
Suggested Solutions to Homework #5
Econ 511b (Part I), Spring 2004

1. Consider the planning problem for a neoclassical growth model with log-
arithmic utility, full depreciation of the capital stock in one period, and
a production function of the form y = zkα, where z is a random shock to
productivity. The shock z is observed before making the current-period sav-
ings decision. Assume that the capital stock can take on only two values:
i.e., k is restricted to the set

©
k1, k2

ª
. In addition, assume that z takes on

values in the set {z1, z2} and that z follows a Markov chain with transition
probabilities pij = P

¡
z
0
= zj|z = zi

¢
.

(a) Let z1 = 0.9, z2 = 1.1, p11 = 0.95, p22 = 0.9. Find the invariant distribution
associated with the Markov chain for z. Use the invariant distribution
to compute the long-run (or unconditional) expected value of z.
Given the transition matrix

P =

µ
0.95 0.05
0.1 0.9

¶
we can calculate the stationary distribution π according to the formula

π
0
= π

0
P

⇒
½

π1 = 0.95π1 + 0.1π2
π2 = 0.05π1 + 0.9π2

The solution to this equation is

π1 = 2π2

Imposing the condition that π1 + π2 = 1, the solution is½
π1 =

2
3

π2 =
1
3

Correspondingly, the long run expected value is

Eπz = π
0
z =

2

3
× 0.9 + 1

3
× 1.1 = 29

30

(b) Let β= 0.9, α= 0.36, k1 = 0.95kss, and k2 = 1.05kss, where kss is the steady-
state capital stock in a version of this model without shocks and with
no restrictions on capital (i.e., kss = (αβ)

1
1−α . Using Matlab (if you need

to), find the optimal decision rule for capital, i.e., a function mapping
pairs of the form (k, z) into the optimal choice for capital.
Form the dynamic programming problem as

v (ki, zi) = max
k0∈{k1,k2}

ln
³
zik

α

i − k
0´
+ β

³
pi1v

³
k
0
, z1
´
+ pi2v

³
k
0
, z2
´´
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Since (ki, zi) can take on only four values, we can solve for value function v (ki, zi)
and policy function g (ki, zi) as 4×1 vectors. For example, we can solve that using
value function iteration on the computer. Using Matlab, we can get the policy
function as

g(k1, z1) = k1

g(k2, z1) = k1

g(k1, z2) = k2

g(k2, z2) = k2

This is our policy function.

(c) The decision rule from part (b) and the law of motion for z jointly deter-
mine an invariant distribution over (k, z)-pairs. Find this distribution.
Use your answer to compute the long-run (or unconditional) expected
values of the capital stock and of output.
Based on policy function g (ki, zi) and transition matrix of z, the pair (k, z) follows
a Markov process with the transition matrix

(z1, k1) (z1, k2) (z2, k1) (z2, k2)
(z1, k1) 0.95 0 0.05 0
(z1, k2) 0.95 0 0.05 0
(z2, k1) 0 0.1 0 0.9
(z2, k2) 0 0.1 0 0.9

Now we can calculate the stationary distribution either on the computer or by
hand. The result is

p(k1, z1) =
19

30
= 0.63333

p(k2, z1) =
1

30
= 0.033333

p(k1, z2) =
1

30
= 0.033333

p(k2, z2) =
3

10
= 0.3

Using the stationary distribution, the long-run (or unconditional) expected values
of the capital stock and of output are

Ek =
2

3
k1 +

1

3
k2 = 0.1747

Ey =
2

3
kα1 +

1

3
kα2 = 0.5149

(d) In Matlab, use the optimal decision rule, the law of motion for z, and a
random number generator to create a simulated time series {kt, yt}Tt=0,
given an initial condition (k0, z0). Compute T−1

PT
t=1 kt and T−1

PT
t=1 yt

for a suitably large value of T and confirm that these sample means
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are close to the corresponding population means that you computed in
part (c).
Depending on the realization of each simulation, the result will differ a little bit.
For example, one possible result based on T = 10000 is

1

T

TX
t=1

kt = 0.1747

1

T

TX
t=1

yt = 0.4687

2. Consider a two-period exchange economy with two (types of) consumers
labelled A and B. The two types of consumers have identical preferences
given by u (c0) + βEu (c1), where u is strictly increasing and strictly concave.
Each consumer is endowed with one consumption good in period 0. In
period 1, each type A consumer is endowed with θy consumption goods
and each type B consumer is endowed with (1− θ) y consumption goods.
The random variable θ can be interpreted as the consumer’s share of the
aggregate endowment y. Let θ equal 1/2+ z with probability p and equal
1/2− z with probability 1−p, where 0 < z < 1/2. The aggregate endowment
y is also random: it equals 1 + x with probability one-half and equals 1− x
with probability one-half. The random variables y and θ are statistically
independent.

