where the autoregressive parameter r = 0.85. We set b1 = b2 = b3 = b4 = 0.5
and bk = 0 for k = 5, . . . , 14; these parameter values were chosen so that the variance of the deterministic part of utility
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Table 3
Monte Carlo results for Model 1 with additional variables (b1 = b2 = b3 = b4 = 0.5, b5 = b6 = · · · = b14 = 0, r = 0.85).

Downhill simplex One extra NR step J/K + QN

After Within

M 10 50 50 300 10 10
λ 0 0 0.003 0.003 0.03 0.03

Mean

b1 0.504 0.510 0.501 0.499 0.505 0.503
b2 0.519 0.514 0.503 0.501 0.507 0.506
b3 0.545 0.528 0.504 0.502 0.508 0.507
b4 0.540 0.521 0.501 0.499 0.505 0.505
b5–b14 min −0.014 −0.015 −0.001 −0.001 −0.002 −0.002

max −0.040 0.009 0.001 0.001 0.002 0.002
r 0.887 0.874 0.855 0.852 0.861 0.857

Std. deviation

b1 0.061 0.061 0.054 0.051 0.056 0.052
b2 0.065 0.064 0.055 0.053 0.058 0.054
b3 0.089 0.075 0.056 0.053 0.058 0.053
b4 0.090 0.072 0.053 0.052 0.058 0.052
b5–b14 min 0.047 0.041 0.035 0.035 0.037 0.036

max 0.090 0.065 0.037 0.037 0.040 0.039
r 0.084 0.082 0.077 0.073 0.081 0.070

Computation

Time 14.9 92.3 10.40 24.47 10.27 25.84
Avg. iterations 586.1 754.1 13.89 13.89 13.88 21.51
Avg. iter stuck 8.0 7.9
% finish stuck 10% 17%

♢ All results using the jackknifing (J/K) use δ = 0.66. ‘Avg. iterations’ refers to the number of iterations used in either the downhill simplex algorithm or the
initial quasi-Newton algorithm, averaged over all Monte Carlo replications. ‘Avg. iter stuck’ refers to the average number of times that the downhill simplex
algorithm fails to find an improvement from reflecting or contracting the worst point in the simplex. ‘% finish stuck’ refers to the percentage of Monte Carlo
replications for which the downhill simplex algorithm finished on an iteration where reflecting or contracting failed to produce an improvement in the
worst point in the simplex.

(bTxit ) remains equal to 1.0, exactly as in the original, smaller formulation of Model 1. Thus, the explanatory power of the
regressors is the same as in the original model, and the magnitude of the smoothing parameter (λ) is unchanged relative to
the variance of the deterministic and stochastic parts of utility (see footnote 17).

The results in Table 3 show that the performance of the conventional II estimator deteriorates as expected in this larger
model, while all three bias-adjusted GII approacheswork just as well as they did for the smallermodel. For example consider
the mean estimates of b1 through b4. In the case of the II-simplex method with M = 50, these are all biased upward by an
average of 3.7%. In contrast, theGII approachwith ‘‘One extraNR step’’ pins downall four parameters very precisely. Similarly,
the mean II estimate of r is biased upward by 2.8%, whereas those produced by the ‘‘One extra QN step’’ are not.

Admittedly, these II biases are modest, but more problematic for II is the issue of efficiency. For instance, the empirical
standard deviations of the II estimates (based onM = 50) of b1 through b4 average 0.068, while those of GII with ‘‘One extra
NR step’’ average 0.052. Thus, II suffers from a 30% efficiency loss for these parameters. Efficiency losses for b5 through b14
are comparable.

Given the symmetry of the problem, the empirical standard errors of b1 through b4 should be nearly equal to each other.
This is roughly true for GII with ‘‘One extra NR step’’, where they are tightly bunched around 0.052. But for II these values
range from 0.061 to 0.075. This signals to us that the simplex algorithm is encountering difficulties. The same problem of
uneven standard errors is apparent for the II estimates of b5 through b14 (not reported).

Finally, whenwe compare computation times, we see that the GII methodwith ‘‘One extra NR step’’, is roughly four times
faster than the II-simplex method with M = 50. If we reduce M to speed up the II estimator, its performance deteriorates
further, as can be seen by comparing columns 1 and 2 of Table 3. Furthermore, the ‘‘One extra NR step’’ is implemented here
using M = 300, and, as we saw in Table 1, this can be reduced considerably without adverse consequences. Finally, note
that the ‘‘J/K after QN’’ method (Table 3, col. 4) is 50% faster than the II-simplex method using only M = 10 draws, yet it
produces results almost as good (in terms of bias and efficiency) as GII implemented via the ‘‘One extra NR step’’ approach.

5.1.3. Results for Model 4
Model 4 is a (static) three-alternative probit model with eight unknown parameters: three coefficients in each of the two

latent utility equations ({b1i}2i=0 and {b2i}2i=0) and two parameters governing the covariance matrix of the stochastic terms



M. Bruins et al. / Journal of Econometrics 205 (2018) 177–203 193

Table 4
Monte Carlo results for Model 4.

M/λ b10 b11 b12 b20 b21 b22 c1 c2 Timea

Mean

True values 0 1 1 0 1 1 1.33 1
Downhill simplex 10/0 0.020 0.956 0.956 −0.038 0.987 1.006 1.365 1.053 1.788

50/0 0.014 0.950 0.952 −0.029 0.973 0.989 1.331 1.048 7.820
Initial QN estimates 10/0.03 0.004 0.944 0.953 −0.024 0.957 0.973 1.292 1.041 1.562
One extra NR step 50/0.003 0.000 0.993 0.998 −0.010 1.000 1.005 1.346 0.990 2.229

150/0.003 0.000 0.993 0.998 −0.010 1.000 1.005 1.346 0.993 2.560
300/0.003 0.000 0.993 0.998 −0.011 1.000 1.006 1.347 0.993 3.149

J/K after QN
δ = 0.66 10/0.03 −0.001 1.000 1.005 −0.009 1.005 1.010 1.350 0.990 2.365
δ = 0.33 10/0.03 −0.002 1.001 1.006 −0.008 1.005 1.010 1.349 0.989 2.406

J/K within QN
δ = 0.66 10/0.03 −0.001 0.998 1.003 −0.012 1.005 1.011 1.352 0.987 3.726
δ = 0.33 10/0.03 −0.001 0.998 1.003 −0.012 1.005 1.011 1.352 0.987 4.678

Std. deviation

Downhill simplex 10/0 0.085 0.076 0.093 0.104 0.138 0.175 0.287 0.176
50/0 0.079 0.070 0.087 0.093 0.123 0.157 0.252 0.159

