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SUMMARY

This paper develops two new methods for conducting formal statistical inference in nonlinear dynamic
economic models. The two methods require very little analytical tractability, relying instead on numerical
simulation of the model’s dynamic behaviour. Although one of the estimators is asymptotically more
efficient than the other, a Monte Carlo study shows that, for a specific application, the less efficient
estimator has smaller mean squared error in samples of the size typically encountered in macroeconomics.
The estimator with superior small sample performance is used to estimate the parameters of a real
business cycle model using observed US time-series data.

1. INTRODUCTION

This paper develops and implements two new methods for estimating the parameters of fully
specified structural dynamic economic models, such as, for example, nonlinear stochastic
equilibrium models of the business cycle. These models are typically difficult to estimate using
standard methods because of analytically intractable likelihood functions and/or the presence
of unobservable variables. A key feature of the two methods developed in this paper is that
no analytical tractability is required: one need only be able to simulate numerically the
behaviour of the structural model for different values of the structural parameters. This
feature of the two methods obviates the need either for an analytically tractable likelihood
function or for analytical expressions of population moments as functions of structural
parameters. Moreover, these methods circumvent the problem of unobserved or poorly
measured time series by allowing one to focus on the marginal distribution of well-measured,
observed time series.

This paper first develops the asymptotic properties of the two methods. It shows that both
methods yield consistent and asymptotically normal estimates of the true structural
parameters. In addition, both methods produce test statistics that can be used to evaluate the
goodness-of-fit of the structural model. Next, this paper uses Monte Carlo methods to
compare the small-sample performance of the two estimators in a specific application involving
the estimation of the parameters of a real business cycle model. Although one of the methods
is asymptotically more efficient than the other, the Monte Carlo study shows that, in samples
of the size typically encountered in macroeconomics, the mean squared error of the more
efficient estimator is larger than that of the less efficient estimator. Finally, this paper uses the
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estimator with a smaller mean squared error to estimate the parameters of a real business cycle
model using observed data.

Vector autoregressions have proven to be a useful tool for exploring the dynamic interaction
of multiple time series. Accordingly, both the estimation methods considered in this paper
focus on the parameters of a potentially misspecified vector autoregression (VAR) that is used
to summarize the statistical properties of both observed and simulated time series. The key idea
of both methods is to estimate the structural parameters by matching as closely as possible
estimated VAR parameters calculated from, respectively, observed and simulated time series. !

The two methods differ in the choice of a metric for measuring the ‘distance’ between
observed and simulated VAR parameters. The first method (called ‘extended method of
simulated moments’, or EMSM) is a generalization of the method developed in Lee and
Ingram (1991) and Duffie and Singleton (1988). Following Hansen (1982), the EMSM approach
measures the distance between the ‘observed’ and ‘simulated’ VAR parameters by forming a
quadratic form in a vector of differences between the two sets of parameters. The EMSM
estimator of the structural parameters minimizes this quadratic form. The optimal (variance
minimizing) weighting matrix is the inverse of the asymptotic covariance matrix of the VAR
parameters. The consistent estimation of the optimal weighting matrix must therefore take into
account the potential misspecification of the VAR as a representation of the true data-
generating process.

The second method (called ‘simulated quasi-maximum likelihood’, or SQML) uses the
likelihood function associated with the VAR as a quasi-likelihood function for the structural
model. The SQML estimator of the structural parameters maximizes this quasi-likelihood
function, subject to the ‘cross-equation’ restrictions that the structural model places on the
VAR parameters. Although the SQML estimator is consistent despite the misspecification of
the quasi-likelihood function, the SQML estimator is, except in special cases, asymptotically
less efficient than the EMSM estimator.

Since the laws of motion of many non-linear structural time series models (e.g. real business
cycle models) are often well approximated by linear laws of motion, the loss of efficiency
associated with an SQML estimator that is defined in terms of a linear model such as a VAR
is likely to be small in many circumstances. Moreover, the SQML estimator does not require
the estimation of an optimal weighting matrix prior to estimation of structural parameters,
suggesting that the SQML method might have better finite sample properties than the EMSM
method. A Monte Carlo study consisting of 1000 replications of each estimator in samples of
size 150 bears out this intuition. In particular, in a real business cycle model with six unknown
structural parameters, the SQML estimates of these parameters have smaller mean squared
error than their EMSM counterparts.

