
1 Uncertainty

Our program of study will comprise the following four topics:

1. Basic Concepts

2. Examples of common stochastic processes in macroeconomics

3. Maximization under uncertainty

4. Competitive equilibrium under uncertainty

The first two are closely related to time series analysis. The last two are
a generalization of the tools we have already introduced to the case where the
decision makers face uncertainty.

1.1 Basic concepts

We will introduce the basic elements with which uncertain events are modeled.
The main mathematical notion underlying the concept of uncertainty is that of
a probability space.

Definition 1 A probability space is a mathematical object consisting of three
elements: 1) a set Ω of possible outcomes $; 2) a collection F of subsets of Ω
that constitute the ”events” to which probability is assigned (a σ-algebra); and
3) a set function P that assigns probability values to those events. A probability
space is denoted by:

(Ω, F , P )

Definition 2 A σ-algebra (F) is a special kind of family of subsets of a space
Ω that verify three properties: 1) Ω ∈ F ; 2) F is closed under complementation:
E ∈ F ⇒ Ec ∈ F ; 3) F is closed under countable union: if {Ei}∞i=1 is a
sequence of sets such that Ei ∈ F ∀i, then (∪∞i=1Ei) ∈ F .

Definition 3 A random variable is a function whose domain is the set of events
Ω and whose image is the real numbers (or a subset thereof):

x : Ω → <

For any real number α, define the set

Eα = {$ : x ($) < α}

Definition 4 A function x is said to be measurable with respect to the σ-algebra
F (or F-measurable) if the following property is satisfied:

∀α ∈ < : Eα ∈ F
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Conceptually, if x is F-measurable then we can assign probability to the
event x < α for any real number α. [We may equivalently have used >, ≤ or ≥
for the definition of measurability, but that is beyond the scope of this course.
You only need to know that if x is F-measurable, then we can sensibly talk
about the probability of x taking values in virtually any subset of the real line
you can think of (the Borel sets).]

Now define a sequence of σ-algebras:

{Ft}∞t=1 : F1 ⊆ F2 ⊆ ... ⊆ F

Conceptually, each σ-algebra Ft ”refines” Ft−1, in the sense that distinguishes
(in a probabilistic sense) between ”more” events than the previous one.

Finally, let a sequence of random variables xt be Ft-measurable for each t:
this models a stochastic process. Consider an $ ∈ Ω, and choose an α ∈ <.
Then for each t, the set Eαt ≡ {$ : xt ($) < α} will be a set included in the
collection (the σ-algebra) Ft. Since Ft ⊆ F for all t, Eαt also belongs to F .
Hence, we can assign probability to Eαt using the set function P : P [Eαt] is well
defined

The following example may clarify:

Consider the probability space (Ω, F , P ), where:

Ω = [0, 1]

F = B (the Borel sets restricted to [0, 1])

P = λ - the length of an interval: λ ([a, b]) = b− a

Consider the following collections of sets:

At =

{{[
j

2t
,

j + 1
2t

)}2t−2

j=0

,

[
2t − 1

2t
, 1
]}

For every t, let Ft be the minimum σ-algebra containing At. Denote by
σ (At) the collection of all possible unions of the sets in At (notice that Ω ∈
σ (At)). Then Ft = { ∅, At, σ (At)} (you should check that this is a σ-algebra).

For example,
A1 =

{
[0, 1] , ∅,

[
0, 1

2

)
,
[
1
2 , 1

]}
⇒ F1 =

{
[0, 1] , ∅,

[
0, 1

2

)
,
[
1
2 , 1

]}
A2 =

{[
0, 1

4

)
,
[
1
4 , 1

2

)
,
[
1
2 , 3

4

)
,
[
3
4 , 1

]}
⇒ σ (A2) =

{[
0, 1

2

)
,
[
0, 3

4

)
,
[
1
4 , 3

4

)
,
[
1
4 , 1

]
,
[
1
2 , 1

]
,
[
0, 1

4

)
∪
[
1
2 , 3

4

)}
∪
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∪
{[

0, 1
4

)
∪
[
1
2 , 1

]
,
[
0, 1

4

)
∪
[
3
4 , 1

]
,
[
0, 1

2

)
∪
[
3
4 , 1

]
,
[
1
4 , 1

2

)
∪
[
3
4 , 1

]
, [0, 1]

}
Now consider the experiment of repeated fair coin flips: ct ∈ {0, 1}. The

infinite sequence {ct}∞t=0 is a stochastic process that can be modeled with the
probability space and associated sequence of σ-algebras that we have defined
above. Each sequence {ct}∞t=0 is an ”outcome”, represented by a number $ ∈ Ω.

For every t let yt = {cj}t
j=1 (this will be a t-dimensional vector of zeros

and ones), and to each possible configuration of yt (there are 2t possible ones),
associate a distinct interval in At. For example, for t = 1 and t = 2, let

I1 [(0)] =
[
0, 1

2

)
I1 [(1)] =

[
1
2 , 1

]
I2 [(0, 0)] =

[
0, 1

4

)
I2 [(0, 1)] =

[
1
4 , 1

2

)
I2 [(1, 0)] =

[
1
2 , 3

4

)
I2 [(1, 0)] =

[
3
4 , 1

]

For t = 3, we will have a three-coordinate vector, and we will have the
following restrictions on I3:

I3 [(0, 0, ·)] ⊂
[
0, 1

4

)
I3 [(0, 1, ·)] ⊂

[
1
4 , 1

2

)
I3 [(1, 0, ·)] ⊂

[
1
2 , 3

4

)
I3 [(1, 1, ·)] ⊂

[
3
4 , 1

]
and so on for the following t.

Then a number $ ∈ Ω implies a sequence of intervals {It}∞t=0 that represents,
for ever t, the ”partial” outcome realized that far.