Initial QN estimates 10/0.03 0.078 0.067 0.085 0.092 0.110 0.143 0.233 0.154
One extra NR step 50/0.003 0.081 0.071 0.090 0.091 0.117 0.151 0.253 0.162

150/0.003 0.079 0.070 0.088 0.090 0.114 0.147 0.246 0.159
300/0.003 0.079 0.070 0.088 0.090 0.114 0.147 0.245 0.160

J/K after QN
δ = 0.66 10/0.03 0.084 0.076 0.095 0.095 0.123 0.158 0.260 0.175
δ = 0.33 10/0.03 0.084 0.076 0.096 0.095 0.124 0.160 0.262 0.176

J/K within QN
δ = 0.66 10/0.03 0.082 0.073 0.094 0.096 0.119 0.158 0.256 0.172
δ = 0.33 10/0.03 0.082 0.073 0.094 0.095 0.118 0.157 0.253 0.171

a Average running time in seconds.

in these equations (c1 and c2). We set b10 = b20 = 0, b11 = b12 = b21 = b22 = 1, c2 = 1, and c1 = 1.33 (implying that the
stochastic terms in the latent utilities have a correlation of 0.8). We set n = 2000.

The auxiliary model is a pair of linear probability models, one for each of the first two alternatives:

yi1 = zTi α1 + ξi1

yi2 = zTi α2 + ξi2,

where ξi ∼i.i.d. N[0, Σξ ]. The natural regressors to include in zi are polynomial functions of the exogenous variables {xij}3j=1.
Here, we set zi = (1, xi1, xi2, xi3), giving a total of 11 auxiliary model parameters θ = (α1, α2, Σξ ). These parameters
are estimated by OLS. This corresponds to maximum likelihood here, even though Σξ is not diagonal, because the same
regressors appear in both equations.

Table 4 presents the results. Again, the GII ‘‘Initial QN’’ estimates exhibit significant biases. This is particularly true for the
parameters b11, b12 and b21, which are all biased downward by roughly 5%. The error correlation is also biased downward.
However, all three proposed bias correction methods do an excellent job of removing these biases. As in Model 1, the ‘‘One
extra NR step’’ method exhibits slightly smaller empirical standard errors than ‘‘J/K after QN’’ or ‘‘Jackknife within QN’’, but
the difference is not great enough to make any one method clearly preferable.

As in Table 1, we again find that the ‘‘One extra NR step’’ results are not sensitive to whether we choose M = 50, 150 or
300. Similarly, the jackknife results are not sensitive to whether we use an extrapolation parameter of δ = 0.66 or 0.33. And
again, both the ‘‘One extra NR step’’ and the ‘‘J/K after QN’’ methods are faster to compute than the ‘‘J/K within QN’’ method.

A notable aspect of Table 4 results is that the conventional II-simplex estimator exhibits substantial biases, regardless of
whether M = 10 or 50. For example, when M = 50, the II estimates of b11 and b12 are biased downward by 5%, and c1 is
biased upward by 11%. This is in sharp contrast to Table 1 results, but it is consistent with the results in Table 3. This suggests
that even though the multinomial probit model contains only 8 parameters, this is enough to create some problems for the
simplex algorithm.

Finally, it is worth stressing that in our work we have used relatively small models that are amenable to Monte Carlo
analysis. Yet we have still found that GII out-performs II in models with 8 (Table 4) or 15 (Table 3) parameters. In the larger
(more highly parametrized) models that typically arise in empirical practice, the limitations of the II-simplex approach, and
the advantages of GII, will be even more evident.
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5.2. Relative efficiency of GII estimators

5.2.1. Choosing the auxiliary model
In this sub-section we investigate the efficiency of GII estimators. The issue of efficiency is closely related to the issue of

how to choose an auxiliarymodel. As discussed in Section 3.1, indirect inference (generalized or not) has the same asymptotic
efficiency as maximum likelihood when the auxiliary model is correctly specified — in the sense that the auxiliary model
provides a correct statistical description of the observed data (Gallant and Tauchen, 1996). Thus, from the perspective of
efficiency, it is important to choose an auxiliary model (or a class of auxiliary models) that is flexible enough to provide a
good description of the data.

Another important consideration is computation time. For theWald and LR approaches to indirect inference, the auxiliary
parameters must be estimated repeatedly using different simulated datasets. For this reason, it is critical to use an auxiliary
model that can be estimated quickly and efficiently.18

Tomeet the twin criteria of statistical efficiency and computational speed,we recommendusing linear probabilitymodels
(or sets of linear probability models) as the auxiliary model in all of the pure discrete choice models that we use as test cases
for GII (i.e., Models 1–4 of Section 2) The class of linear probability models is flexible in the sense that an individual’s current
choice can be allowed to depend on polynomial functions of lagged choices and of current and lagged exogenous variables.
Linear probability models can also be estimated very quickly and easily using ordinary least squares. For Model 5, the
Heckman selectionmodel, an appropriate auxiliarymodel would be a set of OLS regressions withmixed discrete/continuous
dependent variables.

The subsequent sub-sections reportMonte Carlo experiments onModels 1–4 of Section 2.We focus on how the efficiency
of the GII estimators varies with the choice of auxiliary model. For Models 1, 2, and 4, we consider both GII estimators and
the simulated maximum likelihood (SML) estimator in conjunction with the GHK smooth probability simulator (cf. Keane,
1994; Lee, 1997). Model 3, which cannot easily be estimated via SML, is estimated using only GII. We omit Model 5 from our
analysis, as Altonji et al. (2013) already present results showing that GII performs well for Heckman selection-type models.

5.2.2. Results for Model 1
Model 1 is a two-alternative panel probitmodelwith serially correlated errors andone exogenous regressor.Wedescribed

it in detail in Section 5.1.1. Recall that the auxiliary model consists of T linear probability models of the form

yit = zTitαt + ξit

where ξit ∼i.i.d. N[0, σ 2
t ] and where yi0 = 0. The vector of regressors zit includes both lagged choices and polynomial

functions of current and lagged exogenous variables. The set of variables included in zit may grow over time so as to
incorporate the additional lagged information that is available in later periods. The auxiliary model is thus characterized
by the parameters θ = {αt , σ

2
t }

T
t=1, which are estimated by OLS.

To examine how increasing the ‘‘richness’’ of the auxiliary model affects efficiency of the structural parameter estimates,
we conduct Monte Carlo experiments using four nested auxiliary models. In all four, we impose the restrictions αt = αq and
σ 2
t = σ 2

q , t = q + 1, . . . , T , for some q < T . That is, we assume the process is approximately stationary from period q + 1
onward.

