BRUINS, DUFFY, KEANE, AND SMITH

Supplementary material

D Proofs of theorems under high-level assumptions

Assumptions R and H are assumed to hold throughout this section, including H5 with Iy = 0.

Whenever we require H5 to hold for some [y € {1, 2}, this will be explicitly noted.

D.1 Preliminary results
Let B8, = Bo +n~'/25, for a (possibly) random 6, = 0,(n'/?). Define
—k —k
Aﬁ(ﬁ) = nl/Q[en(ﬁ7 )\n) - en(ﬁOa )\n)]

and recall that G,(8) = 855:2(,6’,/\n) and G = [050(Bo,0)]T. As per R5, we fix the order of
jackknifing k € {0,...,ko} such that n'/2X\E¥1 = o, (1). Let £,(0) = L,(y,z;0) and L(0) =
EL,(0). L, and L, respectively denote the gradient and Hessian of £, with H = Eﬁn(Qo) =
L(0y); N(0,¢) denotes an open ball of radius €, centered at 6.

Proposition D.1.
(1) supgeplfn (8, An) — 05 (8. Aa)l| 5 0;
(ii) 0%(B0, An) — 0(Bo,0) = Op(AEF1);
(iii) AE(Bn) = Gon + 0p(1 + [|6a]))-
Proposition D.2. For V = (1+ &)(Z - R),
Z = 02 (05 (Bo, M) — 6%(Bo, An)] — V2 (0, — 60) ~ N[0, HT'VHT. (D)
Proposition D.3.
(1) Q%4(B:An) 2 Q5(B,0) = Q°(B) uniformly on B;
(ii) for every e > 0, infgep\ n(ay,e) Q°(B) > Q(Bo); and
Proposition D.4. If H5 holds for lo = 1, then
(i) Gn(Bn) 2 G; and
if 05 holds for lg € {1,2} then, uniformly on B,
(ii) suppep |00 (8, An) — 050(5,0)|| = 0p(1); and
(iii) 94Q5,(8, M) 2> 05Q5(8,0) = 85Q°(8)

forle{l,...,l}.
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Define, for some ¢, = op(n_1/2), the sets of approximate and exact roots

Rop =18 € B [|05Qui(B, M)l < en} RO ={B € B|9sQ°(S,0) = 0}

of 05Q¢ .. (8, A\n) = 0 and 93Q°(B,0) = 0 respectively; and let

S’rezk = {B € szk ‘ Qmin[aéQZk(ﬁ)?)‘n)] > _CN} S¢ = {B € R° ‘ Qmin[aéQe(ﬁ7O)] > 0}7

denote those subsets on which the second-order conditions for a local minimum are also approx-

imately satisfied.

Proposition D.5. Let By be a compact set with By € int By, and {Bn} a random sequence in
Bo. Suppose 05 holds with [y = 1. Then

(i) if R°*NBo = {Bo}, and B, € RS, w.p.a.1, then n'/?(B, — B5,) = 0,(1); and
(ii) if u5 holds with lg = 2, the preceding holds with (S¢,.,S€) in place of (RS, R°).

For the next result, let U : I' — R be twice continuously differentiable with a unique global
minimum at v*. For some €, let Ry = {y € T' | [|0,U(y)|| < €}, and Sy = {y € Ry |
omin[02U (7)] > —€}. Applying a routine r € {GN, QN, TR} to U yields the iterates {7} let

7(8*) if ,y(s) € Ry for some s € N

~O) otherwise,

where s* denotes the smallest s for which v(*) € Ryy. When r = TR, the definition of 7(y(®), TR)
is analogous, but with Sy in place of Ry. In the statement of the next result, I'g := {y € T' |
U(y) < U(y1)} for some vy, € T, and is a compact set with v* € intI'g. For a continuously
differentiable function m : I' = R% let M(7) = [0,m(7)]" denote its Jacobian.

Proposition D.6. Let r € {QN, TR}, and suppose that in addition to the preceding, either
(i) 7 =GN and U(7) = [|[m(y)||?, with infyer, omin[M (7)] > 0; or
(ii) » = QN and U is strictly convex on I'y;

then (v, r) € Ry N Ty for all vO € Ty. Alternatively, if = TR, then 7(v9,r) € Sy N Ty
for all v € Ty.