This paper is organized as follows. Section 2 develops the asymptotic properties of the
SQML estimator and Section 3 the asymptotic properties of the EMSM estimator. Section 4
compares the finite sample performance of the two methods in a Monte Carlo study. Section 5
uses the SQML estimator to estimate the parameters of a real business cycle model using US
time-series data. Section 6 concludes. Proofs of all propositions are gathered in Technical
Appendices 1 and 2.

! More generally, any analytically tractable parametric econometric model can serve as a ‘window’ through which to
view the observed and simulated time series. The structural estimation methods developed in this paper estimate the
structural parameters by matching as closely as possible estimated ‘window’ parameters computed using, respectively,
observed and simulated time series.
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2. SIMULATED QUASI-MAXIMUM LIKELIHOOD

2.1. Preliminaries

Let the k x 1 vector 8 € C, where C is a compact subset of %#*, consist of the parameters of
a fully specified dynamic economic model. Given 3, the economic model generates an m x 1
vector stochastic process ¥(8) = {¥s(8), s = 1}. The vector y;(8) need not incorporate all the
variables encompassed by the model. For example, unobserved or poorly measured variables
can be omitted from ys(8). It is assumed that, given a set of structural parameters 3, the
investigator can generate numerically a finite realization {ys(8)}5--(,-1) of the y(8) process
(p 20 a fixed constant). Corresponding to y(B) is an observed m X 1 vector time series
x = [x:,t > 1). In practice, the investigator observes a finite realization {x;}/-_(,-1) of the x
process. Assumption 1 requires the processes x and y(8) to be stationary and ergodic.

Assumption 1 (1) The observed process x is stationary and ergodic. (2) For all B€C, the
process y(@) is stationary and ergodic.

Under the null hypothesis, there exists a unique set of structural parameters 3o such that the
observed process x and the simulated process y(80) are drawn from the same distribution.
Assumption 2 formalizes the null hypothesis.

Assumption 2 There exists a unique B € C (B an interior point of C) such that the random
vectors [x/...x/-1]' and [¥s(Bo)’ ... ¥s-1(B0)’]’ have identical (stationary) distributions for all
1>0.

Let H; denote the stationary joint density of the random vector [x/...x/-j]’ and let Gf
denote the stationary joint density of the random vector [ys(8)' ...ys-1(8)']’. Under the null
hypothesis, the densities H; and Gf° are identical.

2.2. Definition of the SQML Estimator

To implement the SQML approach, the investigator must choose a conditional density
function f(ys(B), ..., ¥s—p(B); 0) characterized by an n X 1 vector of parameters 6 € ©, where
O is a compact subset of #". This density function specifies the density of ys(8) conditional
on p lags ys-1(8), ..., Vs-p(B). In general, the conditional density function f is misspecified in
the sense that the true conditional density of ys(8) given ys_1(8), ..., ¥s—p() does not belong
to the set of conditional densities {f(¥s(8), ..., Vs—p(B); 0): 0 € O}. It is assumed that n > k, i.e.
the dimensionality of the space of econometric, or ‘shallow’, parameters @ is at least as large
as the dimensionality of the space of structural, or ‘deep’, parameters 3.

Subject to the regularity conditions described below, the investigator is free, in principle, to
choose any conditional density function f. From the viewpoint of asymptotic efficiency, it is
desirable to choose a conditional density function f which, given the proper choice of 6, can
provide a ‘close’ approximation to the true but unknown density of ys;(8) conditional on
Ys-1(B), ..., ¥s-p(B). From the viewpoint of computational ease, it is desirable to choose a
conditional density function f for which quasi-maximum likelihood estimates of 6, given a data
set {¥s(8)} 3= —-(»-1), can be computed relatively easily. For the Monte Carlo study in Section 4
and the empirical application in Section 5§, the conditional density function f corresponds to
a vector autoregression (VAR) with i.i.d. normal errors. In this case, the vector of econometric
parameters 0 consists of the coefficients on lagged endogenous variables as well as the elements
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of the error covariance matrix. Although the structural model that is estimated in Sections 4
and 5 is non-linear, the laws of motion implied by this model can be well approximated by
linear laws of motion such as those provided by a VAR. Moreover, estimates of the VAR
parameters can be computed easily using ordinary least squares.

