Supplementary material

D Proofs of theorems under high-level assumptions

Assumptions R and H are assumed to hold throughout this section, including H5 with $l_{0}=0$. Whenever we require H_{5} to hold for some $l_{0} \in\{1,2\}$, this will be explicitly noted.

D. 1 Preliminary results

Let $\beta_{n}:=\beta_{0}+n^{-1 / 2} \delta_{n}$ for a (possibly) random $\delta_{n}=o_{p}\left(n^{1 / 2}\right)$. Define

$$
\Delta_{n}^{k}(\beta):=n^{1 / 2}\left[\bar{\theta}_{n}^{k}\left(\beta, \lambda_{n}\right)-\bar{\theta}_{n}^{k}\left(\beta_{0}, \lambda_{n}\right)\right]
$$

and recall that $G_{n}(\beta):=\partial_{\beta} \bar{\theta}_{n}^{k}\left(\beta, \lambda_{n}\right)$ and $G:=\left[\partial_{\beta} \theta\left(\beta_{0}, 0\right)\right]^{\top}$. As per R5, we fix the order of jackknifing $k \in\left\{0, \ldots, k_{0}\right\}$ such that $n^{1 / 2} \lambda_{n}^{k+1}=o_{p}(1)$. Let $\mathcal{L}_{n}(\theta):=\mathcal{L}_{n}(y, x ; \theta)$ and $\mathcal{L}(\theta):=$ $\mathbb{E} \mathcal{L}_{n}(\theta) . \dot{\mathcal{L}}_{n}$ and $\ddot{\mathcal{L}}_{n}$ respectively denote the gradient and Hessian of \mathcal{L}_{n}, with $H:=\mathbb{E} \ddot{\mathcal{L}}_{n}\left(\theta_{0}\right)=$ $\mathcal{L}\left(\theta_{0}\right) ; N(\theta, \epsilon)$ denotes an open ball of radius ϵ, centered at θ.

Proposition D.1.

(i) $\sup _{\beta \in \mathrm{B}}\left\|\bar{\theta}_{n}^{k}\left(\beta, \lambda_{n}\right)-\theta^{k}\left(\beta, \lambda_{n}\right)\right\| \xrightarrow{p} 0$;
(ii) $\theta^{k}\left(\beta_{0}, \lambda_{n}\right)-\theta\left(\beta_{0}, 0\right)=O_{p}\left(\lambda_{n}^{k+1}\right)$;
(iii) $\Delta_{n}^{k}\left(\beta_{n}\right)=G \delta_{n}+o_{p}\left(1+\left\|\delta_{n}\right\|\right)$.

Proposition D.2. For $V=\left(1+\frac{1}{M}\right)(\Sigma-\mathrm{R})$,

$$
\begin{equation*}
Z_{n}:=n^{1 / 2}\left[\bar{\theta}_{n}^{k}\left(\beta_{0}, \lambda_{n}\right)-\theta^{k}\left(\beta_{0}, \lambda_{n}\right)\right]-n^{1 / 2}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightsquigarrow N\left[0, H^{-1} V H^{-1}\right] . \tag{D.1}
\end{equation*}
$$

Proposition D.3.

(i) $Q_{n k}^{e}\left(\beta, \lambda_{n}\right) \xrightarrow{p} Q_{k}^{e}(\beta, 0)=: Q^{e}(\beta)$ uniformly on B ;
(ii) for every $\epsilon>0, \inf _{\beta \in \mathrm{B} \backslash N\left(\beta_{0}, \epsilon\right)} Q^{e}(\beta)>Q\left(\beta_{0}\right)$; and

Proposition D.4. If H 5 holds for $l_{0}=1$, then
(i) $G_{n}\left(\beta_{n}\right) \xrightarrow{p} G$; and
if H 5 holds for $l_{0} \in\{1,2\}$ then, uniformly on B ,
(ii) $\sup _{\beta \in \mathrm{B}}\left\|\partial_{\beta}^{l} \bar{\theta}_{n}^{k}\left(\beta, \lambda_{n}\right)-\partial_{\beta}^{l} \theta(\beta, 0)\right\|=o_{p}(1)$; and
(iii) $\partial_{\beta}^{l} Q_{n k}^{e}\left(\beta, \lambda_{n}\right) \xrightarrow{p} \partial_{\beta}^{l} Q_{k}^{e}(\beta, 0)=\partial_{\beta}^{l} Q^{e}(\beta)$
for $l \in\left\{1, \ldots, l_{0}\right\}$.

Define, for some $c_{n}=o_{p}\left(n^{-1 / 2}\right)$, the sets of approximate and exact roots

$$
R_{n k}^{e}:=\left\{\beta \in \mathrm{B} \mid\left\|\partial_{\beta} Q_{n k}^{e}\left(\beta, \lambda_{n}\right)\right\| \leq c_{n}\right\} \quad R^{e}:=\left\{\beta \in \mathrm{B} \mid \partial_{\beta} Q^{e}(\beta, 0)=0\right\}
$$

of $\partial_{\beta} Q_{n k}^{e}\left(\beta, \lambda_{n}\right)=0$ and $\partial_{\beta} Q^{e}(\beta, 0)=0$ respectively; and let

$$
S_{n k}^{e}:=\left\{\beta \in R_{n k}^{e} \mid \varrho_{\min }\left[\partial_{\beta}^{2} Q_{n k}^{e}\left(\beta, \lambda_{n}\right)\right] \geq-c_{n}\right\} \quad S^{e}:=\left\{\beta \in R^{e} \mid \varrho_{\min }\left[\partial_{\beta}^{2} Q^{e}(\beta, 0)\right] \geq 0\right\},
$$

denote those subsets on which the second-order conditions for a local minimum are also approximately satisfied.

Proposition D.5. Let B_{0} be a compact set with $\beta_{0} \in \operatorname{int} \mathrm{~B}_{0}$, and $\left\{\tilde{\beta}_{n}\right\}$ a random sequence in B_{0}. Suppose H 5 holds with $l_{0}=1$. Then
(i) if $R^{e} \cap \mathrm{~B}_{0}=\left\{\beta_{0}\right\}$, and $\tilde{\beta}_{n} \in R_{n k}^{e}$ w.p.a.1, then $n^{1 / 2}\left(\tilde{\beta}_{n}-\hat{\beta}_{n k}^{e}\right)=o_{p}(1)$; and
(ii) if H 5 holds with $l_{0}=2$, the preceding holds with $\left(S_{n k}^{e}, S^{e}\right)$ in place of $\left(R_{n k}^{e}, R^{e}\right)$.

For the next result, let $U: \Gamma \rightarrow \mathbb{R}$ be twice continuously differentiable with a unique global minimum at γ^{*}. For some ϵ, let $R_{U}:=\left\{\gamma \in \Gamma \mid\left\|\partial_{\gamma} U(\gamma)\right\|<\epsilon\right\}$, and $S_{U}:=\left\{\gamma \in R_{U} \mid\right.$ $\left.\varrho_{\min }\left[\partial_{\gamma}^{2} U(\gamma)\right] \geq-\epsilon\right\}$. Applying a routine $r \in\{\mathrm{GN}, \mathrm{QN}, \mathrm{TR}\}$ to U yields the iterates $\left\{\gamma^{(s)}\right\}$; let

$$
\bar{\gamma}\left(\gamma^{(0)}, r\right):= \begin{cases}\gamma^{\left(s^{*}\right)} & \text { if } \gamma^{(s)} \in R_{U} \text { for some } s \in \mathbb{N} \\ \gamma^{(0)} & \text { otherwise }\end{cases}
$$

where s^{*} denotes the smallest s for which $\gamma^{(s)} \in R_{U}$. When $r=\mathrm{TR}$, the definition of $\bar{\gamma}\left(\gamma^{(0)}, \mathrm{TR}\right)$ is analogous, but with S_{U} in place of R_{U}. In the statement of the next result, $\Gamma_{0}:=\{\gamma \in \Gamma \mid$ $\left.U(\gamma) \leq U\left(\gamma_{1}\right)\right\}$ for some $\gamma_{1} \in \Gamma$, and is a compact set with $\gamma^{*} \in \operatorname{int} \Gamma_{0}$. For a continuously differentiable function $m: \Gamma \mapsto \mathbb{R}^{d_{m}}$, let $M(\gamma):=\left[\partial_{\gamma} m(\gamma)\right]^{\top}$ denote its Jacobian.

Proposition D.6. Let $r \in\{\mathrm{QN}, \mathrm{TR}\}$, and suppose that in addition to the preceding, either
(i) $r=\mathrm{GN}$ and $U(\gamma)=\|m(\gamma)\|^{2}$, with $\inf _{\gamma \in \Gamma_{0}} \sigma_{\min }[M(\gamma)]>0$; or
(ii) $r=\mathrm{QN}$ and U is strictly convex on Γ_{0};
then $\bar{\gamma}\left(\gamma^{(0)}, r\right) \in R_{U} \cap \Gamma_{0}$ for all $\gamma^{(0)} \in \Gamma_{0}$. Alternatively, if $r=\mathrm{TR}$, then $\bar{\gamma}\left(\gamma^{(0)}, r\right) \in S_{U} \cap \Gamma_{0}$ for all $\gamma^{(0)} \in \Gamma_{0}$.