D.2 Proofs of Theorems 4.1-4.3

Throughout this section, 3, := Bo+n~"1/28, for a (possibly) random &, = 0,(n'/?). Let Q' (8) =
= —k
ok (Bs An), QER(B) = QuiH(B, An), and 0, (8) = 0,,(8, An).-

Proof of Theorem 4.1. We first consider the Wald estimator. We have

QY (8a) — QW (Bo)] = 2n"/2(0 (B0) — 0] WAL (B,) + AL (B,)TWRAL ().
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For Z,, as defined in (D.1), we see that by Proposition D.1(ii) and R5
V20 (B0) — 0] = Z + n'/2[6%(Bo. Aa) — O] = Zy + 0p(1), (D.2)
whence by Proposition D.1(iii),
n[Qn (Bn) = Q' (Bo)] = 2Z, WGoy + 6, GTW G, + 0p(1 + |8l + [6a]*).  (D-3)
Now consider the LR estimator. Twice continuous differentiability of the likelihood yields

n[QYR(8) — QR (Bo)] = —n[Ln(B5(Bn)) — La(@r(Bo))]
= 2L (B (50)) T AR (Ba) — 5 AR (5) (B (B0)) A (B0)

+op(1AR (8a)11%)

where by Proposition D.1(ii) and H3,

nM2L (05 (Bo)] = 2L (80) + Lo (60)n2[65 (Bo) — Bo] + 0p(1)
= H[Z, + n2(6% (B0, \n) — 00)]
= HZ, + 0p(1) (D.4)

for Z, asin (D.1). Thus by Proposition D.1(iii),
1
n[Q"(Bn) — Q" (B)] = —Zy HGOp — 50, GTHGS, + 0p(1+ [[0n| + [|6a]*)- (D.5)

Consistency of szk follows from parts (i) and (ii) of Proposition D.3 and Corollary 3.2.3
in van der Vaart and Wellner (1996). Thus by applying Theorem 3.2.16 in van der Vaart and
Wellner (1996) — or more precisely, the arguments following their (3.2.17) — to (D.3) and (D.5),
we have

n2(Bey — Bo) = —(GTUG) ' GTUZy + 0p(1) (D.6)
for U, as in (4.7); the result now follows by Proposition D.2. O

Proof of Theorem 4.2. We first note that, in consequence of H3 and Theorem 4.1, sz 2 B,
0, % 0o, and 0™ = 0 ( Af;k,)\n) 2 0y. Part (i) then follows from R2, H2, and Lemma 2.4 in
Newey and McFadden (1994). Defining £7(6o) = £(8o, 0;6o) for m € {1,..., M} and

¢ = [é?(Go)T 0}(Bo,0;60)T -+ ézM(ﬁo,O;@o)T]v

H2 and H3 further imply that

s R R
n R T - R

AT (1anz‘SZi>A£>AT(E<¢<iT)A=AT . A=V
i=1 . . . .
R R >
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Part (iii) is an immediate consequence of Proposition D.4(i). O

Proof of Theorem 4.3. For each r € {GN, QN, TR}, suppose that there exists a By C B such that
U = Q5 (B) = Q%(B, \n) satisfies the corresponding part of Proposition D.6, w.p.a.1. Then

P{B,,(8,r) € Ry By, VB € B} & 1 (D.7)

for r € {GN, QN}, and also for r = TR with S, in place of Rf,. Further, R*NBg = {fp} under
0-GN and 0-QN, while S® N By = {fp} under O-TR.
Now let B,(lo) be a random sequence in Bg. When r € {GN, QN}, it follows from (D.7) that

e

B =B (B, r) € RS, € Bg w.p.a.1, and so by Proposition D.5(i), n'/2(B5;, — 5¢,.) = 0,(1).
When r = TR, the result follows analogously from Proposition D.5(ii).

