Savings and Economic Growth
Savings and Economic Growth

Question: How does the savings rate affect the long-run average growth rate of a country?
Question: How does the savings rate affect the long-run average growth rate of a country?

We will answer this question using a very simple aggregate (or economywide) model of economic growth.
Question: How does the savings rate affect the long-run average growth rate of a country?

We will answer this question using a very simple aggregate (or economywide) model of economic growth.

The model we will study is called the Solow model (after the Nobel Prize-winning economist Robert Solow at M.I.T.).
The Aggregate Production Function Revisited
The Aggregate Production Function Revisited

- Recall the aggregate production function:
Recall the aggregate production function:

\[Y = AK^\alpha L^{1-\alpha}. \]
Recall the aggregate production function:

\[Y = AK^\alpha L^{1-\alpha}. \]

For now, fix \(A = 1 \) and \(L = 1 \), so that neither the level of technology (\(A \)) nor the aggregate amount of labor supply (\(L \)) is changing.
Recall the aggregate production function:

\[Y = AK^\alpha L^{1-\alpha}. \]

For now, fix \(A = 1 \) and \(L = 1 \), so that neither the level of technology (\(A \)) nor the aggregate amount of labor supply (\(L \)) is changing. (Later, we will allow \(A \) to grow over time.)
Recall the aggregate production function:

\[Y = AK^\alpha L^{1-\alpha}. \]

For now, fix \(A = 1 \) and \(L = 1 \), so that neither the level of technology (\(A \)) nor the aggregate amount of labor supply (\(L \)) is changing. (Later, we will allow \(A \) to grow over time.) Physical capital \(K \), however, will change over time.
Recall the aggregate production function:

\[Y = AK^\alpha L^{1-\alpha}. \]

For now, fix \(A = 1 \) and \(L = 1 \), so that neither the level of technology (\(A \)) nor the aggregate amount of labor supply (\(L \)) is changing. (Later, we will allow \(A \) to grow over time.) Physical capital \(K \), however, will change over time.

Let’s study the shape of the aggregate production function (again, holding technology and employment constant).
This production function exhibits diminishing returns to capital: the extra output from a little bit more capital decreases as K increases.
Put differently, decreasing returns to capital means that the slope of the production function decreases as capital increases:

The slope of the tangent line is higher at K_1 than at K_2.
Diminishing Marginal Product of Capital
The slope of the production function is called the marginal product of capital.
Diminishing Marginal Product of Capital

- The slope of the production function is called the *marginal product of capital*.
- The marginal product of capital is the amount by which output increases when capital increases by a (very) small amount.
Diminishing Marginal Product of Capital

- The slope of the production function is called the marginal product of capital.
- The marginal product of capital is the amount by which output increases when capital increases by a (very) small amount.
- The declining marginal product of capital suggests that it will be difficult to generate sustained growth simply by increasing capital over time.
Sergey Brin, co-founder of Google, on diminishing returns to capital.

Mr. Brin said that he saw no end to other innovations. “You might imagine the lower-hanging fruit has been picked,” he said, “but at the same time we have built ladders and are reaching for larger, higher-hanging fruit.”

From: New York Times Business Section, 10/20/06

link to full article: http://www.nytimes.com/2006/10/20/technology/20google.html
The Solow Growth Model
The Solow Growth Model

- At the beginning of every year t, the economy has a stock of (physical) capital K_t.
The Solow Growth Model

- At the beginning of every year t, the economy has a stock of (physical) capital K_t.
- In year t, the economy produces output (or GDP) Y_t according to the aggregate production function:
The Solow Growth Model

- At the beginning of every year t, the economy has a stock of (physical) capital K_t.
- In year t, the economy produces output (or GDP) Y_t according to the aggregate production function:

$$ Y_t = K_t^\alpha. $$
The Solow Growth Model

- At the beginning of every year t, the economy has a stock of (physical) capital K_t.
- In year t, the economy produces output (or GDP) Y_t according to the aggregate production function:
 \[Y_t = K_t^\alpha. \]
- Some of this output is consumed today and the rest is invested (here, investment means the formation of physical capital).
The Solow Growth Model

- At the beginning of every year t, the economy has a stock of (physical) capital K_t.
- In year t, the economy produces output (or GDP) Y_t according to the aggregate production function:
 \[Y_t = K_t^\alpha. \]
- Some of this output is **consumed** today and the rest is **invested** (here, investment means the formation of physical capital).
- To keep things simple, suppose that the entire current stock of capital is depleted (or used up) through depreciation during the course of production.
The Solow Growth Model

