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SUMMARY 

This paper develops two new methods for conducting formal statistical inference in nonlinear dynamic 
economic models. The two methods require very little analytical tractability, relying instead on numerical 
simulation of the model's dynamic behaviour. Although one of the estimators is asymptotically more 
efficient than the other, a Monte Carlo study shows that, for a specific application, the less efficient 
estimator has smaller mean squared error in samples of the size typically encountered in macroeconomics. 
The estimator with superior small sample performance is used to estimate the parameters of a real 
business cycle model using observed US time-series data. 

1. INTRODUCTION 

This paper develops and implements two new methods for estimating the parameters of fully 
specified structural dynamic economic models, such as, for example, nonlinear stochastic 

equilibrium models of the business cycle. These models are typically difficult to estimate using 
standard methods because of analytically intractable likelihood functions and/or the presence 
of unobservable variables. A key feature of the two methods developed in this paper is that 
no analytical tractability is required: one need only be able to simulate numerically the 
behaviour of the structural model for different values of the structural parameters. This 
feature of the two methods obviates the need either for an analytically tractable likelihood 
function or for analytical expressions of population moments as functions of structural 
parameters. Moreover, these methods circumvent the problem of unobserved or poorly 
measured time series by allowing one to focus on the marginal distribution of well-measured, 
observed time series. 

This paper first develops the asymptotic properties of the two methods. It shows that both 
methods yield consistent and asymptotically normal estimates of the true structural 
parameters. In addition, both methods produce test statistics that can be used to evaluate the 

goodness-of-fit of the structural model. Next, this paper uses Monte Carlo methods to 
compare the small-sample performance of the two estimators in a specific application involving 
the estimation of the parameters of a real business cycle model. Although one of the methods 
is asymptotically more efficient than the other, the Monte Carlo study shows that, in samples 
of the size typically encountered in macroeconomics, the mean squared error of the more 
efficient estimator is larger than that of the less efficient estimator. Finally, this paper uses the 
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estimator with a smaller mean squared error to estimate the parameters of a real business cycle 
model using observed data. 

Vector autoregressions have proven to be a useful tool for exploring the dynamic interaction 
of multiple time series. Accordingly, both the estimation methods considered in this paper 
focus on the parameters of a potentially misspecified vector autoregression (VAR) that is used 
to summarize the statistical properties of both observed and simulated time series. The key idea 
of both methods is to estimate the structural parameters by matching as closely as possible 
estimated VAR parameters calculated from, respectively, observed and simulated time series. 1 

The two methods differ in the choice of a metric for measuring the 'distance' between 
observed and simulated VAR parameters. The first method (called 'extended method of 
simulated moments', or EMSM) is a generalization of the method developed in Lee and 
Ingram (1991) and Duffie and Singleton (1988). Following Hansen (1982), the EMSM approach 
measures the distance between the 'observed' and 'simulated' VAR parameters by forming a 
quadratic form in a vector of differences between the two sets of parameters. The EMSM 
estimator of the structural parameters minimizes this quadratic form. The optimal (variance 
minimizing) weighting matrix is the inverse of the asymptotic covariance matrix of the VAR 
parameters. The consistent estimation of the optimal weighting matrix must therefore take into 
account the potential misspecification of the VAR as a representation of the true data- 
generating process. 

The second method (called 'simulated quasi-maximum likelihood', or SQML) uses the 
likelihood function associated with the VAR as a quasi-likelihood function for the structural 
model. The SQML estimator of the structural parameters maximizes this quasi-likelihood 
function, subject to the 'cross-equation' restrictions that the structural model places on the 
VAR parameters. Although the SQML estimator is consistent despite the misspecification of 
the quasi-likelihood function, the SQML estimator is, except in special cases, asymptotically 
less efficient than the EMSM estimator. 

Since the laws of motion of many non-linear structural time series models (e.g. real business 
cycle models) are often well approximated by linear laws of motion, the loss of efficiency 
associated with an SQML estimator that is defined in terms of a linear model such as a VAR 
is likely to be small in many circumstances. Moreover, the SQML estimator does not require 
the estimation of an optimal weighting matrix prior to estimation of structural parameters, 
suggesting that the SQML method might have better finite sample properties than the EMSM 
method. A Monte Carlo study consisting of 1000 replications of each estimator in samples of 
size 150 bears out this intuition. In particular, in a real business cycle model with six unknown 
structural parameters, the SQML estimates of these parameters have smaller mean squared 
error than their EMSM counterparts. 

This paper is organized as follows. Section 2 develops the asymptotic properties of the 
SQML estimator and Section 3 the asymptotic properties of the EMSM estimator. Section 4 
compares the finite sample performance of the two methods in a Monte Carlo study. Section 5 
uses the SQML estimator to estimate the parameters of a real business cycle model using US 
time-series data. Section 6 concludes. Proofs of all propositions are gathered in Technical 
Appendices 1 and 2. 

'More generally, any analytically tractable parametric econometric model can serve as a 'window' through which to 
view the observed and simulated time series. The structural estimation methods developed in this paper estimate the 
structural parameters by matching as closely as possible estimated 'window' parameters computed using, respectively, 
observed and simulated time series. 
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2. SIMULATED QUASI-MAXIMUM LIKELIHOOD 

2.1. Preliminaries 

Let the k x 1 vector 13 E C, where C is a compact subset of Wk, consist of the parameters of 
a fully specified dynamic economic model. Given 13, the economic model generates an m x 1 
vector stochastic process y(13) - [ys(3),s > 1). The vector ys(13) need not incorporate all the 
variables encompassed by the model. For example, unobserved or poorly measured variables 
can be omitted from ys(3). It is assumed that, given a set of structural parameters 13, the 
investigator can generate numerically a finite realization [y,()) s= -(p-_) of the y(0) process 
(p > 0 a fixed constant). Corresponding to y(3) is an observed m x 1 vector time series 
x - Xt, t > 11. In practice, the investigator observes a finite realization {xt) T=-(p-l) of the x 
process. Assumption 1 requires the processes x and y(13) to be stationary and ergodic. 

Assumption 1 (1) The observed process x is stationary and ergodic. (2) For all 3 E C, the 
process y(13) is stationary and ergodic. 

Under the null hypothesis, there exists a unique set of structural parameters 1o such that the 
observed process x and the simulated process y(13o) are drawn from the same distribution. 
Assumption 2 formalizes the null hypothesis. 

Assumption 2 There exists a unique 1o E C (f3o an interior point of C) such that the random 
vectors [x ... xt'_]' and [y,(1o)' ... ys-(I0o)T']' have identical (stationary) distributions for all 
1>0. 

Let Hi denote the stationary joint density of the random vector [xt'...xt'-]' and let Gf 
denote the stationary joint density of the random vector [ys(,3)' ... Ys-I(1)']'. Under the null 
hypothesis, the densities Hi and G?o are identical. 

2.2. Definition of the SQML Estimator 

To implement the SQML approach, the investigator must choose a conditional density 
function f(ys(1), ... ys-p,(); 0) characterized by an n x 1 vector of parameters 08 0, where 
o is a compact subset of Rn. This density function specifies the density of ys(1) conditional 
on p lags ys-l(13), .. .ys_p(83). In general, the conditional density function f is misspecified in 
the sense that the true conditional density of ys(1) given ys- (13), ..., y-p(1) does not belong 
to the set of conditional densities f(ys(O8), ...,y,s-p(3); 0): 0 E 0). It is assumed that n > k, i.e. 
the dimensionality of the space of econometric, or 'shallow', parameters 0 is at least as large 
as the dimensionality of the space of structural, or 'deep', parameters 8. 

Subject to the regularity conditions described below, the investigator is free, in principle, to 
choose any conditional density function f. From the viewpoint of asymptotic efficiency, it is 
desirable to choose a conditional density function f which, given the proper choice of 0, can 
provide a 'close' approximation to the true but unknown density of ys(13) conditional on 
Ys- 1(), ..., ys-p(). From the viewpoint of computational ease, it is desirable to choose a 
conditional density function f for which quasi-maximum likelihood estimates of 0, given a data 
set lys(1)) ss=-(p -), can be computed relatively easily. For the Monte Carlo study in Section 4 
and the empirical application in Section 5, the conditional density function f corresponds to 
a vector autoregression (VAR) with i.i.d. normal errors. In this case, the vector of econometric 
parameters 0 consists of the coefficients on lagged endogenous variables as well as the elements 
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of the error covariance matrix. Although the structural model that is estimated in Sections 4 
and 5 is non-linear, the laws of motion implied by this model can be well approximated by 
linear laws of motion such as those provided by a VAR. Moreover, estimates of the VAR 
parameters can be computed easily using ordinary least squares. 

