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Abstract

How do individuals with time-inconsistent preferences—à la Strotz/Phelps/Pollak/Laibson—
make consumption-savings decisions? We try to answer this question by considering the
simplest possible form of consumption-savings problem, assuming that discounting is quasi-
geometric. A solution to the decision problem is then a subgame-perfect equilibrium of a
dynamic game between the individual’s “successive selves”. When the time horizon is infi-
nite, we are left without a sharp answer: even when attention is restricted to Markov-perfect
equilibria—using the agent’s current wealth as state variable—we cannot rule out the pos-
sibility that two identical individuals in the exact same situation make different decisions!
This paper deals with a discrete domain for capital, unlike Krusell and Smith (2003), which
considers a continuous domain.
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1 Introduction

The purpose of this paper is to study how an infinitely-lived, rational consumer with “quasi-

geometric” discounting would make consumption and savings decisions.1 We consider the

idea that a consumer’s evaluation of “utils” at different points in time does not have take the

form of an aggregate with geometric weights. This idea was suggested first by Strotz (1956),

and later elaborated on by Pollak (1968), Phelps and Pollak (1968), Laibson (1994, 1997) and

others. Quasi-geometric discounting leads to time-inconsistent preferences: the consumer

changes his mind over time regarding the relative values of different consumption paths.

One version of this inconsistency takes the form of extreme short-term impatience. That

formulation seems attractive based on introspection. The recent literature also emphasizes

behavioral studies (such as Ainslie (1992)) as a motivation for a departure from geometric

discounting. This literature documents “preference reversals”, and it generally argues that

time-inconsistency is as ubiquitous as risk aversion. This information is too important to

dismiss: at the very least, there is no definite argument against a departure from geometric

discounting, and since models with time-inconsistency potentially can have very different

positive and normative properties than standard models, they deserve to be studied in more

detail. That is what we set out to do here.

We assume that time is discrete, and that the consumer cannot commit to future actions.

We interpret rationality as the consumer’s ability to correctly forecast his future actions: a

solution to the decision problem is required to take the form of a subgame-perfect equilibrium

of a game where the players are the consumer and his future selves. We restrict attention to

equilibria which are stationary: they are recursive, and Markov in current wealth; that is,

current actions cannot depend either on time or on any other history than that summarized

by current wealth.

The consumption/savings problem is of the simplest possible kind: there is no uncertainty,

and current resources simply have to be divided into current consumption and savings.

Utility is time-additive with quasi-geometric discounting, and the period utility function is

strictly concave. We assume that the consumer operates a technology which has (weakly)

decreasing returns in its input, capital (that is, savings from last period). A special case is

1We mean by the term quasi-geometric a sequence which is geometric from the second date and on. The
term “quasi-hyperbolic” has been used in the literature with the same meaning—see, e.g., Laibson (1997).
Laibson’s use, presumably, is motivated by trying to mimic approximately a true (generalized) hyperbolic
function, which is possible within a subset of the quasi-geometric class. Mathematically, however, quasi-
geometric is clearly a more appropriate term, and since we are interested in this entire class, as opposed to
the subset mimicking the hyperbolic case, we opt for this term.
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that of an affine production function, where the return is constant; this special case can be

interpreted as one with a price-taking consumer who has a constant stream of labor income

and can save at an exogenous interest rate. We do not study interaction between consumers

in this paper.

Our main finding is one of indeterminacy of equilibria. That is, the restriction to Markov

equilibria does not reduce the set of equilibria to a small number. First, there is indetermi-

nacy in terms of long-run outcomes of the consumption/savings process: there is a continuum

of stationary points to which the consumer’s capital holdings may converge over time. Sec-

ond, associated with each stationary point is a continuum of equilibria. Put simply, our

theorizing does not allow us to rule out the possibility that two identical consumers placed

in the same environment make radically different decisions, both in the short and the long

run.