(a) Assume that markets are complete: in period 0, consumers can trade
a full set of Arrow securities. Express the competitive equilibrium
allocations and prices in terms of primitives as explicitly as you can.
You might want to start with the case where p = 1/2 (so that the
consumers are identical in all respects) and then consider the more
general case p 6= 1/2.
First, let’s define states in this economy. From the specification of the problem,
there are four states indexed by the pair (θ, y). The probability of each state is

π1 = prob

µ
θ =

1

2
+ z, y = 1 + x

¶
=
1

2
p

π2 = prob

µ
θ =

1

2
+ z, y = 1− x

¶
=
1

2
p

π3 = prob

µ
θ =

1

2
− z, y = 1 + x

¶
=
1

2
(1− p)

π4 = prob

µ
θ =

1

2
− z, y = 1− x

¶
=
1

2
(1− p)

Now we begin by defining a competitive equilibrium. A competitive equilibrium
with complete markets is a pair of consumption, asset holdings, and asset pricen
{ci0, cis, ais}i=A,B , qs

o4
s=1

such that
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(a) Consumers solve the problem

max
{cis}4s=0

u
¡
ci0
¢
+ β

4X
s=1

u
¡
cis
¢

s.t

ci0 +
4X

s=1

qsa
i
s = 1

cis = ais + ωi
s

where ωA
s = θsys and ωB

s = (1− θs) ys.
(b) Product market clearing: cA0 + cB0 = 2, c

A
s + cBs = ys for s = 1, ...4.

(c) Asset market clearing: aAs + aBs = 0 for s = 1, ..., 4.

We know that the consumer’s choice is determined by F.O.C. and budget con-
straint, i.e.

qs = πs
βu

0
(cis)

u0 (ci0)

ci0 +
4X

s=1

qsa
i
s = 1

cis = ais + ωi
s

Now we start to find the system of equations for equilibrium. Because of Walras’s
law, we have five redundant equations: we take consumer B’s five BC out of our
system of equations. Therefore, the necessary and sufficient conditions for the
equilibrium are

qs = πs
βu

0
(cis)

u0 (ci0)

cA0 +
4X

s=1

qsa
A
s = 1

cAs = aAs + ωA
s

cA0 + cB0 = 2

cAs + cBs = ys

aAs + aBs = 0

which is a system of 22 equations and 22 unknowns
n
{ci0, cis, ais}i=A,B , qs

o4
s=1
. The

existence of solution is guaranteed by the standard existence result for Walrasian
equilibrium. This system implicitly defines our equilibrium.
For the case p = 1

2
, we can solve for the equilibrium explicitly. Due to the
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symmetry when p = 1
2
, we can guess the solution as

cA0 = cB0
cA1 = cA3 = cB1 = cB3
cA2 = cA4 = cB2 = cB4
q1 = q3

q2 = q4

Plug into equilibrium equations, we have

cA0 = cB0 = 1

cA1 = cA3 = cB1 = cB3 =
1

2
(1 + x)

cA2 = cA4 = cB2 = cB4 =
1

2
(1− x)

q1 = q3 = π1
βu

0
(ci1)

u0 (ci0)
=
1

4

βu
0 ¡1
2
(1 + x)

¢
u0 (1)

q2 = q4 = π2
βu

0
(ci2)

u0 (ci0)
=
1

4

βu
0 ¡1
2
(1− x)