- At the beginning of every year t, the economy has a stock of (physical) capital K_t.
- In year t, the economy produces output (or GDP) Y_t according to the aggregate production function:
 $$Y_t = K_t^\alpha.$$
- Some of this output is consumed today and the rest is invested (here, investment means the formation of physical capital).
- To keep things simple, suppose that the entire current stock of capital is depleted (or used up) through depreciation during the course of production.
- In other words, if the economy does not invest today, there will be no capital with which to produce tomorrow.
The Key Equations of the Solow Model
The Key Equations of the Solow Model

- Let C_t be (aggregate) consumption in year t.
The Key Equations of the Solow Model

- Let C_t be (aggregate) consumption in year t.
- Let I_t be (aggregate) investment in year t.
The Key Equations of the Solow Model

- Let C_t be (aggregate) consumption in year t.
- Let I_t be (aggregate) investment in year t.
- All output in year t is either consumed or invested:
The Key Equations of the Solow Model

- Let C_t be (aggregate) consumption in year t.
- Let I_t be (aggregate) investment in year t.
- All output in year t is either consumed or invested:

$$Y_t = C_t + I_t.$$
The Key Equations of the Solow Model

- Let C_t be (aggregate) consumption in year t.
- Let I_t be (aggregate) investment in year t.
- All output in year t is either consumed or invested:

$$Y_t = C_t + I_t.$$

- The usual national income accounting identity is
The Key Equations of the Solow Model

- Let C_t be (aggregate) consumption in year t.
- Let I_t be (aggregate) investment in year t.
- All output in year t is either consumed or invested:

$$Y_t = C_t + I_t.$$

- The usual national income accounting identity is

$$Y_t = C_t + I_t + G_t + NX_t,$$
The Key Equations of the Solow Model

- Let C_t be (aggregate) consumption in year t.
- Let I_t be (aggregate) investment in year t.
- All output in year t is either consumed or invested:
 \[Y_t = C_t + I_t. \]
- The usual national income accounting identity is
 \[Y_t = C_t + I_t + G_t + NX_t, \]
 where G_t is government spending in year t and NX_t is net exports in year t.
The Key Equations of the Solow Model

- Let C_t be (aggregate) consumption in year t.
- Let I_t be (aggregate) investment in year t.
- All output in year t is either consumed or invested:
 \[Y_t = C_t + I_t. \]
- The usual national income accounting identity is
 \[Y_t = C_t + I_t + G_t + NX_t, \]
where G_t is government spending in year t and NX_t is net exports in year t. But in this very simple model, we are ignoring government spending and we are imagining that the economy is **closed** (so that it does not trade with the rest of the world).
The Savings Decision
The Savings Decision

Key decision facing any economy: how to split today's output between today (consumption) and tomorrow (savings, or investment).
The Savings Decision

- Key decision facing any economy: how to split today's output between today (consumption) and tomorrow (savings, or investment).
- Let’s assume that the economy has a constant savings rate:
The Savings Decision

- Key decision facing any economy: how to split today's output between today (consumption) and tomorrow (savings, or investment).
- Let's assume that the economy has a constant savings rate:

\[S_t = sY_t, \]
The Savings Decision

Key decision facing any economy: how to split today’s output between today (consumption) and tomorrow (savings, or investment).

Let’s assume that the economy has a constant savings rate:

\[S_t = s Y_t, \]

where the savings rate \(s \) is a number between 0 and 1.
The Savings Decision

- Key decision facing any economy: how to split today’s output between today (consumption) and tomorrow (savings, or investment).
- Let’s assume that the economy has a constant savings rate:

 \[S_t = sY_t, \]

 where the savings rate \(s \) is a number between 0 and 1.
- In a closed economy, \(S_t = I_t \), so \(I_t = sY_t \).
The Savings Decision

- Key decision facing any economy: how to split today’s output between today (consumption) and tomorrow (savings, or investment).
- Let’s assume that the economy has a constant savings rate:

\[S_t = sY_t, \]

where the savings rate \(s \) is a number between 0 and 1.
- In a closed economy, \(S_t = I_t \), so \(I_t = sY_t \).
- Because capital depreciates completely during production, investment \((I_t) \) is the only source of capital goods in the future:
The Savings Decision

- Key decision facing any economy: how to split today’s output between today (consumption) and tomorrow (savings, or investment).
- Let’s assume that the economy has a constant savings rate:
 \[S_t = sY_t, \]
 where the savings rate \(s \) is a number between 0 and 1.
- In a closed economy, \(S_t = I_t \), so \(I_t = sY_t \).
- Because capital depreciates completely during production, investment \((I_t) \) is the only source of capital goods in the future: \(K_{t+1} = I_t \).
The Savings Decision

- Key decision facing any economy: how to split today's output between today (consumption) and tomorrow (savings, or investment).
- Let's assume that the economy has a constant savings rate:

\[S_t = sY_t, \]

where the savings rate \(s \) is a number between 0 and 1.
- In a closed economy, \(S_t = I_t \), so \(I_t = sY_t \).
- Because capital depreciates completely during production, investment (\(I_t \)) is the only source of capital goods in the future: \(K_{t+1} = I_t \). (Note: We are assuming that it takes one year to build and install new capital goods.)
The Economy’s Law of Motion
The Economy’s Law of Motion