It thus remains to verify that the requirements of Proposition D.6 hold w.p.a.l. When
r = GN, it follows from Proposition D.4(i), the continuity of opin(-) and 0-GN that

0< Biénlgo omin|[G(B)] = ﬁiéléo omin[Gn(8)] + 0p(1),

whence infgep, omin[Grn(8)] > 0 w.p.a.l. When r = QN, it follows from Proposition D.4(iii) and
0-QN that

0 < inf min62€ = inf min82 N 1

0t eminl03Q°(8)] = it ominlOBQ: ()] + op(1)

whence Q¢ is strictly convex on By w.p.a.l. When r = TR, there are no additional conditions
to verify. 0
D.3 Proofs of Propositions D.1-D.6

Proof of Proposition D.1. Part (i) follows by H5 and the continuous mapping theorem. Part (ii)
is immediate from (3.10). For part (iii), we note that for 8, = By 4+ n'/28, with &, = 0,(n/?) as

above,

AE(Br) = 02 [0 (Bas M) — 0% (Bs An)]
- n1/2[§7]i(607 )‘n) - Qk(ﬁo, )\n)] + n1/2[0k (Bna /\n) - ek(/@Oy )\n)]

. -k . . . . A o
Since 0,, is a linear combination of the 6]'’s, it is clear from H3 and H4 that the first two terms
converge jointly in distribution to identical limits (since £, 2 Bo). For the final term, continuous
differentiability of 6% (r3 above) entails that

02108 (B, An) — 0% (Bos )] = [350% (Bos M)l T (B — Bo) + 0, (1| Bn — Bol)
= Gop + op(1 + [|6n]])-
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Proof of Proposition D.2. Note first that
02 [0 (B0, An) — 0% (8o A Zm n'2[0,,(Bo, 6" An) — 0(Bo, 6" An)]

1 M k 1 M
a2 Dk H TN 0p(1) s S H T
m=1

m=1r=0

by (3.10), (3.11), H3, H4 and Zf:o - = 1. By H3 and H4, this holds jointly with
n2(0, — 00) ~ —H ¢,

The limiting variance of Z,, is thus equal to

M
1
r _H—1¢O+M§ H_ld)m]:Hl
m=1

M
1
AR ST qsm] H'=H'VH™!
m=1

where the final equality follows from H4 and straightforward calculations. O

Proof of Proposition D.3. We first prove part (i). For the Wald estimator, this is immediate
from Proposition D.1(i). For the LR estimator, it follows from Proposition D.1(i), H2 and the
continuous mapping theorem (arguing as on pp. 144f. of Billingsley, 1968), that

ER(B) = (L 0 00)(B, An) B (£ 0 6F)(8,0) = QVR(8),

uniformly on B.

For part (ii), we note that 8 +— 6%(3,0) is continuous by R3, while the continuity of £ is
implied by H2, since L,, is continuous. Thus Q€ is continuous for e € {W,LR}, and by R4 is
uniquely minimized at Sy. Hence 8 — Q°(5) has a well-separated minimum, which by R1 is

interior to B. O

Proof of Proposition D.4. Part (ii) is immediate from H5, (3.11) and the continuous mapping
theorem; it further implies part (i). For part (iii), recall Q¢(8) = 05Q% (8), and G,(B) =
[(%gﬁw)r. Then we have

QW (B) = Gn(B) W [0(8) — 6] QLR(B) = Gu(B) T La[B1(8))-

Part (i), and similar arguments as were used are used in the proof of part (i) of Proposition D.3,
yield that Q¢ (f) 2 08Q°(B,0) = Q°(/3) uniformly on B. The proof that the second derivatives

converge uniformly is analogous. O

Proof of Proposition D.5. We first prove part (i). Let Q%(ﬁ) = 03Q% () and Q°(B) == 03Q°(5,0).
By Proposition D.4(iii)

Q°(Bn) = Q5 (Bn) + 0p(1) = 0p(1 + cn) = 0p(1). (D.8)
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Since Q¢ is continuous and By compact, and By € int By is the unique element of By for which
Qe(ﬂo) — 0, it follows that 8, 2> 8. Hence we may write 3, = By + n'/28,, with &, = op(n1/2).

For the Wald criterion, we have
0p(1) = n'2QY (B)T = 20 (B (Bu) — 00)TW Cin(5)
where, for Z,, as in (D.1),
n!/2 (0, (B) = 6) = ' (0,(B0) = 60) + AL (Ba) = Zu+ G+ 0p(1 4+ [13u])
by (D.2), rR5, and parts (ii) and (iii) of Proposition D.1. Hence, using Proposition D.4(i),
0p(1) = 2[0) GTWG + ZTWG] + 0,(1 + ||6,]))- (D.9)
Similarly, for the LR criterion,
0p(1) = 29 QLF (B)T = n' L0, (Bu)) T GuBu)

where by the twice continuous differentiability of the likelihood, Proposition D.1(iii) and (D.4),

