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MODELING EARNINGS DYNAMICS

BY JOSEPH G. ALTONJI, ANTHONY A. SMITH, JR., AND IVAN VIDANGOS1

In this paper, we use indirect inference to estimate a joint model of earnings, em-
ployment, job changes, wage rates, and work hours over a career. We use the model to
address a number of important questions in labor economics, including the source of
the experience profile of wages, the response of job changes to outside wage offers, and
the effects of seniority on job changes. We also study the dynamic response of wage
rates, hours, and earnings to various shocks, and measure the relative contributions
of the shocks to the variance of earnings in a given year and over a lifetime. We find
that human capital accounts for most of the growth of earnings over a career, although
job seniority and job mobility also play significant roles. Unemployment shocks have a
large impact on earnings in the short run, as well as a substantial long-term effect that
operates through the wage rate. Shocks associated with job changes and unemploy-
ment make a large contribution to the variance of career earnings and operate mostly
through the job-specific error components of wages and hours.

KEYWORDS: Wage growth, job mobility, unemployment, inequality, indirect infer-
ence.

1. INTRODUCTION

IN THIS PAPER, WE BUILD AND ESTIMATE A MODEL OF EARNINGS. We have
three main goals. The first is to advance the literature in labor economics on
how employment, hours, wages, and earnings are determined over a career.
We examine the effects of education, race, experience, employment duration,
job tenure and unobserved heterogeneity, employment shocks, shocks to gen-
eral skills, and draws of new job opportunities offering different hours and
wages. We trace out the response of wages, hours, and earnings to the various
shocks and determine the channels through which they operate. Our analysis
addresses a number of long-standing questions in labor economics. For exam-
ple, we provide estimates of the relative importance of general skill accumula-

1We are grateful to Richard Blundell, Mary Daly, Rasmus Lentz, Costas Meghir, Paul Oyer,
Luigi Pistaferri, and three anonymous referees for helpful discussions and suggestions, and to
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Rochester, Stanford University, Vanderbilt University, and Yale University, and conference ses-
sions at the Society of Economic Dynamics (June 2005), the World Congress of the Econometric
Society (August 2005), the Cowles Foundation Macro/Labor Economics Conference (May 2006),
NBER (Nov. 2006), the Econometric Society Winter Meetings (January 2007), and the Society
for Computational Economics (June 2008) for valuable comments. Our research has been sup-
ported by the Cowles Foundation and the Economic Growth Center, Yale University, and by NSF
Grant SES-0112533 (Altonji). The views expressed in the paper are our own and not necessarily
those of the Federal Reserve Board, Yale University, NBER, or other members of their staffs.
We are responsible for the remaining shortcomings of the paper.
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tion, job shopping, and job tenure for career wage growth, and we quantify the
specific channels through which an exogenous employment shock affects the
path of wage rates, hours, and earnings. We study the effects of shocks on the
future variance of earnings changes as well as on the average path.

Our second goal is to provide a comprehensive account of what causes in-
equality in earnings at a point in time and over the lifetime. We measure the
contribution of each of the various shocks, permanent unobserved heterogene-
ity, and education to the variance in earnings, wages, and hours over the course
of a career.

Our third goal is to provide a richer model of earnings for use in studies of
consumption and saving as well as in dynamic stochastic general-equilibrium
models that are a cornerstone of modern macroeconomics and public finance.
Such models have been used to study the distribution of wealth, the costs of
business cycles, asset pricing, and other important questions.2 The quantitative
implications of the calibrated theoretical models used in these lines of research
depend on certain key features of the earnings process, such as the degree of
earnings uncertainty and the persistence of earnings innovations.3

Almost all of the existing structural studies base their modeling and calibra-
tion choices for the earnings process on the large empirical literature on uni-
variate statistical models.4 Much has been learned from this work. With only
one indicator, however, even richly specified univariate models cannot identify
the various sources of earnings fluctuations, their relative importance, their dy-
namic behavior, or the economics underlying how labor market outcomes are
determined. Without such information, it is difficult to think about the poten-
tial welfare consequences of specific sources of variation or of policies such as
unemployment insurance, employment regulations, wage subsidies, or earned
income tax credits that insure against particular types of shocks to income.
Furthermore, the innovations in the univariate representation of a multivari-
ate time series process may be aggregates of current and past shocks in the
multivariate representation. This will lead to mistakes in characterizing what
the surprises to the agent are even under the assumption that the agent’s in-
formation set is the same as the econometrician’s.

Only a few studies of earnings dynamics have considered multivariate mod-
els. These include Abowd and Card’s (1987, 1989) analyses of hours and earn-
ings, and Altonji, Martins, and Siow’s (2002) second order vector moving av-

2Examples include Huggett (1996), Krusell and Smith (1998), and Castañeda, Díaz-Giménez,
and Ríos-Rull (2003) on consumption and wealth, Krusell and Smith (1999) and Storesletten,
Telmer, and Yaron (2001) on the costs of business cycles, and Krusell and Smith (1997) and
Storesletten, Telmer, and Yaron (2007) on asset pricing.

3See, for example, Deaton (1991), Krusell and Smith (1997), Guvenen (2007), and the discus-
sion in Blundell, Pistaferri, and Preston (2008).

4Key early contributions include Lillard and Willis (1978), Lillard and Weiss (1979), and
MaCurdy (1982). More recent contribution include Baker (1997), Haider (2001), Baker and
Solon (2003), Guvenen (2007), and Meghir and Pistaferri (2004). The latter paper introduces
ARCH shocks.
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erage model of the first difference in consumption, family income, earnings,
hours, wages, and unemployment. The models that we consider, in contrast
to those mentioned above, incorporate discrete events such as job changes,
employment loss, interactions between job changes and wages, and effects of
these discrete events on the variance of wage and hours shocks.5

There are two distinct paths that one might take in formulating a multivari-
ate model of earnings. The first approach is the development of a statistical
model of the process with little attention to an underlying theory of house-
hold decisions and constraints. This approach is in the spirit of the literature
on univariate earnings processes, but the absence of theory limits what one
can learn about how earnings are determined. The second approach is to de-
velop a model that is based on lifetime utility maximization. Grounding the
model of the income process in a utility maximization framework provides a
foundation for using the results to analyze policies when earnings are partially
endogenous. The main disadvantage is the difficulty of specifying and estimat-
ing a model that incorporates labor supply choices, job search decisions, hours
constraints, voluntary separations, and involuntary job changes. Indeed, we do
not know of any papers that have studied work hours and employment using
a lifecycle utility maximization model that incorporates job-specific hours con-
straints, let alone job mobility decisions.6 Estimation of a structural model that
is as rich as the one that we work with would require solving an intertempo-
ral model of job search, labor supply (in the presence of hours constraints),
and savings as part of the estimation strategy, and is probably out of reach
at the present time from a computational point of view. Low, Meghir, and
Pistaferri (2010) took a major step in this direction by studying earnings risk
and social insurance in the context of an intertemporal model of consumption,
employment participation, wages, and mobility. They worked with a simpler
model of the earnings process than we do, but were able to measure welfare
costs of the risk associated with innovations in the persistent wage component,
an employer-specific wage component, and job loss and unemployment. Our
study is complementary to theirs.

Although our model falls short of a fully specified behavioral model, the
equations can be viewed as approximations to the decision rules relating
choices to state variables that would arise in a structural model based on life-
time utility maximization. The parameters of the rules depend on an under-
lying set of “deep” parameters that characterize labor supply preferences, job
search technology, etc. The class of models that we consider is rich enough to
address a number of core questions in labor economics, but tractable enough

5A number of recent studies provide structural models of wage rates, job mobility, and employ-
ment dynamics, including Barlevy (2008), Buchinsky, Fougère, Kramarz, and Tchernis (2010), and
Bagger, Fontaine, Postel-Vinay, and Robin (2011), who provided references to a few additional
studies. Wolpin (1992) is an early effort. We discuss the evidence below.

6Ham and Reilly (2002) tested for hours restrictions in an intertemporal labor supply frame-
work. Blundell and MaCurdy (1999) surveyed the labor supply literature.
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to be used in place of univariate income models that dominate the literature
on savings, portfolio choice, etc. Furthermore, it provides a natural path to fu-
ture analyses that include other important economic risks that individuals face,
including changes in family structure through marriage, divorce, and the death
of a spouse.

We estimate the model using data on male household heads from the Panel
Study of Income Dynamics (PSID). Given the presence of interactions among
discrete and continuous variables, unobserved heterogeneity and state depen-
dence in multiple equations, measurement error, and a highly unbalanced sam-
ple, conventional maximum likelihood and method of moments approaches
are not feasible. For this reason, we use indirect inference (henceforth I-I),
which is one of a family of simulation-based approaches to estimation that
involve comparing the distribution of artificial data generated from the struc-
tural model at a given set of parameter values to features of the actual data.7
We use the smoothing procedure suggested by Keane and Smith (2003), which
allows us to use gradient-based numerical optimization methods in the pres-
ence of both discrete and continuous endogenous variables. Estimation of our
model is not straightforward, and a secondary contribution of our research is
to explore the feasibility and performance of I-I in large models with a mix of
discrete and continuous variables.8

Our main results are as follows. First, education, race, and the two forms of
unobserved permanent heterogeneity play an important role in employment
transitions and job changes. Second, consistent with most of the large literature
on the labor supply of male household heads, wages have only a small effect
on employment and on annual work hours. Third, even after accounting for
unobserved individual heterogeneity and job-specific heterogeneity, we find a
strong negative tenure effect on job mobility, particularly for less educated
workers. Fourth, consistent with job search theory, job changes are induced
by high outside offers and deterred by the job-specific wage component of the
current job.

Fifth, unemployment at the survey date is associated with a large decline of
.6 log points in annual earnings. About two thirds of the reduction is due to
work hours, which recover almost completely after one year. The other third is
due to a decline of .2 in the log hourly wage rate. Lost tenure and a drop in the
job-specific wage component contribute .06 and .02, respectively, to the wage
reduction. The wage recovers by about .02 in the first year and more slowly
after that.

Sixth, wages do not contain a random walk component, but are highly per-
sistent. The persistence is the combined effect of permanent observed and un-

7The method was introduced, under a different name, in Smith (1990, 1993) and extended by
Gourieroux, Monfort, and Renault (1993) and Gallant and Tauchen (1996). It is closely related
to the simulated method of moments.

8Other recent papers that apply I-I to panel data include Bagger et al. (2011) and Nagypal
(2007).



MODELING EARNINGS DYNAMICS 1399

observed heterogeneity, the job-specific wage component, which depends pos-
itively on offers in previous jobs, and strong persistence in a stochastic compo-
nent representing the value of the worker’s general skills.

Seventh, shocks leading to unemployment or to job changes have large ef-
fects on the variance as well as the mean of earnings changes. Eighth, job shop-
ping, the accumulation of tenure, and the growth in general skills account for
log wage increases of .13, .11, and .61, respectively, over the first thirty years in
the labor market.

Finally, the variance decompositions depend somewhat on the education
subgroup, model specification, and assumptions about measurement error, but
in all cases we find that job mobility and unemployment play a key role in
the variance of career earnings. For our main specification, the job-specific
hours and wage components, unemployment shocks, and job shocks together
account for 43.0%, 53.2%, and 58.9% of the variance in lifetime earnings,
wages, and hours, respectively. Job-specific wage shocks are more important
than job-specific hours shocks for earnings. Job-specific wage shocks dominate
for wages, while job-specific hours shocks dominate for hours. Education ac-
counts for about 30% of the variance in lifetime earnings and wages, but makes
little difference for hours. Variables determined by the first year of employ-
ment, including unobserved heterogeneity, education, and the initial draws of
the general skill and job-specific wage components, collectively account for
55.3% for lifetime earnings, 44.6% for lifetime wages, and 39.5% for lifetime
hours in the full sample, although these values differ somewhat across model
specifications.

