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Prof. Tony Smith

HOMEWORK #1

This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand’s mailbox.

1. Consider a growth model with capital accumulation equation kt+1 = f(kt) if t is even

and kt+1 = g(kt) if t is odd. Assume that:

(i) f(0) = g(0) = 0.

(ii) f ′(0)g′(0) > 1.

(iii) limk→∞ f ′(g(k))g′(k) < 1 and limk→∞ g′(f(k))f ′(k) < 1.

(iv) f and g are strictly increasing and strictly concave.

Show that, from any initial condition k0 > 0, there is global convergence to a “two-

cycle” in which kt oscillates between two values. How are these values determined?

Solution We have:

• k2t = g(f(k2t−2))

• k2t+1 = f(g(k2t−1))

Let h be defined as h(k) = g(f(k))−k for all k. Should the sequence k2t be converging,

the limit necessarily is a solution of h(k) = 0 (cf. your favorite math course on

sequences). Using properties (i) and (ii), we have that h(0) = 0 and h is increasing

at 0. By differentiating twice, h is strictly concave. Using property (iii), h′ < 0 for

k sufficiently large, and hence limk→∞ h(k) = −∞ because, by concavity, h is “under”

its tangents. It is thus proved that h(k) = 0 has one solution, and only one (using

concavity again), for k > 0, called k̂.

Furthermore, since g ◦ f is increasing, we have, for k < k̂, g(f(k)) < g(f(k̂)) = k̂, and,

for k > k̂, g(f(k̂)) < k̂. So the sequence k2t is increasing and bounded for k0 < k̂ and

decreasing and bounded for k0 > k̂. In both cases, k2t is converging, necessarily toward

k̂ which is the only possible limit.

Same story for k2t+1, which converges to the unique solution of f(g(k)) = k. This the

global convergence to the “two-cycle”.



2. Consider a neoclassical growth model similar to the one that we have discussed in

lecture, but in which the level of technology oscillates deterministically between two

values AH and AL, where AH > AL. In particular, period-t output yt equals AHF (kt)

if t is even and equals ALF (kt) if t is odd. The planner (“Robinson Crusoe”) seeks to

maximize
∑∞

t=0 βtu(ct), given k0 > 0, subject to the resource constraint that ct+kt+1 =

yt + (1− δ)kt and to the nonnegativity constraint kt+1 ≥ 0 for all t.

(a) Formulate the planner’s problem recursively. (Hint: Consider two value functions,

one for periods in which the level of technology is high and one for periods in

which the level of technology is low. Find a pair of Bellman equations that these

functions must satisfy.)

(b) Let the felicity function u be logarithmic, let yt = Atk
α
t , and assume that capital

depreciates fully in one period (i.e., set δ = 1). Use a guess-and-verify method to

find the two value functions in part (a). Describe fully the dynamic behavior of

the capital stock.

Solution (a) When A = AH , the planner’s problem is given by the following value function:

VH (K) = max
K′′

{u (AHF (K) + (1− δ) K −K ′) + βVL (K ′)}(1)

when A = AL the planner’s problem is going to be given by:

VL (K) = max
K′′

{u (ALF (K) + (1− δ) K −K ′) + βVH (K ′)}(2)

(b) If u (c) = log c, δ = 1 and F (Kt) = Ka
t , then the above value functions become:

VH (K) = max
K′′

{log (AHKa −K ′) + βVL (K ′)}

VL (K) = max
K′′

{log (ALKa −K ′) + βVH (K ′)}

We know guess that the value functions are of the form:

VH = E + F log K

VL = G + J log K

In that case, the equation above for VH becomes:

E + F log K = max
K′′

{log (AHKa −K ′) + β (G + J log K ′)}(3)



The first-order conditions are:

− 1

AHKa −K ′ +
βJ

K ′ = 0 ⇔

βJ

K ′ =
1

AHKa −K ′ ⇔

K ′ = AHβJKa − βJK ′ ⇔

gH (K) = K ′ =
βJAHKa

1 + βJ

Plugging the decision rule derived above back in the original equation:

