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Question 1

(a) The recursive formulation for the planning problem is

vk 
c,l,k′
max Uc, l  vk ′

s. t.
c  k ′  Fk,L − l  1 − k

or

vk 
l,k′
max UFk,L − l  1 − k − k ′, l  vk ′

From the way we write it, we can see that the state variable is k, and control variables are l,k ′.

(b) The F.O.C. is

l : U1c, lF2k,L − l  U2c, l
k ′ : U1c, l  v ′k ′

From Envelope Theorem, we have

v ′k  U1c, lF1k,L − l  1 − 

Iterate forward for one period, it becomes

v ′k ′  U1c ′, l ′F1k ′,L − l ′  1 − 

Plug it into F.O.C., we get the final optimality conditions:

lt : U1ct, ltF2kt,L − lt  U2ct, lt

kt1 : U1ct, lt  U1ct1, lt1F1kt1,L − lt1  1 − 

(c) In steady state, the optimality condition becomes



l ∗ : U1 c ∗, l ∗ F2 k ∗,L − l ∗  U2 c ∗, l ∗

k ∗ : F1 k ∗,L − l ∗  1

− 1 − 

where c ∗  F k ∗,L − l ∗ −  k ∗. We can see that k ∗ and l ∗ depends on both ,,
production technology Fkt,nt, and utility function Uct, lt.

In a growth model without valued leisure, the steady state is determined by the equation

F1 k ∗,L  1

− 1 − 

which does not depend on the utility function Uct, lt.
Now let’s compare two models. First, in the model with leisure choice we add an additional

equation which states that the marginal rate of substitution between consumption and leisure
must equal to the marginal rate of transformation. Second, the equation about k ∗ is the same,
except that the level of steady-state leisure is different. Third, for the equation
F1 k ∗,L − l ∗  1

 − 1 − , due to the difference in the steady-state leisure level, the
steady-state capital stock is also different. For example, if F12  0 as in the case of
Cobb-Douglas production function, the capital stock in the model with leisure will be lower
than that without leisure choice (since L − l ∗  L).

(d) With Fk,n  kan1−a and uc, l  cl1− 1−−1
1− , the steady state conditions become:

l ∗ : 1 −  k ∗a n ∗−a  c1 − 
l

k ∗ : a n ∗
k ∗

1−a
 1

− 1 − 

which leads to, if we normalize L  1:

l ∗  a1 −  − 1 − 1 − 1 − 
a1 −  − 1 − a1 − 1 − 

n ∗  1 − l ∗

k ∗  1 − 1 − a − 
a1 −  − 1 − a1 − 1 − 

c ∗  k ∗a n ∗1−a −  k ∗

Question 2
(a) A competitive equilibrium is a set of sequences ct

∗t0
 ,bt

∗t0
 ,qt

∗t0
 such that:

1. ct
∗,bt1

∗ t0
 

ct,bt1t0


arg max E0∑
t0


t ct−ct−1 1−−1

1−

s.t.



ct  qtbt1  bt  wt

ct ≥ 0,∀t;b0  0

t→
lim bt1 

j0

t

qj ≥ 0

2.

bt
∗  0,∀t (bonds market clearing)

3.

ct
∗  wt,∀t (goods market clearing)

(b) To simplify notation, we conjecture that in equilibrium the bond price is constant across

time (we will check this conjecture later). Now the recursive formulation of the consumer’s
problem is

vbt,ct−1,t 
ct,bt1
max ct − ct−11− − 1

1 −   vbt1,ct,t1

s. t.
ct  qbt1  bt  t

or equivalently,

vbt,ct−1,t 
bt1
max at  t − qbt1 − ct−11− − 1

1 − 

 vbt1,bt  t − qbt1,t1

Note the choice of aggregate state variable here. In principle we should include the triple
aggregate state A, t−1, t into our state variable. But here we know that A  0, since it is a
representative agent economy. And as long as we know about one value in the pair  t−1, t,
we can deduce the other from the constant growth rate g. Therefore, we need only one
aggregate endowment (either  t−1 or  t) as our aggregate state variable. For example, we
could choose  t−1 and the bond price would be qt  q t−1. To save notation further, we can
even write qt  qt−1, since this is a representative agent exchange economy t−1   t−1
and we cannot change (either individual or aggregate) endowment anyway. Furthermore, due
to the special utility function here, we can conjecture that the bond price is constant across
time and check it later. So after a long chain of reasoning, we choose qt  q and only include
the individual triple state bt,ct−1,t into our recursive formulation.