The paper continues in Section 2, where we present the earnings model. In
Section 3, we discuss the data, which are drawn from the Panel Study of Income
Dynamics (PSID), and in Section 4, we discuss estimation. Section 5 contains
the main results, beginning with a discussion of the parameter estimates and
then turning to an analysis of the fit of the model, impulse response functions
to various shocks, and variance decompositions. In Section 6, we briefly dis-
cuss results for whites by education level. In Section 7, we present an alter-
native model of employment transitions and job mobility. We conclude with a
summary of our main findings and a research agenda.

2. A MODEL OF EARNINGS DYNAMICS

We use two models in the paper, which we refer to as the baseline model and
the multinomial model. They differ only in the specification of the equations
governing transitions from employment to unemployment and job changes.
The main features of the models are as follows. Labor market transitions,
wages, and hours depend on three exogenous variables—race, education,
and potential experience—as well as on two permanent unobserved hetero-
geneity components. The unobserved heterogeneity components can be la-
belled, loosely speaking, “unobserved productivity or ability” and “propensity
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to move.” A typical worker enters the labor market after leaving school and
receives initial draws of an employment status shock that determines employ-
ment and an autoregressive wage component capturing part of “general pro-
ductivity” that has the same value in all jobs. The worker also draws an ini-
tial job-specific wage component and an initial job-specific hours component.
There is state dependence in the value of the current job relative to unem-
ployment and in the value of the current job relative to an alternative job.
Consequently, there is state dependence in both employment and job-to-job
transitions. Each period, an unemployed worker receives an unemployment
transition shock. An employed worker receives a shock to the value of the cur-
rent job, a shock affecting the value of moving, and a draw of the job-specific
wage component for the new job. If the worker remains employed from one
period to the next, then whether the worker changes jobs depends on the draw
of the job-specific wage component for the new job, the current job-specific
wage component, potential experience, job seniority, the two permanent het-
erogeneity terms, and an independent and identically distributed (i.i.d.) shock.
A typical worker’s wage depends on one of the heterogeneity terms (ability),
the autoregressive general-productivity component, the job-specific wage com-
ponent, potential experience, and seniority. Unemployment spells reduce the
autoregressive general-productivity component, and workers draw new job-
specific wage and hours components when they leave unemployment. Annual
hours depend on employment status, the heterogeneity terms, the wage, and a
job-specific hours component that is identical across jobs. Finally, earnings are
determined by wages and hours.

2.1. Equations of the Models

A word about notation first. The subscript i� which we sometimes suppress,
refers to the individual. The variable ti is potential years of labor market ex-
perience of i for a particular observation. We sometimes refer to it as “time”
even though it is potential experience rather than calendar time, and usually
suppress the i subscript.9 The subscript j(t) refers to i’s job at t. The nota-
tion j(t) makes explicit the fact that individuals may change jobs. In particular,
j(t) �= j(t−1) if i experiences a job change without being unemployed at either
t or t − 1 or if i is employed at t but was unemployed at t − 1. The γ parame-
ters refer to intercepts and to slope coefficients. For each intercept and slope
parameter, the superscripts identify the dependent variable. The subscripts of
slope parameters identify the explanatory variable. We use δ to denote coef-
ficients on the fixed person-specific unobserved heterogeneity components μi

and ηi� the job-match wage component υij(t), and the job-specific hours com-
ponent ξij(t). The superscripts for the δ parameters denote the dependent vari-
able, and the subscripts μ and η identify the heterogeneity component. We use

9Wages, hours, and earnings are net of economy-wide year effects which we remove using a
regression procedure discussed in Section 4.
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ρ with appropriate subscripts to denote autoregression coefficients. The εk
it are

i.i.d. N(0�σ2
k) random variables, where k corresponds to the dependent vari-

able affected directly by εk
it . In what follows, we focus our discussion on the

baseline model.

2.1.1. Log Wages

The log wage rate wageit is determined by the following system of equations:

wageit =Eitwagelat
it �(1)

wagelat
it = [

Xitγ
w
X + γw

t3
t3

] + P(TENit)γ
w
TEN + δw

μμi +ω
it
+ υij(t)�(2)

ω
it

= ρωωi�t−1 + γω
1−Et

(1 −Eit)+ γω
1−Et−1

(1 −Ei�t−1)+ εω
it �(3)

υij(t) = (1 − Sit)υij(t−1) + Sitυ
′
ij′(t)�(4)

υ′
ij′(t) = ρυυij(t−1) + ευ

ij(t)�(5)

Equation (1) says that, for employed individuals (i.e., Eit = 1), wageit equals
the “latent wage” wagelat

it . For an unemployed individual, wagelat
it captures the

process for wage offers. At a given point in time, the individual might not
have such an offer. The formulation parsimoniously captures the idea that
worker skills and worker-specific demand factors evolve during an unemploy-
ment spell. It allows us to deal with the fact that wages are only observed for
jobs that are held at the survey date.

Equation (2) states that wagelat
it depends on five components. The first is

Xitγ
w
X +γw

t3
t3� where Xit is a vector of exogenous variables consisting of the race

indicator BLACKi, years of education EDUCi, a quadratic in t, and a constant,
and t3 is the cube of experience. Since we control for both tenure effects and
gains from job shopping, the effect of t is a general human capital effect and/or
an aging effect. The second term P(TENit) consists of the first four powers of
employer tenure, TENit . The third term is the unobserved ability component
μi.

The fourth term is a stochastic component ωit� which, according to (3), de-
pends on ωi�t−1, the current value and the first lag of unemployment (1 −Eit),
and the error component εω

it . The dependence of ωit on its past reflects persis-
tence in the market value of the general skills of i and/or the fact that employ-
ers base wage offers on past wages.

The fifth wage component is the job-match-specific term υij(t). Each period,
individuals are assigned a potential offer from an alternate job j′ with job-
specific component υ′

ij′(t). Its value depends on υij(t−1) and the shock ευ
ij(t) as

specified in (5). When agents leave unemployment or move from job to job
without unemployment, the employer change indicator Sit is 1 and υij(t) be-
comes υ′

ij′(t). Growth in υij(t) with experience and with job mobility is endoge-
nously determined through the influence of υij(t−1) and υ′

ij′(t) on mobility, as we
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discuss momentarily. In standard search models with exogenous offer arrivals,
the job-specific component of the offer, υ′

ij′(t)� does not depend on υij(t−1), al-
though accepted offers υij(t) do. In such models, the correlation between ac-
cepted offers υij(t) and υij(t−1) arises only because the reservation wage is a
positive function of υij(t−1). Nevertheless, we also allow offers υ′

ij′(t) to depend
directly on υij(t−1) through the parameter ρυ� for three reasons. The first is that
employers may base offers to prospective new hires in part on wages in the
prior firm, including the firm-specific component. Bagger et al. (2011), build-
ing on Postel-Vinay and Robin (2002) and Postel-Vinay and Turon (2010), is
one of a few recent papers in which outside firms tailor offers to surplus in
the current job. This surplus will be related to υij(t−1) to the extent that υij(t−1)

is the worker’s portion of a job-specific productivity component. In contrast to
those papers, however, we do not allow the current employers to change υij(t−1)

in response to outside offers. (Wages do change with ωit .) The second reason
υ′

ij′(t) depends on υij(t−1) is that υij(t−1) is not likely to be entirely job-specific in
the presence of demand shocks affecting jobs in a narrowly defined industry,
occupation, and region. The third is that the network available to an individ-
ual may be related to the quality of the job that he is in. As it turns out, our
estimates of ρv are large—about .70.10 We were not successful in limited exper-
imentation with estimating models in which the link between υij(t) and υij(t−1)

when agents move from job to job without unemployment (JCit = 1) differs
from the link following unemployment, although standard job search models
with exogenous layoffs imply that it should.

2.1.2. Employment Transitions (EEt) and Job Changes (JCt), Baseline Model

The dummy EEit indicates whether a worker who was employed in t − 1
remains employed. In the baseline model, it is determined by

EEit = I
[
Xi�t−1γ

EE
X + γEE

ED min(EDi�t−1�9)+ γEE
TENTENi�t−1 + γEE

ws wages
it(6)

+ δEE
μ μi + δEE

η ηi + εEE
it > 0

]
given Ei�t−1 = 1�

where I(·) is the indicator function, EDi�t−1 is lagged employment duration and
is determined endogenously by EDit = Eit(EDi�t−1 + 1), and wages

it is what the
wage would be in t if the individual were to continue employment in the job

10Industry-specific and/or occupation-specific human capital are not accounted for in the
model and are likely to influence estimates of ρυ more than ρω, given that industry and occupa-
tion changes tend to occur across employers. They would also affect the estimates of the return
to seniority that we import from Altonji and Williams (2005). See Neal (1995), Parent (2000),
and Kambourov and Manovskii (2009) for somewhat conflicting evidence on the importance of
occupation-specific, industry-specific, and firm-specific human capital. Extending the model to
distinguish occupation and/or industry is conceptually straightforward but would require model-
ing of occupation and industry transitions and attention to measurement error. We leave this to
future work.
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held at t − 1. The variable wages
it is the value of wagelat

it determined by (2),
(3), (4), with Eit = 1� Ei�t−1 = 1� TENit = TENi�t−1 + 1� and Sit = 0. The vector
Xi�t−1 is the same as Xit except that it contains (t − 1) and (t − 1)2 rather than
t and t2. In the econometric work, we exclude TENi�t−1 because, in simulation
experiments for this specification, we had trouble distinguishing the effects of
TENi�t−1 and EDi�t−1. Standard labor supply models imply that employment at
t should depend on the current wage opportunity, which we proxy with wages

it .
EEit also depends on the permanent ability component μi as well as the hours
preference and mobility component ηi (“propensity to move”). Both μi and
ηi also directly affect transitions out of unemployment, job changes, and work
hours, but ηi is excluded from the wage model. One may think of ηi as a factor
that is related to labor supply and to job and employment mobility preferences
but not productivity.

The job change equation, conditional on remaining employed, is

JCit = I
[
Xi�t−1γ

JC
X + γJC

TENTENi�t−1 + δJC
υ′j′(t)υ

′
ij′(t) + δJC

υj(t−1)υij(t−1)(7)

+ δJC
μ μi + δJC

η ηi + εJC
it > 0

]
given Eit =Ei�t−1 = 1�

Standard job search and job matching models predict a negative coefficient
on υij(t−1), since higher values of the job match component of the current job
should reduce search activity and raise the reservation wage. In the model,
each worker is assigned a potential draw of υ′

ij′(t) based on (5), which we dis-
cuss momentarily. Search models predict a positive coefficient on υ′

ij′(t), but
the magnitude should depend on the probability that the worker actually re-
ceives the offer. That is, the relative magnitudes of the two coefficients should
depend on offer arrival rates and need not be equal.11 We include TENi�t−1

as well as (t − 1) because models of firm-financed or jointly financed specific
capital investment suggest that it will play a role, and the decline in separation
rates with TENi�t−1 in cross section data is very strong. However, little is known
about how much of the association between TENi�t−1 and JCit is causal because
of the difficulty of distinguishing state dependence from the individual hetero-
geneity (μ and η) and job match heterogeneity (υ) in dynamic discrete choice
models, particularly when data are missing on early employment histories for
most sample members. Indeed, Buchinsky et al. (2010) is the only other study
that we know that accounts for both individual and job-specific heterogeneity
and deals with initial conditions problems when estimating the effects of TEN
and t on job changes.12

11One could introduce parameters corresponding to fixed offer arrival rates for employed
workers and for unemployed workers into the model and add the value of υ′

ij′(t) into the un-
employment equation. Low, Meghir, and Pistaferri (2010) worked with such a specification. In
our job change equation, υij(t−1) may reduce mobility both because it raises the reservation wage
and because it lowers search intensity.

