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Question 1

We know that Lct  L and thus Lit  1 − L. It is also true that kt  kct  kit. Moreover

we have that:

kct
Lct

 kit
Lit

 kct
L  kt − kct

1 − L


1 − kct  kt − kct  kct  kt

and:

kit  1 − kt

Thus we can write the capital-labor ratios above as:

kct
Lct

 kt
Lt

 kt
Lt

 kit
Lit

Since both F and G have constant returns to scale we can write:

Fkct,Lct  Lctf Kct
Lct

 Lf kt
Lt

Gkit,Lit  Litg Kit
Lit

 1 − Lg kt
Lt

Since the total amount of labor is fixed, with out loss of generality we can normalize it so
that L  1 :

Fkct,1  fkt

Gkit,1  1 − gkt

Total capital evolves according to:

kt1  1 − kt  it 

kt1  1 − kt  1 − gkt



We will assume the following:
 gkt is strictly increasing in kt
 gkt is strictly concave in kt
 g0  0
 1 − g′0  


k→
lim 1 −   1 − g′k  1

Therefore based on all the above, as we did in class we see that if we graph

kt1  1 − kt  1 − gkt, it will start at zero and cross the 45∘ degree line from above
only once at k∗, where k∗ is such that k∗  1 − k∗  1 − gk∗ ( k∗  1 − gk∗) .

Thus for kt  k∗ it will be the case that kt1 − kt  0 (since kt1  1 − kt  1 − gkt
is above the 45∘ degree line) and for kt  k∗ it will be the case that kt1 − kt  0 (since
kt1  1 − kt  1 − gkt is below the 45∘ degree line).

Thus kt is monotone bounded sequence. Since it is also bounded, it has a limit which is k∗.

Question 2

Let’s define two new function h and l such that:

hkt ≡ fgkt

lkt ≡ gfkt

Obviously it will be the case that:

kt2  hkt if t is even
kt2  lkt if t is odd

We now want to see whether there exists kh such that hkh  kh. We know that since f
and g are strictly increasing and strictly concave, h has to be strictly increasing and
strictly concave. Moreover we have that:

f0  g0  0  h0

f ′0g′0  1  h′0  1

and:

k→
lim f ′gkg′k  1 

k→
lim h′k  1

Therefore based on all the above, as we did in class we see that if we graph hk, it will
start at zero and cross the 45∘ degree line from above only once at kh.

Thus for kt  kh and t even, it will be the case that kt2 − kt  hkt − kt  0 and for
kt  kh and t even, it will be the case that kt2 − kt  hkt − kt  0 (since h is now below
the 45∘ degree line).



Thus kt is monotone bounded sequence. Since it is also bounded, it has a limit which is kh.

Similarly for l we want to whether there exists kl such that lkl  kl. We know that
since f and g are strictly increasing and strictly concave, l has to be strictly increasing
and strictly concave. Moreover we have that:

f0  g0  0  l0

f ′0g′0  1  l ′0  1

and:

k→
lim g′fkf ′k  1 

k→
lim l ′k  1

Therefore based on all the above, as we did in class we see that if we graph lk, it will
start at zero and cross the 45∘ degree line from above only once at kl.

Thus for kt  kl and t odd, it will be the case that kt2 − kt  lkt − kt  0 and for kt  kl
and t odd, it will be the case that kt2 − kt  lkt − kt  0 (since l is now below the 45∘
degree line).

Thus kt is monotone bounded sequence. Since it is also bounded, it has a limit which is kl.

In other words there is global convergence to a ”two cycle” in which kt oscillates between
kh and kl.

If we know assume that fkt  akt and gkt  bkt, where a and b are positive constants,

we will have that for t even:

hkt  fgkt  abkt

and for t odd:

lkt  gfkt  bakt

Clearly if ab  1 capital grows indefinitely and if ab  1, capital will shrink and converge to
zero. If ab  1 capital will stay at its initial level.

Question 3

The functional Euler equation is

− u′fk − gk  u′fgk − ggkf ′gk  0

Differentiate both sides with respect to k, we have



0  −u′′fk − gkf ′k − g′k

 u′′fgk − ggk f ′gkg′k − g′k2 f ′gk

 u′fgk − ggkf ′′gkg′k

Evaluate this equation at k  k∗, and notice that gk∗  k∗ and fk∗  −1, we have

0  −u′′fk∗ − k∗f ′k∗ − g′k∗

 u′′fk∗ − k∗ f ′k∗g′k∗ − g′k∗2

 u′fk∗ − k∗f ′′k∗g′k∗

Plug in c∗  fk∗ − k∗, after some manipulation, we get

g′k∗2 − 1  1



u′c∗
u′′c∗

f ′′k∗
f ′k∗

g′k∗  1


 0

Or:

2 − 1  1



u′c∗
u′′c∗

f ′′k∗
f ′k∗

  1


 0

where  is equal to g′k∗. We also know that the speed of convergence near the steady

state is inversely related to the slope of the decision rule at the steady state (i.e. g′k∗ or ).
Here we will see that curvature of production function will speed up convergence, while

curvature of utility function will retard it. The economic intuition is as follows: (a) the higher
the curvature of production in the steady state, the sharper the change in the marginal return of
capital when we are perturbed from steady state. Therefore, people want to invest more to
make use of this opportunity, which speeds up convergence. (b) the higher the curvature of
utility function in the steady state, the sharper the change in the marginal utility when
perturbed from the steady state. Since people wants to smooth their marginal utility, they will
consume more today to offset the change, which slows down the capital accumulation.