Given a simulated time series {ys(8)}3=—(p-1), let

S
Ls({ys(B)}; 0) = §1 log f(s(B), - ¥s-p(B); ) m

be the quasi-log-likelihood function (conditional on yo(B), ..., y1-p(B8)) associated with the
conditional density function f. Ls is not the true conditional log-likelihood because f is, in
general, misspecified. For a given 8, maximizing the quasi-log-likelihood function with respect
to 6 induces a mapping from structural parameters 8 to econometric parameters . Formally,
define

)

08 = arg max Ls({ys(B)}; 0) ()
€O

Under a set of regularity conditions discussed in Section 2.3, it can be shown that 8 converges
in probability (as S grows large) to a vector of ‘pseudo’ true values 6. In general, it is not
possible to find a closed-form expression for 6 in terms of the structural parameters 8. Using
simulation methods, however, one can obtain an arbitrarily accurate estimate 8 of 6 by
choosing the simulation sample size S suitably. To emphasize the functional dependence of
both 08 and 6 on the structural parameters B, define hs(8) =0% and
h(B) = 6 = plims = 6%

The (conditional) quasi-log-likelihood function can also be evaluated using the observed
time series {X;}7=-(p-1y. Define

T
L1({x}); 0) = ;1 log f(xt, ..., Xt—p; 6) 3)
and )
Or = arg max Lr({xd; 0) O]
L)

Under a set of regularity conditions discussed in Section 2.3, 6r converges in probability (as
T grows large) to a vector of pseudo-true values 6p. Under the null hypothesis
(Assumption (2)), 8o = h(Bo) = 0p,.
We can now define the SQML estimator of the true structural parameter vector Bo. It is
assumed that, for each B, the investigator generates a simulated time series {ys(8)}3=-(p-1
“of length S+ p.2 By construction, {ys(8)} is independent of {x;} for all 8. In addition, it is
assumed that S = 7T, there 7 > 0 is a fixed constant. Thus as the observed sample size T tends
to infinity, the simulated sample size S also tends to infinity. Simulation error can be controlled
by a suitable choice of 7.

Definition I The SQML estimator Br of Bo solves the following maximization problem:

Br= arg max Lr({x:}; 6%) ©)
geC
where 6% is defined by equation (2).
Under the regularity conditions set forth in Section 2.3 it can be shown that Sr converges

2 As discussed in Section 2.3, in order to ensure that {ys;(8)} is a ‘smooth’ function of B, it is necessary to use the
same random numbers across values of 8 when generating the simulated time series {ys(8)}.
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in probability (as T grows large) to Bo and that T2 (81— Bo) has a well-defined asymptotic
normal distribution.

As an example of the steps involved in the computation of 8r, consider the case where the
quasi-log-likelihood function corresponds to a vector autoregression with, say, two lags (i.e.
a VAR(2)). The investigator chooses a set of structural parameters 8, simulates a vector time
series {¥s(B)}, and fits a VAR(2) to these data using ordinary least squares, yielding parameter
estimates 8. Next, the investigator inserts 3% into the quasi-log-likelihood function defined by
equation (3), obtaining a value Lr({x,}; 82). Finally, the investigator searches across values of
B to find that value of B (i.e. A7) which maximizes Lr({x;}; 6%).3

Note that the structural model places a set of restrictions across the parameters 6 of the
VAR(2). In particular, under the null hypothesis, the n-dimensional vector 6 can be expressed
(via the function A(B)) in terms of the k-dimensional vector (8, where n > k. In effect, the
SQML estimator maximizes the quasi-likelihood function subject to the constraints that the
structural model places across the parameters of the quasi-likelihood function. Since these
constraints do not, in general, possess closed-form expressions, the constraints are
approximated by means of simulation using equation (2). For the case n > k, the model
imposes n — k overidentifying restrictions on the parameters of the quasi-likelihood function.
As discussed in Section 2.4, these overidentifying restrictions can form the basis of tests of the
goodness-of-fit of the structural model.

2.3. Asymptotic Properties of the SQML Estimator

In order to characterize the asymptotic behaviour of the SQML estimator fr, it is necessary,
first, to characterize the asymptotic behaviour of §r and #%, and, second, to place some
structure on the mapping from structural parameters 3 to econometric parameters 6 defined
by equation (2). Throughout Assumptions 3—10, the E operator means to compute the
mathematical expectation with respect to the appropriate stationary density H; (for observed
data) or Gf (for simulated data).