12Buchinsky et al. (2010) also found negative effects in a simultaneous model of wages, em-
ployment, and job changes. Farber (1999) discussed models of the effect of tenure on mobility
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In this model of employment transitions and job changes, the main dis-
tinction is between job changes from employment and job changes that in-
volve unemployment. We believe that this is the most important distinction
for the determination of wages and annual work hours. Equation (6) deter-
mines whether a worker who was employed in t − 1 has an employment option
that is better than unemployment, while (7) determines whether that option is
a new job or the old job. Given the sequential structure, the probability that
JCit = 1|Ei�t−1 = 1 depends on the variables that appear in (6) as well as (7),
including the current wage wages

it and EDi�t−1.
In Section 7 and Appendix C of the Supplemental Material (Altonji, Smith,

and Vidangos (2013)), we present a multinomial formulation of employment
and job transitions consisting of equations for the value of staying with the cur-
rent employer relative to unemployment and the value of moving to a new em-
ployer relative to unemployment. In some respects, we prefer the multinomial
formulation, but it is less well-behaved numerically. This poses problems when
we move to education subgroups, particularly with respect to the feasibility of
bootstrapping. Consequently, we rely primarily on the baseline model. Most of
the results about earnings dynamics are not sensitive to the choice between the
two models.

2.1.3. Unemployment to Employment Transition (UEt)

Movement from unemployment to employment is determined by

UEit = I
[
Xi�t−1γ

UE
X + γUE

UDUDi�t−1 + δUE
μ μi(8)

+ δUE
η ηi + εUE

it > 0
]

given Ei�t−1 = 0�

where UDi�t−1 is the number of years unemployed at the survey date and
UDit = (1 − Eit)(UDi�t−1 + 1). Because there are relatively few multiyear un-
employment spells, we end up restricting γUE

UD to 0 in the empirical work. We
experimented with specifications containing the lagged latent wage rate or the
expected value of the period-t wage, but had difficulty pinning down the effects
of these variables, perhaps because we observe relatively few unemployment
spells. We do include the heterogeneity components μi and ηi.

Note that Eit is given by

Eit = EEitEi�t−1 + UEit(1 −Ei�t−1)�

2.1.4. Log Annual Hours

Log annual work hours are determined by

hoursit =Xitγ
h
X +γh

t3
t3 +(

γh
E +ξij(t)

)
Eit +γh

wwagelat
it +δh

μμi+δh
ηηi+εh

it �(9)

and surveyed the empirical evidence. He presented evidence showing a negative effect of tenure
when one uses prior mobility as a control for individual heterogeneity.
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The hoursit equation includes Xit and t3. It also includes ηi, μi, and the prod-
uct of the job-specific hours component ξij(t) and Eit . We include ξij(t) because
there is strong evidence that work hours are heavily influenced by a job-specific
component. This component presumably reflects work schedules imposed by
employers.13 A new value of ξij(t) is drawn when individuals take a new job.
The i.i.d. error component εh

it picks up transitory variation in straight time
hours worked, overtime, multiple job holding, and unemployment conditional
on employment status at the survey. It may reflect temporary shifts in worker
preferences as well as hours constraints.

Hours also depend on wagelat
it and Eit . For most observations, wagelat

it is the
actual wage. However, many individuals who are unemployed at the survey
date work part of the year. For these individuals, wagelat

it is the wage the in-
dividual would typically receive. Because wage shocks turn out to be highly
persistent and because we strongly question the standard labor supply assump-
tion that individuals are free to adjust hours on their main job in response to
short-term variation in wage rates, we regard the coefficient on the latent wage
as the response to a relatively permanent wage change rather than the Frisch
elasticity.

2.1.5. Log Earnings

earnit = γe
0 + γe

wwagelat
it + γe

hhoursit + eit�(10)

eit = ρeei�t−1 + εe
it �

Log earnings earnit depends on wagelat
it and hoursit . The coefficients γe

w and
γe
h might differ from 1 for a number of reasons, including overtime, multi-

ple job holding, bonuses and commissions, job mobility, and the fact that, for
some salaried workers, the wage reflects a set work schedule but annual hours
worked may vary. Note that Xit is excluded but influences earnings through
wagelat

it and hoursit . We also include a first-order autoregressive error compo-
nent eit to capture some of these factors. In previous drafts of the paper, we
freely estimated γe

w and γe
h and obtained values very close to 1 for some more

restrictive specifications of the model than the one we use here. For richer ver-
sions of the model, it is helpful to restrict the coefficients to be 1, which we do
below.

2.1.6. Error Components and Initial Conditions

The fixed person-specific error components μi and ηi are N(0�1), i.i.d.
across i, independent of each other, and independent of all transitory shocks
and measurement errors. Without loss of generality, we impose the sign nor-
malizations δw

μ > 0 and δJC
η > 0.

13For evidence, see Altonji and Paxson (1986) and Blundell, Brewer, and Francesconi (2008).
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The job match hours component ξij(t) and the innovation ευ
ij(t) in equation

(5) are N(0�σ2
ξ) and N(0�σ2

υ), respectively. The shocks εh
it� ε

ω
it � and εe

it are
N(0�σ2

k), where k = h�ω� and e� The shocks εEE
it � εUE

it � εJC
it are N(0�1)� They

are i.i.d. across i and t and independent from one another.
The initial conditions are

Employment: Ei1 = I
[
b0g + δEE

μ μi + δEE
η ηi + εEE

i1 > 0
]
�(11)

Wages: wagelat
i1 =Xi1γ

w
X + γw

t3
+ δw

μμi +ω
i1 + υij(1)�(12)

General productivity: ωi1 ∼N
(
0�σ2

ω1�g

)
�

Wage job match: υij(1) ∼ N
(
0�σ2

υ1

)
�

Earnings error: ei1 ∼N
(
0�σ2

e

)
�

Other initial conditions:

TENi1 = 0� EDi1 =Ei1� UDi1 = 1 −Ei1� JCi1 = 0�

The random components ωi1, υij(1), and ei1 are mutually independent and
independent of the shocks in the model. The intercept b0g of the initial em-
ployment condition and the variance of initial wages σ2

ω1�g depend on the race-
education group g, where the groups are defined by (BLACK & EDUC ≤ 12),
(BLACK & EDUC > 12), (not BLACK & EDUC ≤ 12), and (not BLACK &
EDUC > 12).

2.1.7. Measurement Error and Observed Wages, Hours, and Earnings

The observed (measured) variables are

wage∗
it =Eit

(
wagelat

it +mw
it

)
�(13)

hours∗
it = hoursit +mh

it�(14)

earn∗
it = earnit +me

it �(15)

The measurement errors mw
it , m

h
it , m

e
it are N(0�σ2

mτ), τ = w�h�e, i.i.d. across
i and t� mutually independent, and independent from all other error compo-
nents in the model.

2.2. Additional Discussion of the Model

When interpreting results for EEit and JCit , one must keep in mind that our
employment indicator refers to the survey date. We undoubtedly miss short
spells of unemployment that fall between surveys. Due to data limitations, we
cannot tell whether a person has changed jobs between surveys only once or
multiple times. Furthermore, if a person is employed at t − 1, unemployed for
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part of the year, and employed in a new job at t, we would count this as a job-
to-job change even if, for example, the job change is due to a layoff into unem-
ployment. A relatively simple alternative would be to make use of information
on the number of weeks that the individual was unemployed during the year.
However, one would want to distinguish between short spells of unemployment
that are associated with temporary layoffs with the strong expectation of recall
and unemployment spells due to a permanent layoff. This is possible only at
the survey date. Fortunately, earnings depend on employment through annual
work hours, and the transitory error component in the hours equation should
capture the effect on hours of unemployment spells of varying duration. The
25th, 50th, 75th, and 90th percentiles of hours of unemployment are 160, 688,
1080, and 1560 when Eit = 0, and 0, 0, 0, and 80 when Eit = 1.14

We have not considered models with an ARCH error structure. However,
the model implies that the variance of wage, hours, and earnings changes are
state dependent and also depend on t. This is because the odds of a job change
and an unemployment spell depend on TEN� ED, t� and υij(t) and because
job changes and unemployment spells are associated with innovations in υij(t),
ξij(t), and ωit .15 The variances also depend on the permanent components of
Xit (education and race) and on the unobserved heterogeneity components μi

and ηi.

3. DATA

We use the 1975–1997 waves of the PSID to assemble data that refer to the
calendar years 1975–1996. Programs and data are in the Data Appendix of
the Supplemental Material. We use the stratified random sample (SRC), but
also include nonsample members who married PSID sample members.16 The
sample is restricted to single or married male household heads. We present
estimates for the full sample, and for whites by education level.

Observations for a given person-year are used if the person is between age
18 and 62, was working, temporarily laid off, or unemployed at the survey date
in a given year, was not self-employed, had valid data on education (EDUC),
and had no more than 40 years of potential experience. We treat persons on
temporary layoff as employed. We eliminate a small number of observations in

14This calculation excludes years after 1993 because the edited hours of unemployment vari-
able is not available for later years. We could have specified the model on a quarterly or monthly
basis.

15An earlier draft of this paper, Altonji, Smith, and Vidangos (2009; henceforth ASV) pre-
sented results for an alternative model (Model B) that excludes υij(t) but allows the variance of
the shocks εω

it to depend on whether the person is starting a new job.
16In ASV (2009), we reported similar results for the baseline model using the combined SRC

and SEO samples. The SEO sample consists primarily of households that were low income in
1968 and substantially overrepresents blacks.
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TABLE I

COMPOSITION OF PSID SRC SAMPLE BEFORE SAMPLE
SELECTION BASED ON EMPLOYMENT STATUSa

Emp. Status Percentage

Working 91�0
Temp. Laid off 1�5
Unemployed 3�8
Retired 1�0
Disabled 1�2
Housewife 0�2
Student 1�1
Other 0�2

aThe table presents the composition of the PSID sample, in
terms of employment status, before we impose any sample restric-
tions based on employment status. The sample here meets all selec-
tion criteria which are not based on employment status.

which the individual reports being retired, disabled, a housewife, a student, or
“other” (see Table I and Table II).17

Potential experience ti is ageit − max(EDUCi�10) − 5� BLACKi is 1 if the
individual is black and 0 otherwise. EDit is the number of years in a row that a

TABLE II

PERCENTAGE OF OBSERVATIONS EXCLUDED BASED ON EMPLOYMENT STATUS, BY POTENTIAL
EXPERIENCE (t)a

t Percentage t Percentage t Percentage t Percentage

1 21�0b 11 1.7 21 1.9 31 5�0
2 11�1 12 2.1 22 1.7 32 5�5
3 7�5 13 1.9 23 2.8 33 7�6
4 6�0 14 2.5 24 3.3 34 7�6
5 5�2 15 1.8 25 3.4 35 8�4
6 3�0 16 2.0 26 3.2 36 11�1
7 3�0 17 2.1 27 3.6 37 12�1
8 2�3 18 2.0 28 3.6 38 12�7
9 2�2 19 1.8 29 4.0 39 16�8

10 2�0 20 2.1 30 4.8 40 20�4c

aThe table presents the percentage of observations excluded, based on employment status at the survey date, for
each value of potential experience (t).

bOf those excluded at t = 1, 97.3% are students.
cOf those excluded at t = 40, 70.8% are retired, 23.9% disabled.

