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TABLE B.I

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN LIFETIME EARNINGS, WAGE, AND
HOURS (IN LEVELS). BASELINE MODEL, SAMPLE OF WHITES WITH LOW EDUCATIONa

I II III IV V VI VII VIII IX X XI
Contribution to Variance Breakdown of ‘Composite’

Variable εe εh εω Composite η μ EDUC ξ υ E JC

Lifetime 6.3 2.9 2.3 42.4 −5.0 40.8 10.3 7.5 33.0 2.6 −0.6
Earnings (0.4) (0.2) (0.5) (3.8) (1.9) (3.8) (1.0) (2.2) (3.7) (0.6) (0.3)
Lifetime 0 0 5.8 66.6 −6.6 23.1 11.2 0 64.7 2.5 −0.6
Wage (0.0) (0.0) (1.2) (5.7) (2.8) (5.8) (1.5) (0.0) (5.7) (0.8) (0.5)
Lifetime 0 5.1 0.9 46.3 7.8 38.3 1.5 36.9 6.1 3.9 −0.5
Hours (0.0) (0.2) (0.2) (9.5) (4.8) (10.8) (0.6) (9.5) (1.5) (0.8) (0.2)

aEntries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings,
wage, and hours, and are expressed as a percentage of the lifetime variance in the basecase. In the basecase, we simu-
late the full estimated model. To compute the contribution of a particular shock, we simulate the model again, setting
the variance of a given shock to zero for all t . We then compute the variance of the appropriate variables. The dif-
ference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions
do not sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of
the initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage
and hours components, employment and unemployment shocks, and job change shocks. In columns VIII through XI,
we decompose column IV. Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with
Var(ξ) set to 0, X the marginal contribution of unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI
displays the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment. The vari-
ance of the levels of lifetime earnings, wages, and hours are 140,540; 30,859; and 249,351,638, respectively. Bootstrap
standard errors are in parentheses.
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TABLE B.II

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN EARNINGS, WAGE, AND HOURS IN
LEVELS AT DIFFERENT t (POTENTIAL EXPERIENCE). BASELINE MODEL, SAMPLE OF WHITES

WITH LOW EDUCATIONa

I II III IV V VI VII VIII IX X XI XII
Contribution to Variance Breakdown of ‘Composite’

Variable/Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC Variance

Earnings
t = 1 15.3 13.8 13.3 19.6 1.5 28.7 7.8 8.8 8.8 2.0 0 32�35

(0.4) (0.6) (2.8) (2.7) (0.7) (3.5) (0.7) (2.4) (1.4) (0.3) (0.0)
t = 5 19.3 10.6 7.1 29.5 2.1 24.7 6.7 7.2 22.6 1.6 −1.9 71�30

(0.8) (0.7) (1.2) (2.7) (1.1) (3.0) (0.7) (2.1) (2.5) (0.3) (0.2)
t = 10 19.6 10.6 4.6 33.5 −0.7 25.8 6.4 6.7 27.4 1.6 −2.2 122�74

(0.9) (0.8) (0.8) (2.9) (1.2) (2.8) (0.7) (2.0) (2.8) (0.4) (0.2)
t = 20 18.9 11.1 4.6 37.6 −4.9 26.3 6.4 6.1 30.4 2.3 −1.3 193�14

(0.9) (0.9) (0.8) (3.1) (1.6) (2.8) (0.8) (2.0) (3.0) (0.4) (0.3)
t = 30 19.4 11.7 4.9 37.3 −2.9 23.9 5.9 6.6 29.7 1.4 −0.5 226�71

(0.9) (0.8) (0.8) (2.8) (1.9) (2.6) (0.7) (1.9) (2.9) (0.3) (0.2)
t = 40 18.4 12.0 4.0 38.7 −2.3 23.0 6.2 7.1 31.3 0.6 −0.2 229�89

(1.0) (0.7) (0.8) (3.1) (1.3) (2.9) (0.7) (2.1) (3.1) (0.3) (0.1)

Wage
t = 1 0 0 41.6 27.8 0 19.8 10.7 0 27.8 0 0 5�08

(0.0) (0.0) (7.3) (4.1) (0.0) (6.7) (1.2) (0.0) (4.1) (0.0) (0.0)
t = 5 0 0 19.6 54.8 0.5 16.1 9.0 0 55.0 1.2 −1.4 12�25

(0.0) (0.0) (3.0) (3.6) (1.1) (4.8) (1.0) (0.0) (3.6) (0.3) (0.4)
t = 10 0 0 13.5 63.4 −1.7 16.4 8.4 0 62.8 1.7 −1.1 20�81

(0.0) (0.0) (2.2) (4.3) (1.6) (4.6) (1.0) (0.0) (4.2) (0.6) (0.5)
t = 20 0 0 11.5 68.3 −5.3 17.4 8.1 0 65.8 2.9 −0.5 32�71

(0.0) (0.0) (2.0) (4.8) (2.1) (4.5) (1.0) (0.0) (4.8) (0.8) (0.4)
t = 30 0 0 11.2 67.5 −1.2 15.3 7.1 0 65.3 2.4 −0.1 37�93

(0.0) (0.0) (2.0) (4.5) (2.1) (4.5) (1.0) (0.0) (4.5) (0.7) (0.3)
t = 40 0 0 12.0 66.3 0.3 14.1 7.3 0 65.1 1.2 −0.1 43�58

(0.0) (0.0) (2.0) (4.4) (1.9) (4.4) (1.0) (0.0) (4.5) (0.5) (0.2)

(Continues)
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TABLE B.II—Continued

I II III IV V VI VII VIII IX X XI XII
Contribution to Variance Breakdown of ‘Composite’

Variable/Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC Variance

Hours
t = 1 0 38.8 2.2 37.1 5.1 16.0 0.6 23.9 1.3 11.9 0 399,956�80

(0.0) (1.7) (0.5) (6.1) (1.9) (4.6) (0.2) (6.2) (0.3) (0.5) (0.0)
t = 5 0 40.5 1.8 36.5 3.9 16.6 0.7 26.8 3.1 6.3 0.4 376,935�68

(0.0) (2.1) (0.3) (6.5) (1.7) (5.1) (0.3) (6.7) (0.8) (0.9) (0.1)
t = 10 0 41.5 1.2 37.0 3.8 15.8 0.6 27.5 3.3 5.6 0.5 397,407�92

(0.0) (2.0) (0.3) (6.6) (1.8) (5.1) (0.4) (6.8) (1.0) (0.6) (0.1)
t = 20 0 41.1 1.0 36.8 3.9 16.4 0.9 26.8 3.5 6.2 0.2 420,268�23

(0.0) (2.1) (0.3) (6.8) (1.9) (5.2) (0.4) (6.9) (1.2) (0.7) (0.1)
t = 30 0 42.2 1.0 35.2 5.0 16.0 0.7 28.0 3.4 3.8 −0.1 408,575�81

(0.0) (2.2) (0.3) (6.7) (1.7) (5.3) (0.4) (7.0) (1.2) (0.7) (0.1)
t = 40 0 44.4 1.3 33.2 3.2 16.9 1.0 28.7 3.2 1.2 0.0 369,827�16

(0.0) (2.2) (0.3) (7.2) (2.1) (5.4) (0.5) (7.3) (1.2) (0.6) (0.1)

aEntries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage,
and hours for a cross section of simulated individuals with potential experience t . The contribution is expressed as
a percentage of the variance in the basecase. In the basecase, we simulate the full estimated model. To compute the
contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for
all t . We then compute the variance of the appropriate variables at the specified value of t . The difference relative
to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions do not sum
up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the
initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage
and hours components, unemployment shocks, and job change shocks. In columns VIII through XI, we decompose
column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with Var(ξ) set to 0,
X is the marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI
is the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment. Column XII is
the cross-sectional variance of simulated earnings, wage, and hours, across individuals with potential experience t .
Bootstrap standard errors are in parentheses.
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TABLE B.III

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN LIFETIME EARNINGS, WAGE, AND
HOURS (IN LEVELS). BASELINE MODEL, SAMPLE OF WHITES WITH HIGH EDUCATIONa

I II III IV V VI VII VIII IX X XI
Contribution to Variance Breakdown of ‘Composite’

Variable εe εh εω Composite η μ EDUC ξ υ E JC

Lifetime Earnings 6.1 0.9 18.4 50.2 1.5 4.2 18.6 12.0 36.6 1.4 0.2
(0.4) (0.1) (1.9) (4.6) (2.3) (7.6) (2.3) (1.6) (3.9) (0.4) (0.3)

Lifetime Wage 0 0 26.0 56.2 0.4 −2.8 20.3 0 54.5 1.2 0.4
(0.0) (0.0) (2.6) (5.2) (1.4) (7.7) (2.7) (0.0) (5.2) (0.4) (0.4)

Lifetime Hours 0 2.0 0.3 79.4 2.6 14.0 1.7 76.8 0.6 2.1 −0.1
(0.0) (0.1) (0.2) (10.2) (8.0) (5.5) (0.6) (9.9) (0.3) (0.5) (0.0)

aEntries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings,
wage, and hours, and are expressed as a percentage of the lifetime variance in the basecase. In the basecase, we simu-
late the full estimated model. To compute the contribution of a particular shock, we simulate the model again, setting
the variance of a given shock to zero for all t . We then compute the variance of the appropriate variables. The dif-
ference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions
do not sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of
the initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage
and hours components, employment and unemployment shocks, and job change shocks. In columns VIII through XI,
we decompose column IV. Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with
Var(ξ) set to 0, X the marginal contribution of unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI
displays the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment. The vari-
ance of the levels of lifetime earnings, wages, and hours are 990,304; 127,381; and 234,587,187, respectively. Bootstrap
standard errors are in parentheses.