Finally, the stochastic process will be modeled by a function xt that, for each
t and for each $ ∈ Ω, associates a real number; such that xt is Ft-measurable.
For example, take $′ = .7 and $′′ = .8, then I1 [y′1] = I1 [y′′1 ] =

[
1
2 , 1

]
- that is,

the first element of the respective sequences c′t, c′′t is a 1 (say ”Heads”).

Then we must have x1 ($′) = x1 ($′′) ≡ b. We are ready now to answer the
following question: What is the probability that the first toss in the experiment
is Heads? Or, in our model, what is the probability that x1 ($) = b? To answer
this question, we look at measure of the set of $ that will produce the value
x1 ($) = b:

E = {$ : x1 ($) = b} =
[
1
2 , 1

]
( ∈ F1)
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And the probability of the event
[
1
2 , 1

]
is calculated using P

([
1
2 , 1

])
= λ

([
1
2 , 1

])
=

1
2 .

That is, the probability that the event {ct}∞t=1 to be drawn produces a Head
as its first toss is 1

2 . �

Definition 5 Let B ∈ F . Then the joint probability of the events (xt+1, ..., xt+n) ∈
B is given by

Pt+1, ..., t+n(B) = P [$ ∈ Ω : [xt+1 ($) , ..., xt+n ($)] ∈ B]

Definition 6 A stochastic process is stationary if Pt+1, ..., t+n(B) is indepen-
dent of t, ∀t, ∀n, ∀B.

Conceptually, if a stochastic process is stationary, then the joint probability
distribution for any (xt+1, ..., xt+n) is independent of time.

Given an observed realization of the sequence {xj}∞j=1 in the last s periods: (xt−s, ..., xt) =
(at−s, ..., at), the conditional probability of the event (xt+1, ..., xt+n) ∈ B is
denoted by

Pt+1, ..., t+n [B |xt−s = at−s, ..., xt = at ]

Definition 7 A first order Markov Process is a stochastic process with the prop-
erty that:

Pt+1, ..., t+n [B |xt−s = at−s, ..., xt = at ] = Pt+1, ..., t+n [B |xt = at ]

Definition 8 A stochastic process is weakly stationary (or covariance station-
ary) if the first two moments of the joint distribution of (xt+1, ..., xt+n)’s are
independent of time.

A usual assumption in macroeconomics is that the exogenous randomness af-
fecting the economy can be modeled as a (weakly) stationary stochastic process.
The task then is to look for stochastic processes for the endogenous variables
(capital, output, etc.) that are stationary. This stochastic stationarity is the
analogue to the steady state in deterministic models.

For example, suppose that productivity is subject to a two-state shock:

y = z · F (k)
z ∈ {zL, zH}

Imagine for example that the zt’s are iid, with Pr [zt = zH ] = 1
2 = Pr [zt = zL]

∀t. Then the policy function will now be a function of both the initial capital
stock K and the realization of the shock z: g (k, z) ∈ {g (k, zL) , g (k, zH)}
∀K. We need to find the functions g (k, ·). Notice that they will determine a
stochastic process for capital - the trajectory of capital in this economy will be
subject to a random shock. The following chart shows an example of such a
trajectory:
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The interval
(
k∗, k

∗)
is the ergodic set : once the level of capital enters this

set, it will not leave it again. The capital stock will follow a stationary stochastic
process within the limits of the ergodic set.

1.2 Examples of common stochastic processes in macroe-
conomics

The two main types of modeling techniques that macroeconomists make use of
are:

1. Markov chains

2. Linear stochastic difference equations

Markov chains

Let xt ∈ X, where X = {x1, x2, ..., xn} is a finite set of values. A stationary
Markov Chain is a stochastic process {xt}∞t=0 defined by an X, a transition
matrix P

n×n
, and an initial probability distribution π0

1×n
for x0 (the first element

in the stochastic process).

The elements of P
n×n

represent the following probabilities:

Pij = Pr [xt+1 = xj |xt = xi ]
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Notice that these probabilities are independent of time. We also have that the
probability two periods ahead is given by:

Pr [xt+2 = xj |xt = xi ] =
n∑

k=1

Pik · Pkj

≡
[
P 2
]
i,j

where
[
P 2
]
i,j

denotes the (i, j)th entry of the matrix P 2.

Given π0, π1 will be the probability distribution of x1, as at time t = 0, and
will be given by:

π1 = π0 · P

Analogously,

π2 = π0 · P 2

... =
...

πt = π0 · P t

and also:
πt+1 = πt · P

Definition 9 A stationary (or invariant) distribution for P is a probability
vector π such that

π = π · P

A stationary distribution then verifies

1 · π = π · P

and

π − π · P = 0
π · [I − P ] = 0

That is, π is an eigenvector of P , associated with the eigenvalue λ = 1.

Example 10 P =
(

.7 .3

.6 .4

)
⇒
(

π1 π2

)
=
(

π1 π2

)
·
(

.7 .3

.6 .4

)
You should verify that π =

(
4
7

3
7

)
.

P =
(

0 1
1 0

)
⇒ π =

(
1
2

1
2

)
P =

(
1 0
.1 .9

)
⇒ π =

(
1 0

)
→ 1 is said to be an ”absorbing” state
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P =
(

1 0
0 1

)
⇒ π =

(
a 1− a

)
, a ∈ [0, 1]

In the last case, there is a continuum of invariant distributions

Question: Does πt converge, in some sense, to a number π∞ as t → ∞?
(This would mean that π∞ = π∞ · P.) If so, does π∞ depend on the initial
condition π0?

If the answers to these two questions are ”Yes” and ”No”, respectively, then
the stochastic process is said to be ”asymptotically stationary”, with a unique
invariant distribution. Fortunately, we can borrow on the following result for
sufficient conditions for asymptotic stationarity:

Theorem 11 P has a unique invariant distribution (and is asymptotically sta-
tionary) if Pij > 0 ∀i, ∀j.

Linear stochastic difference equations [AR(1), ARIMA(4,7,1), ...]