17We allow persons to come out of retirement and include future observations following a
retirement spell if the individual is working, temporarily laid off, or unemployed. The percentage
of the PSID sample who report their employment status in a given year as disabled is 1.2.
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person is employed at the survey date. In 1975 and for persons who joined the
sample after 1975, we set EDit to tenure with the current employer (TEN).18

The variable UDi�t−1 is the number of consecutive years up to t − 1 that the
individual has not been employed at the survey date. We set UDi�t−1 to 0 if the
first time we observe i is in year t� Few unemployment spells exceed one year,
so the error is probably small. The wage measure is the reported hourly wage
rate at the time of the survey. It is only available for persons who are employed
or on temporary layoff.19

Finally, we censor reported hours at 4000, add 200 to reported hours before
taking logs to reduce the impact of very low values of hours on the variation
in the logarithm, and censor observed earnings and observed wage rates (in
levels, not logs) to increase by no more than 500% and decrease to no less
than 20% of their lagged values. We also censor wages to be no less than $3.50
in year 2000 dollars.

We restrict the sample to individuals who are observed for at least three years
because many of the key equations in the auxiliary model involve lags. The
sample contains 2712 individuals who contribute a total of 31,330 person-year
observations. The sample is highly unbalanced.20 As we have already noted, an
advantage of indirect inference is that, by incorporating the sample selection
process into the simulation, one can handle unbalanced data. We assume that
observations are missing at random, although there is reason to believe that the
heterogeneity components and shocks influence attrition from the sample.21

In Table III, we present the mean, standard deviation, minimum, and maxi-
mum of the key variables in our baseline sample. The mean of Eit is .966, so we

18An alternative would be to apply exactly the same censoring that occurs in the PSID to the
simulated data. The value of EDit for the simulated case for i would be set to tenure when t in
the simulated case is equal to timin, the value of t for the first observation on i in the PSID.

19This measure is the log of the reported hourly wage at the survey date for persons paid by
the hour and is based on the salary per week, per month, or per year reported by salary workers.
It is unavailable prior to 1970 and is limited to hourly workers prior to 1976. We account for
the fact that it is capped at $9.98 per hour prior to 1978 by replacing capped values for the years
1975–1977 with predicted values constructed by Altonji and Williams (2005). They are based on a
regression of the log of the reported wage on a constant and the log of annual earnings divided by
annual hours using the sample of individuals in 1978 for whom the reported wage exceeds $9.98.

20Each individual contributes between 3 and 22 observations. The 5th, 25th, median, 75th, and
95th percentile values of the number of observations a given individual contributes are 4, 7, 11,
16, 21. The number of observations per year varies from 702 in 1975 to 1571 in 1993 and exceeds
1100 in all years except 1975.

21In principle, one could augment the model with an attrition equation. Alternatively, it would
be straightforward to simply use sample weights to reweight the PSID when evaluating the like-
lihood function of the auxiliary model if suitable weights were available. However, PSID sample
weights are designed to keep the data representative of successive cross sections of the U.S. pop-
ulation that originate in the families present in the base year. They do not adjust for factors that
alter the U.S. population, such as differences in birth rates by race or education. Furthermore,
there are no sample weights for persons who move into PSID households through marriage. Con-
sequently, we do not use weights.
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TABLE III

DESCRIPTIVE STATISTICS—PSID SRC SAMPLEa

Variable Obs. Mean St. Dev. Min Max

Potential Experience 31,330 17�735 9.582 1 40
Black 31,330 0�062 0.242 0 1
Education (years) 31,330 13�336 2.307 6 17
Et 31,330 0�966 0.181 0 1
Et |Et−1 = 1 (EEt) 28,170 0�975 0.157 0 1
Et |Et−1 = 0 (UEt) 872 0�774 0.418 0 1
JCt |Et−1 = 1 28,170 0�112 0.315 0 1
EDt 30,742 10�416 7.959 0 42�25
UDt 31,330 0�043 0.257 0 7
TENt 30,065 8�420 8.015 0 42�25
wage∗

t |Et = 1b 30,265 2�737 0.494 1�14 4�96
hours∗

t
b 31,330 7�760 0.284 5�30 8�42

earn∗
t

b 31,330 3�546 0.658 −5�17 6�54

aThe table presents descriptive statistics for key variables in our baseline PSID SRC sample.
bEconomy-wide year effects have been removed from variables wage∗

t , hours∗t , and earn∗
t by first regressing mea-

sured hours, wages, and earnings on a cubic in potential experience, BLACK, EDUC, and a set of year dummies, and
subtracting the estimated year effects. The reference year is 1996. The effects of the potential experience polynomial,
BLACK, or EDUC have not been removed from these variables. See discussion in Section 4.

observe relatively few unemployment spells. Note also that the mean of EEit

is .975. Given these magnitudes, even relatively large movements in the latent
variable index determining EEit have only a small effect on whether EEit is 1
or 0.

4. ESTIMATION METHODOLOGY

We begin with a brief overview of our estimation procedure. We then de-
fine the auxiliary model used in the estimation procedure as well as additional
moment conditions that we use.22

22We remove economy-wide year effects by first regressing measured hours, wages, and earn-
ings on Xit and a set of year dummies and subtracting the estimated year effects. The variables
hours∗

it , wage∗
it , and earn∗

it refer to the adjusted measures. We do not subtract the effects of Xit�
as is done in many studies of earnings dynamics. The coefficients on Xit are estimated by indirect
inference, simultaneously with the other parameters of the model, so that sample selection in
employment can be accounted for. Simultaneously estimating the large number of year effects
with the rest of the model parameters would dramatically increase computational complexity.
One could account for sampling error in the year effects in the parametric bootstrap procedure
that we discuss below, but we have not done so. The correction is unlikely to make much differ-
ence because estimated standard errors for the year effects are relatively small (about .016 for
the wage, .01 for hours, and .02 for earnings), the year effects explain less than 1 percent of the
variance in earnings, and they are very weakly correlated with BLACKi , EDUCi , and ti .
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4.1. Indirect Inference (I-I)

For clarity, we will refer to the model presented in Section 2 as the “struc-
tural” model, even though the model does not express the parameters of the
decision rules for EE, UE, JC, etc., in terms of preference parameters and
parameters governing job search, mobility, and exogenous layoffs. We denote
the k “structural” parameters by β. Indirect inference involves the use of an
“auxiliary” statistical model that captures properties of the data. This auxiliary
model has p ≥ k parameters θ. The method involves simulating data from the
structural model (given a hypothesized value of β) and choosing the estimator
β̂ of β to make the simulated data match the actual data as closely as possible
according to some criterion that involves θ.

Let the observed data consist of a set of observations on N individuals in
each of T periods: {yit� xit}, i = 1� � � � �N , t = 1� � � � � T , where yit is endogenous
to the model and xit is exogenous. The auxiliary model parameters θ can be
estimated using the observed data as the solution to

θ̂ = arg max
θ

L(y;x�θ)�

where L(y;x�θ) is the likelihood function associated with the auxiliary model,
y ≡ {yit} and x≡ {xit}.

Given x and assumed values of β, we use the structural model to generate
M statistically independent simulated data sets {ỹm

it (β)}, m = 1� � � � �M . Each
of the M simulated data sets has N individuals and is constructed using the
same observations on the exogenous variables, x. For each of the M simulated
data sets, we compute θ̃m(β) as

θ̃m(β) = arg max
θ

L
(
ỹm(β);x�θ

)
�

where the likelihood function associated with the auxiliary model is eval-
uated using the mth simulated data set ỹm(β) ≡ {ỹm

it (β)} rather than the
real data. Denote the average of the estimated parameter vectors by θ̃(β) ≡
M−1

∑M

m=1 θ̃m(β).
I-I generates an estimate β̂ of the structural parameters by choosing β to

minimize the distance between θ̂ and θ̃(β) according to some metric. As de-
scribed in Keane and Smith (2003) and elsewhere, there are (at least) three
possible ways to specify such a metric. Here we choose β̂ to minimize the dif-
ference between the constrained and unconstrained values of a pseudo like-
lihood function of the auxiliary model evaluated using the observed data. In
particular, we calculate

β̂= arg min
β

[
L(y;x� θ̂)− L

(
y;x� θ̃(β))]�
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Gourieroux, Monfort, and Renault (1993) showed that β̂ is a consistent and
asymptotically normal estimate of the true parameter vector β0. The reason is
that as N becomes large, holding M and T fixed, θ̃(β̂) and θ̂ both converge to
the same “pseudo” true value θ0 = h(β0), where h is a nonstochastic function.

Accommodating missing data in I-I is straightforward: after generating a
complete set of simulated data, one simply omits observations in the same way
in which they are omitted in the observed data. As we have already discussed,
we assume that the pattern of missing data is exogenous. In some cases, it is
convenient to estimate auxiliary models in which missing observations are re-
placed with some arbitrary value such as 0 or the sample mean. In such circum-
stances, the same principle applies: use the same arbitrary values in both the
simulated and observed data sets. The fact that the first period that we observe
people is typically after ti = 1 would pose extremely serious “initial conditions”
problems if we were using standard panel data methods, but is handled nat-
urally by I-I because the missing early observations will affect the probability
limits of θ̃(β̂) and θ̂ in the same way.23

The presence of discrete random variables complicates the search for β̂ be-
cause the objective function (i.e., the difference between the constrained and
unconstrained values of the pseudo likelihood) is discontinuous in the struc-
tural parameters β. Discontinuities arise when applying I-I to discrete choice
models because any simulated choice ỹm

it (β) is discontinuous in β (holding
fixed the set of random draws used to generate simulated data from the struc-
tural model). Consequently, the estimated set of auxiliary parameters θ̃(β) is
discontinuous in β. The nondifferentiability of the objective function in the
presence of discrete variables prevents the use of gradient-based numerical
optimization algorithms to maximize the objective function, and requires in-
stead the use of much slower algorithms such as simulated annealing or the
simplex method.

To circumvent these difficulties, we use Keane and Smith’s (2003) modifi-
cation to I-I, which they called generalized indirect inference. Suppose that
the simulated value of a binary variable ỹm

it equals 1 if a simulated latent utility
ũm
it (β) is positive and equals 0 otherwise. Rather than use ỹm

it (β) when comput-
ing θ̃(β), we use a continuous function g(ũm

it (β);λ) of the latent utility. The
function g is chosen so that, as a smoothing parameter λ goes to 0, g(ũm

it (β);λ)
converges to ỹm

it (β). Letting λ go to 0 as the observed sample size goes to in-

23Heckman (1981), Wooldridge (2005), and others discussed how to deal with initial conditions
by using a flexible form for the distribution of the first observation for each i and its relationship
to error distributions in the outcome equations for ti > timin, where timin is first observation on i.
Using their approaches, the econometrician does not impose any links between the parameters
of the main model and the parameters of the initial condition. The parameters depend on timin,
which varies substantially in our sample. Consequently, these approaches to the initial conditions
problem are not attractive in a setting such as ours, which involves a multiple equation model
with a large number of endogenous state variables and substantial variation in timin.
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finity ensures that θ̃(β0) converges to θ0, thereby delivering consistency of the
I-I estimator of β0. Our choice of g is

g
(
ũm
it (β);λ

) = exp(ũm
it (β)/λ)

1 + exp(ũm
it (β)/λ)

�

Because the latent utility is a continuous and smooth function of the structural
parameters β, g is a smooth function of β. Moreover, as λ goes to 0, g goes to
1 if the latent utility is positive and to 0 otherwise.