What is the origin of the indeterminacy? Almost by definition, one important compo-

nent is expectations: equilibria can be thought of as “expectations-driven”. Optimism and

pessimism regarding your own future behavior is a real phenomenon in our model. The ex-

pectations concern future savings behavior. In the time-consistent model, the expectations

of future savings behavior are not relevant, since there is agreement on that behavior: an

envelope theorem applies. If, instead, the consumer places a higher relative weight on con-

sumption two periods from now than does his next-period self, then a high savings propensity

of his next self is an added bonus from saving today. Therefore, what he believes about this

future savings propensity is important. One consumer may decide to save a lot because he

expects himself to save a lot in the future, thereby giving a high return to saving today;

another instead expects to consume a lot next period, thus lowering the incentives to save

now. Another important component in our equilibrium construction is a discontinuous pol-

icy rule for savings. That is, we employ locally extreme savings propensities to make the

construction alluded to above. The precise intuition for our indeterminacy is developed in

Krusell and Smith (2003); in this note, we merely study the discrete-domain case. Related

work on this topic can be found in Asheim (1997) and Vieille and Weibull (2003, 2008).

The indeterminacy that we document in this paper has not been noted in the exist-

ing literature on consumption-savings decisions with quasi-geometric discounting. Laibson

(1994) and Bernheim, Ray, and Yeltekin (1999) find indeterminacy in settings similar to

the one studied in this paper, but they rely on history-dependent (“trigger”) strategies. In

this paper, instead, we restrict ourselves to Markov equilibria in which current consumption

decisions depend only on current wealth.
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Harris and Laibson (2000) study a consumption-savings problem in which the agent faces

a constant interest rate and stochastic labor income. Their framework is closely related to

ours, which allows an affine production function as a special case. The difference is that we

consider a deterministic environment; their analysis does not contain ours as a special case,

and it seems important to understand the deterministic case separately. In addition, we are

able to provide an explicit characterization of equilibria near a stationary point; Harris and

Laibson provide existence, but not uniqueness nor explicit solutions.

We lay out our basic framework, using recursive methods, in Section 2. That model

allows capital to be any number on an interval of the real line. To illustrate the setup, we

parameterize the model—logarithmic utility and Cobb-Douglas production—and derive an

analytical solution for this case. In Section 3, we then restrict the domain for capital to a

finite grid. The discrete-domain case allows us to demonstrate and discuss our multiplicity

results in a concrete and simple way. We also use it to study whether there are simple

domination arguments to rule out all equilibria but one. We therefore spend some time

analyzing the simplest possible consumption-savings problem: capital can take on only two

values, high and low. Finally, we use the discrete-domain case as a way of computing

equilibria numerically.

2 The setup

2.1 Primitives

Time is discrete and infinite and begins at time 0.2 There is no uncertainty. An infinitely-

lived consumer derives utility from a stream of consumption at different dates. We assume

that the preferences of the individual at time t are time-additive, and that they take the

form

Ut = ut + β1ut+1 + β2ut+2 + β3ut+3 + . . . .

The variable ut denotes the number of utils at time t; it is implicit that these utils are derived

from a function u(ct), where ct is consumption at time t. This formulation thus embodies an

assumption of stationarity: the discounting at any point in time has the form 1, β1, β2, . . ..

The same consumer at t + 1 thus evaluates utility as follows:

Ut+1 = ut+1 + β1ut+2 + β2ut+3 + β3ut+4 + . . . .

2Barro (1997) studies a continuous-time model without uncertainty where the consumer’s discounting is
not exponential.
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Clearly, the lifetime utility evaluations at t and t+1 express different views on consumption

at different dates, unless βt+k+1/βt+k is the same for all t and k and equal to β1, that is,

unless discounting is geometric: βt = βt for some β. We take the view here that geometric

discounting is a very special case and that the a priori grounds to restrict attention to it

are weak. We consider a very simple departure from geometric discounting: quasi-geometric

discounting. Quasi-geometric discounting can be expressed with two parameters, β and δ.

The weights on future utils are 1, βδ, βδ2, βδ3, . . .. That is, discounting is geometric across

all dates excluding the current date:

Ut = ut + β
(
δut+1 + δ2ut+2 + δ3ut+3 + . . .