In auxiliary model #1, q = 1 and the regressors in the linear probability model are given by: zit = (1, xit , yi,t−1),
t = 1, . . . , T . This is the same auxiliary model that we used in Section 5.1.1.

In auxiliary model #2, q = 2 and the regressors are

zi1 = (1, xi1) zit = (1, xit , yi,t−1, xi,t−1), t ∈ {2, . . . , T },

giving a total of 18 parameters. Auxiliary model #3 has q = 4, and regressors

zi1 = (1, xi1, x3i1) zi3 = (1, xi3, yi2, xi2, yi1, xi1)
zi2 = (1, xi2, yi1, xi1) zit = (1, xit , yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3), t ∈ {4, . . . , T },

and 24 parameters. Finally, auxiliary model #4 has the same regressors as #3, except that

zi4 = (1, xi4, yi3, xi3, yi2, xi2, yi1, xi1)
zit = (1, xit , yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3, xi,t−3, yi,t−4), t ∈ {5, . . . , T }

so q = 5 and there are 35 parameters.
Table 5 presents the results of six sets of Monte Carlo experiments, each with 2000 replications. The first two sets of

experiments report the results for simulated maximum likelihood, based on GHK, using 25 draws (SML #1) and 50 draws
(SML #2). The remaining four sets of experiments report the results for generalized indirect inference, where GII #i refers
to generalized indirect inference using auxiliary model #i. In each case, we report the average and the standard deviation
of the parameter estimates. We also report the efficiency loss of GII #i relative to SML #2 in the columns labeled σGII/σSML,

18 This consideration is less important for the LM approach, as it does not work directly with the estimated auxiliary parameters, but instead uses the
first-order conditions (the score vector) that define these estimates.
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Table 5
Monte Carlo results for Model 1.

Mean Std. dev. σGII/σSML Time (s)

b r b r b r

b = 1, r = 0

SML #1 1.000 −0.002 0.0387 0.0454 – – 0.76
SML #2 1.001 −0.000 0.0373 0.0468 – – 1.53
GII #1 0.998 0.002 0.0390 0.0645 1.05 1.37 0.67
GII #2 0.993 0.001 0.0386 0.0490 1.03 1.05 0.72
GII #3 0.992 0.001 0.0393 0.0490 1.05 1.05 0.91
GII #4 0.988 0.001 0.0390 0.0485 1.05 1.04 0.99

b = 1, r = 0.4

SML #1 0.995 0.385 0.0400 0.0413 – – 0.78
SML #2 0.999 0.392 0.0390 0.0410 – – 1.54
GII #1 0.998 0.399 0.0454 0.0616 1.16 1.50 0.70
GII #2 0.993 0.396 0.0410 0.0456 1.05 1.11 0.72
GII #3 0.991 0.395 0.0417 0.0432 1.07 1.05 0.91
GII #4 0.987 0.392 0.0416 0.0432 1.07 1.05 0.97

b = 1, r = 0.85

SML #1 0.984 0.833 0.0452 0.0333 – – 0.74
SML #2 0.993 0.842 0.0432 0.0316 – – 1.47
GII #1 0.994 0.846 0.0791 0.0672 1.83 2.13 0.71
GII #2 0.991 0.845 0.0511 0.0412 1.18 1.30 0.74
GII #3 0.992 0.846 0.0492 0.0357 1.14 1.13 0.93
GII #4 0.988 0.841 0.0490 0.0357 1.13 1.13 1.00

where we divide the standard deviations of the GII estimates by the standard deviations of the estimates for SML #2. Finally,
we report the average time (in seconds) required to compute estimates (we use the Intel Fortran Compiler Version 7.1 on a
2.2 GHz Intel Xeon processor running Red Hat Linux).19

Table 5 contains several key findings.
First, both SML and GII generate estimates with very little bias.
Second, GII is less efficient than SML, but the efficiency losses are small provided that the auxiliary model is sufficiently

rich. For example, auxiliary model #1 leads to large efficiency losses, particularly for the case of high serial correlation in the
errors (r = 0.85). For models with little serial correlation (r = 0), however, auxiliary model #2 is sufficiently rich to make
GII almost as efficient as SML. When there is more serial correlation in the errors, auxiliary model #2 leads to reasonably
large efficiency losses (as high as 30% when r = 0.85), but auxiliary model #3, which contains more lagged information
in the linear probability models than does auxiliary model #2, reduces the worst efficiency loss to 13%. Auxiliary model #4
provides almost no efficiency gains relative to auxiliary model #3.

Third, GII is faster than SML: computing a set of estimates using GII with auxiliary model #3 takes about 30% less time
than computing a set of estimates using SML with 50 draws.

For generalized indirect inference, we also compute (but do not report in Table 5) estimated asymptotic standard errors,
using the estimators described in Theorem 4.2. In all cases, the averages of the estimated standard errors across the Monte
Carlo replications are very close to (within a few percent of) the actual standard deviations of the estimates, suggesting that
the asymptotic results provide a good approximation to the behavior of the estimates in samples of the size that we use.

5.2.3. Results for Model 2
Model 2 is a panel probit model with serially correlated errors, a single exogenous regressor, and a lagged dependent

variable. It has three unknown parameters: b1, the coefficient on the exogenous regressor, b2, the coefficient on the lagged
dependent variable, and r , the serial correlation parameter. We set b1 = 1, b2 = 0.2, and consider r ∈ {0, 0.4, 0.85};
n = 1000 and T = 10.

Table 6 presents the results of six sets of Monte Carlo experiments, each with 1000 replications; the labels SML #i and
GII #i are to be interpreted exactly as for Table 1. The results are similar to those for Model 1. Both SML and GII generate
estimates with very little bias. SML is more efficient than GII, but the efficiency loss is small when the auxiliary model is
sufficiently rich (i.e., 17% at most for model #3, 15% at most for model #4). However, auxiliary model #1 can lead to very
large efficiency losses, as can auxiliary model #2 if there is strong serial correlation.

Again, average asymptotic standard errors are close to the standard deviations obtained across the simulations (not
reported). Finally, GII using auxiliary model #3 is about 25% faster than SML using 50 draws.

19 Note that the Monte Carlo analysis reported in Section 5.1 was done in 2016, while that reported in this section (Section 5.2) was done several years
earlier. Thus, the absolute times are not comparable across sections, nor are timings reported in Section 5.2 indicative of the computation times that would
be required for these methods today. Only the relative timing across estimation methods reported in Section 5.2 are of interest.
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Table 6
Monte Carlo results for Model 2.