Let xt ∈ <n, wt ∈ <m,

xt+1 = A
n×n

· xt + C
n×n

· wt+1

We normally assume:

Et [wt+1] = Et [wt+1 |wt, wt−1, ... ] = 0
Et

[
wt+1 · w′t+1

]
= I

Example 12 (AR(1) Process)

yt+1 = ρ · yt + εt+1 + b

Et [εt+1] = 0
Et

[
ε2

t+1

]
= σ2

Et [εt+k · εt+k+1] = 0

Even if y0 is known, the {yt}∞t=0 process will not be stationary in general.
However, the process may become stationary as t →∞. By repeated substitution,
we have that

E0 [yt] = ρt · y0 +
b

1− ρ
·
(
1− ρt

)
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|ρ| < 1 ⇒ lim
t→∞

E0 [yt] =
b

1− ρ

then the process will be stationary if |ρ| < 1. Similarly, the autocorrelation
function is given by

γ (t, k) ≡ E0 [(yt − E [yt]) · (yt−k − E [yt−k])] = σ2 · ρk · 1− ρt−k

1− ρ2

|ρ| < 1 ⇒ lim
t→∞

γ (t, k) =
σ2

1− ρ2
· ρk

Then if |ρ| < 1, the process is asymptotically weakly stationary.

We can also regard x0 (or y0, in the case of an AR(1) process) as drawn from
a distribution with mean µ0 and covariance E

[
(x0 − µ0) · (x0 − µ0)

′] ≡ Γ0.
Then the following are sufficient conditions for {xt}∞t=0 to be weakly stationary
process:

(i) µ0 is the eigenvector associated to the eigenvalue λ1 = 1 of A:

µ′0 = µ′0 ·A

(ii) All other eigenvalues of A are smaller than 1 in absolute value:

|λi| < 1 i = 2, ..., n

To see this, notice that condition (i) implies that

xt+1 − µ0 = A · (xt − µ0) + C · wt+1

then
Γ0 = Γ (0) ≡ E

[
(xt − µ0) · (xt − µ0)

′] = A · Γ (0) ·A′ + CC ′

and
Γ (k) ≡ E

[
(xt+k − µ0) · (xt − µ0)

′] = Ak · Γ (0)

This is the matrix version of the autocovariance function γ (t, k) presented
above. Notice we drop t as a variable in this function.

For example, let xt = yt ∈ <, A = ρ, C = σ2, wt =
εt

σ
- we are accommo-

dating the AR(1) process seen before to this notation. We can do the following
change of variables:

ŷt =
(

yt

1

)
ŷt+1 =

(
ρ b
0 1

)
︸ ︷︷ ︸

Â

· ŷt +
(

σ
0

)
· wt+1
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Then using the previous results:

Γ (0) = ρ2 · Γ (0) + σ2

⇒ Γ (0) =
σ2

1− ρ2

(ignoring the constant).
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1.3 Maximization under uncertainty

We will approach this topic by illustrating with examples. Let us begin with
a simple 2-period model, where an agent faces a decision problem in which he
needs to make the following choices:

1. Consume and save in period 1.

2. Consume and work in period 2.

The uncertainty arises in period 2’s income: the wage is stochastic. We will
assume that there are n possible states of the world in this second period:

$2 ∈ {$1, ..., $n}

where πi ≡ Pr
[
$2 = $i

]
, for i = 1, ..., n.

The consumer’s utility function has the von Neumann - Morgenstern type -
he is an expected utility maximizer. Leisure in the second period is valued:

U =
n∑

i=1

πi · u (c0, c1i, ni) ≡ E [u (c0, c1i, ni)]

Specifically, the utility function is assumed to have the form:

U = u (c0) + β ·
n∑

i=1

[u (c1i) + v (ni)]

(with v′ (ni) < 0.)

Market Structure: We will assume that there is a ”risk free” asset denoted
by a, and priced q, such that every unit of a purchased in period 0 pays 1 unit
in period 1, whatever the state of the world. The consumer faces the following
budget restriction in the first period:

c0 + a · q = I

And, at each realization of the random state of the world, his budget is given
by:

c1i = a + wi · ni i = 1, ..., n

Therefore, the consumer’s problem is:

max
c0, a, {c1i, n1i}n

i=1

u (c0) + β ·
n∑

i=1

[u (c1i) + v (ni)]

s.t. c0 + a · q = I

c1i = a + wi · ni i = 1, ..., n
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First order conditions:

u′ (c0) = λ =
n∑

i=1

λi ·R

where R ≡ 1
q
.

β · πi · u′ (c1i) = λi

−β · πi · v′ (n1i) = λi · wi

⇒ −u′ (c1i) · wi = v′ (n1i)

u′ (c0) = β ·
n∑

i=1

πi · u′ (c1i) ·R

≡ β · E [u′ (c1i) ·R]

Example 13 Let u(c) belong to the CES class; that is u(c) =
c1−σ − 1

1− σ
. This is

a common assumption in the literature. Recall that σ is the coefficient of relative
risk aversion (the higher σ, the less variability in consumption across states is
the consumer willing to suffer). In particular, let σ = 1, then u(c) = log(c).
Assume also that v(n) = log(1 − n). Replacing in the first order conditions,
these assumptions yield:

c1i = wi · (1− ni)

and, using the budget constraint at i,

c1i =
a ·R + wi

2

Therefore,
1

I − a
= β ·

n∑
i=1

πi ·R · 2
a ·R + wi

This is one equation in a - we get a unique solution, even if not explicit, for
the amount of savings given the price q. Finally, notice that there is incomplete
insurance in this model (why?).