)
.

The case where β < 1 corresponds to particular short-run impatience (“I will save, just not

right now”), and β > 1 represents particular short-run patience (“I will consume, just not

right now”). The case β = 1, of course, is the standard, time-consistent case.

It is straightforward to generalize quasi-geometric discounting: the weights would then

be general for T periods, and geometric thereafter. Pure hyperbolic discounting corresponds

to the case βt = 1/(t + 1), which we do not consider here. In most of our analysis, we will

restrict attention to δ < 1, since our resources are bounded. With growing resources, it is

possible to allow a δ larger than 1 if the utility function takes a certain form.

We assume that the period utility function u(c) is strictly increasing, strictly concave,

and twice continuously differentiable. The consumer’s resource constraint reads

c + k′ = f(k)

where k is current capital holdings, f is strictly increasing, concave and twice continuously

differentiable. We will focus on the case where f is strictly concave, but this assumption is

not essential for our main results.

2.2 Behavior: modelling choices

How do we model the decision making? We use four principles:

1. We assume that the consumer cannot commit to future actions.

2. We assume that the consumer realizes that his preferences will change and makes the

current decision taking this into account.

3. We model the decision-making process as a dynamic game, with the agent’s current

and future selves as players.
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4. We focus on (first-order) Markov equilibria: at a moment in time, no histories are

assumed to matter for outcomes beyond what is summarized in the current stock of

capital held by the agent.

Some comments are in order. The first of the principles makes the problem different than

the standard case. With commitment, decisions could be analyzed starting at time 0 in an

entirely standard fashion (using recursive methods) and only the decisions across time 0 and

the rest of time would be different. That decision would be straightforward given an indirect

utility function representing utility at times 1, 2 and on. Moreover, commitment is not an

unrealistic assumption. Notice that commitment to consumption behavior in practice would

require a demanding monitoring technology and might be quite costly. 401(k) plans do not

provide commitment to consumption, unless there are other restrictions, such as borrowing

constraints. We do not consider such constraints here. One could consider how access to a

costly monitoring technology would alter the analysis. We leave such an analysis as well to

future work. Of course, the ability to overcome the commitment problem may be a crucial

ability of a consumer, and it deserves to be studied more.

Our second principle is what we interpret rationality to mean in this framework. We

would not want to abandon it: systematic prediction errors of one’s own future behavior are

not studied in the time-consistent model, and we do not want to study them here. Moreover,

studying such prediction errors does not require time-inconsistent preferences.

Our third principle is the same as that suggested and adopted in the early literature on

time-inconsistent preferences. Our fourth principle is more of a restriction than a principle:

we do not study history-dependent equilibria with the hope of arriving at sharper predictions.

There is perhaps also a sense in which we think bygones should be bygones on the level of

decision-making. There is also existing work where bygones are not bygones: Laibson (1994)

and Bernheim, Ray, and Yeltekin (1999) study similar models and allow history dependence.

The set of equilibria can certainly be expanded in this way.

2.3 A recursive formulation

Assume that the agent perceives future savings decisions to be given by a function g(k):

kt = g(kt−1).

Note that g is time-independent and only has current capital as an argument.

The agent solves the “first-stage” problem

W (k) ≡ max
k′

u(f(k)− k′) + βδV (k′),
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where V is the indirect utility of capital from next period on. In turn, V has to satisfy the

“second-stage” functional equation

V (k) = u(f(k)− g(k)) + δV (g(k)).

Notice that successive substitution of V into the agent’s objective generates the right objec-

tive if the expectations of future behavior are given by the function g.

A solution to the agent’s problem is denoted g̃(k). We have an equilibrium if the fixed-

point condition g̃(k) = g(k) is satisfied for all k.

The fixed-point problem in g cannot be expressed as a contraction mapping. For a given

(bounded and continuous) g, it is possible to express the functional equation in V as a

contraction mapping. However, continuity of g does not guarantee that V is concave, and it

is not clear that the maximization over k′ problem has a unique solution. This also implies

that g̃ may be discontinuous.

