General-equilibrium models of wealth inequality based on uninsurable idiosyncratic risk: Bewley-Huggett-Aiyagari Models

Per Krusell and Tony Smith

March 2015
Why market incompleteness?

- Consider a model without shocks but with two agents. What predictions are there for wealth inequality?
 - Assume two infinitely-lived households with identical preferences but different initial capital and different income streams.
 - What is the (set of) steady state(s)?
 - What kind of preference heterogeneity breaks this result?
 - Does finite lives break this result?
 - What else breaks this result?

- Add income shocks but complete markets: how is the result influenced?

- Do we “need” to depart from representative-agent macroeconomics?
The incomplete-markets setting: the consumer

- **Shock process:** labor income is $\epsilon \in \{\epsilon_h, \epsilon_l\}$, with first-order Markov transitions $\Pi = \begin{pmatrix} \pi_h & 1 - \pi_h \\ \pi_l & 1 - \pi_l \end{pmatrix}$.

- **Preferences:** $E \sum_{t=0}^{\infty} \beta^t u(c_t)$.

- **Asset markets:** no insurance market but a riskless bond, priced at q_t. A **borrowing constraint:** $a_{t+1} \geq a$ for all t.

- **Consumption possibility set:** budget $c_t + q_t a_{t+1} = \epsilon_t + a_t$, borrowing constraint $a_{t+1} \geq a$, and $c_t \geq 0$.
Aggregate environment in which the consumer lives

- Other people: initially, at $t = 0$, a continuum of consumers with different asset holdings and different labor income statuses. Joint distribution: the measure $\Gamma_0(a, \epsilon)$.

- Aggregate shocks: none. Labor income shocks *uncorrelated* across agents. Law of large numbers holds. If μ_t is the fraction with $\epsilon = \epsilon_h$ at time t, we have $\mu_{t+1} = \mu_t \pi_h + (1 - \mu_t) \pi_l$.

- Market clearing for the asset: $\int_a a_{i,t+1} di = 0$ for all t, with initial condition $\int_a a_{i,0} di = 0$; i denotes agent i.

- Aggregate resource constraint: an endowment economy, and thus $\int c_{i,t} di = \int \epsilon_{i,t} di$ for all t.

- An equilibrium: stochastic processes for all individual variables and a deterministic sequence of prices q_t such that the individual variables (i) solve the maximization problems given the q_t sequence and (ii) satisfy the market-clearing condition for assets and the resource constraints at all points in time.
Stationary equilibrium

- Conceptually: an equilibrium, as defined above, such that q_t and the distribution $\Gamma_t(a, \epsilon)$ do not depend on t. That is, the distribution of people over asset holdings and endowments looks the same every period, but individuals move around within it. E.g., the number of people with $\epsilon = \epsilon_h$ and with $a < 2$ is the same every period, even though each consumer only belongs to this group now and then.

- Formally: we use recursive methods. The consumer problem is

$$V_s(a) = \max_{a' \in [a, (\epsilon_s + a)/q]} u(\epsilon_s + a - qa') + \beta \left(\pi_s V_h(a') + (1 - \pi_s) V_l(a') \right)$$

for all s and a.

- Decision rule: the problem delivers optimal asset holdings $a' = g_s(a)$ satisfying, for all s and a,

$$g_s(a) = \arg\max_{a'} u(\epsilon_s + a - qa') + \beta \left(\pi_s V_h(a') + (1 - \pi_s) V_l(a') \right)$$

s.t. $a' \in [a, (\epsilon_s + a)/q]$.
Stationary equilibrium, continued

- Formal recursive definition: a q, functions $V_s(a)$ and $g_s(a)$, and a measure $\Gamma(a, \epsilon)$, such that (i) given q, $V_s(a)$ solves the dynamic-programming problem and $g_s(a)$ attains the maximum in this problem; (ii) the asset market clears; and (iii) $g_s(a)$ and the Markov process generates $\Gamma(a, \epsilon)$ as a stationary distribution.