D. 2 Proofs of Theorems 4.1-4.3

Throughout this section, $\beta_{n}:=\beta_{0}+n^{-1 / 2} \delta_{n}$ for a (possibly) random $\delta_{n}=o_{p}\left(n^{1 / 2}\right)$. Let $Q_{n}^{\mathrm{W}}(\beta):=$ $Q_{n k}^{\mathrm{W}}\left(\beta, \lambda_{n}\right), Q_{n}^{\mathrm{LR}}(\beta):=Q_{n k}^{\mathrm{LR}}\left(\beta, \lambda_{n}\right)$, and $\bar{\theta}_{n}(\beta):=\bar{\theta}_{n}^{k}\left(\beta, \lambda_{n}\right)$.

Proof of Theorem 4.1. We first consider the Wald estimator. We have

$$
n\left[Q_{n}^{\mathrm{W}}\left(\beta_{n}\right)-Q_{n}^{\mathrm{W}}\left(\beta_{0}\right)\right]=2 n^{1 / 2}\left[\bar{\theta}_{n}^{k}\left(\beta_{0}\right)-\hat{\theta}_{n}\right]^{\top} W_{n} \Delta_{n}^{k}\left(\beta_{n}\right)+\Delta_{n}^{k}\left(\beta_{n}\right)^{\top} W_{n} \Delta_{n}^{k}\left(\beta_{n}\right) .
$$

For Z_{n} as defined in (D.1), we see that by Proposition D.1(ii) and R5

$$
\begin{equation*}
n^{1 / 2}\left[\bar{\theta}_{n}^{k}\left(\beta_{0}\right)-\hat{\theta}\right]=Z_{n}+n^{1 / 2}\left[\theta^{k}\left(\beta_{0}, \lambda_{n}\right)-\theta_{0}\right]=Z_{n}+o_{p}(1) \tag{D.2}
\end{equation*}
$$

whence by Proposition D.1(iii),

$$
\begin{equation*}
n\left[Q_{n}^{\mathrm{W}}\left(\beta_{n}\right)-Q_{n}^{\mathrm{W}}\left(\beta_{0}\right)\right]=2 Z_{n}^{\top} W G \delta_{n}+\delta_{n}^{\top} G^{\top} W G \delta_{n}+o_{p}\left(1+\left\|\delta_{n}\right\|+\left\|\delta_{n}\right\|^{2}\right) \tag{D.3}
\end{equation*}
$$

Now consider the LR estimator. Twice continuous differentiability of the likelihood yields

$$
\begin{aligned}
n\left[Q_{n}^{\mathrm{LR}}(\beta)-Q_{n}^{\mathrm{LR}}\left(\beta_{0}\right)\right]= & -n\left[\mathcal{L}_{n}\left(\bar{\theta}_{n}^{k}\left(\beta_{n}\right)\right)-\mathcal{L}_{n}\left(\bar{\theta}_{n}^{k}\left(\beta_{0}\right)\right)\right] \\
= & -n^{1 / 2} \dot{\mathcal{L}}_{n}\left(\bar{\theta}_{n}^{k}\left(\beta_{0}\right)\right)^{\top} \Delta_{n}^{k}\left(\beta_{n}\right)-\frac{1}{2} \Delta_{n}^{k}\left(\beta_{n}\right)^{\top} \ddot{\mathcal{L}}_{n}\left(\bar{\theta}_{n}^{k}\left(\beta_{0}\right)\right) \Delta_{n}^{k}\left(\beta_{n}\right) \\
& \quad+o_{p}\left(\left\|\Delta_{n}^{k}\left(\beta_{n}\right)\right\|^{2}\right)
\end{aligned}
$$

where by Proposition D.1(ii) and н3,

$$
\begin{align*}
n^{1 / 2} \dot{\mathcal{L}}_{n}\left[\bar{\theta}_{n}^{k}\left(\beta_{0}\right)\right] & =n^{1 / 2} \dot{\mathcal{L}}_{n}\left(\theta_{0}\right)+\ddot{\mathcal{L}}_{n}\left(\theta_{0}\right) n^{1 / 2}\left[\bar{\theta}_{n}^{k}\left(\beta_{0}\right)-\theta_{0}\right]+o_{p}(1) \\
& =H\left[Z_{n}+n^{1 / 2}\left(\theta^{k}\left(\beta_{0}, \lambda_{n}\right)-\theta_{0}\right)\right] \\
& =H Z_{n}+o_{p}(1) \tag{D.4}
\end{align*}
$$

for Z_{n} as in (D.1). Thus by Proposition D.1(iii),

$$
\begin{equation*}
n\left[Q_{n}^{\mathrm{LR}}\left(\beta_{n}\right)-Q_{n}^{\mathrm{LR}}\left(\beta_{n}\right)\right]=-Z_{n}^{\boldsymbol{\top}} H G \delta_{n}-\frac{1}{2} \delta_{n}^{\boldsymbol{\top}} G^{\boldsymbol{\top}} H G \delta_{n}+o_{p}\left(1+\left\|\delta_{n}\right\|+\left\|\delta_{n}\right\|^{2}\right) \tag{D.5}
\end{equation*}
$$

Consistency of $\hat{\beta}_{n k}^{e}$ follows from parts (i) and (ii) of Proposition D. 3 and Corollary 3.2.3 in van der Vaart and Wellner (1996). Thus by applying Theorem 3.2.16 in van der Vaart and Wellner (1996) - or more precisely, the arguments following their (3.2.17) - to (D.3) and (D.5), we have

$$
\begin{equation*}
n^{1 / 2}\left(\hat{\beta}_{n k}^{e}-\beta_{0}\right)=-\left(G^{\boldsymbol{\top}} U_{e} G\right)^{-1} G^{\boldsymbol{\top}} U_{e} Z_{n}+o_{p}(1) \tag{D.6}
\end{equation*}
$$

for U_{e} as in (4.7); the result now follows by Proposition D.2.
Proof of Theorem 4.2. We first note that, in consequence of н3 and Theorem 4.1, $\hat{\beta}_{n k}^{e} \xrightarrow{p} \beta_{0}$, $\hat{\theta}_{n} \xrightarrow{p} \theta_{0}$, and $\hat{\theta}_{n}^{m}:=\hat{\theta}_{n}^{m}\left(\hat{\beta}_{n k}^{e}, \lambda_{n}\right) \xrightarrow{p} \theta_{0}$. Part (i) then follows from R2, H2, and Lemma 2.4 in Newey and McFadden (1994). Defining $\dot{\ell_{i}^{m}}\left(\theta_{0}\right):=\dot{\ell}_{i}^{m}\left(\beta_{0}, 0 ; \theta_{0}\right)$ for $m \in\{1, \ldots, M\}$ and

$$
\varsigma_{i}^{\top}:=\left[\begin{array}{llll}
\dot{\ell}_{i}^{0}\left(\theta_{0}\right)^{\top} & \dot{\ell}_{i}^{1}\left(\beta_{0}, 0 ; \theta_{0}\right)^{\top} & \cdots & \dot{\ell}_{i}^{M}\left(\beta_{0}, 0 ; \theta_{0}\right)^{\top}
\end{array}\right]
$$

н2 and нз further imply that

$$
A^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} s_{n i} s_{n i}^{\top}\right) A \xrightarrow{p} A^{\top}\left(\mathbb{E} \varsigma_{i} \varsigma_{i}^{\top}\right) A=A^{\top}\left[\begin{array}{cccc}
\Sigma & \mathrm{R} & \cdots & \mathrm{R} \\
\mathrm{R} & \Sigma & \cdots & \mathrm{R} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{R} & \mathrm{R} & \cdots & \Sigma
\end{array}\right] A=V .
$$

Part (iii) is an immediate consequence of Proposition D.4(i).
Proof of Theorem 4.3. For each $r \in\{\mathrm{GN}, \mathrm{QN}, \mathrm{TR}\}$, suppose that there exists a $\mathrm{B}_{0} \subseteq \mathrm{~B}$ such that $U=Q_{n}^{e}(\beta):=Q_{n k}^{e}\left(\beta, \lambda_{n}\right)$ satisfies the corresponding part of Proposition D.6, w.p.a.1. Then

$$
\begin{equation*}
\mathbb{P}\left\{\bar{\beta}_{n k}^{e}\left(\beta^{(0)}, r\right) \in R_{n k}^{e} \cap \mathrm{~B}_{0}, \forall \beta^{(0)} \in \mathrm{B}_{0}\right\} \xrightarrow{p} 1 \tag{D.7}
\end{equation*}
$$

for $r \in\{\mathrm{GN}, \mathrm{QN}\}$, and also for $r=\mathrm{TR}$ with $S_{n k}^{e}$ in place of $R_{n k}^{e}$. Further, $R^{e} \cap \mathrm{~B}_{0}=\left\{\beta_{0}\right\}$ under O-GN and O-QN, while $S^{e} \cap B_{0}=\left\{\beta_{0}\right\}$ under O-TR.

Now let $\tilde{\beta}_{n}^{(0)}$ be a random sequence in B_{0}. When $r \in\{\mathrm{GN}, \mathrm{QN}\}$, it follows from (D.7) that $\bar{\beta}_{n k}^{e}:=\bar{\beta}_{n k}^{e}\left(\tilde{\beta}_{n}^{(0)}, r\right) \in R_{n k}^{e} \in \mathrm{~B}_{0}$ w.p.a.1, and so by Proposition D.5(i), $n^{1 / 2}\left(\bar{\beta}_{n k}^{e}-\hat{\beta}_{n k}^{e}\right)=o_{p}(1)$. When $r=\mathrm{TR}$, the result follows analogously from Proposition D.5(ii).