Mean Std. dev. σGII/σSML Time (s)

b1 r b2 b1 r b2 b1 r b2
b1 = 1, r = 0, b2 = 0.2

SML #1 1.000 0.001 0.200 0.0274 0.0357 0.0355 – – – 2.47
SML #2 1.002 0.002 0.199 0.0273 0.0362 0.0365 – – – 4.89
GII #1 0.999 0.001 0.199 0.0267 0.0571 0.0437 0.98 1.58 1.20 2.72
GII #2 0.996 0.000 0.199 0.0267 0.0379 0.0379 0.98 1.05 1.04 2.80
GII #3 0.995 0.001 0.199 0.0269 0.0377 0.0376 0.99 1.04 1.03 3.66
GII #4 0.993 0.000 0.198 0.0270 0.0377 0.0375 0.99 1.04 1.03 4.06

b1 = 1, r = 0.4, b2 = 0.2

SML #1 0.994 0.379 0.214 0.0278 0.0314 0.0397 – – – 2.42
SML #2 0.999 0.389 0.206 0.0287 0.0316 0.0397 – – – 4.82
GII #1 0.997 0.397 0.198 0.0339 0.0587 0.0544 1.18 1.86 1.37 2.73
GII #2 0.994 0.396 0.198 0.0293 0.0386 0.0462 1.02 1.22 1.16 2.82
GII #3 0.993 0.396 0.197 0.0289 0.0343 0.0431 1.01 1.09 1.09 3.64
GII #4 0.991 0.395 0.196 0.0289 0.0348 0.0434 1.01 1.10 1.09 4.02

b1 = 1, r = 0.85, b2 = 0.2

SML #1 0.974 0.831 0.220 0.0321 0.0174 0.0505 – – – 2.78
SML #2 0.987 0.840 0.208 0.0327 0.0159 0.0507 – – – 5.47
GII #1 1.000 0.854 0.183 0.0952 0.0633 0.1185 2.91 3.98 2.34 3.01
GII #2 0.992 0.852 0.190 0.0417 0.0266 0.0721 1.28 1.67 1.42 2.92
GII #3 0.992 0.851 0.191 0.0383 0.0179 0.0547 1.17 1.13 1.08 3.68
GII #4 0.990 0.850 0.188 0.0379 0.0175 0.0548 1.15 1.10 1.09 4.06

5.2.4. Results for Model 3
Model 3 is identical to Model 2, except there is an ‘‘initial conditions’’ problem: the econometrician does not observe

individuals’ choices in the first s periods. This is an excellent example of the type of problem that motivates this paper: SML
is extremely difficult to implement, due to the problem of integrating over the initial conditions. But II is appealing, as it is
still trivial to simulate data from the model. However, we need GII to deal with the discrete outcomes.

To proceed, ourMonte Carlo experiments are parametrized exactly as forModel 2, except thatwe set T = 15,with choices
in the first s = 5 time periods being unobserved (but note that exogenous variables are observed in these time periods).

Auxiliary model #1 is as for Models 1 and 2: q = 1 and the regressors are zit = (1, xit , yi,t−1), t = s+ 1, . . . , T , where the
unobserved yis is set equal to 0. In auxiliary model #2, q = 2 and the regressors are:

zi,s+1 = (1, xi,s+1, xis) zit = (1, xit , yi,t−1, xi,t−1), t ∈ {s + 2, . . . , T },

for a total of 19 parameters. In auxiliary model #3, q = 4 and there are 27 parameters:

zi,s+1 = (1, xi,s+1, x3i,s+1, xis, xi,s−1)
zi,s+2 = (1, xi,s+2, yi,s+1, xi,s+1, xis)
zi,s+3 = (1, xi,s+3, yi,s+2, xi,s+2, yi,s+1, xi,s+1)

zit = (1, xit , yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3), t ∈ {s + 4, . . . , T }.

Finally, in auxiliary model #4, q = 5 and there are 41 parameters: relative to #3, zi,s+1, zi,s+2 and zi,s+3 are augmented by an
additional lag of xis, and

zi,s+4 = (1, xi,s+4, yi,s+3, xi,s+3, yi,s+2, xi,s+2, yi,s+1, xi,s+1)
zit = (1, xit , yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3, xi,t−3, yi,t−4), t ∈ {s + 5, . . . , T }.

Table 7 presents the results of four sets of Monte Carlo experiments, each with 1000 replications. There are two key
findings: First, as with Models 1 and 2, GII generates estimates with very little bias. Second, increasing the ‘‘richness’’ of the
auxiliary model leads to large efficiency gains relative to auxiliary model #1, particularly when the errors are persistent.
However, auxiliary model #4 provides few efficiency gains relative to auxiliary model #3.

5.2.5. Results for Model 4
Model 4 is a (static) three-alternative probit model with eight unknown parameters. We described it in detail in

Section 5.1.3, sowewill not repeat that description here. Recall that the auxiliarymodel is a pair of linear probabilitymodels,
one for each of the first two alternatives:

yi1 = zTi α1 + ξi1

yi2 = zTi α2 + ξi2,
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Table 7
Monte Carlo results for Model 3.

Mean Std. dev. Time (s)

b1 r b2 b1 r b2
b1 = 1, r = 0, b2 = 0.2

GII #1 0.997 −0.000 0.200 0.0272 0.0532 0.0387 3.91
GII #2 0.994 −0.001 0.200 0.0271 0.0387 0.0347 4.01
GII #3 0.993 −0.001 0.199 0.0272 0.0385 0.0345 4.81
GII #4 0.991 −0.001 0.199 0.0275 0.0389 0.0347 5.38

b1 = 1, r = 0.4, b2 = 0.2

GII #1 0.994 0.397 0.198 0.0361 0.0518 0.0493 3.99
GII #2 0.991 0.397 0.197 0.0309 0.0363 0.0430 4.00
GII #3 0.990 0.396 0.196 0.0306 0.0317 0.0399 4.80
GII #4 0.987 0.395 0.196 0.0302 0.0318 0.0400 5.35

b1 = 1, r = 0.85, b2 = 0.2

GII #1 0.993 0.851 0.184 0.0936 0.0403 0.1289 4.41
GII #2 0.986 0.851 0.191 0.0546 0.0249 0.0905 4.37
GII #3 0.987 0.850 0.189 0.0430 0.0140 0.0598 4.93
GII #4 0.984 0.849 0.185 0.0411 0.0136 0.0597 5.56

Table 8
Monte Carlo results for Model 4 (b10 = 0, b11 = 1, b12 = 1, b20 = 0, b21 = 1, b22 = 1, c1 = 0, c2 = 1).