We will now modify the market structure in the previous example. Instead
of a risk free asset yielding the same payout in each state, we will allow ”Arrow
securities” (state-contingent claims): n assets are traded in period 0, and each
unit of asset i purchased pays off 1 unit if the realized state is i, and 0 otherwise.
The new budget constraint in period 0 reads:

c0 +
n∑

i=1

qi · ai = I
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And in the second period, if the realized state is i then the consumer must
abide by:

c1i = ai + ni · wi

Notice that a risk free asset can be constructed by purchasing one unit of
each ai. Assume that the total price paid for such a portfolio is the same as
before, that is:

q =
n∑

i=1

qi

Then the question is whether the consumer will be better or worse off with
this market structure than before. Intuitively, we can see that the structure of
wealth transfer across periods that was available before (namely, the risk free
asset) is also available now at the same cost. Therefore, the agent could not be
worse off. Moreover, the market structure now allows the wealth transfer across
periods to be state-specific: not only can the consumer reallocate his income
between periods 0 and 1; now he is also able to move his wealth across states
of the world. Conceptually, this ability to move income across states will lead
to a welfare improvement if the wi’s are truly random, and if preferences show
risk aversion (i.e., if the utility index u (·) is strictly concave).

Solving for ai in the period-1 budget constraints, and replacing in the period-
0 constraint, we can rewrite:

c0 +
n∑

i=1

qi · c1i = I +
n∑

i=1

qi · wi · ni

We can interpret this expression in the following way. qi is the price, in terms
of c0, of consumption goods in period 1 if the realized state is i. And qi · wi is
the remuneration to labor if the realized state is i, measured in term of c0 as
well (remember that budget consolidation only makes sense if all expenditures
and income are measured in the same unit of account - in this case, monetary
units, where the price of c0 has been normalized to 1, and qi is the resulting
level of relative prices).

Notice that we have thus reduced the n + 1 constraints to 1, whereas in the
previous problem we could only eliminate one and reduce them to n.

First order conditions:

c0 =
1

1 + 2 · β
·

(
I +

n∑
i=1

qi · wi

)
c1i = β · c0 ·

πi

qi

ni = 1− c1i

wi
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The second condition says that consumption in each period is proportional to
consumption in c0. And this proportionality is a function of the cost of insurance:
the higher qi is in relation to πi, the lower the wealth transfer into state i.

Under this equilibrium allocation, we have that the marginal rates of substi-
tution between consumption in period 0 and consumption in period 1, for any
realization of the state of the world, is given by

MRS (c0, c1j) = qi

And the marginal rates of substitution across states are:

MRS (c1i, c1j) =
qi

qj

If
n∑

i=1

qi = q, then the consumer is better off with this market structure. To

see this, notice that by purchasing a risk free portfolio, then:

u′(c0) = β ·
n∑

i=1

πi · u′(c1i) ·R

where R ≡ 1
q

=
1

n∑
i=1

qi

.

1.3.1 Stochastic neoclassical growth model

Notation We introduce uncertainty into the neoclassical growth model through
a stochastic shock affecting factor productivity. A very usual assumption is that
of a neutral shock, affecting total factor productivity (”TFP”). Under certain
assumptions (for example, Cobb-Douglass y = AKαn1−α production technol-
ogy), a productivity shock is always neutral, even if it is modeled as affecting a
specific component (capital K, labor n, technologyA).

Specifically, a neoclassical (constant returns to scale) aggregate production
function subject to a TFP shock has the form:

Ft (kt, 1) = zt · f (kt)

z is a stochastic process, and the realizations zt are drawn from a set Z:
zt ∈ Z, ∀t. Let Zt denote a t-times Cartesian product of Z. We will assume
throughout that Z is a countable set (a generalization of this assumption only
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requires to generalize the summations into integration - however this brings in
additional technical complexities which are beyond the scope of this course).

Let zt denote a history of realizations: a t-component vector keeping track
of the previous values taken by the zj for all periods j from 0 to t:

zt = (zt, zt−1, ..., z0)

Notice that z0 = z0, and we can write zt =
(
zt, zt−1

)
.

Let π (zt) denote the probability of occurrence of the event (zt, zt−1, ..., z0).
Under this notation, a first order Markov process has

π
[(

zt+1, zt
) ∣∣zt

]
= π [(zt+1, zt) |zt ]

(care must be taken on the objects on which probability is assigned).

Sequential Formulation The planning problem in sequential form in this
economy requires to maximize the function

∞∑
t=0

∑
zt∈Zt

βt · π
(
zt
)
· u
[
ct

(
zt
)]
≡ E

[ ∞∑
t=0

βt · u [ct]

]

Notice that as t increases, the dimension of the space of events Zt increases. The
choice variables in this problem are the consumption and investment amounts
at each date and for each possible realization of the sequence of shocks as of
that date. The consumer has to choose a stochastic process for ct and another
one for kt+1 :

ct

(
zt
)
∀zt, ∀t

kt+1

(
zt
)
∀zt, ∀t

Notice that now there is only one kind of asset (kt+1) available at each date.

Let (t, zt) denote a realization of the sequence of shocks zt as of date t.
The budget constraint in this problem requires that the consumer chooses a
consumption and investment amount that is feasible at each (t, zt):

ct

(
zt
)

+ kt+1

(
zt
)
≤ zt · f

[
kt

(
zt−1

)]
+ (1− δ) · kt

(
zt−1

)
You may observe that this restriction is consistent with the fact that at the
moment of choosing, the agent’s information is zt.
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Assuming that the utility index u (·) is strictly increasing, we may as well
write the restriction in terms of equality. Then the consumer solves:

max
{ct(zt), kt+1(zt)}∞t=0

∞∑
t=0

∑
zt∈Zt

βt · π
(
zt
)
· u
[
ct

(
zt
)]

(SP)

s.t. ct

(
zt
)

+ kt+1

(
zt
)

= zt · f
[
kt

(
zt−1

)]
+ (1− δ) · kt

(
zt−1

)
∀
(
t, zt

)
k0 given

First order conditions:

kt+1

(
zt
)

: −π
(
zt
)
·u′
[
ct

(
zt
)]