- Asset-market clearing, more precisely:

$$\sum_s \int_a g_s(a) \Gamma(da, \epsilon_s) = 0.$$

- The stationary distribution: for all (B, ϵ), where B is an interval $[0, b]$,

$$\Gamma(B, \epsilon) = \sum_s \pi_{\epsilon|\epsilon_s} \int_{a:g_s(a) \in B} \Gamma(da, \epsilon_s).$$
Special case I: no shocks \((\pi_h = 1, \pi_l = 0)\)

- Outcome, intuitively: no market frictions, so people compute, using undistorted prices, their present-value total wealth and consume the return on it in every period.

- Asset price: \(q = \beta\).

- Decision rule: for all \(s\) and \(a\), \(g_s(a) = a\).

- Present-value wealth: for individual \(i\), \(a_{i0} + \frac{\epsilon_h}{1-q}\).

- Consumption: for individual \(i\), in each period, \((1 - q)a_{i0} + \epsilon_h\).

- Stationary asset distribution: \(\Gamma_0(a, \epsilon)\), i.e., whatever it was in period 0. There is a large number of stationary asset distributions: any distribution works (special case of discussion on first page of notes!).
Special case II: the tightest borrowing constraint

- Constraint: \(a = 0 \).
- Outcome, intuitively: if no one can borrow, no one can lend, implying autarky. The bond price is set by the “lender” who most wants it; this \((\epsilon_h-)\)individual is unconstrained but has \(a = 0 \).
- Decision rule: for all \(s \), \(g_s(0) = 0 \). (Note: we do not need to define \(g \) for \(a > 0 \) here.) Consumption is \(\epsilon_s \).
- Asset price: given by Euler equation of the \(h \) individual:

\[
qu'(\epsilon_h) = \beta \left(\pi_h u'(\epsilon_h) + (1 - \pi_h) u'(\epsilon_l) \right) \quad \Rightarrow \quad q = \beta \left(\pi_h + (1 - \pi_h) \frac{u'(\epsilon_l)}{u'(\epsilon_h)} \right) > \beta,
\]

so that the gross riskless rate is less than \(1/\beta \).
- Stationary asset distribution: \(\Gamma_0(a, \epsilon) = 0 \) for \(a \neq 0 \).
The general case: numerical solution

- Now, thus: $a < 0$.
- Outcome, intuitively: a nontrivial outcome; people move around in the distribution, and their consumption responds to endowment realizations. The interest rate is below $1/\beta$—reflecting that assets have an insurance value in addition to the market return—but above the value when $a = 0$.
- Loosest possible borrowing constraint: $a^* = \frac{\epsilon}{1-q}$, which is the value below which a consumer’s debt explodes, even with zero consumption in all periods.
- Decision rule: $g_h(a) \geq g_l(a), g_s(a)$ strictly increasing (and convex, using typical preferences) for a large enough, and $g_l(a) = a$ for a low enough.
- Model solution: exactly as in the Aiyagari model, but iterating on q instead of on aggregate capital.
The Aiyagari model with valued leisure

The neoclassical growth model without aggregate shocks and with idiosyncratic shocks. For simplicity, $\epsilon \in \{0, 1\}$, so 0 mean unemployment.

- The consumer’s problem: for all (ω, ϵ),

$$V(\omega, \epsilon) = \max_{k', n} u(\omega + s + n\epsilon w - k', 1 - n) + \beta E[V(k'(1 - \delta + r), \epsilon')|\epsilon]$$

s.t. $k' \geq k$, $n \in [0, 1]$. (s is a transfer/home production.) This leads to decision rules $h^k(\omega, \epsilon)$ and $h^n(\omega, \epsilon)$.

As in the Huggett model, labor income is $\epsilon \in \{\epsilon_h, \epsilon_l\}$, with first-order Markov transitions $\Pi = \begin{pmatrix} \pi_h & 1 - \pi_h \\ \pi_l & 1 - \pi_l \end{pmatrix}$.

Note: Aiyagari (1994) has wage shocks (the individual wage is AR(1) with lognormal shocks).

- Asset structure: as in the Huggett model, no insurance against idiosyncratic shocks; here, the aggregate asset is capital, so the sum of individual savings is equal to the capital stock.
Stationary equilibrium

Object: prices r and w, decision rules h^k and h^n, and a stationary distribution Γ such that

1. $h^k(\omega, \epsilon)$ and $h^n(\omega, \epsilon)$ attain the maximum in the consumer’s problem for all (ω, ϵ).