A simple parametric example can be used as an illustration of the recursion. Suppose

u(c) = log(c) and f(k) = Akα, with α < 1. Then it is straightforward to use guess-and-verify

methods to solve for the following solution:

k′ =
αβδ

1− αδ(1− β)
Akα

and

V (k) = a + b log k

with steady state

kss =

(
αβδA

1− αδ(1− β)

) 1
1−α

.

This solution gives a lower steady state than with β = 1.3

It is easy to check that, for this example, the time-consistent behavior thus solved for

actually coincides, in the first period, with the behavior that would result in the commitment

solution.

An algorithm for numerical computation of equilibria is suggested directly from our

recursive problem: pick an arbitrary initial V , solve for optimal savings and obtain a decision

rule, update V , and so on. This algorithm is similar to value function iteration for the

standard time-consistent problem. If the initial V is set to zero, it is also equivalent to how

a finite-horizon problem would normally be solved. It turns out that this algorithm does not

3The coefficients a and b are given by b = α/(1 − αδ) and a = (log(A − d) + δb log(d))/(1 − δ), where
d = βδbA/(1 + βδb).
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work here. Typically, it leads to cycling.4 Similarly, an algorithm that starts with a guess

on g, solves for V from the second stage condition, and then updates g (say, by a linear

combination between g and g̃) also does not work: it produces cycles. These two algorithms

produce cycles even when u and f are of the parametric form we discussed above—when g

is known to be log-linear—and even an initial condition very close to the exact solution is

given. As we will see, the analysis in the following sections suggests a reason for the apparent

instability of these algorithms: there are other solutions to the fixed-point problem in g that

are not continuous, and the function approximations we used in the above algorithms rely

on continuity (for example, we use cubic splines).

We now turn to a version of our model with a discrete state space.

3 The case of a discrete domain

We now assume that capital can only take a finite number of values: k ∈ {k1, k2, . . . , kI}.
We make the following assumptions:

1. Consumption-savings: u21 > u11 > u12, u21 > u22 > u12.

2. Strict concavity of u:

uij − uik > ui′j − ui′k.

for i < i′ and j < k.

3. Impatience: β < 1 and δ < 1.

Define πij ∈ [0, 1] to be the probability of going from state i to state j. Given π (a set of

πij’s), find the value function given uniquely by the Vi’s solving the contraction

Vi =
∑

j

πij (uij + δVj)

for all i (this is a linear equation system). This gives V (π). The fixed-point condition

requires

πij > 0 ⇒ j ∈ arg max
k

[uik + βδVk(π)].

Proposition 1: There exists a mixed-strategy equilibrium for the economy with discrete

domain.

4The algorithm may converge if g is approximated with very low accuracy (with few grid points, or with
an inflexible functional form).
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Proof: This is shown with a straightforward application of Kakutani’s fixed-point theorem.

It is also possible to show monotonicity of the decision rules:

Proposition 2: The decision rule is monotone increasing, that is, if positive probability is

put on k at i and i′ is larger than i, then the choice at i′ cannot have positive probability on

j < k.

Proof: Suppose not.

uik + βδVk ≥ uij + βδVj

and

ui′j + βδVj ≥ ui′k + βδVk

can be combined into

uij − uik ≤ ui′j − ui′k

which violates strict concavity.

Monotonicity is a very useful property for understanding the behavior of the consumer

in this model. It will be used repeatedly below. The proof of monotonicity does not use

discreteness, and therefore the monotonicity property also applies when the domain for

capital is continuous.

3.1 The 2-state case

We study the simplest possible case in some detail: the case where capital can take only two

values, 1 and 2 (k1 < k2). We will use the short-hand ij for an equilibrium where the decision

in state 1 is to go to state i and the decision in state 2 is to go to state j, i, j ∈ {1, 2}; further,

iπ refers to an equilibrium where there is mixing in state 2 (for some specific probability),

and πj refers to mixing in state 1.