Assumption 3 For all BeC, log f(ys(8), ..., ys-p(B8); 0) is twice continuously differentiable
in 6 for all (ys(8B), ..., ¥s-p(B))-

Assumption 4 For all B8eC, the functions log f(-; 0), dlog f(-; 6)[d6:, i=1,...,n,
8% log f(+; 6)/06: 86, i,j=1,...,n, and 3 log f(-; 0)/86;-d log f(-; 6)/36;, i,j=1,...,n, are
measurable for all 6€©, are separable (see Definition 1 of Tauchen, 1985), and are
dominated.*

Assumption 5 For all geC, the non-stochastic function E log f(ys(B), ..., y,_p(B); 9) is
uniquely maximized at 6, an interior point of ©.

Under Assumptions 1 and 3-5 it can be shown that 8% converges in probability (as S grows
large) to the pseudo-true value 63.°

3In practice, gradient hillclimbing methods can be used to locate fSr.

4A real-valued function r(ys(8), ..., 7s-p(8); 8) is said to be ‘dominated’ if there exists a measurable function
b](lyé(ﬁg -es ¥s-p(B)) such that Eb(ys(B), ..., s-p(B)) exists and | r(¥s(B), ..., ys-p(B); 0) | < b(¥s(B), ..., ys-p(B)) for
all 6€O.

5 This result and the result in equation (8), whose proofs are contained in the Technical Appendix 1, are not new to
this paper. See, for example, Domowitz and White (1982).



S68 A. A. SMITH JR
Define the matrices Ag(0) = E V2 log f(¥s(8), ..., ¥s-p(8); ) and
Bo(®) =T6O)+ 3 (C40)+T40))

where I'#(8) = E(Vlog f(¥s(B), ..., ¥s-p(B); 0) V1og f(s—k(B), ..., ¥s—k-p(B); 0)'). When the
conditional density f is evaluated using observed data, the counterparts to Ag(f) and Bs(9)
are given by:

A@0) = E V* log f(xt, .oy Xt—p; 0) (6)

and
B@) =To(0) + ;‘1 Te(@) +Tx(0)") )

where 't () = E(Vlog f(xt; ..., Xt—p; 0) V1og f(Xt—ks ..., Xt—k—p; 6)'). Note that under the null
hypothesis, Ag,(0) = A(0) and Bg,(0) = B(9).

Assumption 6 For all B€C, S~V2 VLs({ys(8)}; 0s) = N(0, Bs(6s)).°
Assumption 7 For all g€ C, the matrices Ag(6s) and Bs(6g) are invertible.

Under Assumptions 1 and 3—7, it can be shown that
§'72(8% — 05) > N(0, As(0s) "'Bs(65)As(0s) ") ®

Assumption 8 states that versions of Assumptions 3—7 hold for the functions Lr({x:}; 8) and
log f(xt, ..., Xt—p; 8).7 Under Assumption 8, plimr-« 6= 6o and

T"2(r— 60) = N(0, A(6o) "'B(60)A60) ") )

Assumption 8 The functions log f(x:, ..., X:—p; 0) and Lr({x:}; 0) satisfy Assumptions 3—7,
with log f(x:, ..., Xt-p; 0) taking the place of log f(¥s(8), ..., ¥s-p(8); 8), Lr({x:}; 0) taking the
place of Ls({ys(8)}; 0), T2 taking the place of S~'/? (in Assumption 6), 6, taking the place
of 0s, A(-) taking the place of Ag(-), and B(-) taking the place of Bs(-).

Assumption 9 imposes regularity conditions on the mapping from structural parameters 8
to econometric parameters § defined by equation (2). Part (1) of Assumption 9 ensures
smoothness of As(B) ‘near’ B0 and part (2) ensures local identifiability of So.

Assumption 9 There exists an open neighbourhood N(Bo) of 8o such that:

(1) hs(B) is twice continuously differentiable in 8 for 3 € N(Bo).

(2) h(B) is continuously differentiable in 8 for 3 € N(Bo) and J(Bo) = VA(Bo) has full-column
rank k.

Given a simulated sample size S, Assumption 9(1) requires that, for all 8, the same seed be
used for the (pseudo) random number generator that is used to generate the simulated series
{¥s(B)}. Since the random errors used to create {ys;(8)} are held fixed and since the observed

$ Assumption 6 can be derived from more primitive assumptions. See, for example, Hansen (1982). The fact that
]5"Iims..,° S~ VLs({ys(8)}; 05) = 0 follows from Assumptions 4 and 5.
If the null hypothesis (Assumption 2) holds, then Assumption 8 is redundant.
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sample is (of course) also fixed, the optimization problem (5) that defines the SQML estimator
is a well-defined deterministic problem.