TABLE B.IV

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN EARNINGS, WAGE, AND HOURS IN
LEVELS AT DIFFERENT t (POTENTIAL EXPERIENCE). BASELINE MODEL, SAMPLE OF WHITES

WITH HIGH EDUCATIONa

I II III IV V VI VII VIII IX X XI XII
Contribution to Variance Breakdown of ‘Composite’

Variable/Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC Variance

Earnings
t = 1 10.0 3.9 41.0 18.3 0.4 13.4 13.0 14.8 2.9 0.7 0 237�45

(0.4) (0.2) (4.0) (1.5) (1.1) (4.6) (1.0) (1.4) (0.4) (0.3) (0.0)
t = 5 15.2 3.7 29.0 27.5 2.4 10.2 11.9 11.9 15.1 0.8 −0.3 499�51

(0.7) (0.3) (2.4) (2.0) (1.1) (3.4) (1.0) (1.4) (2.0) (0.2) (0.2)
t = 10 15.5 3.7 23.9 36.9 1.7 5.7 12.6 12.4 24.3 0.7 −0.5 862�00

(0.9) (0.4) (1.9) (2.5) (1.2) (3.8) (1.1) (1.6) (2.6) (0.3) (0.3)
t = 20 15.2 4.2 20.7 46.5 1.4 0.0 12.0 11.6 34.3 0.9 −0.4 1440�68

(1.2) (0.4) (2.2) (4.0) (1.8) (6.0) (1.4) (1.6) (3.5) (0.3) (0.3)
t = 30 14.9 3.4 20.2 50.2 2.6 −1.5 10.3 10.2 39.3 0.7 0.0 1471�71

(1.2) (0.3) (2.3) (4.5) (1.8) (6.1) (1.5) (1.5) (4.0) (0.2) (0.1)
t = 40 15.7 4.0 18.7 51.2 4.0 −3.7 10.0 9.7 41.3 0.3 0.0 1180�55

(1.6) (0.4) (2.2) (4.3) (1.9) (5.7) (1.3) (1.5) (3.8) (0.2) (0.0)

(Continues)
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TABLE B.IV—Continued

I II III IV V VI VII VIII IX X XI XII
Contribution to Variance Breakdown of ‘Composite’

Variable/Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC Variance

Wage
t = 1 0 0 67.1 5.2 0 10.5 17.2 0 5.2 0 0 25�94

(0.0) (0.0) (5.7) (0.7) 0.0 (5.8) (1.2) (0.0) (0.7) (0.0) (0.0)
t = 5 0 0 48.2 26.1 2.5 7.9 15.4 0 25.9 0.3 −0.1 49�43

(0.0) (0.0) (3.5) (2.8) (1.3) (3.8) (1.3) (0.0) (3.0) (0.3) (0.4)
t = 10 0 0 39.4 42.1 1.5 1.6 15.4 0 41.7 0.5 −0.1 85�03

(0.0) (0.0) (3.0) (3.4) (1.5) (4.1) (1.7) (0.0) (3.5) (0.3) (0.5)
t = 20 0 0 31.7 56.4 0.5 −3.1 14.5 0 55.3 0.8 0.2 146�35

(0.0) (0.0) (3.2) (5.6) (1.6) (6.2) (1.8) (0.0) (5.4) (0.3) (0.4)
t = 30 0 0 29.1 59.0 2.3 −2.7 12.3 0 58.1 0.7 0.2 175�25

(0.0) (0.0) (3.1) (5.2) (1.5) (5.2) (1.6) (0.0) (5.1) (0.3) (0.2)
t = 40 0 0 29.8 62.3 2.4 −7.1 12.6 0 61.8 0.4 0.0 164�86

(0.0) (0.0) (3.3) (5.8) (1.8) (5.8) (1.8) (0.0) (5.7) (0.2) (0.1)

Hours
t = 1 0 20.0 0.5 68.6 2.2 8.1 0.6 58.4 0.0 10.2 0 323,567�76

(0.0) (0.9) (0.2) (5.6) (4.1) (2.4) (0.2) (5.5) (0.0) (0.4) (0.0)
t = 5 0 19.2 0.4 70.6 2.1 7.4 0.4 64.3 0.2 6.1 0.0 315,707�05

(0.0) (1.0) (0.3) (6.0) (4.6) (2.6) (0.4) (6.0) (0.1) (1.1) (0.0)
t = 10 0 20.2 0.3 69.4 2.7 6.7 0.7 64.1 0.2 5.1 0.0 335,298�47

(0.0) (1.0) (0.2) (5.8) (4.3) (2.3) (0.4) (5.7) (0.2) (0.5) (0.0)
t = 20 0 20.2 0.1 69.3 3.2 6.2 0.9 63.3 0.4 5.6 0.0 333,489�95

(0.0) (1.1) (0.2) (6.4) (4.7) (2.6) (0.4) (6.3) (0.3) (0.6) (0.0)
t = 30 0 20.2 0.5 68.4 2.6 7.5 0.8 64.3 0.5 3.6 0.0 297,223�62

(0.0) (1.0) (0.3) (6.4) (4.3) (2.8) (0.5) (6.4) (0.3) (0.7) (0.0)
t = 40 0 21.9 0.2 69.5 2.1 5.4 0.7 68.3 0.3 0.9 0.0 242,846�47

(0.0) (1.1) (0.3) (7.1) (4.9) (2.9) (0.5) (7.0) (0.2) (0.8) (0.0)

aEntries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage,
and hours for a cross section of simulated individuals with potential experience t . The contribution is expressed as
a percentage of the variance in the basecase. In the basecase, we simulate the full estimated model. To compute the
contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for
all t . We then compute the variance of the appropriate variables at the specified value of t . The difference relative
to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions do not sum
up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the
initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage
and hours components, unemployment shocks, and job change shocks. In columns VIII through XI, we decompose
column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with Var(ξ) set to 0,
X is the marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI
is the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment. Column XII is
the cross-sectional variance of simulated earnings, wage, and hours, across individuals with potential experience t .
Bootstrap standard errors are in parentheses.



6 J. G. ALTONJI, A. A. SMITH, JR., AND I. VIDANGOS

FIGURE B.1.—Decomposing the experience profile of wages. Baseline model, sample of whites
with low education. The figure displays the model’s decomposition of wage growth over a career
(or the experience profile of log wages) into the contributions of job shopping (the mean value
of the job-specific wage component υ), the accumulation of tenure (the contribution of the mean
value of tenure on the wage experience profile), and the accumulation of general human capital.

FIGURE B.2.—Decomposing the experience profile of wages. Baseline model, sample of whites
with high education. The figure displays the model’s decomposition of wage growth over a career
(or the experience profile of log wages) into the contributions of job shopping (the mean value
of the job-specific wage component υ), the accumulation of tenure (the contribution of the mean
value of tenure on the wage experience profile), and the accumulation of general human capital.
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(a) Log earnings response

(b) Log wage response

FIGURE B.3.—Mean response of key variables to various shocks at t = 10 for sample of whites
with low education. The figure displays the response of the mean of log earnings, log wage, and
log hours to various shocks that are imposed when potential experience t = 10. The shocks are an
unemployment shock, a job change shock, a one-standard-deviation shock to the autoregressive
component of wages, a job change shock accompanied by a one-standard-deviation shock to the
job-specific wage component, and a job change shock accompanied by a one-standard-deviation
shock to the job-specific hours component. To construct the point estimates, we first use the model
to simulate a large number of individuals through t = 9. We then impose the shock indicated in
the figures in period 10 on all individuals. After that, we continue the simulation in accordance
with the model. The panels in the figure show the mean paths of log earnings, log wages, and log
hours relative to the base case. The base case represents the mean of the simulated paths in the
absence of the specified intervention in period 10. (Continues)
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(c) Log hours response

FIGURE B.3.—Continued.

(a) Log earnings response

FIGURE B.4.—Mean response of key variables to various shocks at t = 10 for sample of
whites with high education. The figure displays the response of the mean of log earnings,
log wage, and log hours to various shocks that are imposed when potential experience t = 10.
(Continues)
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(b) Log wage response

(c) Log hours response

FIGURE B.4.—Continued. The shocks are an unemployment shock, a job change shock, a one–
standard-deviation shock to the autoregressive component of wages, a job change shock accom-
panied by a one-standard-deviation shock to the job-specific wage component, and a job change
shock accompanied by a one-standard-deviation shock to the job-specific hours component. To
construct the point estimates, we first use the model to simulate a large number of individuals
through t = 9. We then impose the shock indicated in the figures in period 10 on all individuals.
After that, we continue the simulation in accordance with the model. The panels in the figure
show the mean paths of log earnings, log wages, and log hours relative to the base case. The base
case represents the mean of the simulated paths in the absence of the specified intervention in
period 10.
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(a) Response of cross-sectional variance of the first difference of log earnings to various shocks
at t = 10

(b) Response of cross-sectional variance of log earnings to various shocks at t = 10

FIGURE B.5.—Sample of whites with low education. Panel (a) in the figure displays the re-
sponse of the ratio of Var(earnit − earni�t−1) to the baseline variance for the model, to various
shocks that are imposed when potential experience t = 10. See note in Figure 3. Panel (b) dis-
plays the response of the ratio of Var(earnit ) to the baseline variance for the model.
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(a) Response of cross-sectional variance of the first difference of log earnings to various shocks
at t = 10

(b) Response of cross-sectional variance of log earnings to various shocks at t = 10

FIGURE B.6.—Sample of whites with high education. Panel (a) in the figure displays the re-
sponse of the ratio of Var(earnit − earni�t−1) to the baseline variance for the model, to various
shocks that are imposed when potential experience t = 10. See note in Figure 3. Panel (b) dis-
plays the response of the ratio of Var(earnit ) to the baseline variance for the model.
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APPENDIX C: RESULTS FOR THE MULTINOMIAL SPECIFICATION OF
EMPLOYMENT TRANSITIONS AND JOB CHANGES

C.1. Model Estimates, Marginal Effects, and Goodness of Fit

IN THIS SECTION, WE PROVIDE A BRIEF DISCUSSION of the model estimates,
presented in Table C.I, focusing on the coefficients in equations (19) and (20)
for EES∗

it and EEQ∗
it and the implied estimates of the average marginal effects of

the various variables on Prob(EE = 1), Prob(JC = 1), and Prob(EEQ = 1). The
marginal effects are computed using simulated data from the model. They de-
pend on the variables and coefficients in both (19) and (20).51 The coefficients
relating EES∗ to t − 1 and (t − 1)2 show a mild decline until t − 1 is 15 and then
increase. Since min(EDt−1�9) and TENt−1 both enter with positive coefficients
and are rising over the first few years in the labor market, the overall rela-
tionship between EES∗ and t is weak. The coefficient on min(EDt−1�9) is .097
(.015), indicating modest positive duration dependence in the odds of remain-
ing employed. The marginal effect of one extra year on EE is .0043. TENt−1

also has a modest positive effect on EE. BLACK is negative and significant
and EDUC is positive and significant. The job-specific wage component, υt−1,
has a positive coefficient of .195 holding wages

t constant, and a total effect of
.076.