Given a simulated time series [ys(y()J =-s(-1i, let 

Ls([ys(13)); 0) - log f(ys(3), ...,ys-p(3); 0) (1) 
s=l 

be the quasi-log-likelihood function (conditional on yo(P),...,yl-p(P)) associated with the 
conditional density function f. Ls is not the true conditional log-likelihood because f is, in 
general, misspecified. For a given 3, maximizing the quasi-log-likelihood function with respect 
to 0 induces a mapping from structural parameters 3 to econometric parameters 0. Formally, 
define 

s _ arg max Ls([Ys(O3); 0) (2) 
eO 

Under a set of regularity conditions discussed in Section 2.3, it can be shown that Os converges 
in probability (as S grows large) to a vector of 'pseudo' true values 0p. In general, it is not 
possible to find a closed-form expression for 0o in terms of the structural parameters 0. Using 
simulation methods, however, one can obtain an arbitrarily accurate estimate Os of 0s by 
choosing the simulation sample size S suitably. To emphasize the functional dependence of 
both 0s and 0o on the structural parameters 3, define hs(13) = s and 
h( 3) - 0 = plims-. 0 0 . 

The (conditional) quasi-log-likelihood function can also be evaluated using the observed 
time series (Xt] = -(p-1). Define 

T 

LT((Xt}; 0) = Z log f(xt, t.,Xt-p; 0) (3) 
t=l 

and 

T - arg max LT([xtJ; 0) (4) 
0EO 

Under a set of regularity conditions discussed in Section 2.3, oT converges in probability (as 
T grows large) to a vector of pseudo-true values 0o. Under the null hypothesis 
(Assumption (2)), 0o = h (3o) 0 8o. 

We can now define the SQML estimator of the true structural parameter vector 3o. It is 
assumed that, for each 0, the investigator generates a simulated time series Ys(3)I S= -(p-1) 
of length S+p.2 By construction, {ys(3P) is independent of {xtj for all 3. In addition, it is 
assumed that S = rT, there r > 0 is a fixed constant. Thus as the observed sample size T tends 
to infinity, the simulated sample size S also tends to infinity. Simulation error can be controlled 
by a suitable choice of r. 

Definition 1 The SQML estimator rT of 3o solves the following maximization problem: 

STr- arg max LT( xtJ; 'S) (5) 
3EC p c 

where 86 is defined by equation (2). 

Under the regularity conditions set forth in Section 2.3 it can be shown that rT converges 

2As discussed in Section 2.3, in order to ensure that tYs(3)) is a 'smooth' function of 3, it is necessary to use the 
same random numbers across values of 3 when generating the simulated time series [ys(0)). 
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in probability (as T grows large) to 3o and that T1/2 ((T- 0o) has a well-defined asymptotic 
normal distribution. 

As an example of the steps involved in the computation of 0T, consider the case where the 
quasi-log-likelihood function corresponds to a vector autoregression with, say, two lags (i.e. 
a VAR(2)). The investigator chooses a set of structural parameters (, simulates a vector time 
series [ys(3)), and fits a VAR(2) to these data using ordinary least squares, yielding parameter 
estimates 65. Next, the investigator inserts AS into the quasi-log-likelihood function defined by 
equation (3), obtaining a value LT({xt); 61). Finally, the investigator searches across values of 
3 to find that value of 3 (i.e. /T) which maximizes LT([xt); Os).3 

Note that the structural model places a set of restrictions across the parameters 0 of the 
VAR(2). In particular, under the null hypothesis, the n-dimensional vector 0 can be expressed 
(via the function h ()) in terms of the k-dimensional vector (, where n > k. In effect, the 
SQML estimator maximizes the quasi-likelihood function subject to the constraints that the 
structural model places across the parameters of the quasi-likelihood function. Since these 
constraints do not, in general, possess closed-form expressions, the constraints are 
approximated by means of simulation using equation (2). For the case n > k, the model 
imposes n - k overidentifying restrictions on the parameters of the quasi-likelihood function. 
As discussed in Section 2.4, these overidentifying restrictions can form the basis of tests of the 
goodness-of-fit of the structural model. 

2.3. Asymptotic Properties of the SQML Estimator 

In order to characterize the asymptotic behaviour of the SQML estimator AT, it is necessary, 
first, to characterize the asymptotic behaviour of OT and §s, and, second, to place some 
structure on the mapping from structural parameters ( to econometric parameters 0 defined 
by equation (2). Throughout Assumptions 3-10, the E operator means to compute the 
mathematical expectation with respect to the appropriate stationary density Hi (for observed 
data) or Gf (for simulated data). 

Assumption 3 For all / E C, log f(y,s(), ...,y,-p(/); 0) is twice continuously differentiable 
in 0 for all (y,(), ...,Ys-p(1)). 

Assumption4 For all /3EC, the functions log f(.; 0), alogf(-; 0)/0i, i= 1,...,n, 
a2 log f(; 0)/ao0i Oj, i,j = 1,..., n, and a log f(; 0)/a0i a log f(; 0)/a0j, i,j = 1,...,n, are 
measurable for all 0 E , are separable (see Definition 1 of Tauchen, 1985), and are 
dominated.4 

Assumption 5 For all E C, the non-stochastic function Elogf(yys(1), ...,y_ysp(f); 0) is 
uniquely maximized at 0s, an interior point of e. 

Under Assumptions 1 and 3-5 it can be shown that 9s converges in probability (as S grows 
large) to the pseudo-true value 08.5 

3 In practice, gradient hillclimbing methods can be used to locate rT. 
4A real-valued function r(ys(3), ...,y-_p(3); 0) is said to be 'dominated' if there exists a measurable function 
b(ys(3), ...,ys,p()) such that Eb(ys(3),...,ys-p(3)) exists and I r(ys(3), ...y-p(1); 0) ( b(ys(3),...Ys-p(3)) for 
all 0 E . 
5 This result and the result in equation (8), whose proofs are contained in the Technical Appendix 1, are not new to 
this paper. See, for example, Domowitz and White (1982). 
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Define the matrices A(O) - E V2 log f(ys(1), ...,ys-p(0); 0) and 

B,(8) - rg(o) + S (r(o) + r n(o)') 
k=1 

where rk(o) = E(V log f(y5(0), ...,y,sp(3); 0) Vlog f(Ys-k(0), ...,Ys-k-p(0); 0)'). When the 
conditional density f is evaluated using observed data, the counterparts to AO(8) and B6(8) 
are given by: 

A(0) - E V2 log f(xt, ...,Xt-p; 0) (6) 

and 
00 

B(8) - ro(o) + E (rk(0) + rk(0)') (7) 
k=l 

where rk(8) E(V log f(xt, ..., x-p; 0) V log f(xtk, ..., xt-k-,p; 0)'). Note that under the null 
hypothesis, A,o(0) = A (0) and Boo(0) = B(8). 

Assumption 6 For all B E C, S-1/2 VLs(ys (1)); 06) - N(O, BO(0o)).6 

Assumption 7 For all 3 E C, the matrices A4(O,) and B,(0,) are invertible. 

Under Assumptions 1 and 3-7, it can be shown that 

S1/2(s - 0_ ) - N(O, Ao(o)-IBo(O)Ao(o)-l) (8) 

Assumption 8 states that versions of Assumptions 3-7 hold for the functions LT((xt); 0) and 
log f(xt, ...,Xt-p; 0). 

7 Under Assumption 8, plim-oo OT = 80 and 

T'/2 (T- 0o) N(O, A (0o) - lB(Oo)A (0o) )(9) 

Assumption 8 The functions log f(xt, ..., xt-p; 0) and LT((xt); 0) satisfy Assumptions 3-7, 
with log f(xt, ...,Xt-p; 0) taking the place of log f(ys(P), ...,Ys-p(o); 0), LT((xtJ; 0) taking the 
place of Ls([ys(3)); 0), T-112 taking the place of S-/12 (in Assumption 6), 0o taking the place 
of 0(, A(-) taking the place of Ae(-), and B(-) taking the place of B(-). 