Finally, Assumption 10 gathers together an additional set of regularity conditions required
for the proofs of Propositions 1, 2, 3, and 5.

Assumption 10 Let {387} be any sequence of random vectors converging in probability to 8o.
Recall that S = 7T, where 7 > 0 is a fixed constant.

(1) There exists an open neighbourhood N(Bo) of Bo such that T~ 'Lr({x; %) converges in
probability to E log f(xt, ..., Xt-p; 0g) uniformly in 8 € N(Bo).

() plim, - T~ VoLr({x:)}; hs(BT)) = E Vo log f(Xt, ..., Xt-p; h(Bo))-

(3) plim;—w T V5Lr({xs}; hs(BD) = E V§1og f(Xs, ..., Xe-p; h(Bo))-

(4) plim7-w Vhs(BT) = VA(Bo) = J(Bo).

(5) plimr—w 8%hs(87)/3B:i 98; = d*h(Bo)[3B: 8B; for i,j=1,...,k.

(6) hs(B) converges in probability to #(3) uniformly in g€ C.

Proposition 1 characterizes the asymptotic behaviour of fr.

Proposition I Assumptions 1-7 and 9-10 imply the following results for the SQML
estimator Br defined by equation (5):

TI?lim Br=Bo (10)
TY2(Br— Bo) = N((1 + 77 ")Z(Bo)) 11

where I (Bo) = (J(B0)' A(60)J(Bo)) ™" J(Bo)' B(60)J(Bo)(J(Bo)' A(B0)J(Bo))~!, A(B0) is
defined by equation (6), B(6o) by equation (7), and J(Bo) by Assumption 9.

If the function A(B) were known, then there would be no need to simulate the behaviour
of the structural model, in which case the asymptotic covariance matrix of T2(8r— Bo)
would be simply £(80). The use of simulations to evaluate the mapping from 3 to 6 therefore
inflates the asymptotic covariance matrix of TV2 (87— Bo) by the factor (1 + 7~ 1) (recall that
the simulated sample size S = 7T, where 7 > 0 is a fixed constant).® By choosing an appropriate
value for 7, the investigator can control the extent to which the use of simulations increases
sampling uncertainty. If 7 = 10, for example, so that the simulated sample is ten times as large
as the observed sample, then asymptotic standard errors are only approximately 5% larger
than in the case where A is known.

The asymptotic covariance matrix X(8o) can be estimated using standard methods. For
example, Ar(0) = T~!'V2Lr({x); 60) consistently estimates A(9), Ar(dr) consistently
estimates A (0), and Vhs(Br) consistently estimates J(Bo). The required first and second
partial derivatives can be computed numerically. The matrix B(6) can be consistently
estimated using a heteoscedasticity and autocorrelation consistent covariance matrix estimator,
such as the Newey—West (1987) estimator. See equation (26) in Section 4 for further details.

As a final point, note that if the quasi-likelihood function is actually correctly specified, then
the information matrix equality holds: A(fo) + B(6o) =0. In this case, the asymptotic
covariance matrix of T'/? (8r— Bo) reduces to —(1 + 771)(J(B0)A(00)J(Bo))~*. Under the
null hypothesis, as 7 grows large, this covariance matrix approaches the Cramér—Rao lower
bound.

8 Duffie and Singleton (1988), McFadden (1989), Pakes and Pollard (1989), McFadden and Ruud (1990), Gourieroux
and Monfort (1991), and Lee and Ingram (1991) obtain similar results in a variety of different settings.
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2.4. Testing the Overidentifying Restrictions

When the number of ‘econometric’ parameters 6 exceeds the number of ‘structural’ parameters
B (i.e. when n — k > 0), the structural model places n — k overidentifying restrictions on the
parameters 6 of the quasi-likelihood function Lz({x:}; #). These restrictions can form the basis
of tests of the goodness-of-fit of the structural model.

Proposition 2 characterizes the asymptotic behaviour of the test statistic:

Qr=TA +7 ") Y@r- hs(Br))' Ar(Or)Br(br) ' ArBr)@r— hs(B1)) (12)

where 07 is defined by equation (4), 87 is the SQML estimator of o, the function As is defined
by equation (2), and Ar(fr) and Br(fr) are consistent estimates of, respectively, A4 (o) and
B(6o). This test statistic is a quadratic form in the vector (r — hs(8r)) of differences between
the ‘econometric’ parameters calculated using the observed data and the ‘econometric’
parameters calculated using the simulated data (given the consistent estimate Sr of the
structural parameters).