It thus remains to verify that the requirements of Proposition D. 6 hold w.p.a.1. When $r=\mathrm{GN}$, it follows from Proposition D.4(i), the continuity of $\sigma_{\min }(\cdot)$ and O-GN that

$$
0<\inf _{\beta \in \mathrm{B}_{0}} \sigma_{\min }[G(\beta)]=\inf _{\beta \in \mathrm{B}_{0}} \sigma_{\min }\left[G_{n}(\beta)\right]+o_{p}(1),
$$

whence $\inf _{\beta \in \mathrm{B}_{0}} \sigma_{\min }\left[G_{n}(\beta)\right]>0$ w.p.a.1. When $r=\mathrm{QN}$, it follows from Proposition D.4(iii) and o-QN that

$$
0<\inf _{\beta \in \mathrm{B}_{0}} \varrho_{\min }\left[\partial_{\beta}^{2} Q^{e}(\beta)\right]=\inf _{\beta \in \mathrm{B}_{0}} \varrho_{\min }\left[\partial_{\beta}^{2} Q_{n}^{e}(\beta)\right]+o_{p}(1)
$$

whence Q_{n}^{e} is strictly convex on B_{0} w.p.a.1. When $r=\mathrm{TR}$, there are no additional conditions to verify.

D. 3 Proofs of Propositions D.1-D. 6

Proof of Proposition D.1. Part (i) follows by H 5 and the continuous mapping theorem. Part (ii) is immediate from (3.10). For part (iii), we note that for $\beta_{n}=\beta_{0}+n^{1 / 2} \delta_{n}$ with $\delta_{n}=o_{p}\left(n^{1 / 2}\right)$ as above,

$$
\begin{aligned}
\Delta_{n}^{k}\left(\beta_{n}\right)=n^{1 / 2}\left[\bar{\theta}_{n}^{k}\left(\beta_{n}, \lambda_{n}\right)-\right. & \left.\theta^{k}\left(\beta_{n}, \lambda_{n}\right)\right] \\
& -n^{1 / 2}\left[\bar{\theta}_{n}^{k}\left(\beta_{0}, \lambda_{n}\right)-\theta^{k}\left(\beta_{0}, \lambda_{n}\right)\right]+n^{1 / 2}\left[\theta^{k}\left(\beta_{n}, \lambda_{n}\right)-\theta^{k}\left(\beta_{0}, \lambda_{n}\right)\right] .
\end{aligned}
$$

Since $\bar{\theta}_{n}^{k}$ is a linear combination of the $\hat{\theta}_{n}^{m}$'s, it is clear from H3 and H4 that the first two terms converge jointly in distribution to identical limits (since $\beta_{n} \xrightarrow{p} \beta_{0}$). For the final term, continuous differentiability of θ^{k} (R3 above) entails that

$$
\begin{aligned}
n^{1 / 2}\left[\theta^{k}\left(\beta_{n}, \lambda_{n}\right)-\theta^{k}\left(\beta_{0}, \lambda_{n}\right)\right] & =\left[\partial_{\beta} \theta^{k}\left(\beta_{0}, \lambda_{n}\right)\right]^{\top}\left(\beta_{n}-\beta_{0}\right)+o_{p}\left(\left\|\beta_{n}-\beta_{0}\right\|\right) \\
& =G \delta_{n}+o_{p}\left(1+\left\|\delta_{n}\right\|\right) .
\end{aligned}
$$

Proof of Proposition D.2. Note first that

$$
\begin{aligned}
& n^{1 / 2}\left[\bar{\theta}_{n}^{k}\left(\beta_{0}, \lambda_{n}\right)-\theta^{k}\left(\beta_{0}, \lambda_{n}\right)\right]=\sum_{r=0}^{k} \gamma_{r k} \cdot n^{1 / 2}\left[\bar{\theta}_{n}\left(\beta_{0}, \delta^{r} \lambda_{n}\right)-\theta\left(\beta_{0}, \delta^{r} \lambda_{n}\right)\right] \\
&=-\frac{1}{M} \sum_{m=1}^{M} \sum_{r=0}^{k} \gamma_{r k} H^{-1} \phi_{n}^{m}+o_{p}(1) \rightsquigarrow-\frac{1}{M} \sum_{m=1}^{M} H^{-1} \phi^{m},
\end{aligned}
$$

by (3.10), (3.11), н3, н4 and $\sum_{r=0}^{k} \gamma_{r k}=1$. Ву нз and н4, this holds jointly with

$$
n^{1 / 2}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightsquigarrow-H^{-1} \phi^{0} .
$$

The limiting variance of Z_{n} is thus equal to

$$
\operatorname{var}\left[-H^{-1} \phi^{0}+\frac{1}{M} \sum_{m=1}^{M} H^{-1} \phi^{m}\right]=H^{-1} \operatorname{var}\left[-\phi^{0}+\frac{1}{M} \sum_{m=1}^{M} \phi^{m}\right] H^{-1}=H^{-1} V H^{-1}
$$

where the final equality follows from H4 and straightforward calculations.
Proof of Proposition D.3. We first prove part (i). For the Wald estimator, this is immediate from Proposition D.1(i). For the LR estimator, it follows from Proposition D.1(i), H2 and the continuous mapping theorem (arguing as on pp. 144f. of Billingsley, 1968), that

$$
Q_{n k}^{\mathrm{LR}}(\beta)=\left(\mathcal{L}_{n} \circ \bar{\theta}_{n}^{k}\right)\left(\beta, \lambda_{n}\right) \xrightarrow{p}\left(\mathcal{L} \circ \theta^{k}\right)(\beta, 0)=Q^{\mathrm{LR}}(\beta),
$$

uniformly on B.
For part (ii), we note that $\beta \mapsto \theta^{k}(\beta, 0)$ is continuous by R3, while the continuity of \mathcal{L} is implied by H 2 , since \mathcal{L}_{n} is continuous. Thus Q^{e} is continuous for $e \in\{\mathrm{~W}, \mathrm{LR}\}$, and by R4 is uniquely minimized at β_{0}. Hence $\beta \mapsto Q^{e}(\beta)$ has a well-separated minimum, which by R1 is interior to B.

Proof of Proposition D.4. Part (ii) is immediate from H5, (3.11) and the continuous mapping theorem; it further implies part (i). For part (iii), recall $\dot{Q}_{n}^{e}(\beta)=\partial_{\beta} Q_{n}^{e}(\beta)$, and $G_{n}(\beta)=$ $\left[\partial_{\beta} \bar{\theta}_{n}^{k}(\beta)\right]^{\top}$. Then we have

$$
\dot{Q}_{n}^{\mathrm{W}}(\beta)=G_{n}(\beta)^{\mathrm{\top}} W_{n}\left[\bar{\theta}_{n}(\beta)-\hat{\theta}_{n}\right] \quad \quad \dot{Q}_{n}^{\mathrm{LR}}(\beta)=G_{n}(\beta)^{\top} \dot{\mathcal{L}}_{n}\left[\bar{\theta}_{n}^{k}(\beta)\right] .
$$

Part (i), and similar arguments as were used are used in the proof of part (i) of Proposition D.3, yield that $\dot{Q}_{n}^{e}(\beta) \xrightarrow{p} \partial_{\beta} Q^{e}(\beta, 0)=: \dot{Q}^{e}(\beta)$ uniformly on B . The proof that the second derivatives converge uniformly is analogous.

Proof of Proposition D.5. We first prove part (i). Let $\dot{Q}_{n}^{e}(\beta):=\partial_{\beta} Q_{n}^{e}(\beta)$ and $\dot{Q}^{e}(\beta):=\partial_{\beta} Q^{e}(\beta, 0)$. By Proposition D.4(iii)

$$
\begin{equation*}
\dot{Q}^{e}\left(\tilde{\beta}_{n}\right)=\dot{Q}_{n}^{e}\left(\tilde{\beta}_{n}\right)+o_{p}(1)=o_{p}\left(1+c_{n}\right)=o_{p}(1) . \tag{D.8}
\end{equation*}
$$

Since \dot{Q}^{e} is continuous and B_{0} compact, and $\beta_{0} \in \operatorname{int} \mathrm{~B}_{0}$ is the unique element of B_{0} for which $\dot{Q}^{e}\left(\beta_{0}\right)=0$, it follows that $\tilde{\beta}_{n} \xrightarrow{p} \beta_{0}$. Hence we may write $\tilde{\beta}_{n}=\beta_{0}+n^{1 / 2} \tilde{\delta}_{n}$, with $\tilde{\delta}_{n}=o_{p}\left(n^{1 / 2}\right)$.