When the structural model contains additional variables that depend on cur-
rent and lagged values of indicator variables ỹm

it , these additional variables will
also be discontinuous in β. In our structural model, for instance, variables such
as employment duration and job tenure depend on the history of indicator vari-
ables such as employment status and job changes. Since employment duration
and tenure are discontinuous in β, they also contribute to creating a discon-
tinuous objective function in the estimation process. Our smoothing strategy,
which we discuss in more detail in Appendix E of the Supplemental Mate-
rial, ensures that all these variables will also be continuous in β, provided that
they depend continuously on ỹm

it . In other words, replacing the indicator func-
tions by their continuous approximations g(ũm

it (β);λ) ensures that all other
variables that depend on β through g(ũm

it (β);λ) are continuous. Care must be
taken in choosing λ, because approximation error in indicator functions for a
particular year accumulate in the approximate functions for employment du-
ration and tenure.

We searched for a combination of the smoothing parameter λ and the num-
ber of simulations M that generates sufficient smoothness in the objective
function, while keeping bias small and computation time manageable. The
larger these parameters are, the smoother the objective function will be, but
large values of λ introduce bias and large values of M increase computation
time. Based upon simulation experiments, we chose a small value of λ, .05,
which is large enough to smooth the objective surface sufficiently given our
choice of 20 for M . Our simulation experiments, as well as the parametric boot-
strap results reported below, indicate that the associated bias in the estimates
is small for almost all of our parameters.

4.2. The Auxiliary Model

Our auxiliary model is the sum of two parts. The first part provides informa-
tion on the structural model parameters γw

X , γw
t3

, γh
X , and γh

t3
that determine the

effects of BLACKi, EDUCi, and ti on wages, hours, and earnings. It consists
of the equations

wage∗
it =

[
Xit� t

3
]
θw

1 + uw
it �

hours∗
it =

[
Xit� t

3
]
θh

1 + uh
it�
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and the associated sum of squares criterion function24

L1

(
wage∗

it �hours∗
it;Xit� t

3
i � θ̃

w
1 (β)� θ̃

h
1(β)

)
=

∑
i�t

(
wage∗

it −
[
Xit� t

3
i

]
θ̃w

1

)2 +
∑
i�t

(
hours∗

it −
[
Xit� t

3
i

]
θ̃h

1

)2
�

The second and main part of the auxiliary model consists of a system of
seemingly unrelated regressions (SUR) with seven equations and 25 covari-
ates that are common to all seven equations. Let w̃age∗

it = wage∗
it − [Xit� t

3
i ]θ̃w

1 �

˜hours
∗
it = hours∗

it −[Xit� t
3
i ]θ̃h

1 � and ẽarn∗
it = earn∗

it −[Xit� t
3
i ]θ̃w

1 −[Xit� t
3
i ]θ̃h

1 . One
may write the system as

Yit =ΠZit + uit; uit ∼N(0�Σ); uit i.i.d. over i and t�(16)

where

Yit = [
EitEi�t−1�Eit(1 −Ei�t−1)� JCitEitEi�t−1�

w̃age∗
it �

˜hours
∗
it � ẽarn∗

it � ln
(
1 + w̃age∗2

it

)]′

and

Zit = [
Const� (ti − 1)� (ti − 1)2�BLACKi�EDUCi�EDi�t−1�UDi�t−1�(17)

TENi�t−1�Ei�t−1Ei�t−2�Ei�t−2Ei�t−3�Ei�t−1(1 −Ei�t−2)�

Ei�t−2(1 −Ei�t−3)� JCi�t−1Ei�t−1Ei�t−2� JCi�t−2Ei�t−2Ei�t−3�

w̃age∗
i�t−1� w̃age∗

i�t−2�
˜hours

∗
i�t−1�

˜hours
∗
i�t−2� ẽarn∗

i�t−1� ẽarn∗
i�t−2�

w̃age∗
i�t−1(ti − 1)� w̃age∗

i�t−1(ti − 1)2� w̃age∗
i�t−1JCit �

w̃age∗
i�t−2JCi�t−1� w̃age∗

i�t−2Ei�t−1

]′
�

In estimating the model, we use the likelihood function L2(Y ;Z� θ̃2(β)) that
corresponds to (16), where θ2 = (Π�Σ). The assumption uit ∼N(0�Σ), with uit

24In ASV (2009) we estimated γw
X , γw

t3
, γh

X , and γh
t3

directly from a first stage regression of
wages and hours on BLACK, EDUC, and a polynomial in t. However, this procedure is subject
to selection bias associated with the employment decision. This is why we now treat θw

1 and θh
1

as auxiliary model parameters rather than structural parameters. When we used the two-step
procedure, we included a second constant in the hours equation that has no effect on earn∗

it

because it improved the fit of the model. We kept the second constant in the hours model when
we changed the estimation procedure, but the estimated value is close to 0, so dropping it would
make little difference. The constant γ0

h reported in Table IV has a coefficient of 1 in the earnings
equation.
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i.i.d. over i and t, is false for several reasons, including the fact that Y contains
binary variables and that both w̃age∗

it and ln(1 + w̃age∗2
it ) appear. The fact that

we use a misspecified likelihood affects efficiency but not consistency.
Our choice of what to include in (16) is motivated by the following princi-

ples. First, we use a rich auxiliary model rather than focus on a few features
of the data. We do this because our model is intended to explain both contem-
poraneous and dynamic interrelationships among key labor market variables.
Given our objective, it makes more sense to use a rich auxiliary model that can
capture these relationships rather than focus on a few features of the data.

Second, we use a common set of right-hand-side variables in the seven equa-
tions of the auxiliary model to avoid having to iterate between Π and Σ to
maximize the likelihood function. The disadvantage, however, is that we do
not tailor the right-hand-side variables to the particular dependent variable.
As a result, the auxiliary model probably contains more parameters than are
needed to describe the data. Furthermore, we are restricted in our ability to
add additional right-hand-side variables to particular equations, such as ad-
ditional interactions between (ti − 1) and other lagged variables, because the
total number of variables would get out of hand. Although it would be useful to
explore differentiating the equations of the auxiliary model in future work, our
simulations indicate that most of our parameters are quite well determined by
the auxiliary model that we have chosen.

Third, since the purpose of the structural model is to explain the behavior of
its dependent variables, we use each of the dependent variables of the struc-
tural model as a dependent variable in the auxiliary model. This accounts for
the first six equations. It is also natural to use the explanatory variables in the
structural model as explanatory variables in the auxiliary model. This accounts
for the presence of (ti − 1), (ti − 1)2� EDUCi� BLACKi� EDi�t−1� and TENi�t−1.
We also include UDi�t−1 even though we constrain γUE

UD to equal 0� Since the
model is dynamic and includes state dependence terms in most equations, we
include two lags of each of the dependent variables for the first six equations.
The lags help distinguish between state dependence and heterogeneity. We in-
clude the interaction terms w̃age∗

i�t−1(ti −1), w̃age∗
i�t−1(ti −1)2 to capture change

with potential experience in the degree of persistence in wages. Finally, the
terms w̃age∗

i�t−1JCit , w̃age∗
i�t−2JCi�t−1� and w̃age∗

i�t−2Ei�t−1 capture effects of cur-
rent and past job mobility and past employment on state dependence in wages.
The seventh equation has ln(1 + w̃age∗2

it ) as the dependent variable. This helps
identify parameters of the model that influence the level and change in the
variance of wages and earnings over time, including the dependence on job
changes and unemployment. Appendix F of the Supplementary Material re-
ports PSID estimates of Π and Σ.

Since Π has 25×7 elements and Σ is a 7×7 covariance matrix with 28 unique
elements, the auxiliary model has 203 parameters. L1 has another 10 slope co-
efficients and 2 variance terms. In contrast, the model has only 55 parame-
ters that we estimate by I-I (not counting the measurement error parameters,
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tenure coefficients, and ρω). As we discuss momentarily, a few extra parame-
ters are identified in part using additional moment conditions. Consequently,
the number of features of the data used to fit the structural model greatly ex-
ceeds the number of parameters.

The criterion function is Weight · L1 + L2. We set Weight to a large value to
give primacy to L1 for purposes of identifying γw

X , γw
t3

, γh
X , and γh

t3
, although the

estimator is consistent for any positive value.

4.3. Additional Moments and Other Information Sources

The auxiliary model is poorly suited to identify the parameters of equations
(11) and (12) for initial employment status and the initial wage because, in
(17), the first three observations for each individual are lost due to lags. (In the
case of L1, we do use the first three observations.) It also makes it difficult to
identify changes with experience in the variance of shocks at the beginning of
a career. To address this, we incorporated additional moment conditions.

In the case of initial employment, we estimate the intercepts b0g as b̂0g =
b̂∗

0gσ̂E1, where σ̂E1 =
√
(δ̂EE

μ )2 + (δ̂EE
η )2 + 1 for four groups g defined by race

and whether the person has more than a high school education. We esti-
mate b̂∗

0g using a Probit regression of Eit on BLACKi and the indicator for
(EDUCi > 12). We exclude the interaction to avoid computational problems
in computing bootstrap standard errors that arise from the small sample sizes
for blacks. We use the first five years rather than simply the first because we
have relatively few observations for each group when t = 1.25

To identify σω1, we use the fact that the model implies that the variance
of the observed wage residuals, w̃age∗

i1, of an employed individual from race-
education group g is

Var
(
w̃age∗

i1;g
) ≡ Var

(
wage∗

i1 − [
Xit� t

3
]
θw

1

)
≈ (

δw
μ

)2 + σ2
ω1�g + σ2

υ1 + σ2
mw�

The relationship is approximate because the auxiliary model parameters dif-
fer slightly from the structural parameters [γw

X�γ
w
t3
] because of sample selec-

tion. Because of sample size considerations, we estimate Var(w̃age∗
i1;g) as the

variance of (residual) wage observations in the PSID corresponding to t ≤ 5.
V̂ar(w̃age∗

i1;g) equals .066 for blacks with a high school degree or less, .099 for

25As it turns out, b̂∗
0g is 1.188 for blacks with a high school degree or less, 1.484 for blacks with

more than high school, 1.424 for whites with high school or less, and 1.720 for whites with more
than high school. The values are similar when we include BLACK ∗ (EDUC > 12): 1.124, 1.412,
1.429, and 1.716. We obtain similar results for other model parameters when we constrain b̂∗

0g to
be the same for all groups and use t ≤ 3 to estimate it.
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blacks with more than a high school degree, .110 for whites with high school
or less, and .143 for whites with more than high school. We then obtain σ̂2

ω1�g

by setting it to σ̂2
ω1�g = V̂ar(w̃age∗

i1;g) − (δ̂w
μ)

2 − σ̂2
υ1− σ̂2

mw at each iteration of
the I-I procedure, where in our base case σ̂2

mw is preset to the outside estimate
.0842 on the basis of measurement error studies for the PSID, as discussed be-
low. Estimates of other parameters are not very sensitive to constraining σ2

ω1�g

to be the same for all groups and estimating σ2
ω1�g using t ≤ 3 rather than 5.