The characterization of the set of equilibria is that the parameter space (β, δ, and the

uij’s) breaks into 6 regions:

Proposition 3: Generically, there are six possible equilibrium configurations; each of the

following characterizes a region:

1. A unique “no-saving” equilibrium: 1 → 1 and 2 → 1.

2. A unique “saving” equilibrium: 1 → 2 and 2 → 2.

3. A unique “status-quo” equilibrium: 1 → 1 and 2 → 2.

4. No pure-strategy equilibrium: 1 → π and 2 → 2 (long-run saving).
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5. Three equilibria:

(a) 1 → 1 and 2 → 1 (no-saving).

(b) 1 → 2 and 2 → 2 (saving).

(c) 1 → 1 and 2 → π (no-saving).

6. Three equilibria:

(a) 1 → 1 and 2 → 1 (no-saving).

(b) 1 → 1 and 2 → π (no-saving).

(c) 1 → π and 2 → 2 (saving).

Proof: See Appendix 1.

Notice that regions 1–3 are expected and standard; region 4 is a case where no pure

strategy equilibrium exists; and the remaining two cases have multiplicity. We will discuss

their interpretation below. As shown in the proof of Proposition 3, regions 4–6 disappear

for β = 1.

When there is more than one equilibrium, there are three. Two of these are very different

in character: they lead to different long-run outcomes. The third is a mixed version of one

of the others, with the same long-run outcome (equilibrium 5c is very similar to 5a, and 6b

to 6a). The essential character of each of the two equilibria is: if your future self is a saver,

so are you; if not, then neither are you.

The idea that there are multiple solutions to a decision problem is conceptually disturbing:

faced in a given situation, what will the consumer do? Our theory does not provide an answer,

or, it says several things can happen. Identical consumers, apparently, can make different

decisions, rationally, in the same situation.

Can we interpret this as there being room for “optimism” and “pessimism” to influence

decisions? These terms should, if used appropriately, refer to utility outcomes, about which

we have remained silent so far. The fact is that, in our 2-state economy, equilibria with

long-run savings are better than those without: they give higher current life-time utility,

independently of the starting condition, than no-saving equilibria.5 In this sense, there is a

free lunch here: just be optimistic, it is not associated with costs!

Of course, the free lunch aspect suggests a natural refinement of equilibria, one which

has a renegotiation character: why stick to expectations which can be replaced with better

ones? This refinement seems to work well in this application. However, it turns out that

this refinement is problematic when there are more than two possible states for capital. The

reason is that, in general, there are parameter regions (which become large when the number

5In fact, all equilibria are ranked in this sense.
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of states becomes large) where a utility ranking across equilibria does not exist. For example,

state i might give equilibrium A higher utility than equilibrium B, whereas in state j the

reverse is true; moreover, state i might lead to state j under equilibrium A. That is, if one

picks equilibrium A now, one will want to change one’s mind later. That means that this

refinement is not time-consistent, and therefore not useful.6

This means, as far as we can tell, absent other useful refinement concepts, that there might

be room for optimism and pessimism. Of course, these terms now have a more restricted

meaning, since an equilibrium with optimism today (in terms of current utility) may imply

pessimism in the future, and vice versa.

3.2 More than 2 states

With more than two states, we resort to numerical methods for finding equilibria. To find

equilibria, we either perform exhaustive search (which of course is a slow method, pro-

hibitively so except for a very small number of states) or iterate on a fixed-point mapping

from randomly selected initial conditions for π (this algorithm is fast, but will miss some

equilibria, at least those which are “unstable”).7

Several questions are relevant here:

• As the grid becomes finer, will the multiplicity expand, remain unchanged, or shrink?

• As the grid becomes extremely fine, and there is some hope that the solution approxi-

mates a continuous state-space solution, what are the properties of such a solution?

• If we restrict parameters to replicate log/Cobb-Douglas assumptions as closely as pos-

sible, will the analytical solution be found? Will other solutions continue to exist?