¢
u0 (1)

and

aA1 = cA1 − ωA
1 =

1

2
(1 + x)−

µ
1

2
+ z

¶
(1 + x) = −z (1 + x)

aA2 = cA2 − ωA
2 =

1

2
(1− x)−

µ
1

2
+ z

¶
(1− x) = −z (1− x)

aA3 = cA3 − ωA
3 =

1

2
(1 + x)−

µ
1

2
− z

¶
(1 + x) = z (1 + x)

aA4 = cA4 − ωA
4 =

1

2
(1− x)−

µ
1

2
− z

¶
(1− x) = z (1− x)

aB1 = −aA1 = z (1 + x)

aB2 = −aA2 = z (1− x)

aB3 = −aA3 = −z (1 + x)

aB4 = −aA4 = −z (1− x)

For the case p 6= 1
2
, we can not find explicit analytical solution. But we can reduce

the equation a little bit. The intuition tells us that complete market can insure
against idiosyncratic risk. Therefore, we conjecture the following fact:

cA1 = cA3 , c
A
2 = cA4

cB1 = cB3 , c
B
2 = cB4
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Plug this into equilibrium equation and substitute out q3, q4 and ais, it becomes

q1 = π1
βu

0
(ci1)

u0 (ci0)

q2 = π2
βu

0
(ci2)

u0 (ci0)

cA0 +

µ
q1 +

π3
π1

q1

¶
cA1 +

µ
q2 +

π4
π2

q2

¶
cA2 = 1 +

4X
s=1

qsω
A
s

cA0 + cB0 = 2

cA1 + cB1 = 1 + x

cA2 + cB2 = 1− x

The reduced system contains 8 equations and 8 unknowns
n
{ci0, ci1, ci2}i=A,B , q1, q2

o
.

This system implicitly defines our equilibrium. We cannot go further beyond that.

A little digression (only for nerds!!! Don’t spend time on that if you
cannot understand it.). The argument above only goes very loosely. To be
rigorous, we have not verified our guess yet. In the above system of 8 equations
and 8 unknowns, we have not proved that there is no contradiction for our guess,
i.e. we have not shown the existence of solution for that 8-equation system. Now
I give a rough sketch of the existence proof about ci1 = ci3, c

i
2 = ci4.

From First Welfare Theorem complete market equilibrium is Pareto optimal. There-
fore, it maximizes a social welfare function by the concavity of utility function
and Kuhn-Tucker Theorem. In addition, the price qs is Lagrangian multiplier
associated with the resource constraint. From envelope theorem, qs is indeed the
marginal utility of representative agent evaluated at aggregate endowment. There-
fore, we know that qs = f(ws) for s = 0, 1, .., 4 (here we use the assumption of
additive separable utility). From the F.O.C. of individuals qsu

0
(ci0) = πsβu

0
(cis),

we know that cis = gi(ωs) (here g depends on i because the marginal utility of i or
u
0
(ci0) depends on i, indeed it is the inverse of the weight we give to social welfare

function), which finishes the proof.

(b) Use the prices of the Arrow securities from part (a) to find the equi-
librium period-0 price of a risk-free bond (i.e., an asset that pays one
unit of the consumption in all states of the world in period 1). If you
are unable to solve for the Arrow prices explicitly, then show how you
would use these prices to compute the price of a risk-free bond.
Due to non-arbitrage property, the price of risk-free asset must be

qrf =
4X

s=1

qs

For the case p = 1
2
, we have

qrf =
4X

s=1

qs =
1

2

β
£
u
0 ¡1
2
(1 + x)

¢
+ u

0 ¡1
2
(1− x)

¢¤
u0 (1)
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(c) Now suppose that markets are incomplete: in period 0, the only asset
that consumers are allowed to trade is a risk-free bond. The net supply
of bonds is zero (since the economy is closed). Find the competitive
equilibrium allocations and the equilibrium price of the bond as explic-
itly as you can. Compare your answers to those in parts (a) and (b).
Show that eliminating complete markets makes consumers worse off.
Does eliminating complete markets increase or decrease the risk-free
rate of return (i.e., the inverse of the bond price)? Why? (Again, you
might want to start with the case p= 1/2 before considering the case
p 6= 1/2.)
Now we begin by defining a competitive equilibrium with a risk-free asset. A
competitive equilibrium with incomplete markets is a pair of consumption, asset

holdings, and asset price
n
{ci0, cis, ai}i=A,B , qrf

o4
s=1

such that

(a) Consumers solve the problem

max
{cis}4s=0

u
¡
ci0
¢
+ β

4X
s=1

πsu
¡
cis
¢

s.t

ci0 + qrfai = 1

cis = ai + ωi
s

where ωA
s = θsys and ωB

s = (1− θs) ys.
(b) Product market clearing: cA0 + cB0 = 2, c

A
s + cBs = ys for s = 1, ...4.