E + F log K = log

(
AHKa − JAHβKa

1 + βJ

)
+ β

(
G + J log

JAHβKa

1 + βJ

)
= log AH + a log K − log (1 + βJ) + βG + βJ log JAHβ

− βJ log (1 + βJ) + βJa log K

Therefore:

E = log AH − (1 + βJ) log (1 + βJ) + βG + βJ log JAHβ(4)

and:

F = a + βaJ(5)

Similarly the value function when A = AL, is given by:

G + J log K = max
K′′

{log (ALKa −K ′) + β (E + F log K ′)}(6)

The first-order condition gives the following decision rule:

gL (K) = K ′ =
βFALKa

1 + βF
(7)

Plugging the decision rule back into the equation above, we get:

G + J log K = log(ALKa − βFALKa

1 + βF
) + β

(
E + F log

βFALKa

1 + βF

)
= log AL + a log K − log (1 + βF ) + βE + βF log βFAL

+ βFa log K − βF log (1 + βF )



Therefore:

G = log AL − (1 + βF ) log (1 + βF ) + βE + βF log βFAL(8)

and

J = a + βaF(9)

combining the expression above for J with the one we found for F, gives us:

J = a + βa (a + βaF ) ⇔

J =
a + βa2

1− β2a2
=

a (1 + βa)

(1 + βa) (1− βa)
=

a

1− βa

and thus:

F = a + βa
a

1− βa
=

a

1− βa
= J(10)

Therefore the equation for E now becomes:

E = log AH −
(

1 +
βa

1− βa

)
log

(
1 +

βa

1− βa

)
+ βG +

βa

1− βa
log AH

βa

1− βa
=

=
1

1− βa
log AH + βG +

βa

1− βa
log

βa

1− βa
− 1

1− βa
log

1

1− βa

Let M = βa
1−βa

log βa
1−βa

− 1
1−βa

log 1
1−βa

. Then E becomes:

E =
1

1− βa
log AH + βG + M(11)

And similarly plugging in for E, in the equation above we had for G we have:

G =
1

1− βa
log AL + βE + M(12)

Thus solving the above system of 2 equations and 2 unknowns, we get:

E =
(
1− β2

)−1 (
(1− βa)−1 (log AH + β log AL) + M + βM

)
G =

(
1− β2

)−1 (
(1− βa)−1 (log AL + β log AH) + M + βM

)



Therefore the decision rule when A = AH is given by:

gH (K) = βaAHKa(13)

and when A = AL, is given by:

gL (K) = βaALKa(14)

We will now show that there is a ”global convergence” to a ”two-cycle” in which

Kt oscillates between two values. These 2 values are:

KH = βaAHKa
H ⇔

KH = (βaAH)
1

1−a

when A = AH and similarly:

KL = (βaAL)
1

1−a(15)

when A = AL. We will show that the assumptions of Question 2 of Homework #1

hold indeed in this case and thus there is a global convergence to a ”two-cycle”.

We have:

·gH (0) = gL (0) = 0

· Moreover we have that: g′H (K) = βa2AHKa−1 and g′L (K) = βa2ALKa−1 and

thus g′H (0) = ∞ and g′L (0) = ∞ since a− 1 < 0. Therefore:

g′H (0) g′L (0) = ∞ > 1(16)

· Furthermore:

gH (gL (K)) = βa+1aa+1AHAa
LKa2

g′H (gL (K)) = βa+1aa+3AHAa
LKa2−1

and:

g′H (gL (K)) g′L (K) = βa+1aa+3AHAa
LKa2−1βa2ALKa−1 =

= βa+2aa+5AHAa+1
L Ka2+a−2

and since a2 + a− 2 < 0 (remember 0 < a < 1) we have that:

lim
K→∞

g′H (gL (K)) g′L (K) = 0(17)



Similarly:

g′L (gH (K)) g′H (K) = βa+2aa+5ALAa+1
H Ka2+a−2(18)

and:

lim
K→∞

= g′L (gH (K)) g′H (K) = 0(19)

· Finally gH and gL are strictly increasing and strictly concave

3. Consider a neoclassical growth model in which the felicity function u has constant

elasticity of intertemporal substitution σ−1:

u(c) =
c1−σ − 1

1− σ
,

where σ > 0 and u(c) = log(c) if σ = 1. In addition, assume that f(k) = Akα+(1−δ)k,

where A > 0, α ∈ (0, 1), and δ ∈ [0, 1]. What happens to the speed of convergence to

the steady state as u becomes linear (i.e., as σ approaches 0)? As f becomes linear

(i.e., as α approaches 1)? Try to provide economic intuition for your findings. (Note:

As discussed in Section 4.2 in Chapter 4 of the lecture notes, the speed of convergence

near the steady state is inversely related to the slope of the decision rule at the steady

state.)