In general, the findings are: the multiplicity does not go away as the grid becomes finer,

equilibria are not ranked in general, there is always some mixing when the grid is fine enough,

the decision rules look “funny”, and the analytical solution to the log/Cobb-Douglas case is

not one of the equilibria that is produced by the algorithm.

We will illustrate the equilibrium features in Figures 1, 2, and 3. They depict the policy

rule for capital, given current capital, and are constructed based on the case of 150 grid

6Asheim (1997) proposes a concept called revision-proofness as a refinement to subgame-perfect equilibria
and applies it in a context of time-inconsistent decision-making. He shows a specific example, similar to the
present one and featuring a discrete state space, where a revision-proof equilibrium exists. Here, one would
exist in the 2-state case, but not in general in the multi-state case.

7In order to find a mixed-strategy equilibrium, the latter method iterates until near indifference, makes a
specific guess of indifference and solves for the equilibrium given this guess, and finally checks all equilibrium
conditions.
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points. The parameters are chosen based on the log/Cobb-Douglas specification; the analyt-

ical decision rule and the 45-degree line are also graphed in each of the figures. We found 30

equilibria in this case. If these are all the stable equilibria, there should be an odd number

in addition.

The general features are as follows: decision rules seem smooth over some intervals,

but have jumps. For a given decision rule, there is always a single stationary point. The

stationary point is reached, from the right, by a flat section, and from the left, by a “creeping

up along the 45-degree line”. The “creeping up” actually occurs with mixing: these points

are mixing the 45-degree line with a grid point above it. Mixing does not occur anywhere

else. We will draw heavily on these features when we construct equilibria in the case of a

continuous state space in the next section.

Comparing stationary points to the analytical case, Figure 1 has its stationary point

above, Figure 3 below, and Figure 2 at the stationary point of the analytical solution. The

equilibrium in Figure 1 actually dominates the other equilibria in the figures, but there is

another equilibrium with which it cannot be ranked.

3.3 Additional comments

When the discrete-state model is solved backwards, that is, when a finite-horizon version

of the model is solved, there is, as expected, a unique equilibrium for every time horizon.

As the time horizon goes to infinity, there is sometimes no convergence in policy rules and

value functions: a cycle is reached. “Sometimes” is always when there are many grid points.

Intuitively, then, all equilibria we find with our other computational method have mixing, and

mixing equilibria will not be found with backward-solving: they will not exist, generically,

with a finite horizon. In the two-state case, for example, in region 4, where there is no pure-

strategy equilibrium, there is lack of convergence. In regions 1–3, there is convergence to the

unique pure-strategy equilibrium, and in regions 5 and 6 there is convergence to equilibrium

(a): the no-saving equilibrium. Thus, the saving equilibrium seems to require an infinite

horizon to be implementable.

4 Remarks

In this paper, we study the consumption-saving decisions of a consumer who has time-

inconsistent preferences in the form of a departure from geometric discounting. Our anal-

ysis includes as a special case the simplest possible consumption-savings problem in which
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a price-taking consumer faces a constant exogenous interest rate and receives a constant

stream of labor income. We make no restrictions on the period utility function save for

concavity. When the time horizon is infinite, we find that the dynamic game played between

the consumer’s successive selves is characterized by a severe multiplicity of equilibria. This

multiplicity arises even though we restrict attention to Markov equilibria. We have explored

versions of this setting with random shocks to productivity. In such a setting, there is still

multiplicity.
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Appendix

This appendix contains the proof of Proposition 3 in Section 3.1.

First, conditions for each type of equilibrium to exist are given below (it is implicit that

the consumption-savings and strict concavity assumptions are required in addition to the

stated conditions). After these conditions are given, the proof is provided.

• 1 → 1 and 2 → 1. We have, normalizing so that u11 ≡ 1,

v1 = 1 + δv1

and

v2 = u21 + δv1

which implies

v1 =
1

1− δ

and

v2 = u21 +
δ

1− δ
.

This equilibrium exists if

1 + βδ
1

1− δ
≥ u12 + βδ(u21 +

δ

1− δ
)

and

u21 + βδ
1

1− δ
≥ u22 + βδ(u21 +

δ

1− δ
).