+
∑

zt+1∈Zt+1

β·π
(
zt+1, zt

)
·u′
[
ct+1

(
zt+1, zt

)]
·
[
zt+1 · f ′

[
kt+1

(
zt
)]

+ 1− δ
]

= 0

Or, if we denote π [(zt+1, zt) |zt ] ≡ π (zt+1, zt)
π (zt)

, then we can rewrite:

u′
[
ct

(
zt
)]

=
∑

zt+1∈Zt+1

β · π
[(

zt+1, zt
) ∣∣zt

]
· u′
[
ct+1

(
zt+1, zt

)]
·
[
zt+1 · f ′

[
kt+1

(
zt
)]

+ 1− δ
]

(SEE)

≡ Ezt

[
u′
[
ct+1

(
zt+1, zt

)]
·Rt+1

]
where Rt+1 ≡ zt+1 ·f ′ [kt+1 (zt)]+1−δ is the marginal return on capital realized
for each zt+1.

(SEE) is a nonlinear, stochastic difference equation. In general, we will not
be able to solve it analytically, so numerical methods or linearization techniques
will be necessary.

Recursive Formulation The planner’s problem in recursive version is:

V (k, z) = max
k′

{
u [z · f(k)− k′ + (1− δ) · k] + β ·

∑
z′∈Z

π (z′ |z ) · V (k′, z′)

}
(FE)

where yes, we have sneaked in a first order Markov assumption on the process
{zt}∞t=0. The solution to this problem involves the policy rule

k′ = g (k, z)

If we additionally assume that Z is not only countable but finite:

Z = {z1, ..., zn}
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then the problem can also be written:

Vi (k) = max
k′

u [zi · f(k)− k′ + (1− δ) · k] + β ·
n∑

j=1

πij · Vj (k′)


where πij denotes the probability of moving from state i into state j:

πij ≡ π [zt+1 = zj |zt = zi ]

Solving the model: Linearization of the Euler equation Both the re-
cursive and the sequential formulation lead to the Stochastic Euler Equation:

u′ (ct) = β · Ezt [u′ (ct+1) · [zt+1 · f ′ (kt+1) + 1− δ]] (SEE)

Our strategy to solve this equation will be to use a linear approximation of
it around the deterministic steady state. We will guess a linear policy function,
and replace the choice variables with it. Finally, we will solve for the coefficients
of this linear guess.

We rewrite (SEE) in terms of capital and using dynamic programming no-
tation:

u′ [z · f(k) + (1− δ) · k − k′] = β·Ez [u′ [z′ · f(k′) + (1− δ) · k′ − k′′] · [z′ · f ′ (k′) + 1− δ]]
(SEE)

Denote

LHS ≡ u′ [z · f(k) + (1− δ) · k − k′]
RHS ≡ β · Ez [u′ [z′ · f(k′) + (1− δ) · k′ − k′′] · [z′ · f ′ (k′) + 1− δ]]

Let k be the steady state associated to the realization {zt}∞t=0 that has zt = z
for all but a infinite number of periods t. That is, z is the long run value of z.

Example 14 Suppose that {zt}∞t=0 follows an AR(1) process:

zt+1 = ρ · zt + (1− ρ) · z + εt

where |ρ| < 1. Then if E [ε] = 0, E
[
ε2
]

= σ2 < ∞, E [εt · εt+j ] = 0 ∀j ≥ 1, by
the Law of Large Numbers we have:

plim zt = z

16



Having the long run value of z, the associated steady state level of capital k
is solved from the usual deterministic Euler equation:

u′ (c) = β · u′ (c) ·
[
z · f(k) + 1− δ

]
⇒ z · f(k) + 1− δ =

1
β

⇒ k = f−1

(
β−1 − (1− δ)

z

)
⇒ c = z · f(k)− δ · k

Let

k̂ ≡ k − k

ẑ ≡ z − z

denote the variables expressed as deviations from their steady state values, and
using this notation we write down a first order Taylor expansion of (SEE) around
the long run values:

LHS ≈ LLHS ≡ aL · ẑ + bL · k̂ + cL · k̂′ + dL

RHS ≈ LRHS ≡ Ez

[
aR · ẑ′ + bR · k̂′ + cR · k̂′′

]
+ dR

where the coefficients aL, aR, etcetera are the derivatives of the expressions
LHS and RHS with respect to the corresponding variables, evaluated at the
steady state (for example, aL = u′′(c) · f(k) - you should derive the remaining
ones). In addition, LLHS = LRHS needs to hold for ẑ = ẑ′ = k̂ = k̂′ = k̂′′ = 0
(the steady state), so dL = dR.

Next we introduce our linear policy function guess in terms of deviations
with respect to the steady state:

k̂′ = gk · k̂ + gz · ẑ

The coefficients gk, gz are our unknowns. We substitute this guess into the
linearized stochastic euler equation:

LLHS = aL · ẑ + bL · k̂ + cL · gk · k̂ + cL · gz · ẑ + dL

LRHS = Ez

[
aR · ẑ′ + bR · gk · k̂ + bR · gz · ẑ + cR · gk · k̂′ + cR · gz · ẑ′

]
+ dR

= Ez

[
aR · ẑ′ + bR · gk · k̂ + bR · gz · ẑ + cR · g2

k · k̂ + cR · gk · gz · ẑ + cR · gz · ẑ′
]

+ dR

= aR · Ez [ẑ′] + bR · gk · k̂ + bR · gz · ẑ + cR · g2
k · k̂ + cR · gk · gz · ẑ + cR · gz · Ez [ẑ′] + dR

and our equation is:
LLHS = LRHS (LS)

17



(notice that dL, dR will simplify away). Using the assumed form of the stochastic
process {zt}∞t=0, we can replace Ez [ẑ′].

