## PROBLEM SET \#6

This problem set is due on November 10; please put it in my mailbox at 28 Hillhouse.

1. Write a program that uses Chebyshev interpolation to approximate the function $f(x)=$ $\log (x)$ on the interval $[0.1,1]$. How does the approximation error change as the degree of the approximation increases from 1 (linear) to 4 (quartic)? How well does the interpolating polynomial perform outside the interval of approximation? (Recall that Chebyshev interpolation means to construct a polynomial of degree $n$ that matches $f$ at $n+1$ grid points that are the roots of the Chebyshev polynomial of degree $n+1$. One way to construct this polynomial is to write it as a linear combination of Chebyshev polynomials, with coefficients calculated using the formulas presented in lecture. Chebyshev polynomials are defined only on $[-1,1]$, so evaluate them at $z=2(x-a) /(b-a)-1$, where $x \in[a, b]$ and $[a, b]$ is the interval of approximation.)
2. Write a program that uses Gauss-Hermite quadrature to compute $E\left[e^{X}\right]$, where $X \sim$ $N\left(\mu, \sigma^{2}\right)$. Set $\mu=1$ and $\sigma=1,2,3$. How does your answer change as you vary the number of quadrature points from 2 to 10 ? (You can check your numerical answer either by using the analytical formula $E\left[e^{X}\right]=e^{\mu+\sigma^{2} / 2}$ or by estimating the expectation using Monte Carlo integration. To obtain the Gauss-Hermite weights and abscissas, you can use the program gauher in Chapter 4.5 of Numerical Recipes. )