These expressions simplify to

1− u12 ≥ βδ(u21 − 1) and u21 − u22 ≥ βδ(u21 − 1).

The latter of these implies the former, given the concavity assumption. Therefore this

type of equilibrium exists if the latter is met.

• 1 → 2 and 2 → 1. This equilibrium cannot exist since it violates monotonicity.

• 1 → 1 and 2 → 2. We have

v1 = 1 + δv1

and

v2 = u22 + δv2

which implies

v1 =
1

1− δ

and

v2 =
u22

1− δ
.
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This equilibrium exists if

1 + βδ
1

1− δ
≥ u12 + βδ

u22

1− δ

and

u22 + βδ
u22

1− δ
≥ u21 + βδ

1

1− δ
.

These expressions simplify to

1− u12 ≥ βδ
u22 − 1

1− δ
and u21 − u22 ≤ βδ

u22 − 1

1− δ
.

• 1 → 2 and 2 → 2. We have

v1 = u12 + δv2

and

v2 = u22 + δv2

which implies

v1 = u12 +
δ

1− δ
u22

and

v2 =
u22

1− δ
.

This equilibrium exists if

u12 + βδ
u22

1− δ
≥ 1 + βδ

(
u12 +

δ

1− δ
u22

)

and

u22 + βδ
u22

1− δ
≥ u21 + βδ

(
u12 +

δ

1− δ
u22

)
.

These expressions simplify to

1− u12 ≤ βδ(u22 − u12) and u21 − u22 ≤ βδ(u22 − u12).

The former of these implies the latter, given the concavity assumption. Therefore this

type of equilibrium exists if the former is met.

• 1 → π and 2 → 1. This equilibrium cannot exist since it violates monotonicity.

• 1 → π and 2 → 2. We have

1 + βδv1 = u12 + βδv2

and

v2 = u22 + δv2

15



which implies

v1 =
u22

1− δ
+

u12 − 1

βδ

and

v2 =
u22

1− δ
.

The mixing probability satisfies

v1 = π(1 + δv1) + (1− π)(u12 + δv2),

implying

π =
1

1− β

(
1

δ
+ β

u12 − u22

1− u12

)
.

This equilibrium exists if

u22 + βδ
u22

1− δ
≥ u21 + βδ

(
u22

1− δ
+

u12 − 1

βδ

)
,

which is unrestrictive since it is equivalent to concavity, π ≥ 0, that is,

1− u12 ≥ βδ(u22 − u12)

and π ≤ 1, that is,

1− u12 ≤ βδ(u22 − u12)

1− δ(1− β)
.

• 1 → 1 and 2 → π. We have

v1 = 1 + δv1

and

u21 + βδv1 = u22 + βδv2

which implies

v1 =
1

1− δ

and

v2 =
1

1− δ
+

u21 − u22

βδ
.

The mixing probability satisfies

v2 = π(u21 + δv1) + (1− π)(u22 + δv2),

implying

1− π =
1

1− β

(
1

δ
+ β

1− u21

u21 − u22

)
.

This equilibrium exists if

1 + βδv1 ≥ u21 + βδv2

16



which is automatically met since it is equivalent to concavity, and 1− π ≥ 0, that is,

u21 − u22 ≥ βδ(u21 − 1)

and 1− π ≤ 1, that is,

u21 − u22 ≤ βδ(u21 − 1)

1− δ(1− β)
.

• 1 → 2 and 2 → π. This equilibrium cannot exist since it violates monotonicity.

• 1 → π and 2 → π. This equilibrium also cannot exist since it violates monotonicity.

In each of the cases when conditions for existence are given it is straightforward to see

that parameter values do exist such that the given conditions are met. We now turn to

discussing the possible coexistence of equilibria for given parameter values. The possible

equilibria are denoted 11, 12, 22, π2, and 1π (referring to the decision in states 1 and 2,

respectively). We assume in this section that β and δ are less than 1.

We now prove the proposition by methodically going through all possibilities. First we

prove six facts.