The system (LS) needs to hold for all values of k̂ and ẑ. Given the values of
the coefficients ai, bi, ci (for i = L, R), the task is to find the values of gk, gz

that solve the system. Rearranging, (LS) can be written:

ẑ ·A + Ez [ẑ′] ·B + k̂ · C = 0

where

A = aL + cL · gz − bR · gz − cR · gk · gz

B = −aR − cR · gz

C = bL + cL · gk − bR · gk − cR · g2
k

C is a second order polynomial in gk; therefore the solution will involve two
roots. We know that the eigenvalue smaller than one in absolute value will be
the stable solution to the system.

Example 15 Let {zt}∞t=0 follow an AR(1) process, as in the previous example:

zt+1 = ρ · zt + (1− ρ) · z + εt

Then

ẑ′ ≡ z′ − z

= ρ · z + (1− ρ) · z + ε− z

= ρ · (z − z) + ε

So
Ez [ẑ′] = ρ · ẑ

Replacing,

LRHS = aR ·ρ · ẑ+bR ·gk · k̂+bR ·gz · ẑ+cR ·g2
k · k̂+cR ·gk ·gz · ẑ+cR ·gz ·ρ · ẑ+dR

We can rearrange (LS) to:

ẑ ·A + k̂ ·B = 0

where

A = aL + cL · gz − aR · ρ− bR · gz − cR · gk · gz − cR · gz · ρ
B = bL + cL · gk − bR · gk − cR · g2

k

The solution to (LS) requires

A = 0
B = 0

Therefore, the procedure is to solve first for gk from B (picking the eigenvalue
λ1 that has |λ1| < 1); and then use this value to solve for gz from A.
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Simulation Once we have solved for the coefficients gk, gz, we can simulate
the model, by drawing values of {ẑt}T

t=0 from the assumed distribution, and an
arbitrary k̂0. This will yield a stochastic path for capital from the policy rule

k̂t+1 = gk · k̂t + gz · ẑt

Impulse response

We may also be interested in observing the effect on the capital accumulation
path in an economy if there is a one-time productivity shock ẑ. The usual
procedure for this analysis is to set k̂0 = 0 (that is, we begin from the steady
state capital stock associated to the long run value z), and ẑ0 to some arbitrary
number. The values of ẑt for t > 0 are then derived by eliminating the stochastic
component in the {ẑt}T

t=0 process.

For example, let {zt}∞t=0 be an AR(1) process as in the previous examples,
then:

ẑt+1 = ρ · ẑt + εt

Let ẑ0 = ∆, and set εt = 0 for all t. Using the policy function, we obtain
the following path for capital:

k̂0 = 0
k̂1 = gz ·∆
k̂2 = gk · gz ·∆ + gz · ρ ·∆ = (gk · gz + gz · ρ) ·∆
k̂3 =

(
g2

k · gz + gk · gz + gz · ρ2
)
·∆

... =
...

k̂t =
(
gt−1

k + gt−1
k · ρ + ... + gk · ρt−2 + ρt−1

)
· gz ·∆

and
|gk| < 1 & |ρ| < 1 ⇒ lim

t→∞
k̂t = 0

The capital stock returns to its steady state value if |gk| < 1 and |ρ| < 1.
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An example impulse response plot, using gz = .8, gk = .9, ρ = −.75

References and comments on the linear-quadratic setup You can find
most of the material we have discussed on the neoclassical growth model in King,
Plosser and Rebelo, 1988. Hansen and Sargent discuss the model in a Linear-
Quadratic environment: assuming that the production technology is linear in z
and k, and u is quadratic:

y(z, k) = ay · z + by · k
u(c) = −au · c2 + bu

This set up leads to a linear Euler equation, therefore the linear policy
function guess is exact. In addition, the linear-quadratic model has a property
called ”certainty equivalence”: gk and gz do not depend on second or higher
order moments of the shock ε. This implies that it is possible to solve the
problem, at all t, by replacing zt+k with Et [zt+k] and thus transform it into a
deterministic problem.

This approach provides an alternative to linearizing the stochastic euler
equation. We can solve the problem by replacing the return function with a
quadratic approximation, and the (technological) constraint by a linear func-
tion. Then we solve the resulting linear-quadratic problem:

∞∑
t=0

βt · u [F (kt) + (1− δ) · kt − kt+1]︸ ︷︷ ︸
Return function

The approximation of the return function can be done by taking a second order
Taylor series expansion around the steady state. This will yield the same results
as the linearization.
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Finally, the following shortfalls of the linear-quadratic setup must be kept
in mind:

- The quadratic return function leads to satiation: there will be consumption
amounts with zero marginal utility.

- Non-negativity constraints may cause problems. In practice, the method re-
quires such constraints to not bind. Otherwise, the Euler equation will
involve Lagrange multipliers, for a significant increase in the complexity
of the solution.

- A linear production function implies a constant returns to scale technology,
which may not be consistent with economic intuition.
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2 Competitive equilibrium under uncertainty

The welfare properties of competitive equilibrium are affected by the introduc-
tion of uncertainty through the market structure. The relevant distinction is
whether such structure involves complete or incomplete markets. Intuitively, a
complete markets structure allows trading in each single commodity. Recall our
previous discussion of the neoclassical growth model under uncertainty where
commodities are defined as consumption goods indexed by time and state of the
world. For example, if zt

1 and zt
2 denote two different realizations of the random

sequence {zj}t
j=0, then a unit of the physical good c consumed in period t, if

the state of the world is zt
1 - denoted by ct (zt

1) - is a commodity different than
ct (zt

2). A complete markets structure will allow contracts between parties to
specify the delivery of physical good c in different amounts at (t, zt

1) than at
(t, zt

2), and for a different price.

In an incomplete markets structure, such a contract might be impossible
to enforce - i.e. parties might be unable to sign a ”legal” contract that makes
the delivery amount contingent on the realization of the random shock. A
usual incomplete markets structure is one where agents may only agree to the
delivery of goods on a date basis, regardless of the shock. A contract specifying
ct (zt

1) 6= ct (zt
2) is not enforceable in such an economy.