Assumption 9 imposes regularity conditions on the mapping from structural parameters 3 
to econometric parameters 0 defined by equation (2). Part (1) of Assumption 9 ensures 
smoothness of hs(1) 'near' /go and part (2) ensures local identifiability of 3o. 

Assumption 9 There exists an open neighbourhood N(3o) of 0o such that: 

(1) hs(3) is twice continuously differentiable in / for 1 E N(fo). 
(2) h(3) is continuously differentiable in 3 for 3 E N(3o) and J(3o) = Vh(0o) has full-column 

rank k. 

Given a simulated sample size S, Assumption 9(1) requires that, for all (, the same seed be 
used for the (pseudo) random number generator that is used to generate the simulated series 
[ys(13). Since the random errors used to create [ys(13)) are held fixed and since the observed 

6Assumption 6 can be derived from more primitive assumptions. See, for example, Hansen (1982). The fact that 
plims- . S$'- VLs(tys(3)}; 0s) = 0 follows from Assumptions 4 and 5. 
7 If the null hypothesis (Assumption 2) holds, then Assumption 8 is redundant. 
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sample is (of course) also fixed, the optimization problem (5) that defines the SQML estimator 
is a well-defined deterministic problem. 

Finally, Assumption 10 gathers together an additional set of regularity conditions required 
for the proofs of Propositions 1, 2, 3, and 5. 

Assumption 10 Let 13T} be any sequence of random vectors converging in probability to 1o. 
Recall that S = T, where T > 0 is a fixed constant. 

(1) There exists an open neighbourhood N(1o) of 1o such that T-'LT(txt); As) converges in 
probability to E log f(xt, ..., t-p; 08) uniformly in a E N(3o). 

(2) plimT-.o T-1 VoLTr(xtl; hs(T3)) = E V0 log f(xt, ...,t-p; h(3o)). 
(3) plimT oo T-1 V2 LT({xt); hs ( T)) = E V2 log f(xt, ...,t-p; h (o)). 
(4) plimT-oo Vhs(T)) = Vh(3o) J(Ao). 
(5) plimrT-o a2hs(13)/fati a3j = a2h(go)/aOi 8aj for i,j = 1, ..., k. 
(6) hs(i8) converges in probability to h(1) uniformly in 0 C. 

Proposition 1 characterizes the asymptotic behaviour of irT. 

Proposition 1 Assumptions 1-7 and 9-10 imply the following results for the SQML 
estimator AT defined by equation (5): 

plim =T = 0o (10) 
T - oo 

T1/2( 1T- -o) N((1 + - 1) (3o)) (11) 

where E(fo) = (J(1o)'A(Oo)J(oo))-1J(lOo)'B(Oo)J(Bo)(J(Bo)'A(Oo)J(Bo))-1, A(0o) is 
defined by equation (6), B(0o) by equation (7), and J(1o) by Assumption 9. 

If the function h(B) were known, then there would be no need to simulate the behaviour 
of the structural model, in which case the asymptotic covariance matrix of T1/2(T - bo) 
would be simply I (fo). The use of simulations to evaluate the mapping from 1 to 0 therefore 
inflates the asymptotic covariance matrix of T1/2 (Tr- 1o) by the factor (1 + r-1) (recall that 
the simulated sample size S = rT, where r > 0 is a fixed constant).8 By choosing an appropriate 
value for T, the investigator can control the extent to which the use of simulations increases 
sampling uncertainty. If r = 10, for example, so that the simulated sample is ten times as large 
as the observed sample, then asymptotic standard errors are only approximately 5% larger 
than in the case where h is known. 

The asymptotic covariance matrix E(3o) can be estimated using standard methods. For 
example, AT() =T-1 V2LT(xt); 0) consistently estimates A(0), AT(OT) consistently 
estimates A((o), and Vhs(1T) consistently estimates J(3o). The required first and second 
partial derivatives can be computed numerically. The matrix B(0o) can be consistently 
estimated using a heteoscedasticity and autocorrelation consistent covariance matrix estimator, 
such as the Newey-West (1987) estimator. See equation (26) in Section 4 for further details. 

As a final point, note that if the quasi-likelihood function is actually correctly specified, then 
the information matrix equality holds: A (o) + B(0o) =0. In this case, the asymptotic 
covariance matrix of T1/2 (fT- 0o) reduces to -(1 + t-1)(J(Bo)A (0o)J(o))-1. Under the 
null hypothesis, as T grows large, this covariance matrix approaches the Cramer-Rao lower 
bound. 

8 Duffe and Singleton (1988), McFadden (1989), Pakes and Pollard (1989), McFadden and Ruud (1990), Gourieroux 
and Monfort (1991), and Lee and Ingram (1991) obtain similar results in a variety of different settings. 
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2.4. Testing the Overidentifying Restrictions 

When the number of 'econometric' parameters 0 exceeds the number of 'structural' parameters 
f (i.e. when n - k > 0), the structural model places n - k overidentifying restrictions on the 
parameters 0 of the quasi-likelihood function LT(tXt); 0). These restrictions can form the basis 
of tests of the goodness-of-fit of the structural model. 

Proposition 2 characterizes the asymptotic behaviour of the test statistic: 

QTr T(1 + - 1) - (T - hs(/T))' AT(OT)BT(OT) - 1AT(T) (T - hs(/T)) (12) 

where OT is defined by equation (4), /T is the SQML estimator of go, the function hs is defined 
by equation (2), and AT(OT) and BT(OT) are consistent estimates of, respectively, A (0o) and 
B(0o). This test statistic is a quadratic form in the vector (OT - hs(/gT)) of differences between 
the 'econometric' parameters calculated using the observed data and the 'econometric' 
parameters calculated using the simulated data (given the consistent estimate ST of the 
structural parameters). 

Proposition 2 Suppose n > k. Let A, B, and J serve as shorthand for, respectively, A (0o), 
B(Oo) and J(fo) and define V by B = VV'. Next, define 

A In- V' J(J'AJ)-1J'AV'-1- V-AJ(J'AJ)- J'V 

+ V-1AJ(J'AJ) - J'BJ(J'AJ) -1 JA V' -1 

where I, is the n x n identity matrix. Finally, let Xi, i = 1, ..., n - k, be the n - k non-zero 
eigenvalues of A9. Then, under Assumptions 1-7, 9, and 10, the asymptotic distribution of the 
statistic QT defined by equation (12) is identical to the distribution of ?in-k X\iC, where 
ci- i.i.d. N(O, 1), i = 1,..., n- k. 

It is easy to see that if the information matrix equality A (0o) + B(Oo) = 0 holds, then the 
matrix A defined in Proposition 2 is idempotent with rank n - k. In this case, the n - k non- 
zero eigenvalues of A are all equal to 1, so that QT converges in distribution to X2(n - k). If 
the information matrix equality does not hold, then the non-zero eigenvalues of A can be 
estimated by computing the non-zero eigenvalues of a consistent estimate of A (see the end of 
Section 2.3 for further details). Accurate estimates of critical values corresponding to the 
distribution of EIL-k X,ci can then be easily computed by means of simulation. 

3. EXTENDED METHOD OF SIMULATED MOMENTS 

This section develops an alternative approach to estimating the true structural parameters go. 
This approach can be viewed as a generalization of the estimation strategy (which we will refer 
to as 'method of simulated moments', or MSM) developed by Lee and Ingram (1991) and 
Duffie and Singleton (1988) for the estimation of structural time-series models. The 'extended 
method of simulated moments', or EMSM, approach estimates f0 by minimizing the 'distance' 
between OT and 0s, where this distance is measured by forming a quadratic form in the vector 
OT- 0s. 10 Since the statistics OT and 60 cannot, in general, be expressed as simple time averages 

9Note that A=DD', where D - In- V-IAJ(J'AJ)-J' V. D is idempotent with rank n - k, implying that A is 
positive semi-definite with rank n - k. A therefore has n - k eigenvalues greater than zero and k eigenvalues equal to 
zero. 
0 This approach is related to the literature on 'minimum distance estimation'. See the discussion and references in 

Section 4.4 of Ogaki (1992). The EMSM approach can be generalized to include minimizing the distance between non- 
linear functions of the two sets of 'econometric' parameters, such as, for example, impulse response functions. See 
Chapter 2 of Smith (1990). 
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of functions of, respectively, the observed and simulated data, the EMSM approach is not a 
special case of the MSM approach. " 

Let (WT) be a sequence of n x n positive definite 'weighting' matrices that converges in 
probability to a non-stochastic positive definite matrix W. In practice, WT can depend on the 
observed sample (xt). As for the SQML estimator, the simulated sample size S= rT, where 
r > 0 is a fixed constant. 