The coefficient on wages
t is small and negative: −�119 (.088). From the point

of view of job mobility, one would expect wages
t to be positive, since γEES

ws is
also the coefficient on wage′

t in the EEQ∗ equation (we impose equality of these
coefficients). However, all variables that influence wage′

t − wages
t also have a

separate influence on EES∗ − EEQ∗. In any event, γ̂EES

ws is not statistically signif-
icant and the implied average marginal effect of wage′

t on the EE probability
is small.

The experience profile of EEQ∗ shows a mild increase up to about t − 1 = 12
and then declines, holding everything else constant. BLACK reduces the value
of changing jobs relative to leaving employment, while education raises it. The
job-specific wage component υ′

t has a large positive effect on EEQ∗, �953 (�156).
The heterogeneity term μ raises EES∗ and lowers EEQ∗ by roughly similar

amounts, and the component η has a substantial positive effect on EEQ∗ and
essentially no effect on EES∗.

51We simulated 27,120 careers (10 for each member of the sample). We then estimated pro-
bit models for EE = 1, JC = 1, and EEQ = 1 that include all observed and unobserved variables
that appear in (19) and/or (20). The columns of Table C.I of this Supplemental Material labeled
“Marginal Effects, Multinomial Model” report average partial derivatives, holding the distribu-
tions of the observed variables as well as wage′

t , wages
t , υ

′
j′(t), υj(t−1), μ, and η constant. These

are approximate estimates because the true reduced forms determining EE, JC, and EEQ are
not probits with an index that is linear in the underlying variables. The use of the simulated data
provides an easy way to condition the distributions of the variables on employment in the previ-
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TABLE C.I

MULTINOMIAL MODEL ESTIMATES, SRC SAMPLEa

Multinomial Model Estimates

Column: 1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d

Variable Parameter
Point

Estimate
Bootstrap

Mean
Standard

Error Parameter
Point

Estimate
Bootstrap

Mean
Standard

Error Parameter
Point

Estimate
Bootstrap

Mean
Standard

Error

EES∗ Equation (19) EEQ∗ Equation (20) UE Equation (8)

(cons) γEES
0 0.655 0�589 (0.106) γEEQ

0 −0.532 −0�597 (0.135) γUE
0 1.078 0�939 (0.301)

(t − 1) γEES
t −0.039 −0�026 (0.012) γEEQ

t 0.017 0�024 (0.013) γUE
t −0.104 −0�082 (0.031)

(t − 1)2/100 γEES
t2 0.128 0�093 (0.032) γEEQ

t2 −0.072 −0�079 (0.038) γUE
t2 0.322 0�271 (0.111)

min(EDt−1�9) γEES
ED 0.097 0�099 (0.015)

TENt−1 γEES
TEN 0.056 0�049 (0.013) γEEQ

TEN −0.054 −0�049 (0.015)
BLACK γEES

BLACK −0.220 −0�206 (0.067) γEEQ
BLACK −0.097 −0�082 (0.092) γUE

BLACK 0.393 0�336 (0.215)
EDUC γEES

EDUC 0.023 0�019 (0.007) γEEQ
EDUC 0.033 0�030 (0.009) γUE

EDUC 0.043 0�034 (0.021)
wages

t γEES
ws −0.119 −0�114 (0.088)

wage′
t γEEQ

wage′ −0.119 −0�114 (0.088)
υt−1 δEES

υ−1 0.195 0�169 (0.145)
υ′
t δEEQ

υ′ 0.953 0�918 (0.156)
μ δEES

μ 0.236 0�261 (0.052) δEEQ
μ −0.190 −0�192 (0.074) δUE

μ 0.112 0�105 (0.140)
η δEES

η −0.028 −0�047 (0.052) δEEQ
η 0.368 0�342 (0.059) δUE

η 0.295 0�254 (0.138)

(Continues)
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TABLE C.I—Continued

Marginal Effects, Multinomial Model Marginal Effects, Baseline Model

Variable EE JC EEQ UE EE JC EEQ UE

(t − 1) −0�0003 −0�0001 −0�0002 −0�0045 0�0004 −0�0031 −0�0030 −0�0031
min(EDt−1�9) 0�0043 −0�0081 −0�0071 0�0012 0�0006
TENt−1 0�0028 −0�0095 −0�0095 −0�0081 −0�0084
BLACK −0�0118 0�0109 0�0078 0�0985 −0�0069 0�0043 0�0020 −0�0074
EDUC 0�0017 0�0011 0�0014 0�0099 0�0023 −0�0027 −0�0021 0�0059
wages

t −0�1001 −0�0137 0�0116 0�0032 0�0009
wage′

t 0�0932 0�0119 −0�0145
υt−1 0�0010 −0�0010 −0�0009 −0�0308 −0�0301
υ′
t 0�0043 0�0227 0�0230 0�0208 0�0203

μ 0�0071 −0�0375 −0�0357 0�0236 0�0129 −0�0085 −0�0054 0�0767
η 0�0055 0�0365 0�0367 0�0704 −0�0209 0�0652 0�0583 0�0252
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TABLE C.I—Continued

Column: 4a 4b 4c 4d
Equation/Variable Parameter Point Estimate Bootstrap Mean Standard Error

Wage Equation (Eqs. (1)–(5))
(cons) −0.002 0�002 (0�052)
(t − 1) γw

t 0.069 0�070 (0�004)
(t − 1)2/10 γw

t2 −0.022 −0�022 (0�002)
(t − 1)3/1000 γw

t3 0.024 0�024 (0�004)
BLACK γw

BLACK −0.208 −0�209 (0�031)
EDUC γw

EDUC 0.105 0�105 (0�003)
Tenure polynomial Yes
μ δw

μ 0.166 0�170 (0�026)
υt−1 ρυ 0.575 0�578 (0�067)
ευ συ 0.258 0�267 (0�009)
ευ

1 συ1 0.077 0�075 (0�009)
ωt−1 ρω

b 0.908 0�908 (0�026)
1 −Et γω

1−Et −0.121 −0�126 (0�012)
1 −Et−1 γω

1−Et−1 0.038 0�040 (0�016)
εω σω 0.095 0�090 (0�005)
εω

1 (Black, Low Educ) σω1
b 0.160 0�262 (0�055)

εω
1 (Black, High Educ) σω1

b 0.242 0�292 (0�050)
εω

1 (White, Low Educ) σω1
b 0.264 0�303 (0�022)

εω
1 (White, High Educ) σω1

b 0.320 0�329 (0�019)

(Continues)



16
J.G

.A
LT

O
N

JI,A
.A

.SM
IT

H
,JR

.,A
N

D
I.V

ID
A

N
G

O
S

TABLE C.I—Continued

Column: 4a 4b 4c 4d
Equation/Variable Parameter Point Estimate Bootstrap Mean Standard Error

Hours Equation (9)
(cons) γh

0 −0.419 −0�412 (0�013)
(t − 1) γh

t 0.007 0�005 (0�002)
(t − 1)2/10 γh

t2 −0.002 −0�002 (0�001)
(t − 1)3/1000 γh

t3 0.001 0�001 (0�002)
BLACK γh

BLACK −0.054 −0�053 (0�015)
EDUC γh

EDUC 0.010 0�010 (0�002)
Et γh

E 0.438 0�437 (0�010)
σξ 0.150 0�163 (0�014)

wt γh
w −0.119 −0�116 (0�016)

μ δh
μ 0.091 0�087 (0�013)

η δh
η 0.067 0�069 (0�017)

εh σh 0.144 0�142 (0�002)

Earnings Equation (10)
(cons) γe

0 −0.014 −0�014 (0�001)
wt γe

w
c 1.000

ht γe
h

c 1.000
ρe 0.622 0�622 (0�009)

εe σe 0.170 0�170 (0�002)
aThe table presents estimates and standard errors for the multinomial formulation of the model, estimated on the full SRC sample. Estimates were obtained by Indirect

Inference, unless indicated otherwise. The second page of the table displays marginal effects on EE, JC, EEQ, and UE. These are computed from simulated data from the
multinomial model or the baseline model, as indicated. The parameter estimates for the baseline model are in Table IV. The marginal effects of potential experience account for
the quadratic term. The marginal effects of υt−1 and υ′

t are the effect of a one-standard-deviation change based on the standard deviations for the particular sample. Parametric
bootstrap standard errors are in parentheses. Bootstraps are based on 300 replications. As explained in Footnote 24 in the paper, the hours equation includes a second constant
that has no effect on earn∗

it . The point estimate of that constant is 0.038.
bEstimate obtained using additional moment conditions. See discussion in Section 4.
cImposed.
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The second page of Table C.I of this Supplemental Material reports the av-
erage marginal effect of each variable on Prob(EE = 1), Prob(JC = 1), and
Prob(EEQ = 1). For comparison, we also report average marginal effects for
the baseline model computed from simulated data in the same manner that
the marginal effects for the multinomial model are computed. They tend to
be about 70 percent as large as the derivatives at the PSID mean of EE and
JC that are reported in Table IV.52 There are some differences in the marginal
effects across the two models. Sampling error undoubtedly contributes to the
differences, which tend to be largest when the standard errors of the param-
eters underlying the marginal effects in the case of the baseline model are
largest. The separate effects of wage′

t and wages
t are poorly identified given

the presence of TENt−1, υj(t−1), and υ′
j′(t) in the model. However, the effect of

a simultaneous increase in both of these variables on EE is very small. This
is consistent with the finding that EE is insensitive to wages in the baseline
model. The effect of an extra year of employment duration on EE is substan-
tial (relative to the mean of EE). TENt−1 has a substantial negative effect on
JC in both models. BLACK has a substantial negative effect on EE (relative to
the mean) and a small positive effect on JC. EDUC increases employment but
its effect on JC is small and varies in sign across the models. In the multinomial
case, the marginal effects of υj(t−1) and υ′

j′(t) include indirect effects operating
through wages

t and wage′
t . The job component υj(t−1) reduces JC and the job

offer υ′
j′(t) raises JC in both models. However, the relative magnitude of the

effects differs between the two models and the effect of υj(t−1) is small in the
multinomial case. The standard deviation of υ′

j′(t) is .298 in the multinomial
case and .350 in the baseline model.