You may notice that the structure of markets is an assumption of an insti-
tutional nature - nothing should prevent, in theory, the market structure to be
complete. However, markets are incomplete in the real world, and this seems to
play a key role in the economy (for example in the distribution of wealth, in the
business cycle, perhaps even in the equity premium puzzle that we will discuss
in due time).

Before embarking on the study of the subject, it is worth mentioning that
the structure of markets need not be explicit. For example, the accumulation of
capital may supply the role of transferring wealth across states of the world (not
just across time). But allowing for the transfer of wealth across states is one of
the functions specific to markets; therefore if these are incomplete then capital
accumulation can (to some extent) perform this missing function. An extreme
example is the deterministic model. In that case, there is only one state of the
world, and only transfers of wealth across time are relevant. In such a case, the
possibility of accumulating capital is enough to ensure that markets are complete
- allowing agents also to engage in trade of dated commodities is redundant.
Another example shows up in real business cycle models, which we shall analyze
later on in this course. A usual result in the real business cycle literature
(consistent with actual economic data) is that agents choose to accumulate
more capital whenever there is a ”good” realization of the productivity shock.
An intuitive interpretation is that savings play role of a ”buffer” used to smooth
out the consumption path - a function that markets could perform.
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Hence, you may correctly suspect that whenever we talk about market com-
pleteness or incompleteness, in fact we are referring not to the actual, explicit
contracts that agents are allowed to sign, but to the degree to which they are
able to transfer wealth across states of the world. This ability will depend on
the institutional framework assumed for the economy.

2.0.2 The neoclassical growth model with complete markets

We will begin by analyzing the neoclassical growth model in an uncertain envi-
ronment. We assume that given a stochastic process {zt}∞t=0, there is a market
for each consumption commodity ct (zt), as well as for capital and labor ser-
vices at each date and state of the world. There are two alternative setups:
Arrow-Debreu date-0 trading, or sequential trade.

Arrow-Debreu date-0 trading The consumer’s budget constraint reads:

∞∑
t=0

∑
Zt

pt

(
zt
)
·
[
ct

(
zt
)

+ Kt+1

(
zt
)]
≤

∞∑
t=0

∑
Zt

pt

(
zt
)
·
[(

rt

(
zt
)

+ 1− δ
)
·Kt

(
zt−1

)
+ wt

(
zt
)
· nt

(
zt
)]

You should check this: Specify the objective of the consumer, derive first
order conditions, the stochastic Euler equation, and show that it is identical to
the Euler equation in the planner’s problem.

Sequential trade In order to allow wealth transfers across dates, agents must
be able to borrow and lend. It suffices to have one-period assets, even with an
infinite time horizon. We will assume the existence of these one-period assets,
and, for simplicity, that Z is a finite set with n possible shock values:

23



Assume that there are q assets, with asset j paying off rij consumption units
in t + 1 if the realized state is zi. The following matrix shows the payoff of each
asset for every realization of zt+1:

a1 a2 · · · aq

z1

z2

z3

...
zn


r11 r12 · · · r1q

r21 r22 · · · r2q

r31 r32 · · · r3q

...
...

. . .
...

rn1 rn2 · · · rnq

 ≡ R

Then portfolio a = (a1, a2, ..., aq) is pays off (in terms of consumption goods
at t + 1):

p = R · a
n×1 n×q q×1

Each component pi =
q∑

j=1

Rij · aj is the amount of consumption goods obtained

in state i from holding portfolio a.

Matrix algebra has the answer to the following important question: What
restrictions must we impose on R so that any arbitrary payoff combination
p ∈ <n can be generated (by the appropriate portfolio choice)? The answer is
that we must have

1. q ≥ n

2. rank(R) = n

If R satisfies condition number (2) (which requires the first one, of course),
then the market structure is complete. The whole space <n is spanned by R -
we say that there is spanning.

Arrow securities: Recall that these were mentioned before. Arrow security
i pays off 1 unit if the realized state is i, and 0 otherwise. If there are q < n
different Arrow securities, then the payoff matrix reads:

a1 a2 · · · aq

z1

z2

z3

...
zq

...
zn



1 0 · · · 0
0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1
...

...
. . .

...
0 0 · · · 0


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2.0.3 General equilibrium under uncertainty: Multiple agents

Motivation: If we compare the outcome of the neoclassical growth model with
uncertainty and one representative agent with the two different market struc-
tures:

1 Only (sequential) trade in capital. There is no spanning in this setup: only
one asset for n states.

2 Spanning (either with Arrow-Debreu date-0, or sequential trading).

Will equilibria look different with these structures? The answer is no, and
the reason is that there is a single agent. Let us turn to the case where the
economy is populated by more than one agent to analyze the validity of such a
result.

Illustration: 2-period model, 2 agents. We will compare the equilibrium
allocation of this economy under the market structures (1) and (2) mentioned
above.

Assumptions

Random Shock: We assume there are n states of the world, corresponding to
n different values of the shock to technology to be described below:

z ∈ {z1, z2, ..., zn}
πj = Pr [z = zj ]

Let z denote the expected value of z:

z =
n∑

j=1

πj · zj

Tastes: Agents derive utility from consumption only (not from leisure). Prefer-
ences satisfy the axioms of expected utility, with utility index u (·). Specif-
ically, we assume that:

Ui = ui

(
ci
0

)
+ β ·

n∑
j=1

πj · ui(ci
j) i = 1, 2

where u1 (x) = x, and u2 (x) is strictly concave: u′2 > 0, u′′2 < 0. We also
assume that lim

x→0
u′2 (x) = ∞.

Thus, agents’ preferences exhibit different attitudes towards risk: Agent 1
is risk neutral, and Agent 2 is risk averse.
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Endowments: Each agent is endowed with $0 consumption goods in period 0,
and with 1 unit of labor in period 1 (which will be supplied inelastically
since leisure is not valued).