To identify ρω, we use a large number of moment conditions spanning a
much longer time span than the three lags in our auxiliary model. The long
span helps distinguish persistence due to ωit from persistence due to μi and
υij(t). For workers who are continuously employed between t − m and t + n
and who do not change jobs between t and t + n,

cov(w̃agei�t+n − w̃ageit � w̃agei�t−m)= (
ρn+m
ω − ρm

ω

)
Var(ωt−m|t −m)�(18)

We approximate Var(ωt−m|t − m) with a constant plus a second-order poly-
nomial in t − m. We compute ĉov(w̃age∗

i�t+n − w̃age∗
it � w̃age∗

i�t−m) for each
n�m combination satisfying 1 ≤ n ≤ nmax and 1 < m ≤ mmax. We estimate ρω

and the parameters of the polynomial approximation to Var(ωt−m|t − m) by
weighted minimum distance using the size of the samples used to estimate
ĉov(w̃age∗

i�t+n − w̃age∗
it � w̃age∗

i�t−m) for each n�m combination as the weights,
eliminating moments estimated using fewer than five observations. We use the
average value of .908 as ρ̂.26 For a simpler version of the model reported in
ASV (2009), we obtained .913 when we ignore (18) and rely on freely estimat-
ing ρω simultaneously with the other parameters by I-I.

We impose Altonji and Williams’ (2005) estimates of tenure-wage polyno-
mial coefficients γw

TEN based on PSID data for the years 1975–2001 rather than
attempting to estimate it by I-I, which would have required adding several vari-
ables to the auxiliary model.27

26In the full sample, the number of moments varies from 850 when nmax and mmax are 5 to 2429
when nmax and mmax are 9� The point estimates and approximate standard errors for nmax�mmax =
5, nmax�mmax = 6, nmax�mmax = 7, nmax�mmax = 8, and nmax�mmax = 9 are .89 (.018), .90 (.013), .91
(.009), .92 (.007), and .92 (.006), respectively. (The standard errors reported in this note account
for heteroskedasticity but not for correlation among the moments, which use overlapping data.
They are probably understated.) Equation (18) is an approximation because the model implies
that employment transition probabilities depend on ωt through the wage. This means that the
evolution of ωt depends on the number of periods of continuous employment: n+m. This should
not matter much because employment transitions are not very sensitive to the wage level.

27The profile that we use corresponds to Table 6, Panel D, column 2 of their paper. It is
.0272563 · TEN − �0023283 · TEN2 + �00815 · TEN3/100 − �000914 · TEN4/1000. It is obtained
using Altonji and Shakotko’s (1987) instrumental variables approach, which treats t as exogenous
and uses the within-job variation in TENijt � TEN2

ijt � TEN3
ijt , and TEN4

ijt to identify the effects of
tenure. The implied estimates (standard errors) of the return to 2, 5, 10, and 20 years of tenure
are .046 (.0064), .008 (.0011), .112 (.016), and .119 (.029), respectively. Our finding of a modest
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Many studies of the income process simply ignore the presence of measure-
ment error even though surveys by Bound et al. (2001) and others indicate that
it is substantial. Some studies have attempted to directly estimate the variances
of measurement error in wages, hours, and earnings under a classical measure-
ment error assumption (e.g., Altonji et al. (2002)). Here, we draw loosely upon
studies of measurement error in the PSID and other panel data sets as well
as patterns in the data to come up with estimates of the measurement error
parameters. Our choices imply that measurement error accounts for 35% of
Var(�wage∗

it), 25% of Var(�hours∗
it), and 25% of Var(�earn∗

it). However, we
also experiment with alternative choices and find that most of our results are
robust. See Appendix D of the Supplemental Material for more details.28 We
abstract from measurement error in employment, which we believe is relatively
unimportant, as well as in the job change indicator, which is probably more se-
rious.

4.4. Mechanics of Estimation

Our chosen values of λ = �05 and M = 20 yield a smooth objective func-
tion that allows the use of fast gradient-based optimization algorithms with
little evidence of bias.29 Not surprisingly given the size and complexity of our
models, the objective function displays multiple local optima with respect to
some of the parameters. We experimented extensively with different starting
values to make sure that we are finding the global optimum. We began the
process with estimates obtained from probit or regression models relating the
dependent variable in each equation of the structural model to the observed
variables in that equation, with the fixed heterogeneity components ignored.
We refined our search by using grid evaluations, paying particular attention to
the set of parameters that appeared most problematic, and by experimenting
with smaller versions of our models to help us find good initial guesses, and
then building up to more complex versions of the models.

The fact that we are iterating on 55 parameters, the large size of the auxiliary
model, and the number of simulations make computation very time-consuming

link between t and υij(t) implies that Altonji and Williams’ estimates are biased downward by a
small amount.

28The assumption of normally distributed, classical measurement error runs counter to evi-
dence that actual reports are a mixture of correct responses and responses with error. Further-
more, Bound et al. (2001) summarized evidence that measurement error is mean reverting to
some extent, with individuals smoothing shocks when they report on economic variables. In prin-
ciple, our methods can accommodate almost any measurement error assumption. We stick with
the simpler formulation for lack of hard quantitative evidence on richer measurement error spec-
ifications that we can import into our model.

29We use a standard quasi-Newton algorithm with line search, which can additionally handle
simple bounds on the parameter values. The algorithm approximates the (inverse) Hessian by the
BFGS formula, and uses an active set strategy to account for the bounds. Gradients are computed
by finite differences.
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even though we use a fast gradient-based optimization algorithm. To reduce
estimation time, we exploit the highly parallelizable structure of our estimation
methodology.30

4.5. Bootstrap Standard Error Estimation

We use a parametric bootstrap procedure to conduct inference. Given con-
sistent estimates of the structural parameters, we repeatedly generate “artifi-
cial” observed data sets from the structural model, applying data availability
rules that match the PSID sample. We treat each of the artificial data sets as
if it was the PSID (with year effects removed) and apply our full estimation
procedure, including computation of the values of ρ̂ω, b̂0g, and σ̂2

ω1�g, to obtain
estimates of the parameters of the structural model for each such data set. The
standard deviations of the parameter estimates across the data sets serve as our
standard error estimates.31 The standard errors do not account for sampling
error in γ̂w

TEN or uncertainty about the measurement error parameters. Stan-
dard errors of functions of model parameters, such as the impulse response
functions and variance decompositions, are constructed as the standard devia-
tion across parametric bootstrap replications. The bootstrap procedure is very
computationally intensive, so we use 300 bootstrap replications.32

4.6. Local Identification and Analysis of Estimation Bias

Along with functional form restrictions and normality assumptions, exclu-
sion restrictions play a key role in identification. First, we restrict the form of
state dependence. For example, in the baseline case, employer tenure (TEN)
is excluded from the EE equation, and employment duration (ED) is excluded
from the job change equation (JC). Wages depend directly on only the cur-
rent value and first lag of unemployment and depend directly on tenure but do
not depend directly on employment duration. The lag of hours does not ap-
pear anywhere in the model. Second, the model places restrictions on the di-
rect links among wages, employment, unemployment, job changes, and hours.
Third, the model restricts fixed unobserved heterogeneity to have a two factor
structure, and excludes one of the factors from the wage equation. These and

30Specifically, for a given value of the structural parameters, the M = 20 simulations required
to evaluate the objective function are essentially independent and can be conducted simultane-
ously by 20 different processors. All programs are written in FORTRAN 90.

31As a check, we also computed standard errors using a nonparametric bootstrap procedure
based on resampling from the PSID for some specifications. We used 100 replications and ob-
tained similar results.

32We dropped 6 of 306 replications because the estimator failed to converge. The correspond-
ing figures for the low and high education samples are 28 of 328 and 11 of 311. In the case of
multinomial model in Section 7, we dropped 40 of 340 cases.
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other restrictions help us distinguish between state dependence and hetero-
geneity and to identify the causal links among the variables in the model.

One cannot easily verify that the parameters of our model are identified by
matching up the parameters against sample moments. In particular, the fact
that the number of moments that play a role in the likelihood function of the
auxiliary model is much larger than the number of structural model parameters
does not establish identification of any particular parameter. Consequently, we
use Monte Carlo experiments extensively to establish local identification and
analyze the adequacy of our auxiliary model given the sample size and demo-
graphic structure of the available data and to check for bias. For a hypothesized
vector of parameter values, we simulate data and then verify that the param-
eter values that maximize the likelihood function of the auxiliary model are
close to the hypothesized values. Using a number of model specifications, in-
cluding ones that differ somewhat from the ones presented in the paper, we
informally experimented with varying parameter values to get a sense of how
robust identification is to the particular values. We also used these experiments
to investigate whether the objective function has flat regions near the solution,
or multiple global optima.

In general, we have found that identification of most of the parameters is
quite robust. However, our Monte Carlo studies also indicate that a few of
the parameters are poorly determined given the sample size. We also found
local optima involving alternative combinations of subsets of the parameters.
Bringing in additional information through the moment conditions described
above solved the most serious problems. However, some of the parameters
remain sensitive to changes in the auxiliary model, and starting values must be
chosen carefully. This is particularly true of the coefficients of the experience
profiles in the EE, UE, and, to a lesser extent, the JC equations. In Table IV,
there is also evidence of bias for some of the parameters in these equations.
Overall, however, the relatively small values of the bootstrap standard errors
in the tables indicate that, for the sample size and demographic structure of
the PSID sample, our auxiliary model and the additional moment conditions
are quite informative about most of the model parameters. Furthermore, in
almost all cases, the means of the bootstrap replications are close to the point
estimates, indicating that the degree of bias in the procedure is small for most
of our parameters.

5. EMPIRICAL RESULTS

First, we discuss the parameter estimates for the baseline model. The base-
line is the model presented in Section 2. Second, we evaluate the fit of the
model by comparing means and standard deviations of the PSID data to the
corresponding values based on simulated data from the model and by com-
paring simple regression relationships in actual and simulated data. Third, we
present impulse response functions as a way to summarize how shocks affect
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the level and variance of wages, hours, and earnings. Finally, we decompose
the variance of wages, hours, and earnings into the contributions of the main
types of shocks in our model.

5.1. Parameter Estimates for the Full Sample

Columns I, II, and III of Table IV report parameter estimates, the means
of the parametric bootstrap estimates, and standard error estimates for the
full sample. The row headings indicate the variable (or error component) and
the parameter that the estimates correspond to. The estimates are grouped by
equation, beginning with EE. In the case of binary variables EE�UE� and JC,
column IV reports marginal effects on the probabilities that EEit = 1|Ei�t−1 = 1,
UEit = 1|Ei�t−1 = 0, and JCit = 1|EEit = 1, respectively.33

5.1.1. Employment Transitions and Job Changes

The coefficients on (t − 1) and (t − 1)2 in the EE equation imply that the
latent variable determining Eit conditional on Ei�t−1 = 1 declines slowly with t
until t is about 13 and then rises slowly. However, the implied change in the
probability of a transition is small because the EE probability is high. The coef-
ficient on min(EDt−1�9) is .028 (.025) and the marginal effect is .002, indicating
a small positive duration dependence in the odds of remaining employed. The
value of min(EDt−1�9) is rising over the first few years in the labor market, but
the overall relationship between EE and t is weak. The fit of the experience
profile of EE transitions is good, as we document below.34 In Table V.A, we
show that a regression of Eit on EDi�t−1 conditional on Ei�t−1 = 1 gives similar
results in data simulated from the model and in PSID data. This indicates that
the combined effect of duration dependence and unobserved heterogeneity in
the model does a good job of matching the weak positive state dependence
found in the data. As was noted earlier, we restricted γEE

TEN to 0 because simu-
lation experiments suggested difficulty in distinguishing the effects of employ-
ment duration and firm tenure.