SML GII σGII/σSML

#1 #2 #1 #2 #3 #4 #1 #2 #3 #4

Mean

b10 0.007 0.005 0.003 0.002 0.002 0.002 – – – –
b11 1.000 1.001 0.995 0.994 0.992 0.990 – – – –
b12 1.000 1.003 0.998 0.997 0.995 0.992 – – – –
b20 −0.001 −0.003 −0.006 −0.004 −0.004 0.004 – – – –
b21 1.006 1.007 1.001 0.999 0.997 0.996 – – – –
b22 1.005 1.007 1.004 1.000 0.998 0.996 – – – –
c1 0.020 0.010 0.007 0.005 0.005 0.006 – – – –
c2 1.004 1.003 1.006 1.001 1.001 1.002 – – – –

Std. dev.

b10 0.0630 0.0628 0.0720 0.0666 0.0656 0.0665 1.15 1.06 1.04 1.06
b11 0.0686 0.0686 0.0872 0.0764 0.0741 0.0743 1.27 1.11 1.08 1.08
b12 0.0572 0.0574 0.0719 0.0667 0.0632 0.0646 1.25 1.16 1.10 1.13
b20 0.0663 0.0657 0.0745 0.0686 0.0677 0.0676 1.13 1.04 1.04 1.03
b21 0.1065 0.1050 0.1395 0.1128 0.1095 0.1099 1.33 1.07 1.04 1.05
b22 0.1190 0.1174 0.1593 0.1285 0.1249 0.1244 1.36 1.09 1.06 1.06
c1 0.1091 0.1107 0.1303 0.1276 0.1224 0.1265 1.18 1.15 1.11 1.14
c2 0.1352 0.1325 0.1991 0.1509 0.1439 0.1421 1.50 1.14 1.09 1.07

Time 11.5 23.1 7.1 10.4 16.4 34.1 – – – –

where ξi ∼i.i.d. N[0, Σξ ]. We conductMonte Carlo experiments using four nested versions of the auxiliarymodel. In auxiliary
model #1, zi = (1, xi1, xi2, xi3), giving a total of 11 parameters (including 3 error covariance parameters). This is the auxiliary
model that we used in the analysis of Section 5.1.3.

Auxiliary model #2 adds all the second-order products of these variables, as well as one third-order product to zi, i.e.

zi = (1, xi1, xi2, xi3, x2i1, x
2
i2, x

2
i3, xi1xi2, xi1xi3, xi2xi3, xi1xi2xi3),

for a total of 25 parameters. In auxiliary model #3, zi contains all third-order products (for a total of 43 parameters) and in
auxiliary model #4, zi contains all fourth-order products (for a total of 67 parameters).

Tables 8 and 9 present the results of six sets of Monte Carlo experiments, each with 1000 replications; the labels SML
#i and GII #i are to be interpreted exactly as for Table 5. The key findings are qualitatively similar to those for Models 1,
2, and 3. First, both SML and GII generate estimates with very little bias. Second, auxiliary model #1, which contains only
linear terms, leads to large efficiency losses relative to SML (as large as 50%). But auxiliary model #2, which contains terms
up to second order, reduces the efficiency losses substantially (to no more than 15% when the errors are uncorrelated, and
to no more than 26% when c = 1.33). Auxiliary model #3, which contains terms up to third order, provides additional small
efficiency gains (the largest efficiency loss is reduced to 20%), while auxiliary model #4, which contains fourth-order terms,
provides few, if any, efficiency gains relative to auxiliary model #3. Finally, computing estimates using GII with auxiliary
model #3 takes about 30% less time than computing estimates using SML with 50 draws.
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Table 9
Monte Carlo results for Model 4 (b10 = 0, b11 = 1, b12 = 1, b20 = 0, b21 = 1, b22 = 1, c1 = 1.33, c2 = 1).

SML GII σGII/σSML

#1 #2 #1 #2 #3 #4 #1 #2 #3 #4

Mean

b10 −0.031 −0.017 0.000 −0.001 −0.000 −0.001 – – – –
b11 0.998 1.000 0.993 0.993 0.991 0.989 – – – –
b12 1.016 1.011 0.998 0.998 0.996 0.994 – – – –
b20 −0.011 −0.010 −0.011 −0.007 −0.007 −0.006 – – – –
b21 0.992 0.999 1.000 0.997 0.995 0.991 – – – –
b22 1.004 1.008 1.006 1.001 0.999 0.995 – – – –
c1 1.269 1.306 1.347 1.338 1.335 1.330 – – – –
c2 1.025 1.011 0.993 0.993 0.995 0.997 – – – –

Std. dev.

b10 0.0693 0.0698 0.0789 0.0776 0.0758 0.0757 1.13 1.11 1.09 1.08
b11 0.0587 0.0588 0.0696 0.0658 0.0632 0.0636 1.18 1.12 1.07 1.08
b12 0.0745 0.0737 0.0883 0.0801 0.0781 0.0782 1.20 1.09 1.06 1.06
b20 0.0766 0.0764 0.0900 0.0801 0.0786 0.0780 1.18 1.05 1.03 1.02
b21 0.0884 0.0886 0.1140 0.0969 0.0952 0.0943 1.29 1.09 1.07 1.06
b22 0.1106 0.1103 0.1471 0.1204 0.1176 0.1153 1.34 1.09 1.07 1.05
c1 0.1641 0.1707 0.2454 0.2152 0.2049 0.2041 1.44 1.26 1.20 1.20
c2 0.1229 0.1206 0.1599 0.1387 0.1338 0.1311 1.33 1.15 1.11 1.09

Time 12.7 25.6 7.4 10.8 17.1 34.4 – – – –

6. Conclusion

Discrete choice models play an important role in many fields of economics, from labor economics to industrial organi-
zation to macroeconomics. Unfortunately, these models are usually quite challenging to estimate (except in special cases
likeMNLwhere choice probabilities have closed forms). Simulation-basedmethods like SML andMSM have been developed
that can be used for more complex models like MNP. But in many important cases (models with initial conditions problems
and Heckman selection models being leading cases) even these methods are very difficult to implement.