Plug into the curvature of utility and production functions, we have

2 − 1  1


c∗
 1 − k∗−2   1


 0

in which

k∗  f ′−1 1



1 − 1 − 



1
−1

c∗  fk∗ − k∗  k∗k∗−1 − 

Define



B  1  1


c∗
 1 − k∗−2

 1  1


k∗k∗−1 − 

 1 − k∗−2

 1  1


1 − 

 k∗−1k∗−1 − 

 1  1

 1 − 1 −   1 −    − 



Now we know that the solutions of characteristic equation are

 
B  B2 − 4−1

2

We are interested in the smaller root, i.e.

1 
B − B2 − 4−1

2

Now we study the effect of different parameters in turn. For each case, first we derive the
sign mathematically; then we give the economic intuition for this.

First, the effect of . Differentiate w.r.t. , we get

∂1
∂

 1
2 1 − B

B2 − 4−1
∂B
∂

Obviously the first term is negative. The second term is

∂B
∂

 1 −   


− 1
2 1 −    −  

1
 − 1 −

 − 1 −   


1 −   1 − 2
2

 0

Therefore, we have ∂1
∂  0. This confirms our economic intuition before. Since the total

effect of increasing  reduces the curvature ( ∂B∂  0), it makes the speed of convergence
slower (higher ).

Second, the effect of .Differentiate w.r.t. , we get

∂1
∂

 1
2 1 − B

B2 − 4−1
∂B
∂

Obviously the first term is negative. The second term is



∂B
∂

 − 1 − 1 −   1 −    − 
2

 0

Therefore, we have ∂1
∂  0. The economic intuition goes as follows. Since in the steady

state there is no intertemporal issues,  won’t influence steady-state capital level. Therefore,
the only effect of  on convergence is on the direct effect of intertemporal substitution. If 
increases, the curvature of utility function increases, which makes convergence slows down.
Consequently, an increase in  causes slower convergence (higher ).

Third, the effect of .Differentiate w.r.t. , we get

∂1
∂

 1
2 1 − B

B2 − 4−1
∂B
∂

Obviously the first term is negative. The second term is

∂B
∂

 1 − 
 1 −    −   1 −   1 − 

 0

Therefore, we have ∂1
∂  0. The economic intuition is similar to the case of . First, given

k∗, increasing  makes the curvature of production function 1−k∗−2

k∗−11−
increase, which

speeds up convergence rate. Second, increasing  will reduce steady-state capital stock, which
again increases the curvature. Two effects operate together to speed up convergence further.

Finally, the effect of .Differentiate w.r.t. , we get

∂1
∂

 1
2 1 − B

B2 − 4−1
∂B
∂
− 1
2 B2 − 4−1

It is easy to see that

1 − B
B2 − 4−1

 0

− 1
2 B2 − 4−1

 0

Now we determine the term

∂B
∂



0

− 1
2 

0

1 − 


0

− 1
2

0

1 −    −  

0

−1 − 1  

0

−1   − 

 0



Now we have

∂1
∂

 1
2

0

1 − B
B2 − 4−1

0


∂B
∂

−

0

1
2 B2 − 4−1

 0

Therefore, the effect of  on convergence is ambiguous.

Question 4

If some of you were confused when you first read the problem with s1t and s2t, one way to
think about it is that in sit, i denotes the number of periods left to complete the project, so for
example s2t which is a choice variable today, will be completed in 2 periods.

(a) As stated in the problem the choice variable every period is s2. The state variables will
be the stock of capital as of this period, k (this will be crucial in determining our production
this period) and the stock of partially completed projects s1 (which we will have to complete
this period). Making use of the capital accumulation constraint, the resource constraint and the
investment equation we can write the Bellman equation as:

Vs1,k 
s2

max uFk − 1 − s1  s2  Vs1
′ ,k ′

where:

k ′  1 − k  s1

s1
′  s2

(b) The first-order condition for this problem is given by:

− u′c  Vss2,k ′  0

where:

c  Fk − 1 − s1 − s2

The envelope conditions are:

Vss1,k  −1 − u′c  Vks2,k ′
Vks1,k  u′cF ′k  1 − Vks2,k ′

(c) In steady state it is the case that:



k  k ′  k
s1  s2  s
c  c

and from the capital accumulation equation we have:

k  1 −  k  s 

s   k

and therefore:

c  F k −  k

From the second envelope condition we derived, we can solve for Vk s , k :

Vk s , k  u′ c F ′ k  1 − Vk s , k 

Vk s , k 
u′ c F ′ k
1 − 1 − 

If we plug this into the l.h.s. of the first envelope condition, we get that:

Vs s , k  −1 − u′ c   
u′ c F ′ k
1 − 1 − 

and plugging the above into the first-order conditions and get:

u′ c   −1 − u′ c   2 u′ c F ′ k
1 − 1 − 



  −1 −   2 F ′ k
1 − 1 − 

Under the assumptions that Fk  ka and   1, the above equation becomes:

1 
2a k a−1

1 − 1 − 


k 
2a

1 − 1 − 

1
1−a