(c) Asset market clearing: aA + aB = 0.

We know that the consumer’s choice is determined by F.O.C. and budget con-
straint, i.e.

qrf =
4X

s=1

πs
βu

0
(cis)

u0 (ci0)

ci0 + qrfai = 1

cis = ai + ωi
s

Now we start to find the system of equations for equilibrium. Because of Walras
law, we have five redundant equations: we take consumer B’s BC out of our
system of equations. Therefore, the necessary and sufficient conditions for the
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equilibrium are

qrf =
4X

s=1

πs
βu

0
(cis)

u0 (ci0)

cA0 + qrfaA = 1

cAs = aA + ωA
s

cA0 + cB0 = 2

cAs + cBs = ys

aA + aB = 0

which is a system of 13 equations with 13 unknowns
n
{ci0, cis, ai}i=A,B , qrf

o4
s=1
.

This system implicitly defines our equilibrium.
Now we start to discuss the difference of allocation from complete market case.
The first fact is that with only one risk-free asset, consumers cannot insure again
the idiosyncratic risk. This can been seen from the third line of our equilibrium
system. From cAs = aA + ωA

s , if there is a change in ωA
s across the state (which is

the case here), we must have cA1 6= cA2 6= cA3 6= cA4 . To say more about this issue,
we start from the simple case with p = 1

2
.

If p = 1
2
, due to the symmetry of the consumers we conjecture the solution as

cA1 = cB3
cA2 = cB4
cA3 = cB1
cA4 = cB2

Combine this fact with cAs = aA+ωA
s and a

A = aB, we have the further conjecture

aA = aB = 0

cis = ωi
s

Plug this into equilibrium conditions, it satisfies every equation, which verifies
our conjecture. (You may wonder why this conjecture cannot hold for p 6= 1

2
. The

reason is that the same conjecture holds for every equation except the first two
equations in the equilibrium system: with p 6= 1

2
, the first two equations (F.O.C.

for A and B) contradict each other.)
We can analyze the equilibrium utility and asset price as follows. Since

u (1) + β
4X

s=1

πsu
¡
ωi
s

¢
< u (1) + β

·
(π1 + π3)u

µ
1

2
(1 + x)

¶
+ (π2 + π4)u

µ
1

2
(1− x)

¶¸
due to the concavity of utility function, we know that both consumers become
worse off under incomplete markets. As for the price for risk-free asset of incom-
plete market

qrfincomplete =
4X

s=1

πs
βu

0
(ωi

s)

u0 (1)
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compared to the case of complete market

qrfcomplete =
β

u0 (1)

·
(π1 + π3)u

0
µ
1

2
(1 + x)

¶
+ (π2 + π4)u

0
µ
1

2
(1− x)

¶¸
We can not determine relative magnitude unless we are willing to make an as-
sumption about marginal utility. If u

000
> 0, qrfincomplete > qrfcomplete; if u

000
< 0, we

have qrfincomplete < qrfcomplete. The economic explanation is that if u
000
> 0, there is

precautionary saving motive in incomplete market, which leads to higher demand
for saving and hence higher asset price.
For the case of p 6= 1

2
, without specification of utility function, it is too complex

to give a definite answer. Now I only give a verbal explanation.
For the welfare, the general result is that the transition from incomplete market
to complete market could be Pareto-improving or Non-Pareto improving. We
can speak two facts. First, there is possibility that it is Non-Pareto improving.
The intuition is that the change from incomplete market to complete market will
have a general equilibrium effect: the change in the price of existing assets. The
change in asset price will bring wealth redistribution between debtors and cred-
itors. Therefore, there is a tradeoff between two effects: the effects of insurance
from complete markets and the redistribution effects from the asset price change.
If the change in the price of existing asset is dramatic, the redistribution effect will
dominate the insurance effect, in this case the transition from incomplete market
to complete market won’t be pareto-improving.
Second, the transition from incomplete market to complete market won’t make
everybody worseoff, as long as there is only one good. The logic goes as follows.
The insurance effect increase utility, while the sign of redistribution effects must
be opposite. Therefore, in the world of our problem at least one agent will become
better off from completing the market.
For the effect on interest rate, it is uncertain. This effect can be seen even in the
case of p = 1

2
. It depends on the sum of marginal rate of substitution between

future and date-0. Therefore, the change in p may change the result. We cannot
say more about this.