In this paper we develop and implement a new simulation-based method for estimating models with discrete or mixed
discrete/continuous outcomes. The method is based on indirect inference. But the traditional II approach is not easily
applicable to discrete choice models because one must deal with a non-smooth objective surface. The key innovation here
is that we develop a generalized method of indirect inference (GII), in which the auxiliary models that are estimated on
the actual and simulated data may differ (provided that the estimates from both models share a common probability limit).
This allows us to chose an auxiliary model for the simulated data such that we obtain an objective function that is a smooth
function of the structural parameters. This smoothness renders GII practical as a method for estimating discrete choice
models. Our theoretical analysis shows that the GII estimator enjoys the same limiting distribution as the unsmoothed II
estimator. Inferences based on the GII estimates may thus be drawn in the standard manner, via the usual Wald statistics.
Moreover, the GII estimator can be computed using standard derivative-based optimizers, provided that the smoothing is
done in such a way that the first (and possibly second) derivatives of the smoothed GII criterion remain consistent for their
population counterparts.

We also provide a set of Monte Carlo experiments to illustrate the practical usefulness of GII. In addition to being fast and
straightforward to compute, GII yields estimates with good properties in small samples. In particular, the estimates display
very little bias and are nearly as efficient as maximum likelihood (in those cases where simulated versions of maximum
likelihood can be used) provided that the auxiliary model is chosen judiciously.

GII could potentially be applied to a wide range of discrete and discrete/continuous outcome models beyond those we
consider in ourMonte Carlo experiments. Indeed, GII is sufficiently flexible to accommodate almost any conceivablemodel of
discrete choice, including, discrete choice dynamic programmingmodels, discrete dynamic games, etc.We hope that applied
economists from a variety of fields find GII a useful and easy-to-implement method for estimating discrete choice models.

Appendix A. Extensions and refinements

A.1. A modified smoothing procedure for dynamic models

Formodels inwhich latent utilities depend on past choices (as distinct from past utilities, which are already smooth), such
as Models 2 and 3, the performance of GII may be improved by making a further adjustment to the smoothing proposed in
Section 3.3. The nature of this adjustment is best illustrated in terms of the example provided by Model 2. In this case, it is
clear that setting

ymit (β, λ) := Kλ[b1xit + b2ymi,t−1(β) + ϵm
it ],
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where ymi,t−1(β) denotes the unsmoothed choice made at date t − 1, will yield unsatisfactory results, insofar as the ymit (β, λ)
so constructed will remain discontinuous in β . To some extent, this may be remedied by modifying the preceding to

ymit (β, λ) := Kλ[b1xit + b2ymi,t−1(β, λ) + ϵm
it ], (A.1)

with ymi0(β, λ) := 0, as per the specification of the model. However, while the ymit (β, λ)’s generated through this recursion
will indeed be smooth (i.e., twice continuously differentiable), the nesting of successive approximations entailed by (A.1)
implies that for large t , the derivatives of ymit (β, λ) may be highly irregular unless a relatively large value of λ is employed.

This problemmay be avoided by instead computing ymit (β, λ) as follows. Defining vm
itk(β) := b1xit + b21{k = 1} + ϵm

it , we
see that the unsmoothed choices satisfy

yit (β) = 1{vm
it0(β) ≥ 0} · [1 − yi,t−1(β)] + 1{vm

it1(β) ≥ 0} · yi,t−1(β),

which suggests using the following recursion for the smoothed choices,

ymit (β, λ) := Kλ[v
m
it0(β)] · [1 − ymi,t−1(β, λ)] + Kλ[v

m
it1(β)] · ymi,t−1(β, λ), (A.2)

with ymi0(β, λ) := 0. This indeed yields a valid approximation to yit (β), as λ → 0. The smoothed choices computed using (A.2)
involve no nested approximations, but merely sums of products involving terms of the form Kλ[v

m
isk(β)]. The derivatives of

these are well-behaved with respect to λ, even for large t , and are amenable to the theoretical analysis of Section 4.
Nonetheless, we find that even if smoothing is done by simply using (A.1), GII appears to work well in practice; this is

shown in the simulation exercises reported in Section 5.

A.2. Smoothing parameter selection

Estimating bias and variance. Let β∗
∈ B be an fixed value for the structural parameters, which may come e.g. from an

initial optimization of Qnk, with a suitably large λ(0); suppose for simplicity that no jackknifing is used. Ideally, we would like
to compute both the bias and variance with which

θn(β∗, λ) :=
1
M

M∑
m=1

θ̂m
n (β∗, λ) (A.3)

estimates the (unsmoothed) binding function θ (β∗, 0). In practice, since θ (β∗, 0) is unknown, we will settle for computing
the bias of θn(β∗, λ) relative to the closely related quantity

hn(β∗) :=
1
M∗

M∗∑
m=1

θ̂m
n (β∗, 0) = Eη[θ̂n(β∗, 0)] + op(1)

where the second equality holds asM∗
→ ∞, andEη denotes an expectation computed only with respect to the unobserved

components η of the structural model.
We may then proceed as follows. Choose a ‘large’ value of M∗, on the order of M∗

= 500 or so. (This will typically be
much larger than the value ofM appearing in (A.3).) The bias in θn(β∗, λ), relative to hn, may be estimated by

b̂(β∗, λ) :=

 1
M∗

M∗∑
m=1

[θ̂m
n (β∗, λ) − hn(β∗)]

 =

 1
M∗

M∗∑
m=1

[θ̂m
n (β∗, λ) − θ̂m

n (β∗, 0)]

 ,

where, by analogy with cross-validation, independent draws may be used to compute θ̂m
n (β∗, λ) and θ̂m

n (β∗, 0) for each m.
An estimate of the total variance is

σ̂ 2(β∗, λ) =
1
M∗

M∗∑
m=1

θ̂m
n (β∗, λ) −

1
M∗

M∑
m=1

θ̂m
n (β∗, λ)


2

.

Given that M replications are used to compute θn(β∗, λ) itself, the mean squared error of the binding function could be
computed as

M̂SEn(β∗, λ) := b̂2(β∗, λ) +
1
M

σ̂ 2(β∗, λ). (A.4)

A similar approach may be taken to estimate the bias and variance of the derivatives ∂βθn(β∗, λ). In this case, the
preceding formulas remain valid, except that ∂β θ̂m

n (β∗, λ) takes the place of θ̂m
n (β∗, λ), and hn must be replaced by some

finite-differencing approximation to ∂βhn(β∗). (If M∗ is taken large enough, the problems posed, for finite-differencing, by
the non-smoothness of hn(β) are eventually overcome, even though λ = 0.)

Automated smoothing parameter selection. Given a choice of β∗, we could choose the λ that minimizes the estimated
mean squared error (A.4), either for the level of the binding function, or its first derivatives. One would expect –e.g. by
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analogy with cdf and density estimation –that the former will generally give much smaller ‘optimal’ values of λ than will
the latter. Thus if a conservative initial value of λ is sought, minimization of the derivatives’ MSE may be more suitable. On
the other hand, the Monte Carlo simulations reported in Section 5.1.1 indicate that the λ that minimizes the MSE of (level
of) the binding function may yield estimates with relatively little bias.