Table C.I, columns 3b and 4b, present estimates for the UE, wage, hours,
and earnings equations when they are estimated jointly with (19) and (20). In
the UE equation, the effect of BLACK is large and positive, in contrast to the
small negative estimate in the baseline case. The results for wage, hours, and
earnings are very close to the results using the baseline specification, so we
do not discuss them here. However, it is worth highlighting the fact that the
coefficient on μ in the wage equation is larger in the multinomial case than
in the baseline model: .166 versus .081. This is balanced by the fact that the
standard deviation of the initial condition for the job-specific wage component,
υi1, is lower in the multinomial case. We would not want to make too much of
these differences given standard errors and the fact that we have found that
the coefficient on μ is somewhat sensitive to model specification.

ous period. The reported marginal effects for υ′
j′(t) and υj(t−1) are the sum of the direct effects

holding wage′
t and wages

t constant and the indirect effects operating through the wage terms.
52Part of the difference is because the mean of UE is higher and the mean of JC is lower in the

simulated data than in the PSID data. Also, the simulated data are for a 40-year career for each
PSID sample member, while the means in the PSID are for the part of the career for which data
are available.
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FIGURE C.1.—Decomposing the experience profile of wages. Multinomial model, full sample.
The figure displays the model’s decomposition of wage growth over a career (or the experience
profile of log wages) into the contributions of job shopping (the mean value of the job-specific
wage component υ), the accumulation of tenure (the contribution of the mean value of tenure
on the wage experience profile), and the accumulation of general human capital.

We have compared the experience profiles of a number of key variables im-
plied by the multinomial model (not reported) to the corresponding predic-
tion of the baseline model and the 95% confidence interval estimates from the
PSID that are displayed in Figure 2. The predictions of the two models are
similar, and for the most part, the multinomial model fits the data reasonably
well. The close correspondence of the point estimates and the bootstrap means
reported in Table C.I suggests that there is little bias. However, as we note in
the text, we did have more numerical problems estimating the multinomial
model.

C.2. Impulse Response Functions and Variance Decompositions

Figures C.2 and C.3 of this Supplemental Material report the time path of
the effects of various shocks on the mean of earnings, wages, and hours, and the
variance of the first difference of earnings and the variance of the cross section
of earnings. The patterns are remarkably similar to those reported in Figures 3
and 4 for the baseline model. The one notable difference is that the effect of
an unemployment shock on the variance of the first difference of earnings is
more persistent in the multinomial model.

Table C.II reports the decomposition of the variance of lifetime earnings,
wages, and hours. Qualitatively, the results are similar to those for the baseline
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(a) Log earnings response

(b) Log wage response

FIGURE C.2.—Mean response of key variables to various shocks at t = 10. Multinomial model,
full sample. The figure displays the response of the mean of log earnings, log wage, and log
hours to various shocks that are imposed when potential experience t = 10. The shocks are an
unemployment shock, a job change shock, a one-standard-deviation shock to the autoregressive
component of wages, a job change shock accompanied by a one-standard-deviation shock to the
job-specific wage component, and a job change shock accompanied by a one-standard-deviation
shock to the job-specific hours component. To construct the point estimates, we first use the model
to simulate a large number of individuals through t = 9. We then impose the shock indicated in
the figures in period 10 on all individuals. After that, we continue the simulation in accordance
with the model. The panels in the figure show the mean paths of log earnings, log wages, and log
hours relative to the base case. The base case represents the mean of the simulated paths in the
absence of the specified intervention in period 10. (Continues)
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(c) Log hours response

FIGURE C.2.—Continued.

(a) Response of cross-sectional variance of the first difference of log earnings to various shocks
at t = 10

FIGURE C.3.—Multinomial model, full sample. Panel (a) in the figure displays the response
of the ratio of Var(earnit − earni�t−1) to the baseline variance for the model, to various shocks
that are imposed when potential experience t = 10. See note in Figure 3. Panel (b) displays the
response of the ratio of Var(earnit ) to the baseline variance for the model. (Continues)
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(b) Response of cross-sectional variance of log earnings to various shocks at t = 10

FIGURE C.3.—Continued.

TABLE C.II

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN LIFETIME EARNINGS, WAGE, AND
HOURS (IN LEVELS). MULTINOMIAL SPECIFICATION, FULL SRC SAMPLEa

I II III IV V VI VII VIII IX X XI
Contribution to Variance Breakdown of ‘Composite’

Variable εe εh εω Composite η μ EDUC ξ υ E JC

Lifetime Earnings 5.2 1.8 10.1 28.1 1.4 24.5 28.9 8.0 19.8 0.7 −0.4
(0.2) (0.1) (0.9) (2.2) (1.7) (3.6) (1.9) (1.5) (1.8) (0.5) (0.2)

Lifetime Wage 0 0 17.3 35.6 −2.0 14.6 34.6 0 35.0 0.7 −0.1
(0.0) (0.0) (1.5) (2.6) (0.8) (4.5) (3.1) (0.0) (2.7) (0.6) (0.3)

Lifetime Hours 0 3.6 1.2 53.6 17.0 22.4 2.1 49.4 1.6 2.4 0.2
(0.0) (0.2) (0.3) (9.7) (8.4) (6.1) (0.6) (9.5) (0.6) (0.5) (0.1)

aEntries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings,
wage, and hours, and are expressed as a percentage of the lifetime variance in the basecase. In the basecase, we simu-
late the full estimated model. To compute the contribution of a particular shock, we simulate the model again, setting
the variance of a given shock to zero for all t . We then compute the variance of the appropriate variables. The dif-
ference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions
do not sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of
the initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage
and hours components, employment and unemployment shocks, and job change shocks. In columns VIII through XI,
we decompose column IV. Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with
Var(ξ) set to 0, X the marginal contribution of unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI
displays the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment. The vari-
ance of the levels of lifetime earnings, wages, and hours are 579,719; 87,614; and 242,496,503, respectively. Bootstrap
standard errors are in parentheses.
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TABLE C.III

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN EARNINGS, WAGE, AND HOURS IN
LEVELS AT DIFFERENT t (POTENTIAL EXPERIENCE). MULTINOMIAL SPECIFICATION,

FULL SRC SAMPLEa

I II III IV V VI VII VIII IX X XI XII
Contribution to Variance Breakdown of ‘Composite’

Variable/Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC Variance

Earnings
t = 1 11.1 7.6 26.0 10.9 1.3 21.0 22.1 8.4 1.7 0.8 0 123�84

(0.4) (0.3) (3.1) (1.6) (0.8) (3.4) (1.2) (1.5) (0.3) (0.1) (0.0)
t = 5 14.0 6.5 18.0 21.1 2.6 16.7 21.0 7.9 14.9 −0.3 −1.4 271�60

(0.5) (0.3) (1.7) (1.7) (1.1) (3.0) (1.2) (1.4) (1.3) (0.6) (0.2)
t = 10 15.8 6.8 14.3 23.8 1.8 17.1 20.4 7.6 17.7 −0.1 −1.4 468�34

(0.6) (0.4) (1.2) (1.8) (1.2) (2.8) (1.2) (1.4) (1.5) (0.6) (0.2)
t = 20 15.1 7.4 13.4 26.1 0.8 16.6 20.5 7.8 18.6 0.3 −0.6 742�39

(0.8) (0.4) (1.1) (1.8) (1.2) (2.8) (1.2) (1.4) (1.6) (0.4) (0.2)
t = 30 14.7 7.0 12.5 27.6 1.8 16.1 20.2 7.1 20.4 0.4 −0.2 783�72

(0.6) (0.4) (1.1) (1.9) (1.2) (2.9) (1.3) (1.4) (1.7) (0.3) (0.1)
t = 40 15.1 6.6 12.9 28.3 1.1 15.7 20.3 7.7 20.5 0.1 −0.1 778�11

(0.7) (0.4) (1.1) (2.0) (1.4) (2.9) (1.2) (1.5) (1.8) (0.2) (0.1)

Wage
t = 1 0 0 52.4 3.4 0 16.4 27.7 0 3.4 0 0 16�67

(0.0) (0.0) (4.9) (0.6) (0.0) (4.8) (1.4) (0.0) (0.6) (0.0) (0.0)
t = 5 0 0 35.4 25.7 0.2 12.1 26.6 0 28.1 −1.1 −1.3 35�08

(0.0) (0.0) (3.0) (1.8) (0.5) (3.6) (1.6) (0.0) (2.1) (0.7) (0.3)
t = 10 0 0 29.0 32.8 −0.3 11.8 26.7 0 34.4 −0.5 −1.0 57�49

(0.0) (0.0) (2.3) (2.2) (0.6) (3.5) (2.0) (0.0) (2.3) (0.7) (0.4)
t = 20 0 0 26.0 38.1 −1.9 11.2 26.6 0 37.7 0.6 −0.1 89�34

(0.0) (0.0) (2.1) (2.7) (0.7) (3.6) (2.2) (0.0) (2.7) (0.6) (0.3)
t = 30 0 0 24.0 40.2 −0.3 10.1 26.1 0 39.1 0.9 0.1 100�29

(0.0) (0.0) (1.9) (2.7) (0.6) (3.6) (2.1) (0.0) (2.7) (0.4) (0.2)
t = 40 0 0 24.9 40.5 −1.1 8.8 26.8 0 40.0 0.5 0.1 108�25

(0.0) (0.0) (2.0) (2.9) (0.8) (3.7) (2.2) (0.0) (2.9) (0.3) (0.1)

(Continues)

model, in that shocks associated with employment and job mobility play a very
large role. They account for 28.1%, 35.6%, and 53.6% of the variance of life-
time earnings, lifetime wage rates, and lifetime hours. These values are large,
but are smaller than the baseline estimates. On the other hand, the permanent
heterogeneity components η and especially μ play a more important role than
in the baseline model, with μ accounting for 24.5% of the variance in earnings
and 14.6% of the variance in wages. The larger contributions of μ stem from
the fact that the factor loading δw