Definition 2 The EMSM estimator /T of fo solves the following minimization problem: 

3T -arg min (OT - Os)' WT(T - s) (13) 
Fec 

where OT is defined by equation (4) and ks by equation (2). 

Proposition 3 characterizes the asymptotic behaviour of rT. 

Proposition 3 Assumptions 1-7 and 9-10 imply the following results for the EMSM 
estimator rT defined by equation (13): 

plim AT= fo (14) 
T-Xoo 

T112 (T-/ 0o) -) N(0, (1 + T- 1)K( o)- J(o)' WK2(0o) WJ(fo)K(3o)-1) (15) 

where K(fo) = J(fo)' WJ(lo), Q((0o)-= A (o) -B(0o)A(0o)-1, A(0o) is defined by equation 
(6), B(0o) by equation (7), and J(fo) by Assumption 9. 

Definition 2 defines a class of estimators indexed by the (asymptotic) weighting matrix W. 
By choosing W appropriately, one can select the 'best' member of this class in the sense that 
the asymptotic covariance matrix of any other estimator in the class exceeds the asymptotic 
covariance matrix of the 'best' estimator by a positive semi-definite matrix. Using standard 
arguments (see, for example, the proof of Proposition 4), it can be shown that the optimal 
(asymptotic) weighting matrix W* = Q((0o)-. Note that the optimal weighting matrix is the 
inverse of the asymptotic covariance matrix of T1/2(T - 0o). The data-dependent matrix 

WT AT(#T)BT(T) - AT(T) (16) 

consistently estimates the optimal weighting matrix, where AT(@) and BT(O) are consistent 
estimates of A(O) and B(O), respectively. Let AT be the optimal EMSM estimator (i.e. the 
EMSM estimator that results from using WT as the weighting matrix). The asymptotic 
covariance matrix of T1/2 (- ' 1o) is 

(1 + 7-1)(J(fo)'Q0(o)- 1J(o))-1 (17) 

Clearly, if the quasi-log-likelihood function is correctly specified in the sense that the 
information matrix equality A (0o) + B(0o) = 0 holds, then the asymptotic covariance matrices 
of T1/2(OT - f-o) and T1/2(iT - fo) are both equal to - (1 + -1 )(J(fo)' A (0o)J(i3o)) 1. In this 
case, therefore, the SQML and optimal EMSM estimators have equal asymptotic efficiency. 

Now suppose that n = k, i.e. the true structural parameter vector fo is exactly identified, but 
the information matrix equality does not hold. Since n = k, the Jacobian matrix J(fo) is square 
and, by Assumption 9(2), is invertible. It is easy to see that, in this case, the asymptotic 

" Gourieroux et al. (1992) show how the EMSM approach can be modified to incorporate exogenous variables. 
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covariance matrix of T1/2(?T - 3o) simplifies to the expression in equation (17). Thus if no 
overidentifying restrictions are imposed, the SQML and optimal EMSM estimators once again 
have equal asymptotic efficiency. 

Proposition 4 compares the efficiency of the SQML estimator and the optimal EMSM 
estimator in the case where n > k and the information matrix equality is violated. This 
proposition states that the difference between the asymptotic covariance matrix of the SQML 
estimator and the asymptotic covariance matrix of the optimal EMSM estimator is positive 
semi-definite if k < n < 2k and is positive definite if n > 2k. 

Proposition 4 Fix a quasi-log-likelihood function LT({xt}; 0) and suppose that n > k and 
A (0o) + B(0o)  O. Let V1 be the asymptotic covariance matrix of T/2( T - j30) and let V2 be 
the asymptotic covariance matrix of T1/2(T- f/o), whereT ris the SQML estimator of /o and 
jT is the optimal EMSM estimator of 3o. Then V1 - V2 is positive definite if n > 2k and is 
positive semi-definite (with rank n - k) if k < n < 2k. 

Proposition 5 states that if an estimate of the optimal weighting matrix is used to define the 
EMSM estimator, then the minimized value of the criterion function (13), normalized by the 
factor T (1 + r-1)-1, can be used as a test of the n - k overidentifying restrictions. 

Proposition 5 Suppose n > k. Define the statistic 

ZTr T(1 + -1)- (OT- hs(I))' W^T(T- hs(OT)) (18) 

where OT is defined by equation (4), AT is the optimal EMSM estimator, WT is defined by 
equation (16), and the function hs is defined by equation (2). Under Assumptions 1-7, 9, and 
10, ZT converges in distribution to X2(n - k). 

4. A MONTE CARLO STUDY 

This section uses the SQML and EMSM estimation strategies to estimate the parameters of a 
real business cycle model using repeated samples drawn from the data-generating process 
associated with the real business cycle model. The goal of this Monte Carlo study is to compare 
the performance of the two estimators in a realistic application using 'observed' samples of 
the size typically encountered in macroeconomics. 

Recall that the optimal EMSM estimator requires that an estimate WT of the optimal 
weighting matrix W* be computed (using observed data) prior to estimation. Generally, 
estimates of W* do not perform well in small samples. The difficulty of estimating W* suggests 
that the EMSM estimator may not perform as well as the SQML estimator in small samples, 
despite the fact that the EMSM estimator is asymptotically more efficient than the SQML 
estimator. Moreover, for structural models such as the real business cycle model described 
below, the loss of efficiency associated with the SQML estimator is likely to be small even in 
large samples, since, for this class of models, one can generally find a quasi-likelihood function 
that provides a good approximation to the true but unknown likelihood function. 

The real business cycle to be estimated takes the form of the following social planner's 
problem: 

00 
max Eo wty- 

1 
(ct - 1), given ko, )o, and zo (19) 

{ct} t=o, {it} t=o t=O 
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subject to the following constraints for all t > 0: 

Ct + it =Ak Xt (20) 

kt = (1 - 6)kt + Ztit (21) 

Xt = P It-i + Et, t - i.i.d. N(1 - pi, ao) (22) 

Zt = P2Zt-1 + Vt, Vt i.i.d. N(1 - P2, oa) (23) 

where ct is period t consumption, it is period t investment, kt is the period t capital stock, Xt 
is the period t 'technology' shock, and zt is the period t shock to the productivity of new 
investment goods. 12 The innovations Et and vt are mutually uncorrelated at all leads and lags. 
The nine structural parameters are: 

a: capital's share of income (0 < a < 1) 
o: discount factor (0 < o < 1) 
A: scaling factor in production function (A > 0) 
6: rate of depreciation of capital stock (0 < 6 < 1) 
y: risk-aversion parameter (coefficient of relative risk aversion = 1 - r > 0) 
pt: persistence parameter in 'technology' shock process (I pi I < 1) 
ac: standard deviation of innovation in 'technology' shock process 
P2: persistence parameter in 'investment' shock process (j P2 1 < 1) 
al: standard deviation of innovation in 'investment' shock process 
This real business cycle model is similar to the one studied in Greenwood et al. (1988). 

The solution to this real business cycle model consists of a decision rule expressing the 
optimal choice for it as a function of the period t state variables kt, Xt, and Zt. Since the 
decision rule for thi les problem does not possess a known closed-form expression, a linear 
approximation to the decision rule is computed using the linear-quadratic methodology 
introduced by Kydland and Prescott (1982) (see also Christiano, 1990; McGrattan, 1990). The 
linear approximation to the decision rule takes the form: 

it = bo + blkt + b2Xt + b3zt (24) 

where the decision rule coefficients bo, bi, b2, and b3 are complicated non-linear functions of 
the structural parameters.13 Given initial conditions ko, Xo, and Zo and sequences of 
innovations et} t= 1 and {t} t = 1, recursive iterations on the nonlinear laws of motion (20)-(24) 
can be used to yield time series for output wt A Ak Xt, investment it and other variables of 
interest. 