For the Wald criterion, we have

$$
o_{p}(1)=n^{1 / 2} \dot{Q}_{n}^{\mathrm{W}}\left(\tilde{\beta}_{n}\right)^{\top}=2\left[n^{1 / 2}\left(\bar{\theta}_{n}^{k}\left(\tilde{\beta}_{n}\right)-\hat{\theta}_{n}\right)\right]^{\top} W G_{n}\left(\tilde{\beta}_{n}\right)
$$

where, for Z_{n} as in (D.1),

$$
n^{1 / 2}\left(\bar{\theta}_{n}^{k}\left(\tilde{\beta}_{n}\right)-\hat{\theta}_{n}\right)=n^{1 / 2}\left(\bar{\theta}_{n}^{k}\left(\beta_{0}\right)-\hat{\theta}_{n}\right)+\Delta_{n}^{k}\left(\tilde{\beta}_{n}\right)=Z_{n}+G \tilde{\delta}_{n}+o_{p}\left(1+\left\|\tilde{\delta}_{n}\right\|\right)
$$

by (D.2), R5, and parts (ii) and (iii) of Proposition D.1. Hence, using Proposition D.4(i),

$$
\begin{equation*}
o_{p}(1)=2\left[\tilde{\delta}_{n}^{\top} G^{\top} W G+Z_{n}^{\top} W G\right]+o_{p}\left(1+\left\|\tilde{\delta}_{n}\right\|\right) \tag{D.9}
\end{equation*}
$$

Similarly, for the LR criterion,

$$
o_{p}(1)=n^{1 / 2} \partial_{\beta} Q_{n}^{\mathrm{LR}}\left(\tilde{\beta}_{n}\right)^{\top}=n^{1 / 2} \dot{\mathcal{L}}_{n}\left[\bar{\theta}_{n}^{k}\left(\tilde{\beta}_{n}\right)\right]^{\top} G_{n}\left(\tilde{\beta}_{n}\right)
$$

where by the twice continuous differentiability of the likelihood, Proposition D.1(iii) and (D.4),

$$
\begin{aligned}
n^{1 / 2} \dot{\mathcal{L}}_{n}\left[\bar{\theta}_{n}^{k}\left(\tilde{\beta}_{n}\right)\right] & =n^{1 / 2} \dot{\mathcal{L}}_{n}\left[\bar{\theta}_{n}^{k}\left(\beta_{0}\right)\right]+\ddot{\mathcal{L}}_{n}\left(\bar{\theta}_{n}^{k}\left(\beta_{0}\right)\right) \Delta_{n}^{k}\left(\tilde{\beta}_{n}\right)+o_{p}\left(\left\|\Delta_{n}^{k}\left(\tilde{\beta}_{n}\right)\right\|\right) \\
& =H Z_{n}+H G \tilde{\delta}_{n}+o_{p}\left(1+\left\|\tilde{\delta}_{n}\right\|\right) .
\end{aligned}
$$

Thus by Proposition D.4(i),

$$
\begin{equation*}
o_{p}(1)=\tilde{\delta}_{n}^{\top} G^{\top} H G+Z_{n}^{\top} H G+o_{p}\left(1+\left\|\tilde{\delta}_{n}\right\|\right) . \tag{D.10}
\end{equation*}
$$

Hence using (D.9) and (D.10), we see that for U_{e} as in (4.7),

$$
\begin{equation*}
n^{1 / 2}\left(\tilde{\beta}_{n k}^{e}-\beta_{0}\right)=-\left(G^{\boldsymbol{\top}} U_{e} G\right)^{-1} G^{\boldsymbol{\top}} U_{e} Z_{n}+o_{p}(1)=n^{1 / 2}\left(\hat{\beta}_{n k}^{e}-\beta_{0}\right)+o_{p}(1) \tag{D.11}
\end{equation*}
$$

for $e \in\{\mathrm{~W}, \mathrm{LR}\}$. The final equality follows from Theorem 4.1: or more precisely, from (D.6) in the proof of Theorem 4.1.

We now turn to part (ii). Let $\ddot{Q}_{n}^{e}(\beta):=\partial_{\beta}^{2} Q_{n}^{e}(\beta), \ddot{Q}^{e}(\beta):=\partial_{\beta}^{2} Q^{e}(\beta, 0)$. By Proposition D.4(iii) and the continuity of the minimum eigenvalue,

$$
\varrho_{\min }\left[\ddot{Q}^{e}\left(\tilde{\beta}_{n}\right)\right]=\varrho_{\min }\left[\ddot{Q}_{n}^{e}\left(\tilde{\beta}_{n}\right)\right]+o_{p}(1) \geq-c_{n}+o_{p}(1) \rightarrow 0 .
$$

Since (D.8) also holds, and $S^{e} \cap \mathrm{~B}_{0}=\left\{\beta_{0}\right\}$, it follows that $\tilde{\beta}_{n} \xrightarrow{p} \beta_{0}$. Since $\tilde{\beta}_{n} \in S_{n k}^{e} \subseteq R_{n k}^{e}$ w.p.a.1, (D.11) follows immediately from the arguments given in the proof of part (i).

Proof of Proposition D.6. For $r=$ GN, the result follows by Theorem 10.1 in Nocedal and Wright (2006); for $r=$ QN, by their Theorem 6.5; for $r=$ TR, by Theorem 4.7 in Moré and Sorensen (1983).

E Sufficiency of the low-level assumptions

We shall henceforth maintain both Assumptions L and R, and address the question of whether these are sufficient for Assumption H; that is, we shall prove Proposition 4.1.

Recall that, as per L9, the auxiliary model is the Gaussian SUR displayed in (B.1) above. For simplicity, we shall consider only the case where Σ_{ξ} is unrestricted, but our arguments extend straightforwardly to the case where Σ_{ξ} is block diagonal (as would typically be imposed when $T>1$). Recall that θ collects the elements of α and Σ_{ξ}^{-1}. Fix an $m \in\{0,1, \ldots M\}$, and define

$$
\xi_{r i}(\alpha):=y_{r}\left(z_{i} ; \beta, \lambda\right)-\alpha_{x r}^{\top} \Pi_{x r} x\left(z_{i}\right)-\alpha_{y r}^{\top} \Pi_{y r} y\left(z_{i} ; \beta, \lambda\right),
$$

temporarily suppressing the dependence of y (and hence $\xi_{r i}$) on m. Collecting $\xi_{i}:=\left(\xi_{1 i}, \ldots, \xi_{d_{y} i}\right)^{\top}$, the average \log-likelihood of the auxiliary model can be written as

$$
\mathcal{L}_{n}(y, x ; \theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, x_{i} ; \theta\right)=-\frac{1}{2} \log 2 \pi-\frac{1}{2} \log \operatorname{det} \Sigma_{\xi}-\frac{1}{2} \operatorname{tr}\left[\Sigma_{\xi}^{-1} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}(\alpha) \xi_{i}(\alpha)^{\mathrm{\top}}\right] .
$$

Deduce that there are functions L and l, which are three times continuously differentiable in both arguments (at least on int Θ), such that

$$
\begin{equation*}
\mathcal{L}_{n}(y, x ; \theta)=L\left(T_{n} ; \theta\right) \quad \ell\left(y_{i}, x_{i} ; \theta\right)=l\left(t_{i} ; \theta\right) \tag{E.1}
\end{equation*}
$$

where

$$
t_{i}^{m}(\beta, \lambda)=\left[\begin{array}{c}
y\left(z_{i}^{m} ; \beta, \lambda\right) \\
x\left(z_{i}^{m}\right)
\end{array}\right]
$$

and $T_{n}^{m}:=\operatorname{vech}\left(\mathcal{T}_{n}^{m}\right)$, for

$$
\begin{equation*}
\mathcal{T}_{n}^{m}(\beta, \lambda):=\frac{1}{n} \sum_{i=1}^{n} t_{i}^{m}(\beta, \lambda) t_{i}^{m}(\beta, \lambda)^{\top} . \tag{E.2}
\end{equation*}
$$

Further, direct calculation gives

$$
\begin{equation*}
\partial_{\alpha_{x r}} \ell_{i}(\theta)=\sum_{s=1}^{d_{y}} \sigma^{r s} \xi_{s i}(\alpha) \Pi_{x r} x\left(z_{i}\right) \quad \partial_{\alpha_{y r}} \ell_{i}(\theta)=\sum_{s=1}^{d_{y}} \sigma^{r s} \xi_{s i}(\alpha) \Pi_{y r} y\left(z_{i} ; \beta, \lambda\right) \tag{E.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\sigma^{r s}} \ell_{i}(\theta)=\frac{1}{2} \sigma_{r s}-\frac{1}{2} \xi_{r i}(\alpha) \xi_{s i}(\alpha) . \tag{E.4}
\end{equation*}
$$

Since the elements of the score vector $\dot{\ell}_{i}(\theta)=\partial_{\theta} \ell_{i}(\theta)$ necessarily take one of the forms displayed in (E.3) or (E.4), we may conclude that, for any compact subset $A \subset \Theta$, there exists a C_{A} such that

$$
\begin{equation*}
\mathbb{E} \sup _{\theta \in A}\left\|\dot{\ell}_{i}(\theta)\right\|^{2} \leq C_{A} \mathbb{E}\left\|z_{i}\right\|^{4}<\infty \tag{E.5}
\end{equation*}
$$

with the second inequality following from L7.
Regarding the maximum likelihood estimator (MLE), we note that the concentrated average
log-likelihood is given by

$$
\mathcal{L}_{n}(y, x ; \alpha)=-\frac{d_{y}}{2}(\log 2 \pi+1)-\frac{1}{2} \log \operatorname{det}\left[\frac{1}{n} \sum_{i=1}^{n} \xi_{i}(\alpha) \xi_{i}(\alpha)^{\top}\right]=L_{c}\left(T_{n} ; \alpha\right)
$$

which is three times continuously differentiable in α and T_{n}, so long as \mathcal{T}_{n} is non-singular. By the implicit function theorem, it follows that $\hat{\alpha}_{n}$ may be regarded as a smooth function of T_{n}. Noting the usual formula for the ML estimates of Σ_{ξ}, this holds also for the components of θ referring to Σ_{ξ}^{-1}, whence

$$
\begin{equation*}
\hat{\theta}_{n}^{m}(\beta, \lambda)=h\left[T_{n}^{m}(\beta, \lambda)\right] \tag{E.6}
\end{equation*}
$$

for some h that is twice continuously differentiable on the set where \mathcal{T}_{n}^{m} has full rank. Under L8, this occurs uniformly on $\mathrm{B} \times \Lambda$ w.p.a.1., and so to avoid tiresome circumlocution, we shall simply treat h as if it were everywhere twice continuously differentiable throughout the sequel. Letting $T(\beta, \lambda):=\mathbb{E} T_{n}^{0}(\beta, \lambda)$, we note that the population binding function is given by

$$
\begin{equation*}
\theta(\beta, \lambda)=h[T(\beta, \lambda)] . \tag{E.7}
\end{equation*}
$$