2L 0n(Br)) = 0 2L 00 (80)] + L (O (Bo)) AL (Ba) + 0p (1AL (B
= HZ, + HG6, + 0,(1+ ||0,]])-

Thus by Proposition D.4(i),
0p(1) = 6] GTHG + ZT HG + 0,(1 + ||6,]))- (D.10)
Hence using (D.9) and (D.10), we see that for U, as in (4.7),
n'2(Biy — Bo) = —(GTUG) ' GTUZy + 0p(1) = n' (B3 — Bo) + 0p(1) (D.11)

for e € {W,LR}. The final equality follows from Theorem 4.1: or more precisely, from (D.6) in
the proof of Theorem 4.1.

We now turn to part (ii). Let Q¢(B) = 8%@%(@, Q¢(B) = 8%@6(@0). By Proposi-
tion D.4(iii) and the continuity of the minimum eigenvalue,

Qmin[@e(@n)] = Qmin[Q%(Bn)] + Op(l) > —cp+ Op(l) — 0.

Since (D.8) also holds, and S¢ N By = {fp}, it follows that B, 2 By. Since B, € Se. € Ry

w.p.a.l, (D.11) follows immediately from the arguments given in the proof of part (i). O

Proof of Proposition D.6. For r = GN, the result follows by Theorem 10.1 in Nocedal and Wright
(2006); for r = QN, by their Theorem 6.5; for r = TR, by Theorem 4.7 in Moré and Sorensen
(1983). O
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E Sufficiency of the low-level assumptions

We shall henceforth maintain both Assumptions L and R, and address the question of whether
these are sufficient for Assumption H; that is, we shall prove Proposition 4.1.

Recall that, as per L9, the auxiliary model is the Gaussian SUR displayed in (B.1) above. For
simplicity, we shall consider only the case where ¥¢ is unrestricted, but our arguments extend
straightforwardly to the case where ¥¢ is block diagonal (as would typically be imposed when
T > 1). Recall that 6 collects the elements of & and Egl. Fix an m € {0,1,... M}, and define

i) =y (233 B, A) — o, Mgy (25) — o, Ty (255 B, N),

temporarily suppressing the dependence of y (and hence ;) on m. Collecting &; := (&1, - - -, fdyi)T,

the average log-likelihood of the auxiliary model can be written as
L (y,x;0) o —11211d212*11n i
y,x Z Yi, T35 0) = _5 og 2m — 5 og det &~ itr ¢ E Zzlgz(a)‘fz(a)
Deduce that there are functions L and [, which are three times continuously differentiable in
both arguments (at least on int ©), such that

L (y,z;0) = L(Tn; 0) Uy, 4;0) = 1(t;;0) (E.1)

where

t(8,A) = [y(f;,f)A)]

and 7" == vech(7"), for
VB = - D BN (£2)
=1

Further, direct calculation gives

Oap Z 0" Esi(a)Iyrx(2;) ayr Z 0" i (a yry(ziQ B, A) (E.3)

and
1

aarsei(e) = 507‘5

%&i(a)fsi(a). (E.4)

Since the elements of the score vector £;(6) = dgl;(0) necessarily take one of the forms displayed
n (E.3) or (E.4), we may conclude that, for any compact subset A C ©, there exists a C'4 such
that

E;gl!éiww < C4El|2i[|* < o0 (E.5)

with the second inequality following from L7.

Regarding the maximum likelihood estimator (MLE), we note that the concentrated average
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log-likelihood is given by
Loy, zi0) = — D log2m +1) — Llog det 1§n:g()g()T Lo(Ty: )
n\Y, ;) = ——~ ™ -3 - il¥)Gil&Y = Leldln; @
Y g V08 2 B £

which is three times continuously differentiable in « and T}, so long as 7, is non-singular. By
the implicit function theorem, it follows that &, may be regarded as a smooth function of T;,.
Noting the usual formula for the ML estimates of ¥, this holds also for the components of 6

referring to 71, whence
05 (8,A) = h[T;" (8, ) (E.6)

for some h that is twice continuously differentiable on the set where 7" has full rank. Under
L8, this occurs uniformly on B x A w.p.a.l., and so to avoid tiresome circumlocution, we shall
simply treat h as if it were everywhere twice continuously differentiable throughout the sequel.
Letting T(83, \) := ETY(3, \), we note that the population binding function is given by