μ is larger in the multinomial model than in
the baseline model. The combined variance contribution of η, μ, EDUC, and
the initial draw ωi1 of ωit and υi1 of υit are 69.7% for lifetime earnings, 58.4%
for lifetime wages, and 42.8% for lifetime hours.
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TABLE C.III—Continued

I II III IV V VI VII VIII IX X XI XII
Contribution to Variance Breakdown of ‘Composite’

Variable/Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC Variance

Hours
t = 1 0 32.8 2.0 44.7 7.0 10.6 2.9 34.2 0.1 10.5 0 354,084�41

(0.0) (1.4) (0.4) (5.8) (3.6) (2.7) (0.3) (5.8) (0.0) (0.3) (0.0)
t = 5 0 33.2 1.5 46.3 9.6 8.4 0.9 35.7 0.2 10.0 0.3 361,004�01

(0.0) (1.5) (0.4) (5.8) (3.8) (2.8) (0.3) (5.9) (0.3) (1.0) (0.1)
t = 10 0 34.1 1.7 44.8 9.5 9.5 0.5 37.0 0.5 7.0 0.4 373,114�49

(0.0) (1.4) (0.4) (5.7) (3.8) (2.8) (0.3) (5.8) (0.4) (0.6) (0.1)
t = 20 0 34.7 1.0 44.3 8.9 10.4 0.7 37.9 0.8 5.4 0.2 367,520�10

(0.0) (1.6) (0.4) (6.1) (4.0) (3.0) (0.4) (6.2) (0.5) (0.6) (0.1)
t = 30 0 35.1 1.5 42.0 9.6 10.6 1.3 38.3 1.1 2.4 0.1 339,353�11

(0.0) (1.7) (0.4) (6.2) (4.0) (2.9) (0.4) (6.3) (0.5) (0.6) (0.1)
t = 40 0 36.6 1.3 41.8 8.9 10.7 0.7 40.5 1.0 0.3 0.0 304,171�22

(0.0) (1.6) (0.4) (6.4) (4.1) (3.0) (0.4) (6.5) (0.5) (0.5) (0.0)

aEntries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage,
and hours for a cross section of simulated individuals with potential experience t . The contribution is expressed as
a percentage of the variance in the basecase. In the basecase, we simulate the full estimated model. To compute the
contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for
all t . We then compute the variance of the appropriate variables at the specified value of t . The difference relative
to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions do not sum
up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the
initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage
and hours components, unemployment shocks, and job change shocks. In columns VIII through XI, we decompose
column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with Var(ξ) set to
0, X is the marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column
XI is the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment. Column XII
is the cross-sectional variance of simulated earnings, wage, and hours, across individuals with potential experience t .
Bootstrap standard errors are in parentheses.

APPENDIX D: CHOICE OF VALUES FOR THE VARIANCE OF MEASUREMENT
ERROR IN WAGES, HOURS, AND EARNINGS

In this appendix, we discuss our choice of values for σmw, σmh, and σme, the
standard deviations of the measurement error (ME) components in wages,
hours, and earnings. We begin with σmw. Using PSID data, Altonji and Dev-
ereux (2000) estimated a measurement error model that assumes that people
report the true value with probability p and the true value plus a normally
distributed measurement error with probability (1 − p).53 The analysis is re-
stricted to workers who are paid by the hour. They reported results for a sample
that includes blacks and whites, union and nonunion members, and men and

53Their focus was on whether wages within a job match are subject to downward nominal
wage rigidity rather than on the dynamics of earnings, wages, and hours over a career. One could
incorporate their alternative specifications of downward nominal wage rigidity within a job into
the wage model used in this paper, but we have not pursued this.
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women. Using their preferred estimation method, σmw = 0�045, which is not
sensitive to model specification. This estimate implies that ME accounts for
51% of the variance of wage changes of stayers. In our sample, the variance
of wage growth for all observations is 1.32 times the variance for stayers. Con-
sequently, Altonji and Devereux’s estimate implies that measurement error
accounts for about 38.6% (51.0/1.32) of Var(wage∗

i�t+1 − wage∗
it). For a sample

of white nonunion men who are paid hourly, their estimate is σmw = 0�03898,
which accounts for 36% of Var(wage∗

i�t+1 − wage∗
it) for job stayers. This would

translate into about 27% of Var(wage∗
i�t+1 − wage∗

it). The estimates are a little
higher when they assume classical measurement error rather than assuming
that the responses are a mixture of correct responses and the true values plus
measurement error.

However, Altonji and Devereux trimmed their sample by eliminating the
bottom and top 1% of wage change observations for stayers. This is more strin-
gent than restricting wage∗

i�t+1 − wage∗
it to fall between log(0�2) and log(5), as

we do. When they did not trim, their estimate of σmw rose to .1095, which
would account for about 50% of Var(wage∗

i�t+1 − wage∗
it). We believe that σmw

and the percentage of the variance accounted for by measurement error would
be smaller in our sample given that we do trim.

Bound et al. (2001) surveyed a number of papers on measurement error that
used matched data on survey responses and firm or government administrative
data. That literature does not provide clear guidance about the measurement
error in a reported wage measure such as the one we use. However, Bound,
Brown, Duncan, and Rodgers (1994) found that measurement error accounts
for 30.2% of the variance in the 4-year first difference in the log of earnings
divided by hours. Measurement error in this variable is likely to be larger than
measurement error in reported wages. Taken together, the evidence from Al-
tonji and Devereux and Bound et al. (1994) suggests that measurement error
accounts for about 35% of Var(w∗

i�t+1 −w∗
it), which is the point estimate we use.

The associated value of σmw is .0843.
We also experimented with alternative estimates based on our own analysis

of the PSID. The evidence is based on the equation

earn∗
it = α0 + α1wage∗

it + α2hours∗
it + errorit �

In the full SRC sample, the OLS estimates of α1 and α2 are .9418 (.0036) and
.7661 (.0073), respectively. If one estimates the above regression by 2SLS using
wage∗

i�t−2 and hours∗
i�t−2 as the instruments for wage∗

it and hours∗
it , the coefficient

estimates are .9980 (.0048) and 1.0059 (.0225), which is fully consistent with
imposing the coefficients of 1.0 as well as the presence of measurement error.
Using the covariances and variances underlying the OLS regression, we solved
for the values of σmw and σmh that explain the discrepancy between the OLS
regression coefficients and coefficients of 1. The values are σmw = 0�130 and
σmh = 0�121. An analysis based on the relationship between [earn∗

it − earn∗
i�t−2]

and [wage∗
it − wage∗

i�t−2] implies a similar estimate of σmw.
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It is possible that the true coefficient relating earn∗
it to wage∗

it differs slightly
from 1. For this reason, we also estimated σmw as the amount of measurement
error required to explain the difference between the OLS and 2SLS estimates
of the regression coefficient relating earn∗

it to wage∗
it , where we use the lag

of wage∗
it as the instrument. The OLS and IV coefficient estimates are .9594

(.0043) and 1.019 (.0047), respectively, and the implied estimate of σmw is .116.
We also experiment with this value.

Turning to hours, Bound et al. (1994) found that measurement error con-
tributes about 23% of the variance in the change in log annual hours. We used
25%, which implies that σmh is .0982. We also experiment with the value im-
plied by the regression of earn∗

it on wage∗
it and hours∗

it discussed above, which
is σmh = 0�121.

In the case of log earnings, the evidence cited in Bound et al. (2001) suggests
that the measurement error accounts for about 25% of Var(earn∗

it − earn∗
i�t−1),

which corresponds to σme = 0�122. This is the value we use. Changing this value
alters the estimate of persistence of the earnings error component and the
variance of the innovation in eit , but has little effect on the other parameters
in the model.

Results for Alternative Values of σmw and σmh

The columns of Table D.I report estimates of the model for alternative val-
ues of σmw and σmh. The values used in each case are given at the top of
each column. To facilitate comparison, we also display the estimates and stan-
dard errors for our base case assumptions of σmw = 0�0843 and σmh = 0�0982
in columns Ia and Ib. We focus our discussion on the case σmw = 0�130 and
σmh = 0�121, which is the most different from the base case values we use. Rel-
ative to the standard errors, the changes in the parameters of the EE, UE,
JC, earnings, and hours equations are minor. There are some offsetting differ-
ences in the linear and quadratic terms of the potential experience polynomi-
als in the EE, UE, and JC equations. The parameters of the wage equation are
also insensitive to the measurement error assumptions, with four important ex-
ceptions. The coefficient δw

μ on the productivity component μi falls from �081
(�035) for the parameter values we chose to �017 when we use the high values of
σmw = 0�130 and σmh = 0�121. The decline in the importance of the fixed het-
erogeneity term is accompanied by an increase in ρυ from �691 (�049) to �782,
an increase in συ1 from �165 to �243, a decline in σω from �089 (�005) to .033,
and a decline in the values of σω1 for the four race-education categories. The
net effect of these changes is to reduce the role of the permanent productiv-
ity component and the persistent wage component ωit in the variation of wages
across people and the persistence over time. Given that we do not find evidence
of a unit root in the wage process, a value close to 0 for δw

μ is implausible. For
example, the substantial correlation across siblings and between parents and
children in wage rates conditional on education and race points to a large fixed
heterogeneity component that is correlated across siblings and across genera-
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TABLE D.I

ESTIMATES OF BASELINE MODEL UNDER ALTERNATIVE MEASUREMENT ERROR ASSUMPTIONSa

Ia Ib II III IV V VI
Basecase Point Estimates Under Alternative Measurement Error Assumptions

σmw = 0�0843 σmw = 0�1160 σmw = 0�1300 σmw = 0�0843 σmw = 0�1160 σmw = 0�1300
Equation/Variable Parameter σmh = 0�0982 σmh = 0�0982 σmh = 0�0982 σmh = 0�1210 σmh = 0�1210 σmh = 0�1210