Termination. The alternative stopping rule proposed in Section 3.5 may be implemented simply by checking whether

b̂(β̂n(λ(i)), λ(i)) ≤ δσ̂ (β̂n(λ(i)), λ(i))

where δ ∈ (0, 1) is some pre-specified quantity, e.g. δ = 0.05.

Appendix B. Low-level conditions

This appendix provides some low-level conditions (Assumption L) which are sufficient for the high-level conditions
(Assumption H) given in H. We subsequently verify that these conditions are satisfied by each of Models 1–5, when the
auxiliary model is a Gaussian SUR; more generally, it should be straightforward to verify our conditions for any dynamic
discrete choice model satisfying (2.4)–(2.5).

B.1. A general framework for models with smoothed outcomes

We first introduce the following framework, which is sufficiently general to encompass both the dynamic discrete choice
models of Section 2, as well as models with mixed discrete/continuous regressors (such as Model 5).

Data. Individual i is described by vectors xi ∈ Rdx and ηi ∈ Rdη of observable and unobservable characteristics; xi collects
all the covariates appearing in the structural and auxiliary models. ηi is a vector of independent variates that are also
independent of xi, and normalized to have unit variance. Their marginal distributions are fully specified by the model,
allowing them to be simulated. Collect zi := (xTi , η

T
i )

T
∈ Rdz , and define the projections [x(·), η(·)] so that (xi, ηi) =

[x(zi), η(zi)]. Individual i has a vector y(zi; β, λ) ∈ Rdy of smoothed outcomes, parametrized by (β, λ) ∈ B × Λ, with λ = 0
corresponding to the true, unsmoothed outcomes under β . At this level of abstraction, we need not make any notational
distinction between choices made by an individual at the same date (over competing alternatives), vs. choices made at
distinct dates; we note simply that each corresponds to some element of y(·). With this notation, themth simulated choices
may be written as y(zmi ; β, λ); since the same xi’s are used across all simulations, we have x(zmi ) = x(zm

′

i ) but η(zmi ) ̸= η(zm
′

i )
form′

̸= m.

Auxiliary model. We shall assume that the auxiliary model takes the form of a system of seemingly unrelated regressions
(SUR; see e.g. Section 10.2 in Greene, 2008)

yr (zi; β, λ) = αT
xrΠxrx(zi) + αT

yrΠyry(zi; β, λ) + ξri, (B.1)

where ξi := (ξ1i, . . . , ξdy i)
T

∼i.i.d. N[0, Σξ ], and Πxr and Πyr are selection matrices (i.e. matrices that take at most one unit
value along each row, and have zeros everywhere else); let αr := (αT

xr , α
T
yr )

T. Typically, Σξ will be assumed block diagonal:
for example, we may only allow those ξri’s pertaining to alternatives from the same period to be correlated. The auxiliary
parameter vector θ collects a subset of the elements of (αT

1, . . . , α
T
dy )

T and those of Σ−1
ξ . (For the calculations involving the

score vector in Section E of the SupplementaryMaterial, it shall bemore convenient to treat themodel as being parametrized
in terms of Σ−1

ξ , than Σξ .)
Several estimators of θ are available, most notably OLS, feasible GLS, and maximum likelihood, all of which agree only

under certain conditions.20 For concreteness, we shall assume that both the data-based and simulation-based estimates of
θ are produced bymaximum likelihood. However, our results easily extend to the case where these estimates are computed
using OLS or feasible GLS. (In those cases, the auxiliary estimator can be still be written as a function of a vector of sufficient
statistics, a property that greatly facilitates the proofs of our results.)

Smoothed indices. We shall also need to restrict the manner in which y(·) is parametrized. To that end, we introduce the
following collections of linear indices

νr (z; β) := zTΠνrγ (β) r ∈ {1, . . . , dν} (B.2a)
ωr (z; β) := zTΠωrγ (β) r ∈ {1, . . . , dω}, (B.2b)

where γ : B → Γ , and Πνr and Πωr are selection matrices. Let dc ≥ dω; for each r ∈ {1, . . . , dc}, let Sr ⊆ {1, . . . , dv} and
define

ỹr (β, λ) := ωr (β) ·

∏
s∈Sr

Kλ[νs(β)] (B.3)

20 In Section 5, exact numerical agreement between these estimators is ensured by requiring the auxiliarymodel equations referring to alternatives from
the same period to have the same set of regressors.
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collecting these in the vector ỹ(β, λ); these are products of both smoothed and unsmoothed linear indices. We shall require
that the smoothed choices y are themselves linear combinations of elements of ỹ(β, λ); see L3. K : R → [0, 1] is a smooth
univariate cdf, and Kλ(v) := K (λ−1v). Note that dc ≥ dω , and that we have defined

ωr (z; β) := 1 r ∈ {dω + 1, . . . , dc}. (B.4)

Low-level conditions. Let ηωi := Πηωηi select the elements of ηi upon which ω actually depends (as determined by the Πωr
matrices), and let Wr ≥ 1 denote an envelope for ωr , in the sense that |ωr (z; β)| ≤ Wr (z) for all β ∈ B. Let ϱmin(A) denote
the smallest eigenvalue of a symmetric matrix A.

Assumption L (Low-level Conditions).

L1 ηm
i and xi are mutually independent, and i.i.d. over i and m;

L2 K in (B.3) is a twice continuously differentiable cdf, for a distribution having integermoments of all orders, and density
K̇ symmetric about the origin;

L3 y(β, λ) = Dỹ(β, λ) for some D ∈ Rdy×dc , for ỹ as in (B.3);
L4 γ : B → Γ in (B.2) is twice continuously differentiable;
L5 for each k ∈ {1, . . . , dη}, var(ηki) = 1, and ηki has a density fk with

sup
u∈R

(1 + |u|4)fk(u) < ∞;

L6 there exists an ϵ > 0 such that, for every r ∈ {1, . . . , dν} and β ∈ B,

var(νr (zi; β) | ηωi, xi) ≥ ϵ;

L7 there exists a p0 ≥ 2 such that for each r ∈ {1, . . . , dc},E(W 4
r +∥zi∥4) < ∞,E|Wr∥zi∥3

|
p0 < ∞ andE|W 2

r ∥zi∥2
|
p0 < ∞;

L8 inf(β,λ)∈B×Λϱmin[Ey(zi; β, λ)y(zi; β, λ)T] > 0, where y(β, λ) := [y(β, λ)T, xT]T; and
L9 the auxiliary model is a Gaussian SUR, as in (B.1).