Proposition 2 Suppose n > k. Let A, B, and J serve as shorthand for, respectively, A4 (6o),
B(6) and J(Bo) and define V by B= VV'. Next, define

AsL—=V'JJ AN AV " —v14J(J' ATV
+V YAJ(J'AD) VI BI(J AT LT AV !

where I, is the n X n identity matrix. Finally, let \;, i=1,...,n— k, be the n— k non-zero
eigenvalues of A®. Then, under Assumptions 1-7, 9, and 10, the asymptotic distribution of the
statistic Qr defined by equation (12) is identical to the distribution of LrF Nic?, where
ci~iid. NO,1),i=1,...,n—k.

It is easy to see that if the information matrix equality A4 (6o) + B(fo) =0 holds, then the
matrix A defined in Proposition 2 is idempotent with rank n — k. In this case, the n — k non-
zero eigenvalues of A are all equal to 1, so that Q7 converges in distribution to xi(n—k). If
the information matrix equality does not hold, then the non-zero eigenvalues of A can be
estimated by computing the non-zero eigenvalues of a consistent estimate of A (see the end of
Section 2.3 for further details). Accurate estimates of critical values corresponding to the
distribution of Z?=f \ic? can then be easily computed by means of simulation.

3. EXTENDED METHOD OF SIMULATED MOMENTS

This section develops an alternative approach to estimating the true structural parameters So.
This approach can be viewed as a generalization of the estimation strategy (which we will refer
to as ‘method of simulated moments’, or MSM) developed by Lee and Ingram (1991) and
Duffie and Singleton (1988) for the estimation of structural time-series models. The ‘extended
method of simulated moments’, or EMSM, approach estimates 3o by minimizing the ‘distance’
between 07 and 88, where this distance is measured by forming a quadratic form in the vector
1 — 68.° Since the statistics 67 and 6§ cannot, in general, be expressed as simple time averages

?Note that A=DD’, where D=1,— V" 'AJ(J'AJ)~'J'V. D is idempotent with rank n— k, implying that A is
positive semi-definite with rank n — k. A therefore has n — k eigenvalues greater than zero and k eigenvalues equal to
zero.

19This approach is related to the literature on ‘minimum distance estimation’. See the discussion and references in
Section 4.4 of Ogaki (1992). The EMSM approach can be generalized to include minimizing the distance between non-
linear functions of the two sets of ‘econometric’ parameters, such as, for example, impulse response functions. See
Chapter 2 of Smith (1990).
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of functions of, respectively, the observed and simulated data, the EMSM approach is not a
special case of the MSM approach. !!

Let {W7} be a sequence of n X n positive definite ‘weighting’ matrices that converges in
probability to a non-stochastic positive definite matrix W. In practice, Wr can depend on the
observed sample {x;}. As for the SQML estimator, the simulated sample size S = 7T, where
7> 0 is a fixed constant.

Definition 2 The EMSM estimator 37 of By solves the following minimization problem:
Br = arg min (- 0%)' Wr(@r- 6%) (13)
BeC

where Or is defined by equation (4) and 8% by equation (2).

Proposition 3 characterizes the asymptotic behaviour of Gr.

Propositio_r_13 Assumptions 1-7 and 9-10 imply the following results for the EMSM
estimator Br defined by equation (13):

l;lim Br=Bo (14)
T2(Br— Bo) = N(O, (1 + 77 1)K (Bo) ~ ' J(Bo)’ W(8o) WJ(Bo)K(Bo) ") (15)

where K(B0) = J(B80)' WJ(Bo), 2(60) = A6o) 'B(6o)AB) ', A(0) is defined by equation
(6), B(fo) by equation (7), and J(Bo) by Assumption 9.