E-E Equation
constant γEE

0 1.389 (0�243) 1�346 1�420 1�402 1�234 1�571
(t − 1)/10 γEE

t −0.252 (0�154) −0�515 −0�202 −0�259 −0�238 −0�329
(t − 1)2/100 γEE

t2 0.108 (0�039) 0�199 0�113 0�111 0�120 0�146
min(EDt−1�9) γEE

ED 0.028 (0�025) 0�036 0�066 0�027 0�046 0�049
BLACK γEE

BLACK −0.158 (0�115) −0�239 −0�115 −0�152 −0�194 −0�197
EDUC γEE

EDUC 0.055 (0�015) 0�061 0�017 0�055 0�046 0�022
wages

t γEE
ws 0.071 (0�118) 0�123 0�092 0�077 0�172 0�140

μ δEE
μ 0.298 (0�121) 0�248 0�292 0�301 0�292 0�233

η δEE
η −0.481 (0�103) −0�435 −0�307 −0�487 −0�357 −0�372

U-E Equation
constant γUE

0 1.597 (0�487) 0�878 1�472 1�648 1�506 1�631
(t − 1)/10 γUE

t −1.244 (0�564) −0�378 −1�267 −1�271 −0�956 −1�125
(t − 1)2/100 γUE

t2 0.335 (0�176) 0�081 0�342 0�341 0�271 0�449
BLACK γUE

BLACK −0.046 (0�229) 0�227 0�104 −0�057 −0�024 −0�123
EDUC γUE

EDUC 0.027 (0�030) 0�032 0�044 0�026 0�018 −0�005
μ δUE

μ 0.308 (0�176) 0�344 0�354 0�312 0�349 0�349
η δUE

η 0.106 (0�176) 0�142 0�083 0�106 0�141 0�041

(Continues)
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TABLE D.I—Continued

Ia Ib II III IV V VI
Basecase Point Estimates Under Alternative Measurement Error Assumptions

σmw = 0�0843 σmw = 0�1160 σmw = 0�1300 σmw = 0�0843 σmw = 0�1160 σmw = 0�1300
Equation/Variable Parameter σmh = 0�0982 σmh = 0�0982 σmh = 0�0982 σmh = 0�1210 σmh = 0�1210 σmh = 0�1210

JC Equation
constant γJC

0 −0.498 (0�218) −0�587 −0�619 −0�511 −0�377 −0�678
(t − 1)/10 γJC

t −0.058 (0�187) −0�147 −0�204 −0�010 −0�179 −0�057
(t − 1)2/100 γJC

t2 −0.072 (0�050) −0�024 −0�004 −0�086 −0�013 −0�036
TENt−1 γJC

TEN −0.066 (0�023) −0�089 −0�095 −0�068 −0�097 −0�108
BLACK γJC

BLACK 0.030 (0�111) −0�107 −0�243 0�020 −0�051 −0�191
EDUC γJC

EDUC −0.022 (0�013) −0�004 0�002 −0�022 −0�016 0�005
υj(t−1) δJC

υj(t−1) −0.833 (0�154) −0�687 −0�720 −0�819 −0�730 −0�689
υ′
j′(t) δJC

υ′j′(t) 0.496 (0�132) 0�442 0�488 0�481 0�507 0�478
μ δJC

μ −0.067 (0�127) 0�010 −0�039 −0�058 −0�035 0�009
η δJC

η 0.539 (0�110) 0�398 0�424 0�523 0�380 0�307

(Continues)
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TABLE D.I—Continued

Ia Ib II III IV V VI
Basecase Alternative Measurement Error Assumptions

σmw = 0�0843 σmw = 0�1160 σmw = 0�1300 σmw = 0�0843 σmw = 0�1160 σmw = 0�1300
Equation/Variable σmh = 0�0982 σmh = 0�0982 σmh = 0�0982 σmh = 0�1210 σmh = 0�1210 σmh = 0�1210

Wage Equation
constant 0.001 (0�055) 0�020 0�002 0�001 0�001 0�001
(t − 1)/10 γw

t 0.642 (0�049) 0�652 0�645 0�645 0�648 0�649
(t − 1)2/1000 γw

t2 −2.071 (0�269) −2�110 −2�155 −2�084 −2�136 −2�150
(t − 1)3/100,000 γw

t3 2.249 (0�438) 2�286 2�452 2�265 2�347 2�393
BLACK γw

BLACK −0.224 (0�029) −0�212 −0�218 −0�224 −0�215 −0�212
EDUC γw

EDUC 0.105 (0�004) 0�104 0�106 0�105 0�106 0�106
μ δw

μ 0.081 (0�035) 0�036 0�039 0�072 0�013 0�017
υt−1 ρυ 0.691 (0�049) 0�767 0�781 0�697 0�769 0�782
ευ συ 0.276 (0�009) 0�270 0�265 0�277 0�269 0�267
ευ

1 συ1 0.165 (0�016) 0�239 0�252 0�173 0�239 0�243
ωt−1 ρω

b 0.908 (0�025) 0�908 0�908 0�908 0�908 0�908
1 −Et γω

1−Et −0.134 (0�013) −0�130 −0�130 −0�134 −0�126 −0�131
1 −Et−1 γω

1−Et−1 0.049 (0�017) 0�033 0�033 0�048 0�029 0�033
εω σω 0.089 (0�005) 0�055 0�035 0�088 0�054 0�033
εω

1 (Black, Low Education) σω1
b,d 0.160 (0�055) 0�100 0�100 0�156 0�100 0�100

εω
1 (Black, High Education) σω1

b 0.241 (0�050) 0�166 0�130 0�239 0�169 0�152
εω

1 (White, Low Education) σω1
b 0.263 (0�023) 0�196 0�167 0�261 0�199 0�184

εω
1 (White, High Education) σω1

b 0.319 (0�018) 0�267 0�246 0�317 0�269 0�258

(Continues)
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TABLE D.I—Continued

Ia Ib II III IV V VI
Basecase Alternative Measurement Error Assumptions

σmw = 0�0843 σmw = 0�1160 σmw = 0�1300 σmw = 0�0843 σmw = 0�1160 σmw = 0�1300
Equation/Variable σmh = 0�0982 σmh = 0�0982 σmh = 0�0982 σmh = 0�1210 σmh = 0�1210 σmh = 0�1210

Hours Equation
constant γh

0 −0.454 (0�015) −0�446 −0�449 −0�449 −0�445 −0�447
(t − 1)/10 γh

t 0.091 (0�025) 0�085 0�071 0�089 0�073 0�076
(t − 1)2/1000 γh

t2 −0.303 (0�138) −0�283 −0�224 −0�294 −0�248 −0�277
(t − 1)3/100,000 γh

t3 0.200 (0�225) 0�171 0�086 0�186 0�142 0�191
BLACK γh

BLACK −0.054 (0�015) −0�052 −0�055 −0�054 −0�052 −0�054
EDUC γh

EDUC 0.011 (0�002) 0�010 0�011 0�011 0�011 0�011
Et γh

E 0.430 (0�011) 0�425 0�424 0�426 0�419 0�418
εξ σξ 0.162 (0�013) 0�176 0�181 0�166 0�180 0�185
wagelat

t γh
w −0.084 (0�016) −0�032 −0�026 −0�070 −0�003 0�013

μ δh
μ 0.098 (0�018) 0�074 0�068 0�092 0�065 0�059

η δh
η −0.012 (0�024) −0�018 −0�008 −0�014 −0�009 −0�017

εh σh 0.141 (0�003) 0�139 0�138 0�128 0�125 0�123

Earnings Equation
constant γe

0 −0.018 (0�001) −0�012 −0�010 −0�007 −0�005 −0�007
wagelat

t γe
w

c 1.000 1�000 1�000 1�000 1�000 1�000
hourst γe

h
c 1.000 1�000 1�000 1�000 1�000 1�000

et ρe 0.624 (0�009) 0�637 0�634 0�645 0�661 0�652
εe σe 0.169 (0�002) 0�164 0�164 0�161 0�155 0�156

aThe table presents estimation results for our baseline model estimated on the full SRC sample under alternative measurement error assumptions for wages and hours.
Columns Ia and Ib reproduce our basecase estimates from Table IV for comparison (standard errors in parentheses). The alternative assumptions for measurement error are
indicated in the corresponding column heading. Estimates were obtained by Indirect Inference, unless indicated otherwise.

bEstimate obtained using additional moment conditions. See discussion in Section 4.
cImposed.
dThe value 0�10 = sqrt(0�01) is the smallest value allowed in the optimization routine that estimates the model parameters.
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tions.54 Furthermore, when σmw = 0�130 and σmh = 0�121 are used, the lower
bound of σ2

ω1 ≥ .01 is binding for less educated blacks. For both reasons, we
prefer the base case value for σmw.

A comparison of the estimates using σmw = 0�130 and σmh = 0�098 (col-
umn III) and σmw = 0�0843 and σmh = 0�121 (column IV) with the base case
establishes that the use of the higher value of σmw is primarily responsible for
differences in the model estimates. This is not surprising given the structure of
the model. The higher value for σmh does lead to a small drop in the standard
deviation of the i.i.d. hours shock εh

it .
Figure D.1 reports impulse responses of earnings, wages, and hours to vari-

ous shocks when the high values σmw = 0�130 and σmh = 0�121 are used. They

(a) Log earnings response

FIGURE D.1.—Mean response of key variables to various shocks at t = 10. Baseline model
under alternative measurement error assumptions. The figure displays the response of the mean
of log earnings, log wage, and log hours to various shocks that are imposed when potential expe-
rience t = 10. The shocks are an unemployment shock, a job change shock, a one-standard-de-
viation shock to the autoregressive component of wages, a job change shock accompanied by a
one-standard-deviation shock to the job-specific wage component, and a job change shock accom-
panied by a one-standard-deviation shock to the job-specific hours component. To construct the
point estimates, we first use the model to simulate a large number of individuals through t = 9.
We then impose the shock indicated in the figures in period 10 on all individuals. After that, we
continue the simulation in accordance with the model. The panels in the figure show the mean
paths of log earnings, log wages, and log hours relative to the base case. The base case represents
the mean of the simulated paths in the absence of the specified intervention in period 10. This
figure is based on the alternative measurement error assumptions σ2

mw = 0�13002, σ2
mh = 0�12102.