(c) F.O.C. for this problem is

bt1 : u1ct,ct−1  v2t  1q  v1t  1



where v1t  1 and v2t  1 are partial derivatives of vbt1,ct,t1.
The envelope condition is

bt : v1t  u1ct,ct−1  v2t  1
ct−1 : v2t  u2ct,ct−1

Solve for this, we get

v1t  u1ct,ct−1  u2ct1,ct

v2t  u2ct,ct−1

Iterate forward for one period and plug into F.O.C., we get the Euler Equation

u1ct,ct−1  u2ct1,ctqt1  u1ct1,ct  u2ct2,ct1

 q 
u1ct1,ct  u2ct2,ct1

u1ct,ct−1  u2ct1,ct

 q 
ct1 − ct− − ct2 − ct1−
ct − ct−1− − ct1 − ct−

Notice the similarity with normal Euler equation: it is the marginal rate of substitution
between consumption ct1 and ct. The difference is the involvement of two period felicity
function, which is due to the ”habit persistence”.

(d) In equilibrium, we must have ct  t. Plug into the Euler Equation, we get the
equilibrium bond price as

q 
u1t1,t  u2t2,t1

u1t,t−1  u2t1,t


t1 − t− − t2 − t1−
t − t−1− − t1 − t−


gt − t− − g2t − gt

−

t − 
g t

− − gt − t−

 g−

This verifies our conjecture that qt  q. The result is quite intuitive: (a) the more patient ( ↑)
the individuals are, the higher the demand for savings, and the higher the asset price will be;
(b) the higher of the growth rate of endowment (g ↑), the less need for saving, the lower the
asset price.

Question 3

(a) A sequential competitive equilibrium for the economy uA,uB,, is a sequence
cit
∗t0
 ,bi,t1

∗ t0
 ,qt

∗t0
 (where qt

∗ means price of Arrow security) for i  A,B such that
(1) For i  A,B,



cit
∗,bi,t1

∗ t0
  arg max∑

t0


i

tucit

s. t.
cit  qt

∗bi,t1  bi,t  

t→
lim bi,t1

t

j0
 qj ≥ 0

bi,0  0,cit ≥ 0

(2) cAt
∗  1 − cBt

∗   for t  0,1,2. . .
(3) bA,t1

∗  1 − bB,t1
∗  0 for t  0,1,2. . .

(b) To solve this problem, we first get Euler equation. We have

cit,bi,t1t0


max ∑
t0


i

tucit

s.t.

cit  qt
∗bi,t1  bi,t  

t→
lim bi,t1

t

j0
 qj ≥ 0

bi,0  0,cit ≥ 0

If we substitute in for ci,t from the budget constraint we have:

bi,t1t0


max ∑
t0


i

tubi,t   − qt
∗bi,t1

By taking the derivative w.r.t. bi,t1, we get the Euler equation:

i
u′ci,t1
u′ci,t

 qt
∗

or equivalently,

A
u′cA,t1
u′cA,t

 B
u′cB,t1
u′cB,t

Now we can see that ci,t1 ≠ ci,t ∀i,∀t. Suppose not, without loss of generality let
cA,t1  cA,t. By feasibility condition, we know that cB,t1  cB,t. Plug into the equation we get
A  B, a contradiction. As a result, there cannot be any steady state in this economy.

We start to prove the convergence property of consumption path. First, we want to show
that cAtt0

 cBtt0
  is an increasing (decreasing) sequence. We already know that

cA,t1 ≠ cA,t ∀t. Now suppose that cA,t1  cA,t for some t. By the feasibility condition, we



know that cB,t1  cB,t. From the strict concavity of felicity function, we have

u′cA,t1
u′cA,t

 1 
u′cB,t1
u′cB,t

 A
u′cA,t1
u′cA,t

 B
u′cB,t1
u′cB,t

which contradicts Euler equation.
Since bounded monotone sequence has a limit, we have cAt → c for t → . But we have

shown that the economy has no steady state, so cAt can converge to nowhere but the boundary,
i.e. cAt →  and cBt → 0.

Alternatively some of you suggested doing the following:
From the first-order condition it will be the case that:

u′cB,0
u′cA,0

u′cA,t
u′cB,t


B
A

t

If we take the limit on both sides we have:

t→
lim u′cB,0

u′cA,0
u′cA,t
u′cB,t


t→
lim B

A

t


u′cB,0
u′cA,0 t→

lim u′cA,t
u′cB,t

 0

since u′cB,0 

u′cA,0 
is a constant and B  A. Therefore we conclude that:

t→
lim u′cA,t

u′cB,t
 0

For the above equation to hold it must be the case that either
t→
lim u′cA,t  0 or that

t→
lim u′cB,t   (or both). The first case is impossible however, since that would imply that

t→
lim cA,t  , but we know that cA,t is bounded by the total aggregate endowment. Therefore,

t→
lim u′cB,t  

t→
lim cB,t  0 (Inada condition).