For the Monte Carlo study whose results are reported below, the observed sample size T is 
set at 150. The structural model is simulated 1000 times, yielding 1000 'observed' time series 
txt) t=o, where xt = [log wt log it]'. To reduce computational burden in the Monte Carlo 
experiments, three of the nine structural parameters (in particular, p2, a,, and 7) are considered 
known, while the remaining six structural parameters (in particular, 3= [A 6 P1 ae W o]') 
are considered unknown. For each of the observed series [xt), the six unknown structural 

12The laws of motion (22) and (23) do not rule out the possibility of negative realizations for the shocks Xt and zt. 
For empirically plausible values of pi, Ua, P2, and a,, however, the probability of a negative realization for either X, 
or Zt is essentially zero. 
13The estimation methods developed in this paper do not require that the decision rule be linear. For the structural 
model studied here, however, linear decision rules are both highly accurate and easy to compute using the 'doubling' 
algorithm described in McGrattan (1990). 
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parameters are estimated using both the SQML and EMSM estimation strategies. The 
simulated sample size is set at 1500, so that the constant r = SI/T= 10. To minimize the effects 
of initial conditions, observed samples of length T+ 200 and simulated samples of length 
S + 200 are simulated using initial conditions set at deterministic steady state values; the first 
200 data points of each series are subsequently discarded. 14 

The (misspecified) conditional density f which forms the basis of the quasi-log-likelihood 
function corresponds to a bivariate vector autoregression with one lag for the vector 
Xt = [log wt log it]': Xt = C[1 xt'-i]' + rt, where C is a 2 x 3 matrix and the i.i.d. vector of 
innovations rt is assumed to be normally distributed with covariance matrix DD', where D is 
lower triangular. In particular, 

f(xt,xt-1; 0) -1/2 log(det(DD'))- 1/2rt'(DD')-1t (25) 

The 9 x 1 vector of econometric parameters 0 consists of the six elements of C as well as the 
three non-zero elements of D. 

The 'true' values of the structural parameters to be used in the Monte Carlo study are listed 
in Table I. These parameters were selected by estimating the parameters of the real business 
cycle using observed US time series, with the quasi-log-likelihood function defined in terms of 
the conditional density f given by equation (25). Section 5, to which the reader is referred for 
further details, estimates the parameters of the real business cycle model using a conditional 
density f with an additional lag. As mentioned previously, the parameters p2, ff,, and ' are 
considered known in the Monte Carlo study, while the remaining six parameters are regarded 
as unknown. 

Implementing the optimal EMSM estimator requires the choice of an estimator for the 
optimal weighting matrix W*=A(0o)B(Oo)-lA (o). As discussed in Section 2.3, 
AT(OT) - T-1 V2LT({Xt; OT) consistently estimates A (0o). B(Oo) can be consistently estimated 
in a variety of ways (see, for example, Andrews, 1991). The present Monte Carlo study uses 
the estimator suggested by Newey and West (1987). Define 

M 

BT(O) --o(0) + I (1 -k/(M+ 1))(rk() + fk(O)') (26) 
k=l 

where f'k(9) _ T-1 LJt=k+l Vlog f(xt,...,xt-p; 0) Vlog f(xt-k,...,Xt-k-p; 0)'. Then BT(T) 
consistently estimates B(Oo). The number of lags, M, used to construct the estimate of B(0o) 
is set at 10. 

Table II summarizes the results of the Monte Carlo study. The EMSM estimator failed to 
converge for two of the 1000 'observed' time series. These two draws were discarded, leaving 
a sample of size 998 for both the SQML estimator and the EMSM estimator. Table II gives 

Table I. 'True' values of structural parameters for the Monte Carlo study 

a wc A 6 7 Pi ae P2 av 

0-5579 0-8456 1.9269 0-07234 0.2123 0.9182 0'01096 0.8363 0-04624 

4 Duffie and Singleton (1988) argue that this procedure does not remove dependence on initial conditions, so that 
simulated time series are non-stationary, thereby violating Assumption 1. Duffie and Singleton (1988) provide a more 
general set of conditions under which simulated time series are asymptotically stationary, thereby guaranteeing 
consistency and asymptotic normality of simulation estimators. 
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the sample mean and sample standard deviation of each set of estimates, as well as the 
estimated bias and the square root of the estimated mean squared error. The table shows that, 
for both methods, estimates of 6, ae, ca, and w display very little bias. Estimates of A, on the 
other hand, are biased upwards (by approximately 8% for SQML and by approximately 11% 
for EMSM), while estimates of pi are biased downwards (by approximately 3% for both 
SQML and EMSM). 

Table II also confirms that the EMSM estimator does not perform as well as the SQML 
estimator in samples of the size typically encountered in macroeconomics. In particular, for 
all six parameters, the estimated standard errors of the EMSM estimates are larger than the 
estimated standard errors of the SQML estimates. The ratio of root mean squared error for 
the EMSM estimates to root mean squared error for the SQML estimates ranges from 1 063 
(for w) to 1-129 (for a,). Although the improvement of the SQML estimates over the EMSM 
estimates in terms of mean squared error is modest, the SQML estimates nonetheless do have 
greater precision in the 'mean squared error' sense) in observed samples of size 150. 15 

5. AN EMPIRICAL APPLICATION OF SQML 

This section uses the SQML estimation strategy to estimate and test the real business cycle 
model described by equations (20)-(24) in Section 4. The conditional density function e which 
underlies the quasi-log-likelihood function is chosen to be a bivariate vector autoregression 
with two lags for the vector xt = [log wt log it]', where log wt is the detrended log of output 

Table II. Monte Carlo results: summary statistics for SQML and EMSM estimates 

A 6 Pi c a wo 

'True' values of structural parameters 
1-9269 0-07234 0-9182 001096 05579 0-8456 

SQML estimates of structural parameters 
Mean 2-0797 0-07290 0-8942 0.01094 0 5636 0-8455 
Bias 0-1528 0-00056 -0-0240 -0-00002 0.0057 -0-0001 
Std dev. 0.9149 0-01140 0.0649 0-00072 041324 0.0488 
MSE"12 0-9276 0-01141 0.0692 0-00072 0*1325 0.0488 

EMSM estimates of structural parameters 
Mean 2-1322 0-07199 0-8888 0.01088 0.5576 0.8502 
Bias 0-2053 -0-00035 -0 0294 -0-00008 -0.0003 0 0046 
Std dev. 1-0184 0.01256 0-0719 0-00081 041453 0-0516 
MSE"12 1.0389 0.01257 0.0777 0-00082 041453 0.0518 

MSE1EM SMIMSESQML 
1-120 1-102 1*122 1 129 1 096 1-063 

Notes: These results are based on 998 draws in observed samples of size 150. The first row gives the values of the 
structural parameters used to generate the 'observed' series. Rows labelled 'Mean' give the sample mean of the 998 
point estimates. Rows labelled 'Bias' give the estimated bias, where est. bias - sample mean - true value. Rows 
labelled 'Std Dev.' give the sample standard deviation of the 998 point estimates. Rows labelled 'MSE1/2' give the 
square root of the estimated mean squared error (MSE), where estimated MSE - (est. bias)2 + (std dev.)2. The last 
row of the table gives the ratio of MSE1/2 for the SQML estimator to MSE1/2 for the EMSM estimator. 

15 
Clearly, these results are specific to the application studied here. Comparisons of mean squared error for SQML 

and EMSM in other applications must await further Monte Carlo studies. 
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and log it is the detrended log of investment: xt = C[1 Xt-i Xt-2I' + -rt, where C is a 2 x 5 
matrix and the i.i.d. vector of innovations -rt is assumed to be normally distributed with 
covariance matrix DD', where D is lower triangular. In particular, 

f(xt, xt-1, Xt-2; 0) -1/2 log(det(DD'))- 1/2t i(DD')-lt 

The 13 x 1 vector of econometric parameters 0 consists of the ten elements of C as well as the 
three non-zero elements of D. 

The observed data consists of US time series for log per capita GNP and log per capita 
investment for the time period 1947:1 to 1988:4.16 Following Perron (1989), the time series are 
detrended by fitting a deterministic linear time trend to the logged series, with a structural 
break in the slope coefficient in the first quarter of 1973. 

Since two lags are used as initial conditions in the VAR(2), there are 162 observations on 
the vector Xt. The simulation sample size, S, is set at 2000, so that r = 2000/162 = 12-3.17 The 
use of simulations in the estimation process therefore leads to an increase in (asymptotic) 
standard errors of about 4% (= (1 + - 1)1/2). For the calculation of (1) the estimated standard 
errors of the SQML estimates, (2) the test statistic QT defined by equation (12), and (3) an 
estimate of the matrix A defined in Proposition 2, the matrices A (80) and B(Oo) are consistently 
estimated as described in Section 4. The number of lags used in the estimation of B(Oo) is set 
at 25. The matrix Vhs(OS) serves as a consistent estimate of J(fo). 