(d) Introduce a second asset into the economy you studied in part (c).
Specifically, in addition to the endowments described above (which can
be viewed as “labor income”), let each consumer be endowed with one
“Lucas tree” in period 0. Each tree yields a “dividend” of d consump-
tion goods in period 1, where d equals dH if y equals 1 + x and equals
dL < dH if y equals 1 − x. Trees, as well as risk-free bonds, can be
bought and sold in competitive markets in period 0. Without doing
any explicit calculations, show how you would go about solving for the
equilibrium prices of the two assets in this economy.
We begin by defining a competitive equilibrium with two assets. A incomplete
market competitive equilibrium with risk-free asset and Lucas tree is a pair of

consumption, asset holdings, and asset price
n©

ci0, c
i
s, a

i
rf , a

i
2

ª
i=A,B

,
©
qrf , q2

ªo4
s=1

such that
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(a) Consumers solve the problem

max
{cis}4s=0

u
¡
ci0
¢
+ β

4X
s=1

πsu
¡
cis
¢

s.t

ci0 + qrfairf + q2
¡
ai2 − 1

¢
= 1

cis = ai + ωi
s + dsa

i
2

where ωA
s = θsys, ωB

s = (1− θs) ys, d1 = d3 = dH , d2 = d4 = dL.
(b) Product market clearing: cA0 + cB0 = 2, c

A
s + cBs = ys + 2ds for s = 1, ...4.

(c) Asset market clearing: aArf + aBrf = 0, a
A
2 + aB2 = 2.

It is easy to see that the equilibrium is determined in the same way as in part (c).
The necessary and sufficient conditions for the equilibrium are

qrf =
4X

s=1

πs
βu

0
(cis)

u0 (ci0)

q2 =
4X

s=1

πs
βu

0
(cis)

u0 (ci0)
ds

cA0 + qrfaArf + q2
¡
aA2 − 1

¢
= 1

cAs = aA + ωA
s + dsa

A
2

cA0 + cB0 = 2

cAs + cBs = ys + 2ds

aArf + aBrf = 0

aA2 + aB2 = 2

which is a system of 16 equations with 16 unknowns
n©

ci0, c
i
s, a

i
rf , a

i
2

ª
i=A,B

,
©
qrf , q2

ªo4
s=1
.

This system implicitly defines our equilibrium.

(e) Determine (as completely as you can) the prices of a risk-free bond and
of a Lucas tree under the assumption that consumers can trade a full
set of Arrow securities in the economy that you studied in part (d).
Compare (if possible) these prices to the corresponding prices in part
(d).
If we can trade a full set of Arrow security, again we go back to the complete mar-
ket economy in part (a). The only difference is that the product market clearing
condition in period 1 changes to the equation cAs + cBs = ys + 2ds. Since with
complete Arrow security, the risk-free asset and Lucas tree become redundant, we
can start by finding equilibrium in an economy with only Arrow securities. Then
we can price those two assets with Arrow security.
Follow the same steps as in part (a) and use the same notation, we get the system
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of equilibrium equations as

qs = πs
βu

0
(cis)

u0 (ci0)

cA0 +
4X

s=1

qsa
A
s = 1

cAs = aAs + ωA
s

cA0 + cB0 = 2

cAs + cBs = ys + 2ds

aAs + aBs = 0

which is a system of 22 equations and 22 unknowns
n
{ci0, cis, ais}i=A,B , qs

o4
s=1
.

This system implicitly defines our equilibrium.
Using the price of Arrow security, we can find the price of risk-free bond and
Lucas tree as

qrf =
4X

s=1

qs

qtree =
4X

s=1

qsds

3. Consider a complete-markets exchange economy populated by identical con-
sumers whose preferences exhibit “habit persistence”:

E0

∞X
t=0

βt
(ct − λct−1)

1−σ − 1
1− σ

,

where σ > 0, β ∈ (0, 1) , and λ is positive and bounded. Each consumer has
the same endowment ωt in period t. Assume, for simplicity, that ωt grows
deterministically according to: ωt+1 = gωt, with g > 1.