Definition 2 defines a class of estimators indexed by the (asymptotic) weighting matrix W.
By choosing W appropriately, one can select the ‘best’ member of this class in the sense that
the asymptotic covariance matrix of any other estimator in the class exceeds the asymptotic
covariance matrix of the ‘best’ estimator by a positive semi-definite matrix. Using standard
arguments (see, for example, the proof of Proposition 4), it can be shown that the optimal
(asymptotic) weighting matrix W*=Q(0o) '. Note that the optimal weighting matrix is the
inverse of the asymptotic covariance matrix of 7'2(9r— 6). The data-dependent matrix

Wi=A 1-(67')31'(97') “1Ar@r) (16)

consistently estimates the optimal weighting matrix, where A7(f) and Br(f) are consistent
estimates of A(9) and B(0), respectively. Let 37 be the optimal EMSM estimator (i.e. the
EMSM estimator that results from using W7 as the weighting matrix). The asymptotic
covariance matrix of TY2(87— Bo) is

(1 +771)(J(Bo)' R(B0) "' I (Bo)) " an

Clearly, if the quasi-log-likelihood function is correctly specified in the sense that the
information matrix equality A4 (o) + B(6o) = 0 holds, then the asymptotic covariance matrices
of T'2(Br— Bo) and TV2(B7— Bo) are both equal to — (1 + 7~ )(J(Bo)’ A (80)J(Bo))™ . In this
case, therefore, the SQML and optimal EMSM estimators have equal asymptotic efficiency.

Now suppose that n = k, i.e. the true structural parameter vector o is exactly identified, but
the information matrix equality does not hold. Since n = k, the Jacobian matrix J(Bo) is square
and, by Assumption 9(2), is invertible. It is easy to see that, in this case, the asymptotic

"' Gourieroux et al. (1992) show how the EMSM approach can be modified to incorporate exogenous variables.
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covariance matrix of T'2(8r— Bo) simplifies to the expression in equation (17). Thus if no
overidentifying restrictions are imposed, the SQML and optimal EMSM estimators once again
have equal asymptotic efficiency.

Proposition 4 compares the efficiency of the SQML estimator and the optimal EMSM
estimator in the case where n > k and the information matrix equality is violated. This
proposition states that the difference between the asymptotic covariance matrix of the SQML
estimator and the asymptotic covariance matrix of the optimal EMSM estimator is positive
semi-definite if kK < n < 2k and is positive definite if n > 2k.

Proposition 4 Fix a quasi-log-likelihood function Lr({x:}; 6) and suppose that n > k£ and
A (o) + B(6o) # 0. Let V; be the asymptotic covariance matrix of T2(fr— Bo) and let V> be
the asymptotic covariance matrix of T'2(87 — Bo), where Bris the SQML estimator of 8 and
B7 is the optimal EMSM estimator of Bo. Then V; — V; is positive definite if » > 2k and is
positive semi-definite (with rank n — k) if k < n < 2k.

Proposition S states that if an estimate of the optimal weighting matrix is used to define the
EMSM estimator, then the minimized value of the criterion function (13), normalized by the
factor T (1 + 77!)~!, can be used as a test of the n — k overidentifying restrictions.

Proposition 5 Suppose n > k. Define the statistic
Zr= T+ 7 )" @r- hsBD) Wil@r— hs(B1) (18)

where 0r is defined by equation (4), BT is the optimal EMSM estimator, W7 is defined by
equation (16), and the function A5 is defined by equation (2). Under Assumptions 1-7, 9, and
10, Zr converges in distribution to x2(n — k).

4. A MONTE CARLO STUDY

This section uses the SQML and EMSM estimation strategies to estimate the parameters of a
real business cycle model using repeated samples drawn from the data-generating process
associated with the real business cycle model. The goal of this Monte Carlo study is to compare
the performance of the two estimators in a realistic application using ‘observed’ samples of
the size typically encountered in macroeconomics.

Recall that the optimal EMSM estimator requires that an estimate W7 of the optimal
weighting matrix W* be computed (using observed data) prior to estimation. Generally,
estimates of W* do not perform well in small samples. The difficulty of estimating W™ suggests
that the EMSM estimator may not perform as well as the SQML estimator in small samples,
despite the fact that the EMSM estimator is asymptotically more efficient than the SQML
estimator. Moreover, for structural models such as the real business cycle model described
below, the loss of efficiency associated with the SQML estimator is likely to be small even in
large samples, since, for this class of models, one can generally find a quasi-likelihood function
that provides a good approximation to the true but unknown likelihood function.