Define $\varphi_{n}^{m}(\beta, \lambda):=n^{1 / 2}\left[T_{n}^{m}(\beta, \lambda)-T(\beta, \lambda)\right]$, and let $\left[\varphi^{m}(\beta, \lambda)\right]_{m=0}^{M}$ denote a vector-valued continuous Gaussian process on $\mathrm{B} \times \Lambda$ with covariance kernel

$$
\operatorname{cov}\left(\varphi^{m_{1}}\left(\beta_{1}, \lambda_{1}\right), \varphi^{m_{2}}\left(\beta_{2}, \lambda_{2}\right)\right)=\operatorname{cov}\left(T_{n}^{m_{1}}\left(\beta_{1}, \lambda_{1}\right), T_{n}^{m_{2}}\left(\beta_{2}, \lambda_{2}\right)\right) .
$$

Note that L7, in particular the requirement that $\mathbb{E}\left\|z_{i}\right\|^{4}<\infty$, ensures that this covariance exists and is finite.

Lemma E.1.

(i) $\varphi_{n}^{m}(\beta, \lambda) \rightsquigarrow \varphi^{m}(\beta, \lambda)$ in $b^{\infty}(\mathrm{B} \times \Lambda)$, jointly for $m \in\{0, \ldots, M\}$; and
(ii) if (4.3) holds for $l^{\prime}=l \in\{1,2\}$, then

$$
\begin{equation*}
\sup _{\beta \in \mathrm{B}}\left\|\partial_{\beta}^{l} T_{n}^{m}\left(\beta, \lambda_{n}\right)-\partial_{\beta}^{l} T(\beta, 0)\right\|=o_{p}(1) \tag{E.8}
\end{equation*}
$$

By an application of the delta method, we thus have
Corollary E.1. For $\dot{h}(\beta, \lambda):=\partial_{\beta} h[T(\beta, \lambda)]$,

$$
\begin{equation*}
\psi_{n}^{m}(\beta, \lambda):=n^{1 / 2}\left[\hat{\theta}_{n}^{m}(\beta, \lambda)-\theta(\beta, \lambda)\right] \rightsquigarrow \dot{h}(\beta, \lambda) \varphi^{m}(\beta, \lambda)=: \psi^{m}(\beta, \lambda) \tag{E.9}
\end{equation*}
$$

in $b^{\infty}(\mathrm{B} \times \Lambda)$, jointly for $m \in\{0, \ldots, M\}$.
The proof of Lemma E. 1 appears in Appendix E.1.
Proof of Proposition 4.1. H1 follows from the twice continuous differentiability of L in (E.1). The first part of H 2 is an immediate consequence of Lemma E.1(i) and the smoothness of L; the second part is implied by (E.5) and Lemma 2.4 in Newey and McFadden (1994).

By Corollary E.1, we have for any $\beta_{n}=\beta_{0}+o_{p}(1)$ and $\lambda_{n}=o_{p}(1)$ that

$$
\begin{aligned}
n^{1 / 2}\left[\hat{\theta}_{n}^{m}\left(\beta_{n}, \lambda_{n}\right)-\theta\left(\beta_{n}, \lambda_{n}\right)\right] & =n^{1 / 2}\left[\hat{\theta}_{n}^{m}\left(\beta_{0}, 0\right)-\theta\left(\beta_{0}, 0\right)\right]+o_{p}(1) \\
& =-H^{-1} \frac{1}{n^{1 / 2}} \sum_{i=1}^{n} \dot{\ell}_{i}^{m}\left(\beta_{0}, 0 ; \theta_{0}\right)+o_{p}(1)
\end{aligned}
$$

where for $m \in\{0,1, \ldots, M\}$; the final equality follows from the consistency of $\hat{\theta}_{n}^{m}\left(\beta_{0}, 0\right)$ (as implied by Corollary E.1) and the arguments used to prove Theorem 3.1 in Newey and McFadden (1994). By definition, $\phi_{n}^{m}:=n^{-1 / 2} \sum_{i=1}^{n} \dot{\ell}_{i}^{m}\left(\beta_{0}, 0 ; \theta_{0}\right)$, and thus H3 holds. H4 follows by the central limit theorem, in view of L1 and (E.5). Finally, H5 follows from (E.6), (E.7), Lemma E.1(ii) and the chain rule.

E. 1 Proof of Lemma E. 1

For the purposes of the proofs undertaken in this section, we may suppose without loss of generality that $\tilde{D}=I_{d_{y}}$ in L3, $\gamma(\beta)=\beta$ in L4, and $\|K\|_{\infty} \leq 1$. Recalling (B.3) above, we have

$$
\begin{equation*}
y_{r}(\beta, \lambda)=\omega_{r}(\beta) \cdot \prod_{s \in \mathcal{S}_{r}} K_{\lambda}\left[\nu_{s}(\beta)\right]=: \omega_{r}(\beta) \cdot \mathbb{K}\left(\mathcal{S}_{r} ; \beta, \lambda\right) \tag{E.10}
\end{equation*}
$$

Let \dot{K} and \ddot{K} respectively denote the first and second derivatives of K. For future reference, we here note that

$$
\begin{align*}
\partial_{\beta} y_{r}(\beta, \lambda) & =z_{w r} \cdot \mathbb{K}\left(\mathcal{S}_{r} ; \beta, \lambda\right)+\lambda^{-1} w_{r}(\beta) \sum_{s \in \mathcal{S}_{r}} z_{v s} \cdot \mathbb{K}_{s}\left(\mathcal{S}_{r} ; \beta, \lambda\right) \tag{E.11}\\
& =: D_{r 1}(\beta, \lambda)+\lambda^{-1} D_{r 2}(\beta, \lambda)
\end{align*}
$$

where $z_{v r}:=\Pi_{v r}^{\top} z, z_{w r}:=\Pi_{w r}^{\top} z$ and $\mathbb{K}_{s}(\mathcal{S} ; \beta, \lambda):=\dot{K}_{\lambda}\left[v_{s}(\beta)\right] \cdot \mathbb{K}(\mathcal{S} \backslash\{s\} ; \beta, \lambda)$; and

$$
\begin{align*}
\partial_{\beta}^{2} y_{r}(\beta, \lambda)= & \lambda^{-1} \sum_{s \in \mathcal{S}_{r}}\left[z_{w r} z_{v s}^{\top}+z_{v s} z_{w r}^{\top}\right] \cdot \mathbb{K}_{s}\left(\mathcal{S}_{r} ; \beta, \lambda\right) \tag{E.12}\\
& \quad+\lambda^{-2} w_{r}(\beta) \sum_{s \in \mathcal{S}_{r}} \sum_{t \in \mathcal{S}_{r}} z_{v s} z_{v t}^{\top} \cdot \mathbb{K}_{s t}\left(\mathcal{S}_{r} ; \beta, \lambda\right) \\
= & \lambda^{-1} H_{r 1}(\beta, \lambda)+\lambda^{-2} H_{r 2}(\beta, \lambda)
\end{align*}
$$

for

$$
\mathbb{K}_{s t}(\mathcal{S} ; \beta, \lambda):= \begin{cases}\ddot{K}_{\lambda}\left[v_{s}(\beta)\right] \cdot \mathbb{K}(\mathcal{S} \backslash\{s\} ; \beta, \lambda) & \text { if } s=t \\ \dot{K}_{\lambda}\left[v_{s}(\beta)\right] \cdot \dot{K}_{\lambda}\left[v_{t}(\beta)\right] \cdot \mathbb{K}(\mathcal{S} \backslash\{s, t\} ; \beta, \lambda) & \text { if } s \neq t\end{cases}
$$

E.1.1 Proof of part (ii)