(Continues)

54Solon (1999) and Black and Devereux (2011) surveyed the literature on family correlations
in economic outcomes.
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(b) Log wage response

(c) Log hours response

FIGURE D.1.—Continued.

are almost indistinguishable from Figure 3, with the exception that the effect
of a one-standard-deviation shock to ωit is smaller. This difference is a direct
reflection of the larger value for σω in the base case. The response of the cross-
sectional variance of earn∗

it and earn∗
it − earn∗

i�t−1 to various shocks is not very
sensitive to the measurement error assumptions (compare Figure D.2 to Fig-
ure 4).

Table D.II reports the variance decomposition of lifetime earnings, wages,
and hours when σmw = 0�130 and σmh = 0�121 (Table D.III reports decomposi-
tions by t). The main difference with the results using our preferred estimates
of σmw and σmh (Table VI.A) is that the shocks related to job mobility and em-
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TABLE D.II

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN LIFETIME EARNINGS, WAGE, AND HOURS (IN LEVELS). BASELINE MODEL, FULL SRC
SAMPLE, UNDER ALTERNATIVE MEASUREMENT ERROR ASSUMPTION (σ2

mw = 0�13002, σ2
mh = 0�12102)a

I II III IV V VI VII VIII IX X XI
Contribution to Variance Breakdown of ‘Composite’

Variable εe εh εω Composite η μ EDUC ξ υ E JC

Lifetime Earnings 5.5 1.3 2.9 59.3 −2.5 3.9 29.6 10.8 48.5 0.8 −0.8
Lifetime Wage 0 0 4.0 64.7 −2.5 0.4 33.4 0 65.3 0.3 −0.9
Lifetime Hours 0 2.7 0.1 76.3 2.1 15.8 3.0 72.7 0.0 3.6 0.0

aEntries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings, wage, and hours, and are expressed as a percentage of the
lifetime variance in the basecase. In the basecase, we simulate the full estimated model. To compute the contribution of a particular shock, we simulate the model again, setting
the variance of a given shock to zero for all t . We then compute the variance of the appropriate variables. The difference relative to the basecase is the contribution of the given
shock. Since the model is nonlinear, the contributions do not sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of the
initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage and hours components, employment and unemployment shocks,
and job change shocks. In columns VIII through XI, we decompose column IV. Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with Var(ξ)
set to 0, X the marginal contribution of unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI displays the marginal contribution of job changes with Var(ξ) and
Var(υ) set to 0, and no unemployment.
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TABLE D.III

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN EARNINGS, WAGE, AND HOURS IN LEVELS AT DIFFERENT t (POTENTIAL EXPERIENCE).
BASELINE MODEL, FULL SRC SAMPLE, UNDER ALTERNATIVE MEASUREMENT ERROR ASSUMPTION (σ2

mw = 0�13002, σ2
mh = 0�12102)a

I II III IV V VI VII VIII IX X XI
Contribution to Variance Breakdown of ‘Composite’

Variable/Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC

Earnings
t = 1 9.4 5.8 25.6 33.2 0.3 2.5 23.1 12.1 20.3 0.8 0
t = 5 14.0 4.8 12.9 43.8 0.2 2.2 22.1 11.7 33.0 0.9 −1.8
t = 10 14.6 5.5 6.2 49.1 −0.5 3.2 21.9 10.8 39.1 1.0 −1.8
t = 20 14.5 5.4 2.8 54.2 −1.5 2.7 21.8 9.8 44.4 1.0 −0.9
t = 30 13.6 5.6 2.0 55.0 −0.1 3.2 20.7 10.9 44.1 0.3 −0.3
t = 40 13.8 5.3 1.7 54.6 1.4 2.5 20.7 10.7 44.0 0.0 −0.1

Wage
t = 1 0 0 38.3 33.2 0 0.2 28.3 0 33.2 0 0
t = 5 0 0 19.7 52.1 −0.2 −0.2 28.6 0 53.6 0.3 −1.8
t = 10 0 0 9.9 61.0 −0.1 0.7 28.6 0 61.9 0.6 −1.5
t = 20 0 0 4.3 68.1 −1.2 0.6 28.2 0 67.7 1.1 −0.7
t = 30 0 0 3.2 68.5 0.2 0.5 27.6 0 68.2 0.5 −0.3
t = 40 0 0 3.2 67.7 1.5 0.7 26.8 0 67.7 0.1 −0.1

(Continues)



34
J.G

.A
LT

O
N

JI,A
.A

.SM
IT

H
,JR

.,A
N

D
I.V

ID
A

N
G

O
S

TABLE D.III—Continued

I II III IV V VI VII VIII IX X XI
Contribution to Variance Breakdown of ‘Composite’

Variable/Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC

Hours
t = 1 0 24.4 0.0 62.1 2.3 7.4 3.8 51.6 0.0 10.5 0
t = 5 0 25.4 0.1 63.2 2.1 7.9 1.4 55.7 0.0 7.5 0.0
t = 10 0 25.2 0.0 63.2 1.9 8.2 1.4 55.9 0.2 7.1 0.0
t = 20 0 26.1 0.0 62.7 1.7 8.1 1.4 56.7 0.0 6.0 0.0
t = 30 0 26.9 0.0 61.6 2.7 7.2 1.6 59.4 0.0 2.2 0.0
t = 40 0 27.5 0.1 63.2 0.3 7.1 1.8 62.7 0.1 0.4 0.0

aEntries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage, and hours for a cross section of simulated individuals with
potential experience t . The contribution is expressed as a percentage of the variance in the basecase. In the basecase, we simulate the full estimated model. To compute the
contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for all t . We then compute the variance of the appropriate variables
at the specified value of t . The difference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions do not sum up to 100%.
We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined
contribution of the job match wage and hours components, unemployment shocks, and job change shocks. In columns VIII through XI, we decompose column IV. Column VIII
is the marginal contribution of ξ, IX is the marginal contribution of υ with Var(ξ) set to 0, X is the marginal contribution of eliminating unemployment spells with Var(ξ) and
Var(υ) set to 0, and column XI is the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment.
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(a) Response of cross-sectional variance of the first difference of log earnings to various shocks
at t = 10

(b) Response of cross-sectional variance of log earnings to various shocks at t = 10

FIGURE D.2.—Baseline model under alternative measurement error assumptions. Panel (a)
in the figure displays the response of the ratio of Var(earnit − earni�t−1) to the baseline variance
for the model, to various shocks that are imposed when potential experience t = 10. See note in
Figure 3. Panel (b) displays the response of the ratio of Var(earnit ) to the baseline variance for
the model.

ployment transitions account for an even larger share than in our base case:
59.3% versus 43.0% for earnings, 64.7% versus 53.2% for wages, and 76.3%
versus 58.9% for hours. This increase is partly due to an increase in the role
of υit . However, it also reflects a decline in the importance of μi in earnings
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from 15.9% to 3.9%, and a decline from 9.5% to 2.9% in the combined con-
tribution to the earnings variance of the initial draw of ωi1 and the shocks εω

it .
(Table D.III shows the corresponding decompositions of the variance of earn-
ings, wages, and hours at different values of potential experience.)

In summary, we obtain similar model estimates and impulse response func-
tions when we use larger values for σmw and σmh than our base case values.
The variance decompositions using the larger values, if anything, reinforce our
conclusion that job mobility and employment transitions play a large role in the
variance of lifetime earnings, wages, and hours. However, they imply implausi-
bly low values for the combined contribution of the permanent heterogeneity
factor μi and for the autoregressive component ωit in wage rates.

APPENDIX E: SMOOTHING OF DISCRETE VARIABLES IN
THE BASELINE MODEL

This section provides additional details on our strategy for smoothing the
discrete variables in our models of earnings dynamics. We focus the discussion
on our baseline model, but the smoothing procedure works similarly in the
multivariate version of the model.

Recall that in our baseline model presented in Section 2, the discrete (bi-
nary) indicators for employment and job changes, Eit and JCit , are determined
endogenously via equations (6), (8), and (7), and that employment duration,
unemployment duration, and tenure (all three also discrete variables) are de-
termined endogenously by

EDit =Eit · (EDi�t−1 + 1)�

UDit = (1 −Eit) · (UDi�t−1 + 1)� and

TENit = (1 − JCit) ·Eit ·Ei�t−1 · (TENi�t−1 + 1)�

Denote the indexes determining EEit , UEit , and JCit in equations (6), (8),
and (7) by

indexEE ≡ Xi�t−1γ
EE
X + γEE

ED min(EDi�t−1�9)+ γEE
TENTENi�t−1

+ γEE
ws wages

it + δEE
μ μi + δEE

η ηi + εEE
it �

indexUE ≡Xi�t−1γ
UE
X + γUE

UDUDi�t−1 + δUE
μ μi + δUE

η ηi + εUE
it � and

indexJC ≡ Xi�t−1γ
JC
X + γJC

TENTENi�t−1 + δJC
υ′j′(t)υ

′
ij′(t) + δJC

υj(t−1)υij(t−1)

+ δJC
μ μi + δJC

η ηi + εJC
it �

Then, equations (6), (8), and (7) can be rewritten as

EEit = I[indexEE > 0] given Ei�t−1 = 1�
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JCit = I[indexJC > 0] given Eit =Ei�t−1 = 1� and

UEit = I[indexUE > 0] given Ei�t−1 = 0�

The reason we need to smooth the discrete variables in our model is that, as
the “structural” parameters appearing in indexEE, indexUE, and indexJC change
continuously (leading to continuous changes in indexEE, indexUE, and indexJC),
changes in these indexes can lead to discrete jumps in the indicators Eit and
JCit . To illustrate this, focus on equation (6). For example, continuous changes
in the “structural” parameter γEE

X can lead to a change in the sign of indexEE,
which leads to a discrete jump in EEit and thereby in Eit (from 0 to 1 or vice
versa). These discontinuities in Eit (as a function of parameter γEE

X ) then also
lead to discontinuities in EDit , UDit , and TENit (which are functions of Eit).