- In a typical year t:
The Economy’s Law of Motion

In a typical year t:

$$ Y_t = K_t^\alpha \quad \text{(production)} $$
The Economy’s Law of Motion

In a typical year t:

\[
Y_t = K_t^\alpha \quad \text{(production)}
\]
\[
S_t = sY_t \quad \text{(savings)}
\]
The Economy’s Law of Motion

In a typical year t:

\[Y_t = K_t^\alpha \quad \text{(production)} \]
\[S_t = sY_t \quad \text{(savings)} \]
\[I_t = S_t \quad \text{(investment)} \]
In a typical year t:

\[
\begin{align*}
Y_t & = K_t^\alpha \quad \text{(production)} \\
S_t & = sY_t \quad \text{(savings)} \\
I_t & = S_t \quad \text{(investment)} \\
K_{t+1} & = I_t \quad \text{(new capital goods)}
\end{align*}
\]
The Economy’s Law of Motion

In a typical year \(t \):

\[
Y_t = K_t^\alpha \quad \text{(production)}
\]

\[
S_t = s Y_t \quad \text{(savings)}
\]

\[
I_t = S_t \quad \text{(investment)}
\]

\[
K_{t+1} = I_t \quad \text{(new capital goods)}
\]

Putting it all together:

\[
K_{t+1} = sK_t^\alpha.
\]
The Economy’s Law of Motion

In a typical year t:

- $Y_t = K_t^\alpha$ (production)
- $S_t = sY_t$ (savings)
- $I_t = S_t$ (investment)
- $K_{t+1} = I_t$ (new capital goods)

Putting it all together:

$$K_{t+1} = sK_t^\alpha.$$

This is the law of motion for the economy’s capital stock.
An Alternative Expression for the Law of Motion
An Alternative Expression for the Law of Motion

- Subtract K_t from both sides to get:
An Alternative Expression for the Law of Motion

Subtract K_t from both sides to get:

$$K_{t+1} - K_t = sK_t^\alpha - K_t.$$
Subtract K_t from both sides to get:

$$K_{t+1} - K_t = sK_t^\alpha - K_t.$$

$\Delta K_{t+1} \equiv K_{t+1} - K_t$ is the change in the capital stock from year t to year $t + 1$.
An Alternative Expression for the Law of Motion

- Subtract K_t from both sides to get:

$$K_{t+1} - K_t = sK_t^\alpha - K_t.$$

- $\Delta K_{t+1} \equiv K_{t+1} - K_t$ is the change in the capital stock from year t to year $t + 1$.

- ΔK_{t+1} is positive if $sK_t^\alpha > K_t$.

An Alternative Expression for the Law of Motion

Subtract K_t from both sides to get:

$$K_{t+1} - K_t = sK_t^\alpha - K_t.$$

$\Delta K_{t+1} \equiv K_{t+1} - K_t$ is the change in the capital stock from year t to year $t+1$.

ΔK_{t+1} is positive if $sK_t^\alpha > K_t$.

ΔK_{t+1} is negative if $sK_t^\alpha < K_t$.

An Alternative Expression for the Law of Motion

- Subtract K_t from both sides to get:

$$K_{t+1} - K_t = sK_t^\alpha - K_t.$$

- $\Delta K_{t+1} \equiv K_{t+1} - K_t$ is the change in the capital stock from year t to year $t + 1$.

- ΔK_{t+1} is positive if $sK_t^\alpha > K_t$.

- ΔK_{t+1} is negative if $sK_t^\alpha < K_t$.

- ΔK_{t+1} is zero if $sK_t^\alpha = K_t$.
A Useful Graph

\[y = K^\alpha \]
\[I = sK^\alpha \]

When \(K = \bar{K} \),
\[s\bar{K}^\alpha = K, \text{ so} \]
\[\Delta K = 0. \]

\(\bar{K} \) is the steady state value of capital.
Let the initial period be $t = 0$.

If $K_0 = \bar{K}$, then the economy's capital stock remains at \bar{K}.

Period 0: $K_1 = sK_0^\alpha = s\bar{K}^\alpha = \bar{K}$

This equation defines \bar{K}.