In view of (E.2), the scalar elements of $T_{n}(\beta, \lambda)$ that depend on (β, λ) take either of the following forms:

$$
\begin{equation*}
\tau_{n 1}(\beta, \lambda):=\mathbb{E}_{n}\left[y_{r}(\beta, \lambda) y_{s}(\beta, \lambda)\right] \quad \tau_{n 2}(\beta, \lambda):=\mathbb{E}_{n}\left[y_{r}(\beta, \lambda) x_{t}\right] \tag{E.13}
\end{equation*}
$$

for some $r, s \in\left\{1, \ldots, d_{y}\right\}$, or $t \in\left\{1, \ldots, d_{x}\right\}$, where $\mathbb{E}_{n} f(\beta, \lambda):=\frac{1}{n} \sum_{i=1}^{n} f\left(z_{i} ; \beta, \lambda\right)$. (Throughout the following, all statements involving r, s and t should be interpreted as holding for all possible values of these indices.) For $k \in\{1,2\}$ and $l \in\{0,1,2\}$, define $\tau_{k}(\beta, \lambda):=\mathbb{E} \tau_{n k}(\beta, \lambda)-$ a typical scalar element of $T(\beta, \lambda)-$ and $\tau_{k}^{[l]}(\beta, \lambda):=\mathbb{E} \partial_{\beta}^{l} \tau_{n k}(\beta, \lambda)$. Thus part (ii) of Lemma E. 1 will follow once we have shown that

$$
\begin{equation*}
\partial_{\beta}^{l} \tau_{n k}\left(\beta, \lambda_{n}\right)=\tau_{k}^{[l]}\left(\beta, \lambda_{n}\right)+o_{p}(1)=\partial_{\beta}^{l} \tau_{k}(\beta, 0)+o_{p}(1) \tag{E.14}
\end{equation*}
$$

uniformly in $\beta \in \mathrm{B}$. The second equality in (E.14) is implied by
Lemma E.2. $\tau_{k}^{[l]}\left(\beta, \lambda_{n}\right) \xrightarrow{p} \partial_{\beta}^{l} \tau_{k}(\beta, 0)$, uniformly on B , for $k \in\{1,2\}$ and $l \in\{0,1,2\}$.
The proof appears at the end of this section. We turn next to the first equality in (E.14). We require the following definitions. A function $F: \mathcal{Z} \mapsto \mathbb{R}$ is an envelope for the class \mathcal{F} if $\sup _{f \in \mathcal{F}}|f(z)| \leq F(z)$. For a probability measure \mathbb{Q} and a $p \in(1, \infty)$, let $\|f\|_{p, \mathbb{Q}}:=$ $\left(\mathbb{E}_{\mathbb{Q}}\left|f\left(z_{i}\right)\right|^{p}\right)^{1 / p} . \mathcal{F}$ is Euclidean for the envelope F if

$$
\sup _{\mathbb{Q}} N\left(\epsilon\|F\|_{1, \mathbb{Q}}, \mathcal{F}, L_{1, \mathbb{Q}}\right) \leq C_{1} \epsilon^{-C_{2}}
$$

for some C_{1} and C_{2} (depending on \mathcal{F}), where $N\left(\epsilon, \mathcal{F}, L_{1, \mathbb{Q}}\right)$ denotes the minimum number of $L_{1, \mathbb{Q}}$-balls of diameter ϵ needed to cover \mathcal{F}. For a parametrized family of functions $g(\beta, \lambda)=$ $g(z ; \beta, \lambda): \mathscr{Z} \mapsto \mathbb{R}^{d_{1} \times d_{2}}$, let $\mathcal{F}(g):=\{g(\beta, \lambda) \mid(\beta, \lambda) \in \mathrm{B} \times \Lambda\}$. Since B is compact, we may suppose without loss of generality that $\mathrm{B} \subseteq\left\{\beta \in \mathbb{R}^{d_{\beta}} \mid\|\beta\| \leq 1\right\}$, whence recalling (B.2) and (B.4) above,

$$
\left|w_{r}(z ; \beta)\right| \leq W_{r} \leq \begin{cases}\|z\| & \text { if } r \in\left\{1, \ldots d_{w}\right\} \\ 1 & \text { if } r \in\left\{d_{w}+1, \ldots d_{y}\right\}\end{cases}
$$

Thus by Lemma 22 in Nolan and Pollard (1987)
E1 for $\mathbb{L} \in\left\{\mathbb{K}, \mathbb{K}_{s}, \mathbb{K}_{s t}\right\}, s, t \in\left\{1, \ldots, d_{y}\right\}$ and $\mathcal{S} \subseteq\left\{1, \ldots, d_{v}\right\}$, the class

$$
\mathcal{F}(\mathbb{L}, \mathcal{S}):=\{\mathbb{L}(\mathcal{S} ; \beta, \lambda) \mid(\beta, \lambda) \in \mathrm{B} \times \Lambda\}
$$

is Euclidean with constant envelope; and
E2 for $r \in\left\{1, \ldots, d_{y}\right\}, \mathcal{F}\left(w_{r}\right)$ is Euclidean for W_{r}.
It therefore follows by a slight adaptation of the proof of Theorem 9.15 in Kosorok (2008) that
E3 $\mathcal{F}\left(y_{r}\right)$ is Euclidean for W_{r};
E4 $\mathcal{F}\left(y_{r} D_{s 1}\right)$ and $\mathcal{F}\left(y_{r} D_{s 2}\right)$ are Euclidean for $W_{r} W_{s}\|z\|$
E5 $\mathcal{F}\left(x_{t} D_{s 1}\right)$ and $\mathcal{F}\left(x_{t} D_{s 2}\right)$ are Euclidean for $W_{s}\|z\|^{2}$;
E6 $\mathcal{F}\left(D_{s 1} D_{r 1}^{\top}\right), \mathcal{F}\left(D_{s 1} D_{r 2}^{\top}\right), \mathcal{F}\left(D_{s 2} D_{r 1}^{\top}\right)$ and $\mathcal{F}\left(D_{s 2} D_{r 2}^{\top}\right)$ are Euclidean for $W_{r} W_{s}\|z\|^{2} ;$
ET $\mathcal{F}\left(y_{s} H_{r 1}\right)$ and $\mathcal{F}\left(y_{s} H_{r 2}\right)$ are Euclidean for $W_{r} W_{s}\|z\|^{2}$; and

E8 $\mathcal{F}\left(x_{t} H_{r 1}\right)$ and $\mathcal{F}\left(x_{t} H_{r 2}\right)$ are Euclidean for $W_{s}\|z\|^{3}$.
Let $\mu_{n} f:=\frac{1}{n} \sum_{i=1}^{n}\left[f\left(z_{i}\right)-\mathbb{E} f\left(z_{i}\right)\right]$. Using the preceding facts, and the uniform law of large numbers given as Proposition E. 1 below, we may prove

Lemma E.3. The convergence

$$
\begin{equation*}
\sup _{\beta \in \mathrm{B}} \mu_{n}\left|\partial_{\beta}^{l}\left[y_{s}\left(\beta, \lambda_{n}\right) y_{r}\left(\beta, \lambda_{n}\right)\right]\right|+\sup _{\beta \in \mathrm{B}} \mu_{n}\left|x_{t} \partial_{\beta}^{l} y_{r}\left(\beta, \lambda_{n}\right)\right|=o_{p}(1) \tag{E.15}
\end{equation*}
$$

holds for $l=0$, and also for $l \in\{1,2\}$ if (4.3) holds with $l^{\prime}=l$.
The first equality in (E.8) now follows, and thus part (ii) of Lemma E. 1 is proved.
Proof of Lemma E.2. Suppose $l=2$; the proof when $l=1$ is analogous (and is trivial when $l=0)$. Noting that

$$
\begin{equation*}
\partial_{\beta}^{2}\left(y_{r} y_{s}\right)=y_{s} \partial_{\beta}^{2} y_{r}+\left(\partial_{\beta} y_{r}\right)\left(\partial_{\beta} y_{s}\right)^{\top}+\left(\partial_{\beta} y_{s}\right)\left(\partial_{\beta} y_{r}\right)^{\top}+y_{r} \partial_{\beta}^{2} y_{s} \tag{E.16}
\end{equation*}
$$

it follows from (E.11), (E.12), E6 and E7 that for every $\lambda \in(0,1]$,

$$
\left\|\partial_{\beta}^{2}\left(y_{r} y_{s}\right)\right\| \lesssim \lambda^{-2} W_{r} W_{s}\left(\|z\|^{2} \vee 1\right)
$$

which does not depend on β, and is integrable by L7. (Here $a \lesssim b$ denotes that $a \leq C b$ for some constant C not depending on b.) Thus by the dominated derivatives theorem, the second equality in

$$
\tau_{1}^{[2]}(\beta, \lambda)=\mathbb{E} \partial_{\beta}^{2} \tau_{n 1}(\beta, \lambda)=\partial_{\beta}^{2} \mathbb{E} \tau_{n 1}(\beta, \lambda)=\partial_{\beta}^{2} \tau_{1}(\beta, \lambda)
$$

holds for every $\lambda \in(0,1]$; the other equalities follow from the definitions of $\tau_{k}^{[l]}$ and τ_{k}. Deduce that, so long as $\lambda_{n}>0$ (as per the requirements of Proposition 4.1 above),

$$
\tau_{1}^{[2]}\left(\beta, \lambda_{n}\right)=\partial_{\beta}^{2} \tau_{1}\left(\beta, \lambda_{n}\right) \xrightarrow{p} \partial_{\beta}^{2} \tau_{1}(\beta, 0)
$$

by the uniform continuity of $\partial_{\beta}^{2} \tau_{1}$ on $\mathrm{B} \times \Lambda$. A similar reasoning - but now using E8-gives the same result for $\tau_{2}^{[2]}$.

The proof of Lemma E. 3 requires the following result. Let $\mathcal{G}_{\omega, x}$ denote the σ-field generated by $\eta_{\omega}\left(z_{i}\right)$ and $x\left(z_{i}\right)$, and let η_{ν} denote those elements of η that are not present in η_{ω}. Recall that $\eta_{\nu} \Perp \mathcal{G}_{\omega, x}$.