(8, A) = h[T(B,A)]. (E.7)

Define ¢™(3,\) = n'2[T/™(B,\) — T(B,\)], and let [¢™ (8, MJM_ ) denote a vector-valued

continuous Gaussian process on B x A with covariance kernel

cov (@™ (B1, A1), "2 (B2, A2)) = cov(T™ (B1, A1), T7"2 (B2, A2))-

Note that L7, in particular the requirement that E||z;||* < oo, ensures that this covariance exists

and is finite.
Lemma E.1.
(1) @™(B,A) ~ @™ (B, A) in b>¥°(B x A), jointly for m € {0,...,M}; and

(i) if (4.83) holds for I =1 € {1,2}, then

sup|| 95T, (B, An) — 95T (8, 0)]| = 0p(1) (E8)
BeB

By an application of the delta method, we thus have
Corollary E.1. For h(8,)) == dgh[T(8,\)],
U (B, 0) = 02078, X) = 6(8, M) ~ h(B,A)e™ (8, A) = 9™ (8,A) (B.9)
in b°°(B x A), jointly for m € {0, ..., M}.
The proof of Lemma E.1 appears in Appendix E.1.

Proof of Proposition 4.1. Hi follows from the twice continuous differentiability of L in (E.1). The
first part of H2 is an immediate consequence of Lemma E.1(i) and the smoothness of L; the second
part is implied by (E.5) and Lemma 2.4 in Newey and McFadden (1994).
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By Corollary E.1, we have for any 3, = 8y + 0,(1) and A\, = 0p(1) that

' 2 [0 (Bus An) = 0(Bas An)] = n'/2[677 (50, 0) = 6(50, 0)] + 0p(1)

IR BN,
=-H 1m26i (B0, 0;6p) + 0p(1)
i=1

where for m € {0,1,...,M}; the final equality follows from the consistency of 8(53o,0) (as
implied by Corollary E.1) and the arguments used to prove Theorem 3.1 in Newey and McFadden
(1994). By definition, ¢} :=n=1/2 3" | 7(Bo, 0; 6p), and thus 13 holds. Ha follows by the central
limit theorem, in view of L1 and (E.5). Finally, 5 follows from (E.6), (E.7), Lemma E.1(ii) and
the chain rule. O

E.1 Proof of Lemma E.1

For the purposes of the proofs undertaken in this section, we may suppose without loss of

generality that D = Iq, in 13, y(B8) = B in 14, and ||K|[|o < 1. Recalling (B.3) above, we have

ur(B,0) = we(8) - [ Ealvs(B)] = wr(B) - K(Sy; B, A). (E.10)

SES,

Let K and K respectively denote the first and second derivatives of K. For future reference, we

here note that

Opyr (B, N) = zur - K(Sri B, 0) + X w0 (8) Y 20 - Ki(Sri 8, N) (E.11)

seSy
= Dy1(B,\) + A1Dya (B, \)

where 2y, == I} 2, 2y ==} 2 and K(S; 8, \) == Ky\[vs(8)] - K(S\{s}; 3, \); and

8§yr(ﬁ7 A) = A Z [ZWZIS + szz;rur] “Ks(Sr; 8,0 (E.12)
SEST

+ )\7211)7‘(6) Z Z ZUSZ;}I—t ' Kst(ST; 67 )\)

SES, tES,
= AN H (B0 + A 2H o (8,N)

for
i\los(8)] - K(S\{s}; 8, ) if s =1,

Ko(S;8,0) =4 |
Balos(8)] - Eafun(8)] - K(S\{s,t}: 8, ) it s #t.

E.1.1 Proof of part (ii)

In view of (E.2), the scalar elements of T),(/3, \) that depend on (3, \) take either of the following

forms:

Tn1(8, A) = En[yr (B, N)ys (8, A)] Tn2(B; A) = En[yr (8, N)z4] (E.13)
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for some r,s € {1,...,dy}, or t € {1,...,d.}, where E, (5, ) = L oy f(z;8,A). (Through-

T n

out the following, all statements involving r, s and ¢ should be interpreted as holding for all
possible values of these indices.) For k € {1,2} and [ € {0, 1,2}, define 7,(5,\) = E7,x(5, \) —
a typical scalar element of T'(3, A) — and T,L” (B, A) = E%Tnk(ﬁ, A). Thus part (ii) of Lemma E.1

will follow once we have shown that

Ofytar (B, M) = 710 (B, M) + 0p(1) = 7 (8,0) + 0,(1) (E.14)
uniformly in 5 € B. The second equality in (E.14) is implied by
Lemma E.2. T,L”(ﬁ,)\n) EiN %m(ﬁ,O), uniformly on B, for k € {1,2} and 1 € {0,1,2}.