Table III tabulates the point estimates for the structural parameters, together with estimated 
standard errors. Unlike other empirical studies of real business cycle models (see, for example, 
Altug, 1989; Christiano, 1988), the present empirical study estimates all nine of the model's 
structural parameters, including the discount rate w an the erate of depreciation 6. The 
estimates of a (capital's share of income), o, and 6 (respectively, 0*76, 0 79, and 0 07) differ 
substantially from values that are typically considered 'reasonable'. Hansen (1985), for 
example, fixes a at 0-36, w at 0-99, and 6 at 0-025. The standard errors of the estimates for 
a, )o, and 6, however, are quite large. At the 1% significance level, one would not be able to 
reject any of the null hypotheses Ho: a = 0 36, Ho: w = 0-99, or Ho: 6 = 0-025. A Wald test 
of the null hypothesis Ho: a = 0-36, w = 0-99, 6 = 0 025, however, leads to a rejection at the 
1% significance level. The null hypothesis Ho: a = 0-36, 6 = 0-025 is also rejected at the 1% 
level. The statistically significant divergence between the estimated values and the 'reasonable' 
values for these parameters probably reflects the poor fit of the structural model with observed 
data, as discussed below. 

Table III. SQML estimates of structural parameters using VAR(2) 

<x X A 6§ Pi ae P2 av 

0-7585 0-7945 0-9620 0-06965 -0-06920 0-8961 0-01023 0-7851 0-05240 
(0-3798) (0-0681) (1-4569) (0-02961) (0-55375) (0-0849) (0-00078) (0-0689) (0-00889) 

Notes: The first row of the table contains point estimates. The second row of the table contains estimated standard 
errors. 

'60utput per capita is defined as US GNP in 1982 dollars (Citibase variable GNP82) divided by the US population 
over the age of 15 (the sum of Citibase variables MPOP and FPOP). Investment per capita is defined as US gross 
private domestic investment in 1982 dollars (Citibase variable GI82) divided by the US population over the age of 15. 
All series are seasonally adjusted and detrended as described in the text. 
17 As in the Monte Carlo study reported in Section 4, to minimize the effects of initial conditions, simulated time series 
of length S + 200 are generated using initial conditions set at deterministic steady-state values; the first 200 data points 
are subsequently discarded. 
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Table IV. Estimated VAR(2) parameters using observed and simulated data 

Output equation Investment equation 

Parameter Observed Simulated Observed Simulated 

Constant 0.0951 0-0476 - 01404 - 00948 
0-0564 0-0092 0-2816 0.0511 

Once-lagged output 1.4751 1.3037 1.7045 0 7444 
0-0907 0-0326 0.5015 0-1874 

Twice-lagged output - 05108 - 03231 -1-5808 - 06561 
0-0964 0-0324 0-4457 0-1847 

Once-lagged investment -0-0244 -0-0365 0-8678 0-7386 
0-0178 0-0066 0-0682 0-0383 

Twice-lagged investment 0*0117 0 0369 -0-1285 0 0673 
0-0146 0-0063 0-0633 0-0386 

Parameter Observed Simulated 

dim 0.0099 0.0104 
(0.0007) (0.0002) 

d2l 0.0388 0.0425 
(0.0040) (0.0011) 

d22 0.0329 0.0340 
(0.0036) (0.0006) 

Notes: The top and bottom numbers in each cell are, respectively, the point estimate and the estimated 
standard error. Misspecification-robust standard errors are computed using the asymptotic result in 
equation (9). The number of lags M used to compute an estimate of B(Oo) is 25 for the observed data 
and 100 for the simulated data. The parameters dil, d2i, and d22 are the non-zero elements of the 
Choleski decomposition D of the error covariance matrix (see Section 5). The observed sample size is 162 
(see Section 5 and footnote 14 for a description of the data). The simulated sample size is 2000; the 
structural parameter estimates contained in Table III are used to generate the simulated data. 

Table IV tabulates two sets of estimated VAR(2) parameters, one set for the observed data 
and one set for the simulated data (given the estimated structural parameters in Table III). The 
vector of differences between the 'observed' and 'simulated' VAR(2) parameters is a key 
component of the statistic QT that is used to test the goodness-of-fit of the real business cycle 
model. For this estimation problem, QT = 119 4. Since four (=n - k = 13 - 9) overidentifying 
restrictions are imposed in estimating the structural parameters, the matrix A defined in 
Proposition 2 has four non-zero eigenvalues. The estimated eigenvalues of A (i.e. the 
eigenvalues of a consistent estimate of A) are: 3-908, 3-438, 1 914, and 1 398. As discussed 
following Proposition 2, these estimated eigenvalues can be used to obtain an estimated 
p-value corresponding to the computed value of QT. In particular, the distribution of 
z - i4= Xic2, where X, i = 1,2,3,4, are the estimated eigenvalues of A and ci - i.i.d.N(O, 1), 
i= 1,2, 3, 4, is approximated by generating 150,000 i.i.d. draws for z. The largest of these 
draws is 107 5, which indicates that the p-value associated with the computed value of QT is 
essentially zero. In other words, the structural model is strongly rejected as an adequate 
representation of the data-generating process of the observed time series. 18 

18 This conclusion hinges on the assumption that the asymptotic distribution provides a reliable approximation to the 
distribution of the test statistic QT in small samples. Deviations between the asymptotic and small-sample distributions 
could lead to different conclusions. 
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6. CONCLUSION 

This paper develops two new methods for conducting formal statistical inference in fully 
specified dynamic structural economic models. The methods yield consistent and 
asymptotically normal estimates of structural parameters and can be used to test the goodness- 
of-fit of the structural model. They require very little analytical tractability, relying instead on 
numerical simulation of the structural model for different values of the structural parameters. 
The two methods can therefore be applied in a wide variety of interesting but analytically 
intractable dynamic economic models. 

This paper compares the small-sample performance of the two methods by implementing 
them in a Monte Carlo study involving the estimation of the parameters of a simple real 
business cycle model. This Monte Carlo study shows that, in samples of the size typically 
encountered in macroeconomics, the simulated quasi-maximum likelihood (SQML) estimator 
has smaller mean squared error than the extended method of simulated moments (EMSM) 
estimator, despite the fact that the EMSM estimator is, except in special cases, asymptotically 
more efficient than the SQML estimator. This finding suggests that, in cases where the 
econometrician can choose a quasi-likelihood function that provides a good approximation to 
the true but unknown likelihood function, the SQML estimator can lead to an improvement 
in small sample performance. 

Finally, this paper uses the SQML estimation sation egy to estimate the parameters of a real 
business cycle model similar to the one studied by Greenwood et al. (1988). All nine of the 
model's parameters are estimated, including the time discount parameter and the rate of 
depreciation. The empirical analysis strongly rejects the null hypothesis that the real business 
cycle model considered here is the data-generating process for observed post-war US time series 
for output and investment. 

TECHNICAL APPENDIX 1 

This appendix demonstrates the consistency of 8s for O8 and proves the asymptotic result in 
equation (8). In the light of Assumpton 8, similar arguments can be used to demonstrate the 
consistency of wT for 0o and to prove the asymptotic result in equation (9). These results are 
not new to this paper. Similar results (under slightly different conditions) have appeared, for 
example, in Domowitz and White (1982). 

Throughout this Appendix I,(0; 0) denotes log f(ys(3), ...ys,_p(o); 0) and Ls(3; 0) denotes 
ES=i s(f; 0). The following preliminary results will prove useful. By straightforward 
modifications of the arguments in Tauchen (1985), it can be shown that Assumption 4 implies 
that Els(3; 0) and E V2ls(f3; 0) both exist and are continuous in 0. Moreover, S-lLs(13; 0) and 
S~1 VoLs(o8; 0) converge almost surely uniformly in 0 to, respectively, Els(fl; 0) and 
E V2ls(g; 0). Let 0s*) be any sequence satisfying plim 0* = 0,. Then, given the above results, 
Theorem 4.1.5 in Amemiya (1985) implies that plim S-1 VoLs(; 0s*) = E V/ls(0; 9^) 

i A,B(8). 
First, we show consistency of 68 for 0,. By assumption, the parameter space C is 

compact. By Assumption 3, the measurable function Ls(3; 0) is continuous in 0. As shown 
above, S- Ls(G; 0) converges in probability uniformly in 0 E 0 to Els (3; 0). Furthermore, 
Els(3; 0) is continuous in 0. Finally, by Assumption 5, Els(f; 0) is uniquely maximized at 0,. 
Thus the conditions of Theorem 4.1.1. in Amemiya (1985) are satisfied, implying that 
As = arg maxo Ls(1; 0) converges in probability to 0g. 