The real business cycle to be estimated takes the form of the following social planner’s
problem:

max Ep 2 w'y~(c? - 1), given ko, Mo, and zo 19)

(e} reo, li) o0 t=0
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subject to the following constraints for all ¢ > 0:

co+ir=AkIN (20)

kes1=(1 = 8) ke + i @21)
M=piN-1+&  &~iid. N -p1,02) 22
Zt=p2Z-1+ v,  ve~iid. N(1 - p2,02) (23)

where ¢, is period ¢ consumption, i, is period ¢ investment, k; is the period ¢ capital stock, \;
is the period ¢ ‘technology’ shock, and z: is the period ¢ shock to the productivity of new
investment goods. !> The innovations & and », are mutually uncorrelated at all leads and lags.
The nine structural parameters are:

capital’s share of income (0 < a < 1)
discount factor 0 < w < 1)
: scaling factor in production function (A > 0)
rate of depreciation of capital stock (0 <6< 1)
risk-aversion parameter (coefficient of relative risk aversion=1—~ > 0)
: persistence parameter in ‘technology’ shock process (| p1| < 1)
: standard deviation of innovation in ‘technology’ shock process
: persistence parameter in ‘investment’ shock process (| p2| < 1)
g,: standard deviation of innovation in ‘investment’ shock process

Sa2ITNER

This real business cycle model is similar to the one studied in Greenwood et al. (1988).

The solution to this real business cycle model consists of a decision rule expressing the
optimal choice for i; as a function of the period ¢ state variables k;, N\, and z;. Since the
decision rule for this problem does not possess a known closed-form expression, a linear
approximation to the decision rule is computed using the linear-quadratic methodology
introduced by Kydland and Prescott (1982) (see also Christiano, 1990; McGrattan, 1990). The
linear approximation to the decision rule takes the form:

ir=bo + b1kt + ba\i + b3z; (24)

where the decision rule coefficients bo, by, b>, and b; are complicated non-linear functions of
the structural parameters.’’> Given initial conditions ko, Mo, and zo and sequences of
innovations {&} -, and {»,} /=1, recursive iterations on the nonlinear laws of motion (20)—(24)
can be used to yield time series for output w; = Ak/\;, investment /, and other variables of
interest.

For the Monte Carlo study whose results are reported below, the observed sample size T is
set at 150. The structural model is simulated 1000 times, yielding 1000 ‘observed’ time series
{x:) /-0, where x;= [log w; log i]]’. To reduce computational burden in the Monte Carlo
experiments, three of the nine structural parameters (in particular, o, ,, and ) are considered
known, while the remaining six structural parameters (in particular, 8= [4 6 p; 0¢ & w]’)
are considered unknown. For each of the observed series {x;}, the six unknown structural

2The laws of motion (22) and (23) do not rule out the possibility of negative realizations for the shocks )\, and z,.
For empirically plausible values of p1, o, 02, and o,, however, the probability of a negative realization for either \,
or 2, is essentially zero.

3The estimation methods developed in this paper do not require that the decision rule be linear. For the structural
model studied here, however, linear decision rules are both highly accurate and easy to compute using the ‘doubling’
algorithm described in McGrattan (1990).
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parameters are estimated using both the SQML and EMSM estimation strategies. The
simulated sample size is set at 1500, so that the constant 7= S/ 7 = 10. To minimize the effects
of initial conditions, observed samples of length 7+ 200 and simulated samples of length
S + 200 are simulated using initial conditions set at deterministic steady state values; the first
200 data points of each series are subsequently discarded. !¢

The (misspecified) conditional density f which forms the basis of the quasi-log-likelihood
function corresponds to a bivariate vector autoregression with one lag for the vector
x; = [log w; logid': x;=CI[1 x{-1]' + 7, where C is a 2 X 3 matrix and the i.i.d. vector of
innovations 7, is assumed to be normally distributed with covariance matrix DD’, where D is
lower triangular. In particular,

S(xe, %e-1; 8) = —1/2 log(det(DD")) — 1/20{(DD") ™" @23)

The 9 X 1 vector of econometric parameters 6 consists of the six elements of C as well as the
three non-zero elements of D.

The ‘true’ values of the structural parameters to be used in the Monte Carlo study are listed
in Table I. These parameters were selected by estimating the parameters of the real business
cycle using observed US time series, with the quasi-log-likelihood function defined in terms of
the conditional density f given by equation (25). Section 5, to which the reader is referred for
further details, estimates the parameters of the real business cycle model using a conditional
density f with an additional lag. As mentioned previously, the parameters p2, g,, and v are
considered known in the Monte Carlo study, while the remaining six parameters are regarded
as unknown.

Implementing the optimal EMSM estimator r