(a) Formulate the consumer’s consumption-savings problem as a dynamic
programming problem: there is one asset, a one-period riskless bond
whose price is q.
To simplify notation, we conjecture that in equilibrium the bond price is constant
across time (we will check this conjecture later). Now the recursive formulation
of the consumer’s problem is

v (at, ct−1, ωt) = max
{ct,at+1}

(ct − λct−1)
1−σ − 1

1− σ
+ βv (at+1, ct, ωt+1)

s.t.

ct + qat+1 = at + ωt
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or equivalently,

v (at, ct−1, ωt) = max
{at+1}

(at + ωt − qat+1 − λct−1)
1−σ − 1

1− σ

+βv (at+1, at + ωt − qat+1, ωt+1)

Note the choice of aggregate state variable here. In principle we should include the
triple aggregate state (A, ωt−1, ωt) into our state variable. But here we know that
A = 0, since it is a representative agent economy. And as long as we know about
one value in the pair (ωt−1, ωt), we can deduce the other from the constant growth
rate g. Therefore, we need only one aggregate endowment (either ωt−1 or ωt) as our
aggregate state variable. For example, we could choose ωt−1 and the bond price
would be qt = q(ωt−1). To save notation further, we can even write qt = q(ωt−1),
since this is a representative agent exchange economy (ωt−1 = ωt−1) and we cannot
change (either individual or aggregate) endowment anyway. Furthermore, due to
the special utility funciton here, we can conjecture that the bond price is constant
across time and check it later. So after a long chain of reasoning, we choose
qt = q and only include the individual triple state (at, ct−1, ωt) into our recursive
formulation.

(b) Derive the Euler equation for the consumer’s problem.
F.O.C. for this problem is

at+1 : (u1 (ct, ct−1) + βv2 (t+ 1)) q = βv1 (t+ 1)

where v1 (t+ 1) and v2 (t+ 1) are partial derivatives of v (at+1, ct, ωt+1).
The envelope condition is

at : v1 (t) = u1 (ct, ct−1) + βv2 (t+ 1)

ct−1 : v2 (t) = u2 (ct, ct−1)

Solve for this, we get

v1 (t) = u1 (ct, ct−1) + βu2 (ct+1, ct)

v2 (t) = u2 (ct, ct−1)

Iterate forward for one period and plug into F.O.C., we get the Euler Equation

(u1 (ct, ct−1) + βu2 (ct+1, ct)) qt+1 = β (u1 (ct+1, ct) + βu2 (ct+2, ct+1))

⇒ q =
β (u1 (ct+1, ct) + βu2 (ct+2, ct+1))

u1 (ct, ct−1) + βu2 (ct+1, ct)

⇒ q =
β
¡
(ct+1 − λct)

−σ − βλ (ct+2 − λct+1)
−σ¢

(ct − λct−1)
−σ − βλ (ct+1 − λct)

−σ

Notice the similarity with normal Euler equation: it is the marginal rate of sub-
stitution between consumption ct+1 and ct. The difference is the involvement of
two period felicity function, which is due to the "habit persistence".
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(c) Find the equilibrium bond price in this model as a function of the
structural parameters.
In equilibrium, we must have ct = ωt. Plug into the Euler Equation, we get the
equilibrium bond price as

q =
β (u1 (ωt+1, ωt) + βu2 (ωt+2, ωt+1))

u1 (ωt, ωt−1) + βu2 (ωt+1, ωt)

=
β
¡
(ωt+1 − λωt)

−σ − βλ (ωt+2 − λωt+1)
−σ¢

(ωt − λωt−1)
−σ − βλ (ωt+1 − λωt)

−σ

=
β
³
(gωt − λωt)

−σ − βλ (g2ωt − λgωt)
−σ´³

ωt − λ
g
ωt

´−σ
− βλ (gωt − λωt)

−σ

= βg−σ

This verifies our conjecture that qt = q. The result is quite intuitive: (a) the
more patient (β ↑) the individuals are, the higher the demand for savings, and
the higher the asset price will be; (b) the higher of the growth rate of endowment
(g ↑), the less need for saving, the lower the asset price.
We need to be careful about the result. The independence of q on λ only because
of this special utility function. From the derivation, we can see that with other
functional form, λ may have a direct effect on q.