Now we will show asymptotic normality. By definition, VeLs(3; 8s) = 0. A first-order Taylor 
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series expansion about 0, yields: VoLs(13; O0) + V8Ls(83; 0S)(Ps - O0) = 0, where 0 lies on the 
line joining 0O and #s. (To be precise, Os should vary from row to row of V2Ls(,3; -), but this 
subtlety makes no difference asymptotically.) Rearranging yields: 

S/2(8s - 0)=- (S-1 VLs(o3; OS))-~1S1/2 VoLs(t; 0)) (27) 

Since plim so = 0( implies that plim 0 *= 00, plim S-1 V2Ls(3; 0') = A(0o). By Assumption 6, 
S-1/2 VoLs(3; 03) -N(O, B((0)). Applying Slutsky's theorem to the right-hand side of 
equation (27) yields the asymptotic result in equation (8) (note that A,3(O) is invertible by 
Assumption 7). 

TECHNICAL APPENDIX 2 

This appendix provides proofs of Propositions 1-5. Throughout this Appendix lt(O) denotes 
log f(yt, ...,t-p; 0) and LT(0) denotes 2T= I t(0) Also, as in Appendix 1, Is(3; 0) denotes 
log f(ys(1), ...,ys-p(0); 0) and Ls(t; 0) denotes Es=1 Is(1; 0). Recall, too, that, by virtue of 
Assumption 8, versions of Assumptions 3-7 hold for the functions LT(8) and It(8) as well as 
for the functions Ls(t,; 0) and Is(B; 0). 

Proof of Proposition 1 

Let fo E E, an open subset of C (the existence of such an E follows from the fact that fto 
is an interior point of C). Since S= rT, r > 0 fixed, it follows from the consistency of 6s for 
0( that plimrT-oo s = 0 = h(13). Using arguments analogous to those in Appendix 1, it can 
be shown that T-'LT(O) converges in probability uniformly in 0 to Elt(O) = G(O), where 
G(O) is continuous in 0. By Theorem 4.1.5 in Amemiya (1985), it follows that 
plimr-oo T-'LT(O) = Elt(h(h)) = G(h(1)). By Assumption 5, h(1) = arg maxe F(1, 0), 
where F(3, 0) = Els(1; 0). Under the null hypothesis (Assumption 2), 

G(h(13)) = Els(3o; h(1)) = F(1o, h(13)) 

Let 3* = arg max, G(h(1)) = arg max, F(13o, arg maxe F(1, 0)). Since h(13) is invertible in a 
neighbourhood of /o (by Assumption 9(a)), 0 * = o. 

The preceding argument shows that the function T-~LT(hs(13)) (which is measurable by 
Assumption 4) converges in probability to a non-stochastic function G(h(13)) which is 
maximized at fo under the null. By Assumption 10(1), this convergence is uniform in 13 in a 
neighbourhood of 10. By Assumption 3, LT(0) is continuously differentiable in 0; by 
Assumption 9(1), hs(1) is continuously differentiable in 1 for fEN(1o), an open 
neighbourhood of 1o. It follows that LT(hs(13)) is continuously differentiable in 13 for 
1 E N(1o). The conditions of Theorem 4.1.2 in Amemiya (1985) are therefore met, implying 
that there exists a consistent root iT of the equation V(LT(hs(8)). 

Now we will establish the asymptotic normality of T1/2(rT - 0o). By definition, /T satisfies 
JS(MT)' VoLT(hS(T))= 0, where Js(1) -Vhs(8). (By Assumption 9(1), Js(t) exists in a 
neighbourhood N(13o) of So. Since plim =T = 1o, the probability that r3T% N(1fo) goes to 0 as 
T--oo. Hence Js(MT) exists for sufficiently large T.) A first-order Taylor series expansion about 
fo yields: 

Js(flo)' VLT(hs(flo)) + DT(fT)(T- flo) = 0 (28) 

where DT(T8) = CT(3) + JS(1)' VLT(hs(1))(Js(1), CT(a) is a k x k matrix with i,jth 
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element cij(B) = VoLT(hs(())' 82hs(3)/aO i aOj, and T3lies on the line joining i0 and r (more 
precisely, each row of Dr(*) is evaluatedt t a different ,T* each of which lies on the line joining 
83o and /IT). Rearranging equation (28) yields: 

T1/2(T - T3o) = -(T-lDT(T)) 'Js(o)' T-/2 VLTr(hs(1o)) (29) 

By Assumptions 10(2) and 10(5), plim T- cij3() = E[Volt(h(3o))] a2h(3o)/lai 33j, since 
plim implies thplim llimP T= 18o. Recalling that 8o=h(Q3o) under the null, 
E Velt(h(3o)) = VElt(o) = 0 since, by Assumption 5, 0o maximizes Elt(O). (By Corollary 5.9 
of Bartle, 1966, Assumption 4 guarantees that interchanging the integration and differentiation 
operators in the preceding derivation is legitimate.) Thus plim T- CT(r ) = 0. 

Since plim T3 = fo, Assumptions 10(3) and 10(4) imply that 

plim Js(.T)' [T-1 V2LT(hs(O*T))]Js(T) =J(f3o)' [E V2lt(h(3o))] J(o) =J(13o)'A(Go)J(3o) 

since 0o = h (3o) under the null. Thus it has been established that 

plim(T- 1DT('))- 1Js( S o ) = (J(fo)' A (0o)J(o))- 1J(lo)' 

(Note that plim Js(3o) = J(fo) by Assumption 10(4) and that J(Oo)'A(Bo)J(3o) is invertible 
since (1), A(0o) is invertible by Assumption7 and (2), J(fo) is of full rank by 
Assumption 9(2).) 

Now we will work out the asymptotic distribution of T-1/2 VOLT(hs(Qo)). A first-order 
Taylor series expansion about h(1o) gives: 

T-1/2 VoLT(hs(fo)) = T-1/2 VoLr(h(o)) + r1/2(T-1 V2LT())S1/2(hso) - h(o)) (30) 

where TF lies on the line joining h(3o) and hs(io) and S= T. By Assumption6, 
T-1/2 VoLT(h(3o))= T-1/2 VoLr(o) - N(O,B(0o)). Next, note that since plim hs()o)= 
h(o) =0o under the null, plim T= 0o. Hence, by arguments given in Appendix 1, 
plim T- V2 LT(T) = A (0o). 

Using the result in equation (8), S112(hs(Go)- h(3o)) - N(0,A (Oo)- B(Go)A (o)-1), since 
Ago (h(0o))= A(0o) and B,so(h(3o)) = B(0o) under the null. By Slutsky's theorem, the second 
term on the right hand side of equation (30) therefore converges in distribution to 
N(O, r-1B()o)). Since VoLT(h (0o)) and (hs(0o) - h (3o)) are independent by construction, the 
right-hand side of equation (30) converges in distribution to N(0, (1 + r- )B(0o)). By Slutsky's 
theorem, the right-hand side of equation (29) therefore converges in distribution to 

N(0, (1 + r-1)(J(BIo)' A (0o)J(/o)) -1J(Bo) 'B(o)J(io) (J(fo)' A (0o)J(/o))-) 

thereby establishing the result in equation (11). 

Proof of Proposition 2 

Lemma: Suppose Y- N(0, E), where Y is n x 1 and E has rank n - k, 0 < k < n. Then the 
distribution of Y'Y is identical to the distribution of ,i cx,iz,2, where woi, 
i = 1,..., n - k are the non-zero eigenvalues of E and zi - i.i.d. N(0, 1), i = 1,2, ..., n - k. 
Proof of Lemma: Let C be the orthonormal matrix of eigenvectors of E. Let Q1 be a diagonal 
matrix whose first n - k diagonal elements are the non-zero eigenvalues of E and whose last 
k diagonal elements are equal to 0; let 1/2 and Q-1/2 be defined in the obvious way. Define 
Z = ~- /2C' Y. Since C'XC = Q, Z - N(O, K), where K is a diagonal matrix whose first n - k 
diagonal elements are equal to 1 and whose last k diagonal elements are equal to 0. Letting 
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Zi denote the ith element of the vector Z, it is clear that zi - i.i.d. N(0, 1), i = 1, ..., n - k. Note 
that, since C'C = I, where In is the n x n identity matrix, (Q 1/2Z), (2 1/2Z) = Y' Y. At the same 
time (Q1/2Z)'(Q1/2Z) can be written En-k o0iZi, where the wi's are the non-zero eigenvalues 
of Q, thereby proving the lemma. 