The coefficient on wages
it is .071 (.118). The wage effect is not statistically

significant and the implied marginal effect on EE is small.

33These are evaluated at the probability that EEit = 1|Ei�t−1 = 1, UEit = 1|Ei�t−1 = 0, JCit =
1|EEit = 1�Ei�t−1 = 1, respectively, and are obtained by multiplying parameters of the latent in-
dices by the standard normal density evaluated at the probabilities. (In the case of JCit , we usu-
ally leave the conditioning on Ei�t−1 = 1 implicit.) In the case of t, we take the quadratic term
into account. In Appendix C of the Supplemental Material, we use simulated data to estimate
average marginal effects on JCit = 1|Eit−1 = 1, taking into account the effects of variables on
EEit = 1|Ei�t−1 = 1 and JCit = 1|EEit = 1.

34The specific point estimates of the coefficients on t − 1� (t − 1)2� and min(EDt−1�9) should
be taken with a grain of salt given the standard errors and the fact that the bootstrap replications
provide evidence of some bias.
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Moving to the UE equation, the estimated t profile implies that the exit
probability declines with experience and then increases, but the standard er-
rors are large. As we document in Section 5.2.1, the model predictions of the
probability that UE = 1 are within the 95% confidence intervals based on the
PSID data for most values of t, but the PSID data are noisy. We experimented
with models that included UDi�t−1 but had difficulty estimating the duration co-
efficient, perhaps because the overall number of unemployment spells is small
and relatively few individuals were unemployed for two or more surveys in a
row. (Most work on duration dependence in unemployment spells uses weekly,
monthly, or quarterly data.) Simulations in Table V.A show that the equation
without unemployment duration matches closely the negative link between
UE and UDi�t−1 found in the PSID, presumably because of the important role
played by permanent heterogeneity.

In the JC equation, the latent variable for JCit |EEit = 1 declines with t, and
is strongly decreasing in job tenure. The coefficient on TENi�t−1 is −�066 (.023),
indicating that 10 years of seniority shift the index determining JCit by .66 stan-
dard deviations of the job change shock εJC

it . The marginal effect of an extra
year of tenure on JCit = 1 is −�013. It is noteworthy that we obtain a large
negative effect of tenure on JC even after accounting for unobserved person-
specific heterogeneity (μ and η) and for job match heterogeneity.

The job match components υij(t−1) and υ′
ij′(t) play an important role in job

mobility without unemployment, and they have signs and relative magnitudes
that are consistent with the theoretical discussion above. The coefficient on
υij(t−1) is −�833 (.154). To get a sense of the magnitude, note that the standard
deviation of υij(t−1) is .310. Consequently, a one-standard-deviation increase in
υij(t−1) lowers the JC index by −�26. Since the coefficient on TEN is −�066, this
is roughly equivalent to the effect of 4 years of seniority. The average marginal
effect of a one-standard-deviation shift is −�050. The current value υ′

ij′(t) has a
coefficient of .496 (.132).35 A one-standard-deviation shock to υ′

ij′(t) raises the
job change probability by .034.

The coefficient on BLACK is −�158 (.115) in the equation for EE. The av-
erage marginal effect is −�009. BLACK has a small, negative but imprecisely
estimated effect in the equation for UE. EDUC has a small positive effect in
both the EE and UE equations. The effects of BLACK and EDUC on JC are
small and insignificant. The coefficient on the “ability” factor μ is .298 (.121)
in the EE equation, .308 (.176) in the UE equation, and −�067 (.127) in the
JC equation. These results are sensible in light of the fact that μ has a posi-
tive sign in both the wage and hours equations. The corresponding marginal
effects of a one-standard-deviation shift are .018, .093, and −�013. These are
the partial effects of the heterogeneity components in a given period holding
spell duration constant.

35The total effect of υij(t−1) on the JC probability is −0�027, which is smaller than the partial
effect because a unit shift in υij(t−1) shifts the mean of υ′

ij′(t) by .691.
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The mobility/hours preference component η enters the EE, UE, and JC in-
dices with coefficients of −�481 (.103), .106 (.176), and .539 (.110), respectively.
The results indicate that η lowers the probability of remaining employed and
raises the probabilities of transiting out of unemployment (not significant) and
of moving from job to job without unemployment. The marginal effects of a
one-standard-deviation shift in η on the mean probabilities are −�029 for EE,
.032 for UE� and .104 for JC|EEt = 1. It has essentially a zero coefficient in the
hours equation.

5.1.2. The Wage Model

We begin with the parameters of (3), the equation for the autoregressive
component ωit� The estimated standard deviation of the initial condition for
ωi1 ranges from .160 for less educated blacks to .319 for highly educated whites.
The autoregressive coefficient ρ̂ω is .908 (.025), which implies considerable
persistence but is well below unity. The shocks εω

it have a standard deviation
of .089 (.005). This value strikes us as large given that we separately account
for the effects of job-specific error components. The only other study we know
that allows for a persistent general wage component, a job-specific error term,
and endogenous mobility is Low, Meghir, and Pistaferri (2010). They obtained
a value of .104 but set ρω = 1.36 In the PSID, the standard deviation of wage
changes for stayers is .128 after adjusting for measurement error.

The coefficients of −�134 (.013) on (1 − Eit) and .049 (.017) on (1 − Ei�t−1)
imply that being unemployed at the survey date has a large effect on the mean
of the wage that persists for some time, even when the value of lost tenure is
held constant. As will become clear from the impulse response functions, un-
employment also leads to a loss of tenure as well as to a reduction, on average,
in the value of the job match component, which implies further reductions in
wages.

The estimate for coefficient δw
μ on μ is .081 (.035). The direct contribution

of unobserved permanent heterogeneity to the variance of wages is relatively
small once we account for both ωit and job match heterogeneity. However, the
estimate of δw

μ is somewhat sensitive to model specification.
The parameters of the job match component υij(t) are quite interesting. The

initial condition υij(1) has a standard deviation of .165 (.016). The autoregres-
sion parameter ρυ is .691 (.049) and the value of σ̂υ is large: .276 (.009). As
we have already noted, the substantial persistence of υij(t) across jobs suggests
that wage offers are based in part on salary history, that demand shocks may
reflect narrow occupation, industry, and region and thus may not be entirely
job-specific, and/or that the search network available to workers depends on
job quality. As we shall see below, the contribution of the job-specific compo-
nent to the variance of wages and earnings is substantial.

36They do not include the (1 −Eit) terms in their specification.
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FIGURE 1.—Decomposing the experience profile of wages. Baseline model, full SRC sample.
The figure displays the model’s decomposition of wage growth over a career (or the experience
profile of log wages) into the contributions of job shopping (the mean value of the job-specific
wage component ν), the accumulation of tenure (the contribution of the mean value of tenure on
the wage experience profile), and the accumulation of general human capital.

As we discuss in Appendix A, one can use the model to decompose
E(wageit |t), the experience profile of wages, into the contributions of general
human capital [tγw

t + t2γw
t2 +t3γw

t3], change in the general productivity com-
ponent ωit due to unemployment shocks, E(ωit |t), gains from job mobility
E(υij(t)|t), and accumulated job seniority E(P(TENit)γ

w
TEN|t). Figure 1 shows

the components and thus addresses the fundamental question of what accounts
for wage growth over a career. We exclude E(ωit |t) from the graph to reduce
clutter. It declines by −�016 over the first 10 years and −�020 over the first 30
years, primarily because of unemployment shocks. Most of the return to po-
tential experience is due to general skill accumulation. Job shopping and the
accumulation of tenure account for increases of .068 and .064, respectively,
of the .513 increase in the mean of the log wage over the first 10 years. They
account for .128 and .113 of the total increase of .830 over the first 30 years.
Using Social Security records for quarterly earnings (rather than hourly wage
rates), Topel and Ward (1992) found that job mobility accounts for 1/3 of wage
growth during the first 10 years in the labor market, which is much larger than
what we find. We suspect their estimates are overstated by the school-to-work
transition and growth across jobs in hours worked early in a career, while ours
are understated because we miss some job changes and do not use the first
three years of wages in the component L2 of the auxiliary model.37

37Using the PSID, Buchinsky et al. (2010) estimated a simultaneous model of employment,
job mobility, and wage rates that incorporates tenure effects, general experience, and job-specific
error components. They found a large effect of human capital accumulation and returns to se-
niority that are more than double the values from Altonji and Williams (2005) that we impose,
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5.1.3. Hours and Earnings

In the hours equation, the effect of Eit , γ̂h
E , is .430 (.011). The large value

indicates that unemployment at the survey date is associated with relatively
long completed spells of nonemployment. As we noted above, short spells will
tend to be missed by Eit given that it is a point-in-time measure at annual fre-
quencies. They will be captured by the hours component εh

it . The small negative
wage elasticity of −�084 (.016) is consistent with a large literature that finds that
the hours of male household heads are not very responsive to wages. The co-
efficients on μ and η are .098 (.018) and −�012 (.024), respectively, suggesting
only a modest role for individual heterogeneity (net of EDUC and BLACK)
in annual hours in any given year. However, permanent heterogeneity turns
out to be quite important over the lifetime. The importance of μ relative to η
varies across the specifications. The standard deviation of εh

it is .141, indicating
substantial year-to-year variation in hours even when the job-specific compo-
nent ξ does not change. The standard deviation of ξ is large—.162 (.013).

Turning to earnings, recall that the coefficients γe
w and γe

h are constrained to
equal 1. The earnings component eit has an autoregression coefficient of .624
(.009) and the standard deviation of the shock εe

it is .169 (.002).
Does persistence in wages, earnings, and hours stem primarily from perma-

nent heterogeneity or from dynamics in the model and persistence in ωit , υij(t),
and ξij(t) as well as eit? To explore this question, we used simulated data from
the model to regress the wage on the first lag of the wage with and without
controls for EDUCi, BLACKi, μi, ηi, and ωi1. We repeated the procedure us-
ing the fifth lag and the tenth lag of the wage. We also estimated similar sets
of autoregressions for earnings and hours. The size of the decline in the lag
coefficient when the controls are added indicates that fixed heterogeneity is a
very important source of persistence in wages, earnings, and hours, but not the
main source (not reported).

but did not present estimates of the gains from job mobility. Given total wage growth in the
PSID, the sum of their estimates of the general human and tenure profile seems to imply zero
or negative gains from mobility on average over a 30-year career. Bagger et al. (2011) did not
allow for a direct effect of seniority on wages such as would arise from shared investment in firm-
specific capital. They interpreted an indirect effect that arises through the response of firms to
outside offers as a return to tenure. They attributed average growth of wages within the firm and
growth of wages across firms to job search and to general human capital. Using Danish matched
employer/employee data, they found that general human capital accumulation raises the produc-
tivity of the less educated group by about .14 over the first 10 years, but lowers productivity by
about −�09 over the next 20 years. It is much more important for highly educated workers. The
within-job and between-job wage growth that reflect job search and competition are both impor-
tant contributors to wage growth for those who remain employed across periods. The between-
job component is the more important of the two. However, they did not provide estimates of the
overall contribution of moving to better jobs that we can compare to our estimates, because they
focused on job changes without unemployment and did not take account of the fact that workers
lose some of the gains from prior search when they suffer a layoff. Rubinstein and Weiss (2006)
surveyed the literature on the determinants of wage growth over a career.
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5.2. Evaluating the Fit of the Model

We use the estimated model to simulate careers for 271,200 individuals (100
times the size of our PSID sample). We construct the simulation so that, for
each simulated career, education, race, and the potential experience values
for which data are available match that of a corresponding PSID case. The
simulated variables incorporate measurement error. To examine the fit of the
model, we first compare the experience profiles of the means and standard de-
viations of the key variables implied by the model against corresponding val-
ues from the PSID. We then turn to a comparison of regression relationships
among key variables that are implied by the model with those of the corre-
sponding PSID estimates.