Technology: Consumption goods are produced in period 1 with a constant
returns to scale technology represented by the Cobb Douglass production
function

yj = zj ·Kα ·
(n

2

)1−α

where K, n denote the aggregate supply of capital and labor services in
period 1, respectively. We know that n = 2, so

yj = zj ·Kα

Therefore, the remunerations to factors in period 1, if state j is realized,
are given by:

rj = zj · α ·Kα−1

wj = zj ·
(1− α)

2
·Kα

Structure 1

Trading in only 1 asset (capital) is allowed in this setup. With K denoting
the aggregate capital stock, ai denotes the capital stock held by agent i, then
asset market clearing requires that

a1 + a2 = K

The budget constraints for each agent is given by:

ci
0 + ai = $0

ci
j = ai · rj + wj

To solve this problem, we proceed to maximize each consumer’s utility sub-
ject to his budget constraint. We take first order conditions:

Agent 1:

c1
0 : 1 = λ

c1
j : β · πj = λj

a1 : λ =
n∑

j=1

rj · λj
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The Euler equation is, replacing for r1j , is

1 = β ·
n∑

j=1

πj · α · zj ·Kα−1 (EE1)

1 = α · β ·Kα−1 ·
n∑

j=1

πj · zj

Therefore, the optimal choice of K from Agent 1’s preferences is given by:

K∗ = (z · α · β)
1

1−α

Notice that only the average value of the random shock matters for Agent
1, consistently with the fact of this agent being risk neutral.

Agent 2:

u′2 ($0 − a2) = β ·
n∑

j=1

πj · u′2
(
a2 · r∗j + w∗j

)
· r∗j (EE2)

Given K∗ from Agent 1’s problem, we have the value of r∗j and w∗j for each
realization j. Therefore, Agent 2’s Euler equation (EE2) is one equation in one
unknown: a2. Since lim

x→0
u′2 (x) = ∞, there exists a unique solution.

Let a∗2 be the solution to (EE2), then the values of the remaining choice
variables follow:

a∗1 = K∗ − a∗2

ci
0 = $0 − a∗i

More importantly, Agent 2 will face a stochastic consumption prospect for
period 1:

c2
j = a∗2 · r∗j + w∗j

With r∗j and w∗j are stochastic. This implies that Agent 1 has not provided full
insurance to Agent 2.

Structure 2

Trading in n different Arrow securities is allowed in this setup. In this case,
these securities are (contingent) claims on the total remuneration to capital (you
could think of them as rights to collect future dividends in a company, according
to the realized state of the world). Notice this implies spanning ; that is, markets
are complete. Let aj denote the Arrow security paying off 1 unit if the realized
state is zj , zero otherwise, and let qj denote the price of aj .
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In this economy, agents save by accumulating contingent claims (they save
by buying future dividends in a company). Total savings are thus given by

S ≡
n∑

j=1

qj · (a1j + a2j)

Investment is the accumulation of physical capital, K. Then clearing of the
savings-investment market requires that:

n∑
j=1

qj · (a1j + a2j) = K (S = I)

Constant returns to scale implies that the total remuneration to capital
services in state j will be given by K · rj (Euler Theorem). Therefore, the
contingent claims that get activated when this state is realized must exactly
match this amount (each unit of ”dividends” that the company will pay out
must have an owner, but the total claims can not exceed the actual amount of
dividends to be paid out).

In other words, clearing of (all of) the Arrow security markets requires that

a1j + a2j = K · rj j = 1, ..., n (ASMC)

If we multiply both sides of (ASMC) by qj , for each j, and then sum up over
j’s, we get:

n∑
j=1

qj · (a1j + a2j) = K ·
n∑

j=1

qj · rj

But, using (S = I) to replace total savings by total investment,

K = K ·
n∑

j=1

qj · rj

Therefore the equilibrium condition is that

n∑
j=1

qj · rj = 1 (EC)

(EC) can be interpreted as a ”no arbitrage” condition, in the following way.
The left hand side

∑n
j=1 qj ·rj is the total price (in terms of foregone consumption

units) of the marginal unit of a portfolio yielding the same (expected) marginal
return as physical capital investment. And the right hand side is the price (also
in consumption units) of a marginal unit of capital investment.

Then suppose that
∑n

j=1 qj · rj > 1. An agent could in principle make
unbounded profits by selling an infinite amount of units of such a portfolio,
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and using the proceeds from this sale to finance an unbounded physical capital
investment. In fact, since no agent would be willing to be on the buy side of such
a deal, no trade would actually occur. But there would be an infinite desired
supply of such a portfolio, and an infinite desired demand of physical capital
units. In other words, asset markets would not be in equilibrium. A similar
reasoning would lead to the conclusion that

∑n
j=1 qj · rj < 1 could not be an

equilibrium either.

With the equilibrium conditions at hand, we are able to solve the model.
With this market structure, the budget constraint of each Agent i reads:

ci
0 +

n∑
j=1

qj · aij = $0

ci
j = aj + wj

First order conditions on Agent 1’s problem leads to the equilibrium prices:

qj = β · πj

You should also check that

K∗ = (z · α · β)
1

1−α

(as in the previous problem). Therefore, Agent 1 is as well off with the current
market structure as in the previous setup.

Agent 2’s problem yields the Euler equation

u′2
(
c2
0

)
= λ = q−1

j · β · πj · u′2
(
c2
j

)
Replacing for the equilibrium prices derived from Agent 1’s problem, this

simplifies to
u′2
(
c2
0

)
= u′2

(
c2
j

)
j = 1, ..., n

Therefore, with the new market structure, Agent 2 is able to obtain full
insurance from Agent 1. From the First Welfare Theorem (that requires com-
pleteness of markets) we know that the allocation prevailing under market Struc-
ture 2 is a Pareto optimal allocation. It is your task to determine whether the
allocation resulting from Structure 1 was optimal as well, or not.
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