Now we will prove the result in Proposition 2. A first-order Taylor series expansion about 
Bo yields: 

T1/2 (T- hs(T)) = T1/2(T-- hs(3o)) - Js() T12 (T-- o) (31) 

where 03, which varies from row to row of Js('), lies on the line joining fT and fo. Since 
plim rT = 3o, plim T3= 1BO. Thus, by Assumption 10(iv), plim Js(T3) = J(fio). Note that 

T1/2 (T- hs(fo)) = T1/2(OT- Go) - -1/2S1/2(hs(Go) - Go) (32) 

By the result in equation (9), the first term on the right-hand side of equation (32) converges 
in distribution to N(O, A - BA -), where A denotes A (0o) and B denotes B(0o). By the result 
in equation (8), the second term on the right-hand side of equation (32) converges in 
distribution to N(O, -1A - 1BA -). Since the two terms on the right-hand side of equation (32) 
are independent, it follows that T1/2 (T- hs(0o)) -* N(O, (1 + r-1)A - BA1). 

Let J denote J(13o). Since 

T1/2(T- - o) - N(, (1 + -1)(J'AJ)- J'BJ(J'AJ)1) 

it follows that T'/2(T- ft) and (J'AJ)-lJ'AT1/2(rT-h s(Fo)) have the same limiting 
distribution. Returning to equation (31), these results show that T1/2 (OT- hs(T)) has the 
same limiting distribution as (In - J(J'AJ)-1J'A) T1/2 (T- hs(1o)), where I, is the n x n 
identity matrix. This random variable in turn converges in distribution to 

N(0, (1 + r-1)A1 VAV' A-1) 

where B = VV' and A is defined in the statement of Proposition 2. 
Define ZT- (1 + r-1)-12(A T1lT)1T (T -hs(rT)), where AT, VT, and BT- VTVT are 

consistent estimates of, respectively, A, V, and B. Note that ZZT = QT, where QT is the test 
statistic defined by equation (12). Moreover, using the result at the end of the preceding 
paragraph, ZT-*N(O, A). The limiting distribution of QT is therefore identical to the 
distribution of Y'Y, where Y-N(0, A). Thus, by the Lemma stated above, the limiting 
distribution of QT is identical to the distribution of E-pl-k Xc2, where the Xi's are the n - k 
non-zero eigenvalues of A and ci - i.i.d. N(0, 1). 

Proof of Proposition 3 

First we will show the consistency of fiT. Let ZT(f3) = (OT - hs(03))' WT(T - hsQ()). Note first 
that plim ZT(8) = (8o - h (3))' W(Oo - h (P)). Moreover, Assumption 10(4) guarantees that this 
convergence is uniform in 3. By Assumption 9(1), ZT(1) is a continuously differentiable 
function of 0 in an open neighbourhood N(3o) of fo. Define B* - arg min, Z(l). From the 
first-order conditions to this problem, B* must satisfy o = h(0*), or /*= h-1(0o). 
(Assumption 9(2) guarantees that, in a neighbourhood of Bo, h-1 is well defined.) Under the 
null hypothesis, 0o = h (fo), so that fB* = o. Since fio is an interior point of C by assumption, 
there exists an open subset E of C such fo E E. The conditions of Theorem 4.1.2 in Amemiya 
(1985) are therefore satisfied, implying that there exists a consistent root of the equation 
VZT(r) = 0. 

Now we will show asymptotic normality. By definition, the EMSM estimator ST satisfies: 
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JS(GT)' WT(T- hS(Tr)) = 0. A first-order Taylor series expansion about fo yields: 

Js(3o)' WT(#T- hs(3o)) + DT(tD)(T- fo) = 0 (33) 

where DT(IT) = -Js(T3)' WTJS(fT3) + CT(3T), CT($l) is a k x k matrix with i,jth element 
Cij(3) = (#T- hs(f))' WT 2hs(3)laOi aOj, and 3T, which varies from row to row of DT(-), lies 
on the line joining IT and f3o. Since plim fl3= f3t, plim(Or- hs(OfT)) =0 under the null 
hypothesis. Using arguments analogous to those used in the proof of Proposition 1, it is clear 
that plim cij (T) = 0, so that plim CT(fT) = 0. It follows that plim DT(IT) = J(o)' WJ(fo) 
(plim Js(fT) = J(3o) by Assumption 10(4) and plim WT = W by construction). 

Rearranging equation (33) yields: 

T1/2 (T- 1o)= DT() -Js(3o)' WTT/2 (T- hs(l3o)) (34) 

As shown in the proof of Proposition 2, 

T1/2 (T - hs(fo)) - N(O, (1 + T-1)A (0o)- 1B(o)A (o) -1) 

Since plim DT(T) - Js(fo)' WT = (J(O)' WJ(fO))ftJ(go)' W, applying Slutsky's theorem to 
the right-hand side of equation (34) yields the result in equation (15). 

Proof of Proposition 4 

To simplify notation let A denote A (0o), let B denote B(0o), and let J denote J(fo). We will 

show, first, that D (J'AJ)-1J'BJ(J'AJ)1 - (J'AB-1AJ)1 is positive semi-definite, and, 
second, that the rank of D = min(k, n - k). Since D is k x k, this implies that D is positive 
definite if n- k > k. D is positive semi-definite if and only if 
E = J'AB1-AJ- J'AJ(J'BJ) -J'AJ is positive semi-definite. Write E as follows: 

E= J'A(P-l)'(In- Q(Q'Q)-lQ')P-1AJ 

where B = PP', Q = P'J, and In is the n x n identity matrix. The symmetric idempotent matrix 
(In - Q(Q'Q)-Q') is positive semi-definite with rank n - k. E is therefore positive semi- 
definite. The matrices D and E have the same rank. Since E is k x k, E has rank k if k < n - k 
and has rank n- k otherwise. 

Proof of Proposition 5 

Recall that tf is the optimal EMSM estimator, i.e. the EMSM estimator that results when the 

asymptotic weighting matrix W= W* (A-1BA-)-1 (A denotes A(0o) and B denotes 

B(0o)). A first-order Taylor series expansion about fo yields: 

T1/2(OT- hs(3)) = T112(OT- hs(o)) - Js()T (r- 0o) (35) 

where BT, which varies from row to row of Js('), lies on the line joining AT and f0. Since 

plim 3f= ,0, plim /3T= o0. Thus, by Assumption 10(4), plim Js(t) = J(fo). 
As shown in the proof of Proposition2, T1/2(OT-hs(13o)) -N(O,(1 + 1)(W*)-1). 

Letting J denote J(gfo), it is clear from Proposition 3 that T1/2 ( - 0go) has the same limiting 
distribution as (J'W*J)-'J'W*T1/2(OTr-hs(fo)). Returning to equation (35), these results 
show that T1/2(OT- hs(fT)) has the same limiting distribution as 

(In - J(J' W*J) -J' W*) T1/2 (T- hs(flo)) 
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This random variable in turn converges in distribution to N(O, (1 + r-1)(V )- Q V-1), where 
W* = VV' and Q = I, - V' J(J'W*J) -J' V. 

Define GT= (1 + r-1)- 1/2 V T1/2(T- hs()) and note that GiGT= ZT, where Z is the test 
statistic defined in Proposition 5. Using the result at the end of the preceding paragraph, 
GT -+ N(O, Q). The limiting distribution of GT is therefore identical to the distribution of Y' Y, 
where Y- N(O, Q). Thus, by the Lemma stated above, the limiting distribution of GT is 
identical to the distribution of Li-k 00iC2, where the wi's are the n-k 
non-zero eigenvalues of Q and c - i.i.d. N(O, 1). Since ft is an idempotent matrix of rank 
n - k, its non-zero eigenvalues are all equal to 1. Hence GT~ x2(n - k). 
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