(d) Suppose now that the endowment grows stochastically: ωt+1 = gt+1ωt,
where the growth rate gt+1 is independent across time and takes on the
two values λ1 > 1 and λ2 < 1 with equal probability. Find the prices of
the Arrow securities and use them to compute the (long-run) average
rate of return on a riskless bond in this model. If you cannot find
explicit solutions for the prices of the Arrow securities, then show what
conditions they must satisfy (i.e., find a set of equations that determine
these prices) and explain how you would use them to compute the
average rate of return on a riskless bond in this model.
Define the price and holdings of Arrow security at time t as {q1t, q2t} and {a1,t+1, a2,t+1},
respectively. Now the recursive formulation of the consumer’s decision problem
becomes

v (ai,t, ct−1, ωi,t, λi,t) = max
{ct,a1,t+1,a2,t+1}

(ci,t − λct−1)
1−σ − 1

1− σ
+

βEv (aj,t+1, ci,t, ωj,t+1, λj,t+1)

s.t.

ci,t + q1(ωit, λi,t)a1,t+1 + q2(ωit, λi,t)a2,t+1 = ai,t + ωi,t

where ai,t means the asset holdings in state i. Again notice the choice of state
variables here. Different from the deterministic case, here we need to include
both (ωt−1, ωt) in our aggregate state variable. (or equivalently, here we use the
pair (ωi,t, λi,t) as our aggregate state variable). Refer to the comments given in
part (a) for the chain of logic.
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Plug BC into objective function, we have

v (ai,t, ct−1, ωi,t, λi,t) = max
{a1,t+1,a2,t+1}

(ai,t + ωit − q1a1,t+1 − q2a2,t+1 − λct−1)
1−σ − 1

1− σ

+βEv (aj,t+1, ai,t + ωit − q1a1,t+1 − q2a2,t+1, ωj,t+1, λj,t+1)

Now we follow the same steps as in part (b) to derive the Euler equation.
F.O.C. for this problem is

a1,t+1 : (u1 (ct, ct−1) + βEv2 (t+ 1)) q1(ωi,t, λi,t) =
1

2
βv1 (1, t+ 1)

a2,t+1 : (u1 (ct, ct−1) + βEv2 (t+ 1)) q2(ωi,t, λi,t) =
1

2
βv1 (2, t+ 1)

where v1 (i, t+ 1) and v2 (i, t+ 1) are partial derivatives of v (ai,t+1, cit, ωi,t+1, λi,t+1).
The envelope condition is

ai,t : v1 (i, t) = u1 (ci,t, ct−1) + βEv2 (t+ 1)

ct−1 : v2 (i, t) = u2 (ci,t, ct−1)

Solve for this, we get

v1 (i, t) = u1 (ci,t, ct−1) + βEu2 (cj,t+1, ci,t)

v2 (i, t) = u2 (ci,t, ct−1)

Iterate forward for one period and plug into F.O.C., we get the Stochastic Euler
Equation

(u1 (ci,t, ct−1) + βE (u2 (cj,t+1, ci,t))) q1(ωi,t, λi,t) =
1

2
β

µ
u1 (c1,t+1, ci,t)

+βEu2 (cj,t+2, c1,t+1)

¶
⇒ q1(ωi,t, λi,t) =

1
2
β (u1 (c1,t+1, ci,t) + βEu2 (cj,t+2, c1,t+1))

u1 (ci,t, ct−1) + βE (u2 (cj,t+1, ci,t))

⇒ q1(ωi,t, λi,t) =
1
2
β
¡
(c1,t+1 − λci,t)

−σ − λβE (cj,t+2 − λc1,t+1)
−σ¢

(ci,t − λct−1)
−σ − λβE

¡
(cj,t+1 − λci,t)

−σ¢
and

(u1 (ci,t, ct−1) + βE (u2 (cj,t+1, ci,t))) q2(ωt−1, λi,t) =
1

2
β

µ
u1 (c2,t+1, ci,t)

+βEu2 (cj,t+2, c2,t+1)

¶
⇒ q2(ωi,t, λi,t) =

1
2
β (u1 (c2,t+1, ci,t) + βEu2 (cj,t+2, c2,t+1))

u1 (ci,t, ct−1) + βE (u2 (cj,t+1, ci,t))

