Econ 510a (second half) Yale University Fall 2004 Prof. Tony Smith

HOMEWORK #3

This homework assignment is due at the beginning of the help session on Thursday, November 11.

- 1. Consider a neoclassical growth model with valued leisure. The (representative) consumer values streams of consumption and leisure according to $\sum_{t=0}^{\infty} \beta^t u(c_t, \ell_t)$, where ℓ_t is hours of leisure in period t. The felicity function u is strictly concave and strictly increasing in both of its arguments. Output is produced according to $y_t = F(k_t, n_t)$, where $n_t = L - \ell_t$ is hours of labor supply in period t (L is the total number of hours available for either leisure or work in period t) and F exhibits constant returns to scale. Output in period t can used for either consumption c_t or investment i_t , and capital accumulates according to $k_{t+1} = (1 - \delta)k_t + i_t$.
 - (a) Display Bellman's equation for the problem faced by the social planner in this economy. Identify clearly the state and control (or choice) variable(s).
 - (b) Derive the first-order and envelope conditions for the planning problem.
 - (c) Use the conditions from part (b) to determine the economy's steady state. Show how the steady state depends on primitives and compare your results to those for a growth model without valued leisure.
 - (d) Let $F(k,n) = k^{\alpha} n^{1-\alpha}$ and

$$u(c,\ell) = \frac{(c^{\theta}\ell^{1-\theta})^{1-\sigma} - 1}{1-\sigma},$$

where $\sigma > 0$ and $0 < \theta < 1$. Solve explicitly for the steady state in terms of parameters.

2. Consider an exchange economy populated by identical consumers whose preferences exhibit "habit persistence":

$$\sum_{t=0}^{\infty} \beta^{t} \frac{(c_{t} - \lambda c_{t-1})^{1-\sigma} - 1}{1 - \sigma},$$

where $\sigma > 0, \beta \in (0,1)$, and λ is positive and bounded. Each consumer has the same endowment ω_t in period t. Assume that ω_t grows deterministically according to: $\omega_{t+1} = g \omega_t$, with g > 1. There is a single asset, a one-period riskless bond whose price is q_t in period t. A one-period riskless bond, purchased at price q_t in period t, pays one unit of the consumption good in period t+1. That is, the consumer's budget constraint in period t takes the form: $c_t + q_t b_{t+1} = b_t + \omega_t$, where b_t is the quantity of bonds purchased in period t-1. (Note: The price q_t can be viewed as the inverse of the gross interest rate.) There is no restriction on borrowing except for a no-Ponzi-game condition. Assume that each consumer has zero bonds in period 0.

- (a) Carefully define a sequential competitive equilibrium for this economy.
- (b) Formulate the consumer's optimization problem as a dynamic programming problem under the conjecture that the price $q_t = q$ for all t. (You will verify below that this conjecture is correct in equilibrium.)
- (c) Derive the Euler equation for the consumer's problem.
- (d) Use your answer from part (c) to find the equilibrium bond price as a function of the structural parameters.
- 3. Consider an exchange economy with two (types of) consumers. Type-A consumers comprise fraction λ of the economy's population and type-B consumers comprise fraction 1λ of the economy's population. Each consumer has (constant) endowment ω in each period. A consumer of type *i* has preferences over consumption streams of the form $\sum_{t=0}^{\infty} \beta_i^t u(c_t)$. Assume that $1 > \beta_A > \beta_B > 0$: type-A consumers are more patient than type-B consumers. Consumers trade a one-period riskless bond in each period (see the second problem for the definition of a one-period riskless bond). There is no restriction on borrowing except for a no-Ponzi-game condition. Assume that each consumer has zero bonds in period 0.
 - (a) Carefully define a sequential competitive equilibrium for this economy. (Hint: The market-clearing condition can be written $\lambda c_{At} + (1 - \lambda)c_{Bt} = \omega$, where c_{it} is the consumption of a typical type-*i* consumer in period *t*.)
 - (b) Show that this economy has no steady state: in particular, show that the type-B consumers become poorer and poorer over time and consume zero in the limit. (Hint: Use the strict concavity of the felicity function u.)