Lemma E.4. For every $p \in\{0,1,2\}, s, t \in\left\{1, \ldots, d_{v}\right\}, \mathcal{S} \subseteq\left\{1, \ldots, d_{v}\right\}$ and $\mathbb{L} \in\left\{\mathbb{K}_{s}, \mathbb{K}_{s t}\right\}$

$$
\begin{equation*}
\mathbb{E}\left[\left\|z_{\nu s}\right\|^{p}\left\|z_{\nu t}\right\|^{p} \mathbb{L}(\mathcal{S} ; \beta, \lambda)^{2} \mid \mathcal{G}_{\omega, x}\right] \lesssim \lambda \mathbb{E}\left[\left\|z_{\nu s}\right\|^{p}\left\|z_{\nu t}\right\|^{p} \mid \mathcal{G}_{\omega, x}\right] \tag{E.17}
\end{equation*}
$$

Proof. Note that for any $\mathbb{L} \in\left\{\mathbb{K}_{s}, \mathbb{K}_{s t}\right\}$,

$$
\mathbb{L}(\mathcal{S} ; \beta, \lambda) \lesssim L_{\lambda}\left[\nu_{s}(\beta)\right]
$$

where $L(x)=\max \{|\dot{K}(x)|,|\ddot{K}(x)|\}$. Let d denote the dimensionality of η_{ν}, and fix a $\beta \in \mathrm{B}$. By L5 and L6, there is a $k \in\{1, \ldots d\}$, possibly depending on β, and an $\epsilon>0$ which does not, such that

$$
\nu_{s}(\beta)=\nu_{s}^{*}(\beta)+\beta_{k}^{*} \eta_{\nu k}
$$

with $\left|\beta_{k}^{*}\right| \geq \epsilon$ and $\nu_{s}^{*}(\beta) \Perp \eta_{\nu k}$. Let $\mathcal{G}_{\omega, x}^{*}:=\mathcal{G}_{\omega, x} \vee \sigma\left(\left\{\eta_{\nu l}\right\}_{l \neq k}\right)$, so that $\nu_{s}^{*}(\beta)$ is $\mathcal{G}_{\omega, x}^{*}$-measurable, and let f_{k} denote the density of $\eta_{\nu k}$. Then for any $q \in\{0, \ldots, 4\}$,

$$
\begin{align*}
\mathbb{E}\left[\left|\eta_{\nu k}\right|^{q} \mathbb{L}(\mathcal{S} ; \beta, \lambda)^{2} \mid \mathcal{G}_{\omega, x}^{*}\right] & \lesssim \mathbb{E}\left[\left|\eta_{\nu k}\right|^{q} L_{\lambda}^{2}\left(\nu_{s}^{*}(\beta)+\beta_{k}^{*} \eta_{\nu k}\right) \mid \mathcal{G}_{\omega, x}^{*}\right] \\
& =\int_{\mathbb{R}}|u|^{q} L_{\lambda}^{2}\left(\nu_{s}^{*}(\beta)+\beta_{k}^{*} u\right) f_{k}(u) \mathrm{d} u \\
& \lesssim\left(\beta_{k}^{*}\right)^{-1} \lambda \int_{\mathbb{R}} L^{2}(u) \mathrm{d} u \cdot \sup _{u \in \mathbb{R}}|u|^{q} f_{k}(u) \\
& \lesssim \epsilon^{-1} \lambda, \tag{E.18}
\end{align*}
$$

since $\sup _{u \in \mathbb{R}}|u|^{q} f_{k}(u)<\infty$ under L5. Finally, we may partition $z_{\nu s}=\left(z_{\nu s}^{* \top}, \eta_{\nu k}\right)^{\top}$ and $z_{\nu t}=$ $\left(z_{\nu t}^{* \top}, \eta_{\nu k}\right)^{\top}$, with the possibility that $z_{\nu s}=z_{\nu s}^{*}$ and $z_{\nu t}=z_{\nu t}^{*}$. Then by (E.18),

$$
\mathbb{E}\left[\left\|z_{\nu s}\right\|^{p}\left\|z_{\nu t}\right\|^{p} \mathbb{L}(\mathcal{S} ; \beta, \lambda)^{2} \mid \mathcal{G}_{\omega, x}^{*}\right] \lesssim \lambda\left\|z_{\nu s}^{*}\right\|^{p}\left\|z_{\nu t}^{*}\right\|^{p} \leq \lambda\left\|z_{\nu s}\right\|^{p}\left\|z_{\nu t}\right\|^{p} .
$$

The result now follows by the law of iterated expectations.
Proof of Lemma E.3. We shall only provide the proof for first term on the left side of (E.15), when $l=2$; the proof in all other cases are analogous, requiring appeal only to Proposition E. 1 (or Theorem 2.4.3 in van der Vaart and Wellner, 1996, when $l=0$) and the appropriate parts of E3-E8.

Recalling the decomposition of $\partial_{\beta}^{2}\left(y_{r} y_{s}\right)$ given in (E.16) above, we are led to consider

$$
\begin{equation*}
\left(\partial_{\beta} y_{r}\right)\left(\partial_{\beta} y_{s}\right)^{\top}=D_{s 1} D_{r 1}^{\top}+\lambda^{-1} D_{s 2} D_{r 1}^{\top}+\lambda^{-1} D_{s 1} D_{r 2}^{\top}+\lambda^{-2} D_{s 2} D_{r 2}^{\top} \tag{E.19}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{s} \partial_{\beta}^{2} y_{r}=\lambda^{-1} y_{s} H_{r 1}+\lambda^{-2} y_{s} H_{r 2} . \tag{E.20}
\end{equation*}
$$

Note that by Lemma E.4, and L7

$$
\begin{aligned}
\mathbb{E}\left\|y_{s} H_{r 2}\right\|^{2} & \lesssim \mathbb{E}\left[\left|\omega_{s}(\beta)\right|^{2}\left|\omega_{r}(\beta)\right|^{2} \sum_{s \in \mathcal{S}_{r}} \sum_{t \in \mathcal{S}_{r}} \mathbb{E}\left[\left\|z_{v s}\right\|^{2}\left\|z_{v t}\right\|^{2}\left|\mathbb{K}_{s t}\left(\mathcal{S}_{r} ; \beta, \lambda\right)\right|^{2} \mid \mathcal{G}_{\omega, x}\right]\right] \\
& \lesssim \lambda \mathbb{E}\left[W_{s}^{2} W_{r}^{2} \sum_{s \in \mathcal{S}_{r}} \sum_{t \in \mathcal{S}_{r}} \mathbb{E}\left\|z_{v s}\right\|^{2}\left\|z_{v t}\right\|^{2}\right] \\
& \lesssim \lambda
\end{aligned}
$$

and analogously for each of $H_{r 1}, D_{s 1} D_{r 1}^{\top}, D_{s 2} D_{r 1}^{\top}, D_{s 1} D_{r 2}^{\top}$ and $D_{s 2} D_{r 2}^{\top}$. By E6 and E7, the classes formed from these parametrized functions are Euclidean, with envelopes that are p_{0}-integrable under L7 ($p_{0} \geq 2$).

Application of Proposition E. 1 to each of the terms in E6 and E7, with λ playing the role of
δ^{-1} there, thus yields the result. Negligibility of the final terms in (E.19) and (E.20) entail the most stringent conditions on the rate at which λ_{n} may shrink to zero, due to the multiplication of these by λ^{-2}.

E.1.2 Proof of part (i)

The typical scalar elements of T_{n} are as displayed in (E.13) above, i.e. they are averages of random functions of the form $\zeta_{1}(\beta, \lambda):=y_{r}(\beta, \lambda) y_{s}(\beta, \lambda)$ or $\zeta_{2}(\beta, \lambda):=x_{t} y_{r}(\beta, \lambda)$, for $r, s \in\left\{1, \ldots, d_{y}\right\}$ and $t \in\left\{1, \ldots, d_{x}\right\}$. It follows from E3 that $\mathcal{F}\left(\zeta_{1}\right)$ and $\mathcal{F}\left(\zeta_{2}\right)$ are Euclidean, with envelopes $F_{1}:=W_{r} W_{s}$ and $F_{2}:=\|z\| W_{r}$ respectively. Since both envelopes are square integrable under L7, we have

$$
\sup _{\mathbb{Q}} N\left(\epsilon\left\|F_{k}\right\|_{2, \mathbb{Q}}, \mathcal{F}\left(\zeta_{k}\right), L_{2, \mathbb{Q}}\right) \leq C_{1}^{\prime} \epsilon^{-C_{2}^{\prime}}
$$

for $k \in\{1,2\}$. Hence (E.9) follows by Theorem 2.5.2 in van der Vaart and Wellner (1996).

E. 2 A uniform-in-bandwidth law of large numbers

This section provides a uniform law of large numbers (ULLN) for certain classes of parametrized functions, broad enough to cover products involving $K_{\lambda}\left[\nu_{s}(\beta)\right]$, and such generalizations as appear in Lemma E. 4 above. Our ULLN holds uniformly in the inverse 'bandwith' parameter $\delta=\lambda^{-1}$; in this respect, it is related to some of the results proved in Einmahl and Mason (2005). However, while their arguments could be adapted to our problem, these would lead to stronger conditions on the bandwidth: in particular, p would have to be replaced by $2 p$ in Proposition E. 1 below. (On the other hand, their results yield explicit rates of uniform convergence, which are not of concern here.)

