
Econ 561a (Part I)
Yale University
Fall 2005
Prof. Tony Smith

Computational Methods in Economics:

General Points

• Three modes of science: theoretical, computational, empirical.

Computational work shares elements of both theoretical and em-

pirical work.

• Two meanings of computational economics: computation as a

tool for doing standard economic theory vs. computation as a

model for how economic actors behave.

• Fundamental shortcoming of the first kind of computational eco-

nomics: lack of error bounds. How far apart are the computa-

tional model and the theoretical model?

• Computation produces “data” which can be used to generate

theoretical conjectures. These conjectures could be exact (theo-

rems) or approximate (systematic patterns).

• Use computation to measure quantitative magnitudes (e.g., the

relative sizes of opposing effects).

• Hamming’s motto: The Goal of Computing is Insight, Not Num-

bers.

1



Econ 561a (Part I)
Yale University
Fall 2005
Prof. Tony Smith

Rules of Thumb for Doing Good

Computational Work in Economics

1. Start with the simplest possible model, preferably one with an

analytical solution.

2. Add features incrementally.

3. Never add another feature until you are confident of your current

results.

4. Use the simplest possible methods.

5. Accuracy is more important than speed or elegance.

6. Use methods that are as transparent as possible (i.e., methods

for which the computer code reflects as closely as possible the

economic structure of the problem).

7. When you learn (or develop) a new method, test it on the sim-

plest possible problem, preferably one with an analytical solution.

8. Dan Bernhardt’s rule: If you have n errors in a piece of code and

you remove one, you still have n errors. Scrutinize your results,

even if they look right. Look for anomalies. Assume your code

is wrong until proven otherwise.

9. Graph, graph, graph. Two-dimensional graphs are more infor-

mative than three-dimensional graphs.

2



10. Be able to replicate all of your intermediate and final results in-

stantly. Save exact copies of the code used for each run, together

with inputs and outputs.

11. Watch the computations as they proceed.

12. Exploit homotopy.

13. Learn a fast language, such as C or Fortran.

14. Look for hidden structure. Always compute (and print out) a

few more numbers than you need.

15. Get good initial conditions.

16. Use one-dimensional algorithms as much as possible.

17. Use algorithms that can be “tightened”.

18. Avoid black boxes. Understanding how the algorithm works is

critical to interpreting the results.

19. Remember that programming is a creative activity analogous to

writing a sonnet or composing a sonata (a static, visual represen-

tation of a process). Craft your programs. Strive for efficiency

and elegance in your computer code. Develop a style. Practice

structured programming, i.e., write code that reflects the struc-

ture of the algorithm.

20. Don’t program when you are tired. Don’t program too quickly.

3