⇒ q2(ωi,t, λi,t) =
1
2
β
¡
(c2,t+1 − λci,t)

−σ − λβE (cj,t+2 − λc2,t+1)
−σ¢

(ci,t − λct−1)
−σ − λβE

¡
(cj,t+1 − λci,t)

−σ¢
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Plug equilibrium condition ci,t = ωi,t into S.E.E., we have

q1(ωi,t, λi,t) =
1
2
β
¡
(ω1,t+1 − λωi,t)

−σ − λβE (ωj,t+2 − λω1,t+1)
−σ¢

(ωi,t − λωt−1)
−σ − λβE

¡
(ωj,t+1 − λωi,t)

−σ¢
⇒ q1(ωi,t, λi,t) =

1
2
β
¡
(λ1ωi,t − λωi,t)

−σ − λβE (λjλ1ωi,t − λλ1ωi,t)
−σ¢³

ωi,t − λ
λi
ωi,t

´−σ
− λβE

¡
(λjωi,t − λωi,t)

−σ¢
⇒ q1(ωi,t, λi,t) =

1
2
β
¡
(λ1 − λ)−σ − λβλ−σ1 E (λj − λ)−σ

¢
(λi − λ)−σ λσi − λβE

¡
(λj − λ)−σ

¢
and

q2(ωi,t, λi,t) =
1
2
β
¡
(ω2,t+1 − λωi,t)

−σ − λβE (ωj,t+2 − λω2,t+1)
−σ¢

(ωi,t − λωt−1)
−σ − λβE

¡
(ωj,t+1 − λωi,t)

−σ¢
⇒ q2(ωi,t, λi,t) =

1
2
β
¡
(λ2ωi,t − λωi,t)

−σ − λβE (λjλ2ωi,t − λλ2ωi,t)
−σ¢³

ωi,t − λ
λi
ωi,t

´−σ
− λβE

¡
(λjωi,t − λωi,t)

−σ¢
⇒ q2(ωi,t, λi,t) =

1
2
β
¡
(λ2 − λ)−σ − λβλ−σ2 E (λj − λ)−σ

¢
(λi − λ)−σ λσi − λβE

¡
(λj − λ)−σ

¢
where E (λj − λ)−σ = 1

2
(λ1 − λ)−σ+ 1

2
(λ2 − λ)−σ. Notice that the price of Arrow

securities does not depend on the state variable ωi,t, which is due to the assump-
tions on the preference and endowment process. Now we can calculate the price
of risk-free bond as

qrf(ωi,t, λi,t) = q1(ωi,t, , λi,t) + q2(ωi,t, , λi,t)

=
1
2
β
¡
(λ1 − λ)−σ − λβλ−σ1 E (λj − λ)−σ

¢
(λi − λ)−σ λσi − λβE

¡
(λj − λ)−σ

¢ +

1
2
β
¡
(λ2 − λ)−σ − λβλ−σ2 E (λj − λ)−σ

¢
(λi − λ)−σ λσi − λβE

¡
(λj − λ)−σ

¢
=

β

2

¡
(λ1 − λ)−σ + (λ2 − λ)−σ − λβ

¡
λ−σ1 + λ−σ2

¢
E (λj − λ)−σ

¢
(λi − λ)−σ λσi − λβE

¡
(λj − λ)−σ

¢
=

β

2

£
(λ1 − λ)−σ + (λ2 − λ)−σ

¤ £
1− 1

2
λβ
¡
λ−σ1 + λ−σ2

¢¤
(λi − λ)−σ λσi − λβE

¡
(λj − λ)−σ

¢
and the long-run average return as

qrf =
1

2

¡
qrf(ωi,t, , λ1) + qrf(ωi,t, , λ2)

¢
Here we can do a little more exercise to check the relationship with deterministic
case and the case without "habit formation". First, let λ1 = λ2 = g. Then we get
qrf(ωi,t, λi,t) = βg−σ and qrf = βg−σ, which is the same as in the deterministic
case. Second, let λ = 0, we get

qrf(ωi,t, λi,t) =
1

2
β
¡
λ−σ1 + λ−σ2

¢
which is the same as the case of without "habit formation".

15