Consider the (pointwise measurable) function class

$$
\mathcal{F}_{\Delta}:=\left\{z \mapsto f_{(\gamma, \delta)}(z) \mid(\gamma, \delta) \in \Gamma \times \Delta\right\},
$$

and put $\mathcal{F}:=\mathcal{F}_{[1, \infty)}$. The functions $f_{(\gamma, \delta)}: \mathscr{Z} \rightarrow \mathbb{R}^{d}$ satisfy:
E1 $\sup _{\gamma \in \Gamma} \mathbb{E}\left\|f_{(\gamma, \delta)}\left(z_{0}\right)\right\|^{2} \lesssim \delta^{-1}$ for every $\delta>0$.
Let $F: \mathscr{Z} \rightarrow \mathbb{R}$ denote an envelope for \mathcal{F}, in the sense that

$$
\sup _{(\gamma, \delta) \in \Gamma \times[1, \infty)}\left\|f_{(\gamma, \delta)}(z)\right\| \leq F(z)
$$

for all $z \in \mathscr{Z}$. We will suppose that F may be chosen such that, additionally,
E2 $\mathbb{E}\left|F\left(z_{0}\right)\right|^{p}<\infty$; and
E3 $\sup _{\mathbb{Q}} N\left(\epsilon\|F\|_{1, \mathbb{Q}}, \mathcal{F}, L_{1, \mathbb{Q}}\right) \leq C \epsilon^{-d}$ for some $d \in(0, \infty)$.
Let $\left\{\bar{\delta}_{n}\right\}$ denote a real sequence with $\bar{\delta}_{n} \geq 1$, and $\Delta_{n}:=\left[1, \bar{\delta}_{n}\right]$.
Proposition E.1. Under E1-E3, if $n^{1-1 / p} / \bar{\delta}_{n}^{2 m-1} \log \left(\bar{\delta}_{n} \vee n\right) \rightarrow \infty$ for some $m \geq 1$, then

$$
\begin{equation*}
\sup _{(\gamma, \delta) \in \Gamma \times \Delta_{n}} \delta^{m}\left\|\mu_{n} f_{(\gamma, \delta)}\right\|=o_{p}(1) . \tag{E.21}
\end{equation*}
$$

Remark E.1. Suppose δ_{n} is an \mathcal{F}-measurable sequence for which $n^{1-1 / p} / \delta_{n}^{2 m-1} \log \left(\delta_{n} \vee n\right) \xrightarrow{p} \infty$. Then for every $\epsilon>0$, there exists a deterministic sequence $\left\{\bar{\delta}_{n}\right\}$ satisfying the requirements of Proposition E.1, and for which $\lim \sup _{n \rightarrow \infty} \mathbb{P}\left\{\delta_{n} \leq \bar{\delta}_{n}\right\}>1-\epsilon$. Deduce that

$$
\sup _{\gamma \in \Gamma} \delta_{n}^{m}\left\|\mu_{n} f_{\left(\gamma, \delta_{n}\right)}\right\|=o_{p}(1)
$$

The proof requires the following
Lemma E.5. Suppose \mathcal{F} is a (pointwise measurable) class with envelope F, satisfying
(i) $\|F\|_{\infty} \leq \tau$;
(ii) $\sup _{f \in \mathcal{F}}\|f\|_{2, \mathbb{P}} \leq \sigma$; and
(iii) $\sup _{\mathbb{Q}} N\left(\epsilon\|F\|_{1, \mathbb{Q}}, \mathcal{F}, L_{1, \mathbb{Q}}\right) \leq C \epsilon^{-d}$.

Let $\theta:=\tau^{-1 / 2} \sigma, m \in \mathbb{N}$ and $x>0$. Then there exist $C_{1}, C_{2} \in(0, \infty)$, not depending on τ, σ or x, such that

$$
\begin{equation*}
\mathbb{P}\left\{\sigma^{-2} \sup _{f \in \mathcal{F}}\left|\mu_{n} f\right|>x\right\} \leq C_{1} \exp \left[-C_{2} n \theta^{2}\left(1+x^{2}\right)+d \log \left(\theta^{-2} x^{-1}\right)\right] \tag{E.22}
\end{equation*}
$$

for all $n \geq \frac{1}{8} x^{-2} \theta^{-2}$.
Proof of Proposition E.1. We first note that, by E2,

$$
\max _{i \leq n}\left|F\left(z_{i}\right)\right|=o_{p}\left(n^{-1 / p}\right)
$$

and so, letting $f_{(\gamma, \delta)}^{n}(z):=f_{(\gamma, \delta)}(z) \mathbf{1}\left\{F(z) \leq n^{1 / p}\right\}$, we have

$$
\mathbb{P}\left\{\sup _{(\gamma, \delta) \in \Gamma \times \Delta_{n}} \delta^{m}\left|\mu_{n}\left[f_{(\gamma, \delta)}-f_{(\gamma, \delta)}^{n}\right]\right|=0\right\} \leq \mathbb{P}\left\{\max _{i \leq n}\left|F\left(z_{i}\right)\right|>n^{1 / p}\right\}=o(1)
$$

It thus suffices to show that (E.21) holds when $f_{(\gamma, \delta)}$ is replaced by $f_{(\gamma, \delta)}^{n}$. Since E1 and E3 continue to hold after this replacement, it suffices to prove (E.21) when E2 is replaced by the condition that $\|F\|_{\infty} \leq n^{1 / p}$, which shall be maintained throughout the sequel. (The dependence of f and F upon n will be suppressed for notational convenience.)

Letting $\delta_{k}:=\mathrm{e}^{k}$, define $\Delta_{n k}:=\left[\delta_{k}, \delta_{k+1} \wedge \bar{\delta}_{n}\right]$ for $k \in\left\{0, \ldots, K_{n}\right\}$, where $K_{n}:=\log \bar{\delta}_{n} ;$ observe that $\Delta_{n}=\bigcup_{k=0}^{K_{n}} \Delta_{n k}$. Set

$$
\mathcal{F}_{n k}:=\left\{z \mapsto f_{(\gamma, \delta)}(z) \mid(\gamma, \delta) \in \Gamma \times \Delta_{n k}\right\}
$$

and note that $\|F\|_{\infty} \leq n^{1 / p}$ and $\sup _{f \in \mathcal{F}_{n k}}\|f\|_{2, \mathbb{P}} \leq \delta_{k}^{-1 / 2}$. Under E3, we may apply apply Lemma E. 5 to each $\mathcal{F}_{n k}$, with $(\tau, \sigma)=\left(n^{1 / p}, \delta_{k}^{-1 / 2}\right)$ and $x=\delta_{k}^{1-m} \epsilon$, for some $\epsilon>0$. There thus
exist $C_{1}, C_{2} \in(0, \infty)$ depending on ϵ such that

$$
\begin{align*}
\mathbb{P}\left\{\sup _{(\gamma, \delta) \in \Gamma \times \Delta_{n}} \delta^{m}\left|\mu_{n} f_{(\gamma, \delta)}\right|>\epsilon\right\} & \leq \sum_{k=0}^{K_{n}} \mathbb{P}\left\{\delta_{k}^{m} \sup _{(\gamma, \delta) \in \Gamma \times \Delta_{n k}}\left|\mu_{n} f_{(\gamma, \delta)}\right|>\mathrm{e}^{-1} \epsilon\right\} \\
& \leq C_{1} \sum_{k=0}^{K_{n}} \exp \left[-C_{2} n \theta_{n k}^{2} \delta_{k}^{2(1-m)}+d \log \left(\theta_{n k}^{-2} \delta_{k}^{m-1}\right)\right] \tag{E.23}
\end{align*}
$$

where $\theta_{n k}:=n^{-1 / 2 p} \delta_{k}^{-1 / 2}$, provided

$$
\begin{equation*}
n \geq \frac{1}{8} \delta_{k}^{2(m-1)} \theta_{n k}^{-2} \epsilon^{-2}, \forall k \in\left\{0, \ldots, K_{n}\right\} \Longleftarrow n^{1-1 / p} / \bar{\delta}_{n}^{2 m-1} \geq \frac{1}{8} \epsilon^{-2} \tag{E.24}
\end{equation*}
$$

which holds for all n sufficiently large. In obtaining (E.24) we have used $\delta_{k} \leq \bar{\delta}_{n}$ and $\theta_{n k} \geq$ $n^{-1 / 2 p} \bar{\delta}_{n}^{-1 / 2}$, and these further imply that (E.23) may be bounded by

$$
C_{1}\left(\log \bar{\delta}_{n}\right) \exp \left[-C_{2} n^{1-1 / p} \bar{\delta}_{n}^{-2 m-1}\left(1+\epsilon^{2}\right)+d \log \left(\bar{\delta}_{n}^{m} n^{1 / p}\right)\right] \rightarrow 0
$$

as $n \rightarrow \infty$. Thus (E.21) holds.
Proof of Lemma E.5. Suppose (iii) holds. Define $\mathcal{G}:=\left\{\tau^{-1} f \mid f \in \mathcal{F}\right\}$, and $G:=\tau^{-1} F$. Then

$$
\sup _{g \in \mathcal{G}}\|g\|_{2, \mathbb{P}} \leq \tau^{-1} \sup _{f \in \mathcal{F}}\|f\|_{2, \mathbb{P}} \leq \tau^{-1 / 2} \sigma=: \theta
$$

$\|g\|_{\infty} \leq 1$ for all $g \in \mathcal{G}$; and since $\left\|G_{n}\right\|_{1, \mathbb{Q}} \leq 1, N\left(\epsilon, \mathcal{G}, L_{1, \mathbb{Q}}\right) \leq C \epsilon^{-d}$. Hence, by arguments given in the proof of Theorem II. 37 in Pollard (1984), there exist $C_{1}, C_{2}>0$, depending on x, such that

$$
\mathbb{P}\left\{\sigma^{-2} \sup _{f \in \mathcal{F}}\left|\mu_{n} f\right|>x\right\}=\mathbb{P}\left\{\sup _{g \in \mathcal{G}}\left|\mu_{n} g\right|>\theta^{2} x\right\} \leq C_{1} \exp \left[-C_{2} n \theta^{2}\left(1+x^{2}\right)+d \log \left(\theta^{-2} x^{-1}\right)\right]
$$

for all $n \geq \frac{1}{8} x^{-2} \theta^{-2}$.