Period 1: $K_2 = sK_1^\alpha = s\bar{K}^\alpha = \bar{K}$

Period 2: $K_3 = sK_2^\alpha = s\bar{K}^\alpha = \bar{K}$

Periods 3, 4, 5, ...: more of the same
Solving for the Steady State
Solving for the Steady State

\[\bar{K} = s\bar{K}^\alpha \implies \bar{K} = s^{1/(1-\alpha)} . \]
Solving for the Steady State

\[\bar{K} = s \bar{K}^\alpha \quad \Rightarrow \quad \bar{K} = s^{1/(1-\alpha)}. \]

- The steady-state value of the capital stock depends on the savings rate \(s \) and the exponent \(\alpha \) in the production function.
Solving for the Steady State

\[\bar{K} = s\bar{K}^\alpha \Rightarrow \bar{K} = s^{1/(1-\alpha)}. \]

The steady-state value of the capital stock depends on the savings rate \(s \) and the exponent \(\alpha \) in the production function.

The higher is the savings rate, the higher is the steady-state capital stock.
Solving for the Steady State

- $\bar{K} = s\bar{K}^\alpha \Rightarrow \bar{K} = s^{1/(1-\alpha)}$.
- The steady-state value of the capital stock depends on the savings rate s and the exponent α in the production function.
- The higher is the savings rate, the higher is the steady-state capital stock.
- Steady-state output (GDP) is: $\bar{Y} = \bar{K}^\alpha$.
Solving for the Steady State

\[\overline{K} = s\overline{K}^\alpha \Rightarrow \overline{K} = s^{1/(1-\alpha)}. \]

- The steady-state value of the capital stock depends on the savings rate \(s \) and the exponent \(\alpha \) in the production function.
- The higher is the savings rate, the higher is the steady-state capital stock.
- Steady-state output (GDP) is: \(\overline{Y} = \overline{K}^\alpha. \)
- Steady-state consumption is: \(\overline{C} = (1 - s)\overline{Y}. \)
THE GOLDEN RULE
(discovered by Edmund Phelps, last year's winner of the Nobel Prize in Economics)

\[\bar{c} \]

At \(s = 0 \), \(\bar{K} = 0 \), so \(\bar{c} = 0 \)

At \(s = 1 \), \(\bar{c} = (1-s)\bar{Y} = 0 \)

At \(s = \alpha \), \(\bar{c} \) is maximized

\(S = 0 \quad S = \alpha \quad S = 1 \)
Dynamics
Dynamics

Question: If the economy doesn’t start at the steady-state capital stock \bar{K}, does it ever get there?
Question: If the economy doesn’t start at the steady-state capital stock \bar{K}, does it ever get there?

Short answer: The economy always converges to \bar{K} (as long as the initial capital stock is positive).
Dynamics

Question: If the economy doesn’t start at the steady-state capital stock \bar{K}, does it ever get there?

Short answer: The economy always converges to \bar{K} (as long as the initial capital stock is positive).

However, it takes an infinite amount of time to get to the steady state.
When $K < \bar{K}$, $sK^\alpha - K > 0$, so K increases.

When $K > \bar{K}$, $sK^\alpha - K < 0$, so K decreases.
Dynamics using algebra

\[K_1 = s K_0^\alpha \]
\[K_2 = s K_1^\alpha \]
\[K_3 = s K_2^\alpha \]
\[\text{etc.} \]

\[c_0 = y_0 - I_0 = k_0^\alpha - k_1 \]
\[c_1 = y_1 - I_1 = k_1^\alpha - k_2 \]
\[c_2 = y_2 - I_2 = k_2^\alpha - k_3 \]
\[\text{etc.} \]

“Eventually”, both \(K_t \) and \(C_t \) converge to their steady-state values \(\bar{K} \) and \(\bar{C} \).
An Important Theoretical Discovery
An Important Theoretical Discovery

- Growth in the long run is ZERO!
An Important Theoretical Discovery

- Growth in the long run is **ZERO**!
- The savings rate does **NOT** affect growth in the long run (that is, after the economy converges to its steady state).
An Important Theoretical Discovery

- Growth in the long run is ZERO!
- The savings rate does NOT affect growth in the long run (that is, after the economy converges to its steady state).
- Increases in the savings rate DO affect growth in the short run but NOT in the long run.
An Increase in the Savings Rate

$I = s' K^\alpha \quad (s' > s)$

$s' K^\alpha - \bar{K} = 0$

$I = s K^\alpha$

When s increases, the economy moves to a new higher steady state.
An Improvement in Technology

When technology improves (from A to A'), the economy moves to a new higher steady state.
Another Important Theoretical Discovery
Another Important Theoretical Discovery

- Sustained increases in technology lead to sustained increases in output, consumption, and the capital stock.
Another Important Theoretical Discovery

- Sustained increases in technology lead to sustained increases in output, consumption, and the capital stock.
- Improvements in technology overcome the problem of diminishing returns to capital.
Another Important Theoretical Discovery

- Sustained increases in technology lead to sustained increases in output, consumption, and the capital stock.
- Improvements in technology overcome the problem of diminishing returns to capital.
- This is what Sergey Brin means by “building ladders to larger, higher-hanging fruit.”