2. $r = F_k(\bar{k}, \bar{n})$ and $w = F_2(\bar{k}, \bar{n})$, where
 \[
 \bar{k} \equiv (\sum_{\epsilon} \int_{\omega} \omega \Gamma (d\omega, \epsilon)) / (1 - \delta + r) \text{ and }
 \bar{n} \equiv \int_{\omega} h^n(\omega, 1)\Gamma (d\omega, 1).
 \]

3. $\Gamma(B, \epsilon) = \sum_{\tilde{\epsilon}} \pi_{\epsilon|\tilde{\epsilon}} \int_{\omega: h^k(\omega, \epsilon) \in B} \Gamma (d\omega, \tilde{\epsilon})$.

Theoretical properties: shapes of decision rules, existence, etc; see Huggett (1993) and Aiyagari (1994).

Computation: guess on r (or w), though now with the labor decision rules as part of the optimization.
Calibration: calibrate ϵs to observed earnings distribution. Set a arbitrarily. Use model with capital ("Bewley/Aiyagari model"), implying a relation between wages and returns to saving.

Recall: asset inequality is huge (Gini around 0.8; for earnings it is perhaps 0.4), with most of the wealth is held by a few rich people, and with many people at zero to negative assets.
Implications for the wealth distribution: a problem

The distribution of wealth

<table>
<thead>
<tr>
<th></th>
<th>% of wealth held by top</th>
<th>Fraction with wealth < 0</th>
<th>Gini coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1% 5% 10% 20% 30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b = 0$ model</td>
<td>3% 11% 20% 35% 47%</td>
<td>0%</td>
<td>0.26</td>
</tr>
<tr>
<td>$b = -2.4$ model</td>
<td>3% 13% 23% 39% 52%</td>
<td>0.5%</td>
<td>0.33</td>
</tr>
<tr>
<td>Data</td>
<td>30% 51% 64% 79% 88%</td>
<td>11%</td>
<td>0.79</td>
</tr>
</tbody>
</table>

We need the rich to save more. Different possibilities:

- Bigger shocks, somehow (Castañeda, Díaz-Giménez, and Ríos-Rull, 1993).
- Difference in discount factors (on average, the rich families are the patient ones).
- Higher returns for the rich.
- Higher income when poor, say, through unemployment insurance.

Next: $3-\beta$ model with UI 9% of wage.
Preference heterogeneity: people have different βs

Different degrees of patience should make the wealth distribution fan out:

- with complete markets, it would become degenerate;
- with limited short-selling of future labor income, it will not.

Closely related to Piketty and Zucman (2014). They show that with infinitely-lived agents with random saving rates (and linear decision rules), the wealth distribution becomes Pareto.

Fact in our model: for agents with very large asset holdings, decision rules are (almost) linear! (See our Econometric Society paper for proof in a two-period model.)

Intuition: agents with a lot of wealth are well insured, and if insurance is not an issue, linearity of the decision rules follows from the preference assumptions.
Calibration

Standard, except for βs: no direct guidance (yet), but the general idea is imperfect passing on of genes across generations.

- Three values of $\tilde{\beta}$: 0.9858, 0.9894, and 0.9930.
- Invariant distribution: 10% at each of the extreme values of $\tilde{\beta}$, 80% at middle value.
- No immediate transitions between extreme values.
- Average duration of highest and lowest $\tilde{\beta}$’s is 50 years (roughly matching the length of a generation).
Results, 3-β model

<table>
<thead>
<tr>
<th>The distribution of wealth</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Fraction with wealth < 0</th>
<th>Gini coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b = 0 model</td>
<td>20%</td>
<td>46%</td>
<td>61%</td>
<td>74%</td>
<td>79%</td>
<td>0%</td>
<td>0.66</td>
</tr>
<tr>
<td>b = −2.4 model</td>
<td>23%</td>
<td>55%</td>
<td>73%</td>
<td>87%</td>
<td>92%</td>
<td>11%</td>
<td>0.82</td>
</tr>
<tr>
<td>Data</td>
<td>30%</td>
<td>51%</td>
<td>64%</td>
<td>79%</td>
<td>88%</td>
<td>11%</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Why are the poor poor in this model? Because they want to be poor.

Contrast this with Castañeda, Díaz-Giménez, and Ríos-Rull (1993): here the poor are just unlucky.

Policy implications differ!