Remark B.1. (B.2) entails that the estimator criterion function Qn depends on β only through γ (β), i.e. Qn(β) = Q̃n(γ (β))
for some Q̃n. Since the derivatives of Q̃n with respect to γ take a reasonably simple form, in Section E of the Supplementary
Material we establish the convergence of ∂ l

βQn to ∂ l
βQ , for l ∈ {1, 2}, by first proving the corresponding result for ∂ l

γ Q̃n and
then applying the chain rule.

Remark B.2. Assumption L is least restrictive in models with purely discrete outcomes, for which we may take dω = 0. In
particular, L7 reduces to the requirement that E∥zi∥3p0 < ∞.

Remark B.3. As the examples discussed immediately below illustrate, except in the case where current (discrete) choices
depend on past choices, it is generally possible to take D = Idy in L3, so that y(β, λ) = ỹ(β, λ).

B.2. Verification for Models 1–5

We may verify that each of the models from Section 2 satisfies L3–L7. Note that L2 will be satisfied for many standard
choices of K , such as the Gaussian cdf, andmany smooth, compactly supported kernels. In all cases, xi collects all the (unique)
elements of {xit}Tt=1, together with any additional exogenous covariates used to estimate the auxiliary model; while ηi
collects the elements of {ηit}

T
t=1. Note that for the discrete choice Models 1–4, since the ηi are Gaussian L7 will be satisfied if

E∥xi∥3p0 < ∞. L8 is a standard non-degeneracy condition.

Model 1. uit = bxit +
∑t

s=1r
t−sηis by backward substitution. So we set (dν, dω) = (T , 0), with

νt (zi; β) = xt (zi)b(β) +

t∑
s=1

ηs(zi)dts(β),

where β = (b, r), b(β) = b and dts(β) = r t−s; while xt (zi) and ηs(zi) select the appropriate elements of zi, which
collects {xit}, {ηit}, and any other exogenous covariates used in the auxiliary model. Thus L3 and L4 hold (formally, take
γ (β) = (b(β), {dts(β)})). L6 follows from the ηt (zi)’s being standard Gaussian.

Model 2. As per the discussion in Appendix A.1, and (A.2) in particular, we define

νtk(zi; β) := xt (zi)b1(β) + b2(β)1{k = 1} +

t∑
s=1

ηs(zi)dts(β)
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where the right-hand side quantities are defined by analogy with the preceding example. Setting

yt (β, λ) := Kλ[νt0(β)] · [1 − yt−1(β, λ)] + Kλ[νt1(β)] · yt−1(β, λ) (B.5)

with y0(β, λ) := 0 thus yields smoothed choices having the form required by L3 and L4, as may be easily verified by
backwards substitution. L6 again follows from Gaussianity of ηt (zi).

An identical recursion to (B.5) also works for Model 3. Model 4 may be handled in a similar way to Model 1, but it is in
certain respects simpler, because the errors are not serially dependent.

Model 5. From the preceding examples, it is clear that ω(zi; β) = wi and ν(zi; β) = ui can be written in the linear index
form (B.2). The observable outcomes are the individual’s decision to work, and also his wage if he decides to work. These
may be smoothly approximated by:

y1(β, λ) := Kλ[ν(β)] y2(β, λ) := ω(β) · Kλ[ν(β)]

respectively. Thus L3–L6 hold just as in the other models. L7 holds, in this case, if E∥zi∥4p0 < ∞.

Appendix C. Details of optimization routines

We consider two popular line-search optimization methods – Gauss–Newton, and quasi-Newton with BFGS updating
–and a trust-region algorithm. When applied to a criterion Q , each of these routines proceeds as follows: given an iterate
β (s), locally approximate Q (β) by the following quadratic model,

f(s)(β) := Q (β (s)) + ∇
T
(s)(β − β (s)) +

1
2 (β − β (s))T∆(s)(β − β (s)), (C.1)

where ∇(s) := ∂βQ (β (s)). A new iterate β (s+1) is then generated by approximately minimizing f(s) with respect to β . The
main differences between these procedures concern the choice of approximate Hessian ∆(s), and the manner in which f(s) is
(approximately) minimized.

Both line-search methods (Gauss–Newton and quasi-Newton) involve the use of a positive definite Hessian ∆(s) in the
approximating model (C.1), and so the problem solved at step s + 1 reduces to that of ‘‘approximately’’ solving

min
α∈R

Q (β (s)
+ αp(s)), (C.2)

where p(s) := −∆−1
(s) ∇(s). We do not require that α(s) solves (C.2) exactly; we require only that it satisfies the strong Wolfe

conditions,

Q (β (s)
+ α(s)p(s)) ≤ Q (β (s)) + c1α(s)∇

T
(s)p(s)

|Q̇ (β (s)
+ α(s)p(s))Tp(s)| ≤ c2|∇T

(s)p(s)|

for 0 < c1 < c2 < 1,where Q̇ := ∂βQ (cf. (3.7) in Nocedal andWright, 2006). For some suchα(s), we setβ (s+1)
= β (s)

+α(s)p(s).
For the Hessians ∆(s), the Gauss–Newton method is only applicable to criteria of the form Q (β) =

1
2∥g(β) ∥

2
W , and uses

∆(s) = GT
(s)WG(s), (C.3)

where G(s) := [∂βg(β (s))]T. The Quasi-Newtonmethod with BFGS updating starts with some initial positive definite ∆(0), and
updates it according to,

∆(s+1) = ∆(s) −
∆(s)x(s)xT(s)∆(s)

xT(s)∆(s)x(s)
+

d(s)dT
(s)

dT
(s)x(s)

,

where x(s) := α(s)p(s) and d(s) = ∇
(s+1)

− ∇
(s) (cf. (6.19) in Nocedal and Wright, 2006).

The trust region method considered here sets ∆(s) = ∂2
βQ (β (s)), which need not be positive definite. The procedure then

attempts to approximately minimize (C.1), subject to the constraint that ∥β∥ ≤ δ(s), where δ(s) defines the size of the trust
region, which is adjusted at each iteration depending on the value of

ρ(s) :=
Q (β (s)) − Q (β (s+1))
f(s)(0) − f(s)(β (s+1))

,

which measures the proximity of the true reduction in Q at step s, with that predicted by the approximating model (C.1);
the adjustment is made in accordance with Algorithm 4.2 in Moré and Sorensen (1983). Various algorithms are available for
approximately solving (C.1) in this case, but we shall assume that Algorithm 3.14 from that paper is used.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.03.010.

https://doi.org/10.1016/j.jeconom.2018.03.010
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