Now, for any given discrete variable V , let Ṽ denote the “smoothed” version
of that variable (meaning that it is continuous in the “structural” parameters
of the model). Our smoothing strategy essentially replaces the equations for
EEit , UEit , Eit , and JCit by their following smoothed versions (where λ is set
to a small value, as discussed in Section 4):

ẼEit =
exp

(
indexEE

λ

)

1 + exp
(

indexEE

λ

) · Ẽi�t−1�

ŨEit =
exp

(
indexUE

λ

)

1 + exp
(

indexUE

λ

) · Ẽi�t−1�

Ẽit = Ẽi�t−1 · ẼEit + (1 − Ẽi�t−1) · ŨEit � and

J̃Cit =
exp

(
indexJC

λ

)

1 + exp
(

indexJC

λ

) · Ẽit · Ẽi�t−1�

In the above equations, focus again on ẼEit . Note that ẼEit is now a contin-
uous real variable that takes values in the interval [0�1], and that continuous
changes in parameter γEE

X now lead to continuous changes in ẼEit , and thereby
to continuous changes in Ẽit .55 Furthermore, as λ approaches zero, ẼEit ap-
proaches a 0/1 binary indicator.

55The initial condition of Eit , Ei1, is smoothed in a similar fashion.
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Then, employment duration, unemployment duration, and tenure are deter-
mined by

ẼDit = Ẽit · (ẼDi�t−1 + 1)�

ŨDit = (1 − Ẽit) · (ŨDi�t−1 + 1)� and

˜TENit = (1 − J̃Cit) · Ẽit · Ẽi�t−1 · (˜TENi�t−1 + 1)�

Since ẼDit , ŨDit , and ˜TENit are continuous functions of Ẽit , the smoothed
version of each of these variables is also continuous in the model’s “structural”
parameters.

APPENDIX F: PSID ESTIMATES OF THE PARAMETERS OF THE AUXILIARY
MODEL

Table F.I shows estimates of the matrices of auxiliary model parameters, Π
and Σ, from equation (16), using PSID data from the full SRC sample. Each
column in the table corresponds to one of the seven equations in the seemingly
unrelated regressions (SUR) system in equation (16).
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TABLE F.I

PSID ESTIMATES OF THE PARAMETERS OF THE AUXILIARY MODEL (EQUATION (16))

I II III IV V VI VII

EtEt−1 Et(1 −Et−1) JCt w̃age∗
t

˜hours
∗
t ẽarn∗

t ln(1 + w̃age∗2
t )

(t − 1)/10 0�0017 0�0066∗ −0�0653∗∗∗ 0�0065 0�0058 0�0008 0�0323∗∗

(0�0060) (0�0030) (0�0100) (0�0070) (0�0090) (0�0120) (0�0110)
(t − 1)2/100 −0�001 −0�0013∗ 0�0120∗∗∗ −0�0014 −0�0027 −0�0038 −0�002

(0�0010) (0�0010) (0�0020) (0�0010) (0�0020) (0�0030) (0�0020)
EDt−1 0�0009∗∗ −0�0002 0�0013∗ 0�0014∗∗∗ 0�0013∗∗ 0�0017∗∗ 0�0012

(0�0000) (0�0000) (0�0010) (0�0000) (0�0000) (0�0010) (0�0010)
UDt−1 −0�0009 0�05 0�0029 −0�0933∗∗ −0�1493 −0�1291 0�0357

(0�0040) (0�0330) (0�0060) (0�0360) (0�0940) (0�1000) (0�0240)
TENt−1 0�0001 0�0001 −0�0041∗∗∗ −0�0013∗∗∗ −0�0011∗ 0�0005 −0�0032∗∗∗

(0�0000) (0�0000) (0�0010) (0�0000) (0�0000) (0�0010) (0�0010)
w̃age∗

t−1 0�0221 −0�0122∗∗∗ 0�0107 0�4448∗∗∗ −0�0236 0�1914∗∗∗ 0�0883
(0�0170) (0�0030) (0�0340) (0�0280) (0�0250) (0�0360) (0�0510)

w̃age∗
t−2 −0�0244∗∗∗ −0�0136 0�0354∗∗ 0�3564∗∗∗ 0�0305 0�2311∗∗ −0�1025∗∗∗

(0�0070) (0�0470) (0�0110) (0�0440) (0�0470) (0�0800) (0�0310)
Et−1Et−2 0�9178∗∗∗ −0�8024∗∗∗ 0�1630∗∗∗ −0�0423 −0�3218∗∗∗ −0�205 0�0006

(0�0080) (0�0380) (0�0110) (0�0400) (0�0970) (0�1080) (0�0270)
Et−2Et−3 −0�0127 0�1474∗ −0�0272 −0�0801 −0�2178 −0�1678 −0�0116

(0�0110) (0�0720) (0�0160) (0�0690) (0�1320) (0�1500) (0�0400)
Et−1(1 −Et−2) 0�7886∗∗∗ −0�6507∗∗∗ 0�3290∗∗∗ −0�1142 −0�5239∗ −0�4107 0�034

(0�0230) (0�1000) (0�0290) (0�1010) (0�2210) (0�2420) (0�0580)
Et−2(1 −Et−3) −0�0255 0�1417 0�0228 −0�0321 −0�2625∗ −0�1652 0�0073

(0�0140) (0�0730) (0�0200) (0�0710) (0�1340) (0�1500) (0�0390)
JCt−1Et−1Et−2 −0�0158∗∗∗ 0�0028∗∗∗ 0�1676∗∗∗ −0�0073 0�0154∗ −0�0068 0�0020

(0�0050) (0�0010) (0�0110) (0�0060) (0�0070) (0�0100) (0�0060)
JCt−2Et−2Et−3 −0�0131∗∗ −0�0008 0�0295∗∗∗ 0�0138∗ −0�0108 −0�0017 0�0058

(0�0040) (0�0020) (0�0090) (0�0050) (0�0060) (0�0090) (0�0040)

(Continues)
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TABLE F.I—Continued

I II III IV V VI VII

EtEt−1 Et(1 −Et−1) JCt w̃age∗
t

˜hours
∗
t ẽarn∗

t ln(1 + w̃age∗2
t )

˜hours
∗
t−1 0�0453∗∗∗ 0�0147∗ −0�0554∗∗∗ −0�1146∗∗∗ 0�3895∗∗∗ 0�1867∗∗∗ 0�007

(0�0090) (0�0060) (0�0120) (0�0150) (0�0170) (0�0270) (0�0100)
˜hours

∗
t−2 −0�0093 0�0010 0�0539∗∗∗ −0�0233∗ 0�1571∗∗∗ −0�0531∗ 0�0215∗∗

(0�0070) (0�0060) (0�0110) (0�0120) (0�0140) (0�0210) (0�0080)
ẽarn∗

t−1 0�0358∗∗∗ 0�0198∗∗∗ −0�0645∗∗∗ 0�2064∗∗∗ 0�0567∗∗∗ 0�5602∗∗∗ −0�0061
(0�0070) (0�0040) (0�0100) (0�0130) (0�0100) (0�0250) (0�0080)

ẽarn∗
t−2 −0�0078 −0�0032 0�0281∗∗ −0�0096 0�0175 0�1067∗∗∗ −0�0014

(0�0050) (0�0040) (0�0090) (0�0090) (0�0100) (0�0180) (0�0080)
w̃age∗

t−1((t − 1)/10) −0�0154 0�0009 0�0261 0�0818∗∗ −0�0275 −0�0029 −0�0579
(0�0170) (0�0010) (0�0290) (0�0250) (0�0250) (0�0330) (0�0610)

w̃age∗
t−1((t − 1)2/100) 0�0015 −0�0003 −0�0037 −0�0145∗ 0�0062 0�0036 0�0081

(0�0040) (0�0000) (0�0060) (0�0060) (0�0060) (0�0080) (0�0150)
w̃age∗

t−1JCt −0�0590∗∗∗ −0�0025∗∗ −0�4595∗∗∗ −0�1065∗∗∗ −0�0565∗∗∗ −0�1159∗∗∗ −0�1246∗∗∗

(0�0080) (0�0010) (0�0630) (0�0210) (0�0160) (0�0250) (0�0190)
w̃age∗

t−2JCt−1 0�0273∗ 0�0006 0�0598∗ −0�0951∗∗∗ 0�0263 −0�03 −0�1087∗∗∗

(0�0130) (0�0010) (0�0270) (0�0160) (0�0160) (0�0220) (0�0170)
w̃age∗

t−2Et−1 0�0089 0�01 −0�0464∗∗ −0�1512∗∗ −0�0395 −0�1286 0�1474∗∗∗

(0�0090) (0�0470) (0�0160) (0�0460) (0�0480) (0�0790) (0�0320)
BLACK −0�0105∗ −0�0021 −0�0148∗ 0�0002 −0�0044 0�0012 −0�0123

(0�0050) (0�0030) (0�0070) (0�0050) (0�0090) (0�0120) (0�0080)
EDUC 0�0019∗∗∗ 0�0007∗∗ −0�0019∗ 0�0051∗∗∗ −0�0006 0�0026∗ 0�0067∗∗∗

(0�0000) (0�0000) (0�0010) (0�0010) (0�0010) (0�0010) (0�0010)
constant 0�0425∗∗ 0�6392∗∗∗ 0�0448 0�0442 0�5371∗ 0�3318 0�0003

(0�0160) (0�1010) (0�0250) (0�1000) (0�2220) (0�2430) (0�0620)

R2 0�575 0�812 0�142 0�774 0�256 0�674 0�047
∗Sig. at 0.05 level.
∗∗Sig. at the 0.01 level.
∗∗∗Sig. at the 0.001 level.
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TABLE F.I—Continued

I II III IV V VI VII

EtEt−1 Et(1 −Et−1) JCt w̃age∗
t

˜hours
∗
t ẽarn∗

t ln(1 + w̃age∗2
t )

Residual Correlation Matrix

Correlation Coefficient
EtEt−1 1�0000
Et(1 −Et−1) −0�0182 1�0000
JCt 0�0874 0�0118 1�0000
w̃age∗

t −0�0903 −0�1210 −0�0335 1�0000
˜hours

∗
t 0�2608 0�1015 0�0317 −0�0511 1�0000

ẽarn∗
t 0�2705 0�0997 −0�0293 0�1552 0�4978 1�0000

ln(1 + w̃age∗2
t ) 0�1070 0�0804 0�0622 −0�0913 0�0442 0�0175 1�0000

Standard Deviation
0�1323 0�0603 0�2545 0�1820 0�2226 0�2965 0�1606
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