Solution Using the notes (section 4.2), especially equation 4.2 on p. 47 (simply use the algebraic

expressions for u and f):

• for u becoming linear, we have λ ≈ 0, so convergence is immediate. The intuition

is that with linear utility, there is hardly any intertemporal smoothing, so the

agent immediately “jumps” to the equilibrium

• for α ≈ 1 becoming linear, we have λ ≈ 1, so convergence is very slow (in fact,

there is no convergence). The intuition is that there are no decreasing returns to

scale for saving, so the agent doesn’t keep investing until he reaches equilibrium.

4. Consider the planning problem for a basic finite-horizon neoclassical growth model:

max
{ct, kt+1}T

t=0

T∑
t=0

βt log(ct),

given k0 = 10 and subject to the resource constraint that ct + kt+1 = Akα
t + (1− δ)kt

and to the nonnegativity constraint kt+1 ≥ 0 for all t ≤ T . Set β = 0.95, δ = 0.1,



and α = 0.4. Choose A so that the steady-state value of capital in the corresponding

infinite-horizon model is 100.

Solve the model numerically (say, in Matlab) using the “shooting” method described

in lecture on October 23: start by guessing a value for k1, solve for k2 from the Euler

equation at time 0, then solve for k3 from the Euler equation at time 1, and so on,

until kT+1 is found (T being the time horizon). Then vary k1 and repeat until the

appropriate value of kT+1 (what is it?) is found. Find the lowest value for T such that

the highest value of capital between periods 0 and T exceeds 90.

Solution We first derive the Euler equation for this problem, then we solve the question nu-

merically. We can solve for Euler equation either from nonlinear programming or

dynamic programming method. Here we use dynamic programming. Define f (kt) =

Akα
t + (1− δ) kt. The recursive formulation for this problem is

vt (kt) = max
kt+1

ln (f (kt)− kt+1) + βvt+1 (kt+1)

Note that here value function depends on the time subscript t. F.O.C. for t ≤ T − 1 is

− 1

ct

+ βv′t+1 (kt+1) = 0

¿From Envelope theorem, we have

v′t (kt) =
1

ct

f ′ (kt)

Iterate forward and plug back time subscripts, we get the Euler equation

β
1

ct+1

f ′ (kt+1) =
1

ct

Plug in ct = f (kt)− kt+1 and f (kt) = Akα
t + (1− δ) kt, we have

kt+2 = f (kt+1)− β (f (kt)− kt+1) f ′ (kt+1)

⇒ kt+2 =
(
Akα

t+1 + (1− δ) kt+1

)
− β (Akα

t + (1− δ) kt − kt+1)
(
Aαkα−1

t+1 + (1− δ)
)

⇒ kt+2 = A (1 + αβ) kα
t+1 + (1− δ) (1 + β) kt+1 − β (Akα

t + (1− δ) kt)
(
Aαkα−1

t+1 + (1− δ)
)

We can see that it is a second-order nonlinear difference equation, which has boundary

condition k0 = 10, kT+1 = 0.

Before we go on to the numerical step, we solve for A. The infinite horizon steady

state k∗ solves

f ′ (k∗) = β−1 ⇒ A =
β−1 − (1− δ)

α (k∗)α−1 =
29

76
10

6
5 ≈ 6.0476



Now we start to solve for it numerically by using ”shooting” method. For an error

bound |kT+1| < 0.01, when time horizon T exceeds 37, the highest value of capital

between periods 0 and T exceeds 90. The approximate period-1 capital stock for

T = 37 is k1 = 16.3833123. If you use grid point search, to get such a precision you

have to define the step size of grid as fine as 10−7.