The proof appears at the end of this section. We turn next to the first equality in (E.14).
We require the following definitions. A function F' : Z — R is an envelope for the class
F if supser|f(2)| < F(z). For a probability measure Q and a p € (1,00), let | fl,0 =
(Eql|f(2:)[P)'/P. F is Buclidean for the envelope F if

s%p N(e|Fll1,0,F, L1,g) < Cre 2

for some C7 and Cy (depending on F), where N (e, F, Li g) denotes the minimum number of
L g-balls of diameter € needed to cover F. For a parametrized family of functions g(8,\) =
g(z;8,)) : Z = RW>X% et F(g) :== {g(B,)\) | (B,\) € B x A}. Since B is compact, we may
suppose without loss of generality that B C {8 € R% | ||8|| < 1}, whence recalling (B.2) and
(B.4) above,

|zl ifre{l,...dw}

|wr (2 B)] < W, <
1 ifre{dy+1,...d,.
Thus by Lemma 22 in Nolan and Pollard (1987)

Bl for L € {K, Ky, K}, s,t € {1,...,dy} and S C {1,...,d,}, the class
F(L,S) =A{L(S; 8, M) | (B,A) € Bx A}

is Euclidean with constant envelope; and
E2 for r € {1,...,dy}, F(w,) is Euclidean for W,.
It therefore follows by a slight adaptation of the proof of Theorem 9.15 in Kosorok (2008) that
E3 F(y,) is Euclidean for W,;
E4 F(yrDs1) and F(y,Ds2) are Euclidean for W, Wg||z||
B5 F(x¢Ds1) and F(z;Ds2) are Euclidean for Wl z||%;
E6 F(Ds1 D)), F(Ds1 DY), F(DyDY) and F(DgD],) are Euclidean for W, W,||z||%;

B7 F(ysHy1) and F(ysH,o) are Euclidean for W, W z||?; and
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B8 F(x;Hy) and F(x.H,2) are Euclidean for Wl z||3.

Let pnf = %Z?:l[f(zi) — Ef(z;)]. Using the preceding facts, and the uniform law of large

numbers given as Proposition E.1 below, we may prove

Lemma E.3. The convergence
sup 41|05y (B, An)yr (B, An)]| + 5P |20 (8, An)| = 0p(1). (E.15)
peB pEB

holds for 1 =0, and also for 1 € {1,2} if (4.8) holds with I = 1.
The first equality in (E.8) now follows, and thus part (ii) of Lemma E.1 is proved.

Proof of Lemma E.2. Suppose | = 2; the proof when [ = 1 is analogous (and is trivial when
I =0). Noting that

3,%(3/14/3) = ysa?iyr + (aﬁyr)(aﬁys)-r + (aﬁys)(aﬁyr)-r + yrﬁg’y& (E.16)
it follows from (E.11), (E.12), E6 and E7 that for every A € (0, 1],
105 (wrys) Il S AW We([l2]]* v 1),

which does not depend on [, and is integrable by L7. (Here a < b denotes that a < Cb for
some constant C' not depending on b.) Thus by the dominated derivatives theorem, the second
equality in

(8, 3) = BB (8, ) = 03Er (8, \) = 93m1(8, 1)

holds for every A € (0, 1]; the other equalities follow from the definitions of Tg] and 7. Deduce

that, so long as A, > 0 (as per the requirements of Proposition 4.1 above),
(8, ) = 93m(8, \a) > 3371 (8,0)

by the uniform continuity of 8[2_37'1 on B x A. A similar reasoning — but now using E8 — gives the
2]

same result for 7. O

The proof of Lemma E.3 requires the following result. Let G, , denote the o-field generated
by n.,(zi) and x(z;), and let 1, denote those elements of 7 that are not present in 7,,. Recall that

n, L gw,a:'