• 22 does not coexist with any other equilibrium. 22 requires 1 − u12 ≤ βδ(u22 − u12).

Let us consider each alternative equilibrium in turn.

The condition for 11 is u21 − u22 ≥ βδ(u21 − 1). Combining it with the condition for

22 we obtain

1− u12 − u21 + u22 ≤ βδ(u22 − u12 − u21 + 1)

which is a contradiction given strict concavity and βδ < 1.

One of the conditions for the 12 equilibrium is that (1 − δ)(1 − u12) + βδ ≥ βδu22.

The condition for 22 is βδu22 ≥ 1 − u12 + βδu12. But these are inconsistent since

(1− δ)(1− u12) + βδ − (1− u12 + βδu12) = −δ(1− β)(1− u12) < 0.

The π2 equilibrium violates the 22 condition immediately if π > 0; if π = 0 it reduces

to the 22 equilibrium.

The 1π equilibrium, finally, requires u21−u22 ≥ βδ(u21− 1), or u22 ≤ (1− βδ)u21 + βδ

which is strictly less than (1− βδ)(1− u12 + u22) + βδ. This implies βδu22 < 1− (1−
βδ)u12. But this is contradicted by the 22 condition. This completes the argument

that the 22 equilibrium is the unique equilibrium if it exists.

• 12 does not coexist with π2. The requirement that π < 1 for the π2 equilibrium is

(1−u12)(1− δ−βδ) < βδ(u22−u12), which can be rewritten as 1−u12 < βδ
1−δ

(u22− 1),

which contradicts the first of the two conditions for the 12 equilibrium. If π = 1 the

two equilibria are equivalent.

17



• If 11 and 12 are both equilibria, then so is 1π. It is sufficient to show that

u21 − u22 ≤ βδ

1− δ(1− β)
(u21 − 1),

which is the second of the conditions for the 1π equilibrium, as the first condition is

implied directly by the existence of the 11 equilibrium. This condition can be rewritten

as u21 − u22 ≤ βδ
1−δ

(u22 − 1), which is identical to the second of the conditions needed

for existence of the 12 equilibrium.

• If 1π exists, so does 11. The 1π case requires two conditions to hold, one of which

is u21 − u22 ≥ βδ(u21 − 1). But this condition is the only one required for the 11

equilibrium to exist.

• If 11 and 1π are both equilibria, then so is either 12 or π2. The 12 equilibrium exists

if 1 − u12 ≥ βδ
1−δ

(u22 − 1), since the second condition under which 12 exists was just

shown to be identical to the second condition under which 1π exists. If not, that is,

if 1 − u12 < βδ
1−δ

(u22 − 1), we need to show that π2 exists. This condition can be

rewritten as 1 − u12 < βδ
1−δ(1−β)

(u22 − u12), which implies the second condition for π2.

It remains to show that the first condition for π2, namely, 1 − u12 ≥ βδ(u22 − u12),

is met. Suppose it is not. Then the only condition for the 22 equilibrium to exist is

satisfied. But we showed above that the 22 equilibrium cannot coexist with any other

equilibrium; in particular, it cannot coexist with 11 or 1π. This is a contradiction, so

the π2 equilibrium has to exist.

• If 11 and π2 are both equilibria, then so is 1π. We need to show that the second condi-

tion for the 1π equilibrium, u21−u22 ≤ βδ
1−δ(1−β)

(u21−1), is met (the first one is implied

directly since the 11 equilibrium exists). From above, we know that this expression can

be rewritten as u21−u22 ≤ βδ
1−δ

(u22−1). Now concavity implies that u21−u22 ≤ 1−u12.

We also know, by the second condition for π2 to exist, that 1−u12 ≤ βδ
1−δ(1−β)

(u22−u12),

which can be rewritten as 1 − u12 ≤ βδ
1−δ

(u22 − 1). Combining these two inequalities

yields the desired result.

Going through all possible equilibrium sets, these six facts rule out everything except the

six possibilities we claim exist. It is straightforward to verify that these six remaining cases

are possible.
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Figure 3
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