Lemma E.4. For every p € {0,1,2}, s,t € {1,...,dy}, S C{1,...,dy} and L € {K;,Kg}
Elllzus Pl 20 [PL(S; 8, M)? | Guva] S AE[[l20s P20t [P | Guo ] (E.17)
Proof. Note that for any L € {K,, K},

L(8;8,A) < Lalvs(B)]
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where L(z) = max{|K (z)|, |K(z)|}. Let d denote the dimensionality of 7,, and fix a 8 € B. By
L5 and L6, there is a k € {1,...d}, possibly depending on 5, and an € > 0 which does not, such
that

Vs(ﬁ) = V:(B) + /anuk
with || > e and v;(8) L nur. Let G, = Gu o V o({mi}izr), so that v7(3) is G ,-measurable,
and let f denote the density of 1,,. Then for any g € {0,...,4},
E [[n4L(S; 8. M) | Giw] SE Unyk!qﬁ( $(8) + Bimw) 1 G o]
= [ IR0 (8) + B () du

< (8)7'A / 2 () dut - sup|u] fi(u)

u€R
e, (E.18)

since sup,cg|ul?fe(u) < oo under Ls. Finally, we may partition 2,5 = (25 ,7m,6)7 and z,; =
(227, mux) T, with the possibility that z,, = 2%, and z,; = z},. Then by (E.18),

E [lzvslPll20PL(S: 8,2 1 G5 o] S Ml lPlzl” < Mzws Pl 2 -

The result now follows by the law of iterated expectations. O

Proof of Lemma E.3. We shall only provide the proof for first term on the left side of (E.15),
when [ = 2; the proof in all other cases are analogous, requiring appeal only to Proposition E.1
(or Theorem 2.4.3 in van der Vaart and Wellner, 1996, when [ = 0) and the appropriate parts of
E3—ES.

Recalling the decomposition of 8%(yrys) given in (E.16) above, we are led to consider
(85yr)(0ys)T = Ds1 D}y + X\ DDy + X" 'D D)y + A\ 2D gD/, (E.19)

and
YsO3yr = A ysHp1 + A2y Hyo. (E.20)

Note that by Lemma E.4, and L7

EllysH2|* S E

ws(B)Plwr (B Y D E [lzoslPllzutlPKst(Sr3 8, VI | Guoe]

SES, tES,

< AE [waf S Ellzusl Pzl

SES, tES,
<A
and analogously for each of H,1, Dle;rl, DSQ_D,,TI, Dle;'—2 and DSQD;!—z. By E6 and E7, the classes
formed from these parametrized functions are Euclidean, with envelopes that are pp-integrable
under L7 (py > 2).
Application of Proposition E.1 to each of the terms in E6 and E7, with A playing the role of
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5! there, thus yields the result. Negligibility of the final terms in (E.19) and (E.20) entail the
most stringent conditions on the rate at which A, may shrink to zero, due to the multiplication
of these by A72. O

E.1.2 Proof of part (i)

The typical scalar elements of T, are as displayed in (E.13) above, i.e. they are averages of random
functions of the form (i (5, A) == yr (B, N)ys(8,A) or (2(8, A) = ey (B, A), for r,s € {1,...,dy}
and t € {1,...,d;}. It follows from E3 that F((;) and F((2) are Euclidean, with envelopes
Fy .= W, Wy and F» := ||2||W; respectively. Since both envelopes are square integrable under L7,
we have

Sup N (el Fill2.s F(G)s Lag) < Cfe
for k € {1,2}. Hence (E.9) follows by Theorem 2.5.2 in van der Vaart and Wellner (1996).

E.2 A uniform-in-bandwidth law of large numbers

This section provides a uniform law of large numbers (ULLN) for certain classes of parametrized
functions, broad enough to cover products involving K)[vs(8)], and such generalizations as ap-
pear in Lemma E.4 above. Our ULLN holds uniformly in the inverse ‘bandwith’ parameter
§ = A™1; in this respect, it is related to some of the results proved in Einmahl and Mason (2005).
However, while their arguments could be adapted to our problem, these would lead to stronger
conditions on the bandwidth: in particular, p would have to be replaced by 2p in Proposition E.1
below. (On the other hand, their results yield explicit rates of uniform convergence, which are
not of concern here.)

Consider the (pointwise measurable) function class
Fa = {Z = f(’y,5)(2) | (775) el'x A}v

and put F = Fj o). The functions f(, s : 2" — R? satisfy:
El SUD,ep E| f(y.6)(20)[|* S 671 for every 6 > 0.

Let F': Z — R denote an envelope for F, in the sense that

sup || fr.)(2)|l < F(2)
(7,6)€l'x[1,00)

for all z € . We will suppose that F' may be chosen such that, additionally,
E2 E|F(20)|P < oo; and
E3 supgy N (€| Fl[1,0,F, L1,g) < Ce=? for some d € (0,00).

Let {0, } denote a real sequence with &, > 1, and A, := [1,d,].

2m—1
n

Proposition E.1. Under £1-E3, if n'~1/?/§ log (8, V n) — 0o for some m > 1, then

sup 0" ||nf(y.5)|l = 0p(1). (E.21)
(7,0)ET XAy,
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Remark E.1. Suppose d,, is an F-measurable sequence for which n'~/?/52m~110g(6, V n) 2 .
Then for every e > 0, there exists a deterministic sequence {J,} satisfying the requirements of
Proposition E.1, and for which limsup,,_, ., P{d, < &,} > 1 — e. Deduce that

sup O ln S5 |l = 0p(1)-
The proof requires the following

Lemma E.5. Suppose F is a (pointwise measurable) class with envelope F', satisfying

(1) [[Flloc <75

(i) supser||fllop < o; and

(iii) supg N(e||Flh,0,F,Lig) < Ce 4.
Let 0 =720, m € N and x > 0. Then there exist C1,C5 € (0,00), not depending on T, o or
x, such that

P {02 sup|pn f| > a:} < Oy exp[—Canb?(1 + x%) + dlog(0 2z~ )] (E.22)
feF

for alln > %x*QH*Q.

Proof of Proposition E.1. We first note that, by E2,

max|F(z)| = op(n~1/7)

and so, letting f7, 5)(,2) = f(y,0)(2)1{F(2) < n'/P}, we have

P sup 0" punlf — e =0 g[P’{maszi >n1/p}201‘
{(7,5)6F><An | fin (7,6) (7,5)” } i§n| (2)] (1)

It thus suffices to show that (E.21) holds when f, 5) is replaced by f{i{ 5)" Since E1 and E3 continue
to hold after this replacement, it suffices to prove (E.21) when E2 is replaced by the condition
that || F||ec < n'/P, which shall be maintained throughout the sequel. (The dependence of f and
F upon n will be suppressed for notational convenience.)

Letting 05 = e, define A, = [0k, 01 A 0 for k € {0,..., K, }, where K,, = logdp;
observe that A, = kK:"O A,k Set

Fuk = {2 fy,6)(2) | (7,0) € T x Apg}

and note that ||F|lee < n'/? and supser, N fllzp < (5,:1/2. Under E3, we may apply apply
Lemma E.5 to each Fyy, with (,0) = (n!/?, 5;1/2) and z = 6, e, for some € > 0. There thus
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exist C1,C5 € (0,00) depending on € such that

Ko
P {( sup 6" |pnfiy,5)| > e} <>P {51’?( 5)Sup |tn fiy,)] > 6_16}
’y?

’7,5)€F><An k=0 elx Ak
Kn
<01y exp[-Conb?, 6™ + dlog(6, 26771 (E.23)
k=0
where 6, == n_1/2p5,€_1/2, provided
0> 122 ke (0, Ky = VAT 2 Lt (B2g)

which holds for all n sufficiently large. In obtaining (E.24) we have used &6 < &, and 0, >
n_1/2p3;1/2, and these further imply that (E.23) may be bounded by

C4 (log 8,) exp[—Con' /75 "1 (1 + €2) + dlog(3n/P)] — 0

as n — oo. Thus (E.21) holds. O

Proof of Lemma E.5. Suppose (iii) holds. Define G :== {77 1f | f € F}, and G := 77 1F. Then

supllgllzz < 77" sup||fllop < 7?0 = 6
9€9 feF

gl < 1 for all g € G; and since ||Gyll1.0 < 1, N(6,G, L1g) < Ce 4. Hence, by arguments
given in the proof of Theorem I1.37 in Pollard (1984), there exist Cy,Co > 0, depending on z,
such that

P {0_2 sup|pn f| > az} =P {sup],ung| > 0295} < Cy exp[—Conb?*(1 + 2?) + dlog(6 2z~ 1)
feEF geg

for all n > %x_29_2. O
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