5.2.1. Predicted and Actual Means and Standard Deviations of Key Variables, by
Potential Experience

Figure 2 compares means and standard deviations of key variables in the
PSID against the corresponding model predictions. Panels (a), (b), and (c)
display the 95% confidence interval estimates of the standard deviations of
wage∗

it , hours∗
it , and earn∗

it based directly on the PSID sample to the point es-
timates from the model.38 In all cases except the wage when t = 5 and hours
when t = 35, the model predictions lie within the confidence intervals, although
some values are close to the boundary. Across experience levels, the predicted
value of SD(wage∗

it) is .50, while the actual value is .49. The model slightly over-
predicts the standard deviation early in a career and understates the increase
a bit.

The sample value for SD(hours∗
t ) is .28—close to the model value of .27. The

model implies that SD(hours∗
t ) varies little with t and understates the increase

between t = 30 and 35. This might reflect the effects of partial retirement not
captured by the experience profiles in the model, but it also may be due to
sampling error in the PSID estimates.

Panels (d) and (f) of Figure 2 compare the PSID values and the model pre-
dictions for the mean of Et and for the mean of JCt conditional on Et−1 = 1.
The overall mean for Et is .966 in the data and .971 based on the model. The
model overstates employment when t = 5 by about .02, which is statistically sig-
nificant. Neither the data nor the model predictions show much movement in
Et with experience. Overall, the mean of JCt predicted by the model matches
the data very closely relative to sampling error. Panel (e) reports the sample
means and simulated means of EE transitions, which match reasonably well.
Panel (g) shows corresponding figures for exits from unemployment (UE). The
actual and simulated means of UE are .774 and .803, so the model matches

38For each value of t shown in the figure, the results are based on t − 1, t, and t + 1. The con-
fidence interval estimates are based on the normal approximation using robust standard errors
clustered at the individual level. We display point estimates for the model predictions rather than
confidence interval estimates because the latter are very narrow in almost all cases.
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FIGURE 2.—Comparisons of PSID Data and Model Predictions by Potential Experience (t).
The figure compares standard deviations and means of key variables in our baseline PSID sam-
ple against the corresponding model predictions. All panels display the 95 percent confidence
interval estimates of sample statistics based on the PSID to point estimates from the model. In
all panels, each statistic corresponding to potential experience t was actually calculated using po-
tential experience t − 1, t, and t + 1. Panels (a), (b), and (c) display the standard deviations of
wage∗

it , hours∗
it , and earn∗

it . The units in the vertical axis of those three panels are thus standard
deviations of the log. All other panels in the figure display means of the main variable specified in
the corresponding panel heading. For example, panel (e) displays the mean of employment, Et ,
conditional on Et−1 = 1. (Continues)

these transitions slightly less well. However, as the figure shows, there is a lot
of noise in the sample means for particular experience values.39

39The confidence interval estimates for the UE probability in panel (g) are the exact confidence
intervals for the binomial distribution. All other confidence intervals in Figure 2 are based on the
normal approximation as described previously.
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FIGURE 2.—Continued.

Panels (h), (i), and (j) examine the behavior of the mean of ED, UD, and
TEN. The fits for UD and TEN are reasonably close, although the model
slightly overpredicts tenure late in a career. The model overpredicts ED by
a substantial amount. This is probably attributable to our use of TEN as the
initial value for ED when an individual first enters the PSID sample.

5.2.2. Comparison of Regression Relationships Among Key Variables

Tables V.A and V.B report a series of descriptive regressions. Coefficients in
bold are regression coefficients based on simulated data. Each of these coeffi-
cients is followed underneath by a corresponding regression coefficient based
on the PSID data (in italics). Robust panel standard errors for the PSID esti-
mates are in parentheses.40 Column I of Table V.A reports regressions of Et on
BLACK, EDUC, (t − 1)/10, (t − 1)2/100, and EDt−1 conditional on Et−1 = 1.
This is a stripped down version of the EE equation in the structural model.
There are some differences in the experience profiles. The coefficient on EDt−1

is .0027 in the simulation and .0022 (.0002) in the PSID, a fairly close corre-
spondence.

Column II reports results for a version of the UE equation. Although the
differences in the coefficients on the experience polynomial appear substantial,
the model fits the experience profile reasonably well, as previously seen. The

40As in the previous subsection, the point estimates for the simulated data are based on a
sample 100 times as large as the PSID, with the same demographic structure. The PSID stan-
dard errors provide a rough guide to whether the coefficients based on the simulated data are
statistically different from the PSID regression coefficients.
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TABLE V.A

REGRESSIONS COMPARING DATA SIMULATED FROM ESTIMATED BASELINE MODEL AND PSID:
EMPLOYMENT AND JOB CHANGESa

I II III
Dependent Variable: Et

b Et
c JCt

d

Independent Variable:
Black −0.0076 −0.0139 −0.0013

−0�0117 −0�0190 −0�0131
(0.0039) (0.0477) (0.0079)

Education 0.0018 0.0058 −0.0011
0�0028 0�0197 −0�0034

(0.0004) (0.0070) (0.0008)

(t − 1)/10 −0.0241 −0.2760 −0.0621
−0�0017 0�0131 −0�0946
(0.0043) (0.0597) (0.0083)

(t − 1)2/100 0.0029 0.0722 0.0140
−0�0013 −0�0088 0�0221
(0.0010) (0.0158) (0.0020)

EDt−1 0.0027
0�0022

(0.0002)

UDt−1 −0.0373
−0�0364
(0.0232)

TENt−1/10 −0.0864
−0�0809
(0.0030)

Observations 2,620,289 79,711 2,558,223
25,749 793 24,712

R2 0.01 0.03 0.07
0�01 0�02 0�06

RMSE 0.15 0.40 0.29
0�15 0�40 0�29

aThe table presents least-squares regressions comparing data simulated from our estimated baseline model and
PSID data. Estimates on simulated data are in bold, estimates on PSID data are in italics, standard errors (for the PSID
estimates) are in parentheses. The regressions on simulated data are based on a simulated sample that is 100 times as
large as the PSID sample, but has the same demographic structure (by potential experience, race, and education) as
the PSID sample.

bSample restricted to observations where Et−1 = 1.
cSample restricted to observations where Et−1 = 0.
dSample restricted to observations where Et = 1 and Et−1 = 1.

model matches well the degree of persistence in unemployment spells. The
coefficients of the JC equation in Column III match fairly closely.

Table V.B examines the dynamics of wage∗
t , hours∗

t , and earn∗
t . In Column I,

the sums of the coefficients on the two lags of wage∗
t are very close, although
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TABLE V.B

REGRESSIONS COMPARING DATA SIMULATED FROM ESTIMATED BASELINE MODEL AND PSID:
WAGES, HOURS, EARNINGSa

I II III IV V
Dependent Variable: wage∗

t
b wage∗

t
b hours∗t earn∗

t earn∗
t

Independent Variable:
Black −0.0164 −0.2283 −0.0235 −0.0527

−0�0244 −0�2407 −0�0291 −0�0580
(0.0053) (0.0095) (0.0058) (0.0089)

Education 0.0078 0.1071 0.0062 0.0218
0�0129 0�1032 0�0032 0�0230

(0.0006) (0.0010) (0.0007) (0.0011)

t/10 −0.0155 0.6326 0.0466 0.0687
−0�0352 0�6585 −0�0282 −0�0485
(0.0193) (0.0283) (0.0212) (0.0325)

t2/100 −0.0010 −0.1868 −0.0162 −0.0266
0�0099 −0�2376 0�0186 0�0335

(0.0098) (0.0155) (0.0108) (0.0166)

t3/1000 0.0007 0.0193 0.0011 0.0032
−0�0008 0�0280 −0�0040 −0�0059
(0.0015) (0.0025) (0.0017) (0.0025)

TENt /10 0.3704
0�4055

(0.0184)

TEN2
t /100 −0.2016

−0�1722
(0.0146)

TEN3
t /1000 0.0300

0�0280
(0.0031)

wage∗
t −0.0247 0.9740

−0�0003 0�9458
(0.0035) (0.0036)

wage∗
t−1 0.7126

0�6497
(0.0064)

wage∗
t−2 0.2116

0�2662
(0.0064)

JCt −0.0159
−0�0107
(0.0043)

hours∗
t 0.8552

0�7648
(0.0073)

(Continues)
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TABLE V.B—Continued

I II III IV V
Dependent Variable: wage∗

t
b wage∗

t
b hours∗t earn∗

t earn∗
t

hours∗
t−1 0.3377

0�3635
(0.0066)

hours∗
t−2 0.2736

0�1633
(0.0063)

earn∗
t−1 0.5658

0�7159
(0.0069)

earn∗
t−2 0.2563

0�1248
(0.0068)

Observations 2,158,813 3,041,429 2,262,355 2,329,200 3,041,429
21,783 29,000 22,687 23,292 30,265

R2 0.88 0.36 0.31 0.70 0.79
0�85 0�40 0�23 0�73 0�74

RMSE 0.17 0.40 0.21 0.34 0.28
0�18 0�38 0�21 0�32 0�31

aThe table presents least-squares regressions comparing data simulated from our estimated baseline model and
PSID data. Estimates on simulated data are in bold, estimates on PSID data are in italics, standard errors (for the PSID
estimates) are in parentheses. The regressions on simulated data are based on a simulated sample that is 100 times as
large as the PSID sample, but has the same demographic structure (by potential experience, race, and education) as
the PSID sample.

bAll observations in sample must satisfy Et = 1.

the relative sizes of the coefficients on the first and second lags differ a little.
The coefficient on JCt is small and negative in both the simulated and PSID
data.

Column III examines hours. The coefficients match reasonably closely, al-
though the sum of the coefficients on the lags of hours is 0.61 in the simulated
data but only .53 in the PSID data, and the discrepancy between the cubic
polynomials is between .048 and .054 for values of t greater than 11. The wage
coefficient is essentially 0 in the actual data and −�025 in the simulated data—a
close correspondence.

Finally, Columns IV and V report earnings regressions. Note that all of the
dynamics in earnings stem from dynamics in the wage, hours, and the autore-
gressive earnings component eit . In Column IV, the sum of the coefficients on
the lagged earnings earn∗

i�t−1 and earn∗
i�t−2 is .82 in simulated data and .84 in the

PSID data, so that the model understates the persistence of earnings by a small
amount. There are also some differences between the data and the model in
the coefficients on wage∗

t and hours∗
t (Column V).

Overall, we view the match between the model and the data as good.
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5.3. Mean and Variance Impulse Response Functions

Figure 3 reports impulse responses to shocks that occur when t = 10. The
point estimates displayed are constructed as follows. First, using our model,
we simulate a large number of individuals through t = 9. Then we impose the
shock indicated in the figures on all individuals in period 10. After that, we
continue the simulation in accordance with the model. The different panels in
the figure show the mean paths of earnings, wages, and hours relative to the
base case. The base case represents the mean of the simulated paths in the
absence of the specified intervention in period 10.41

Since wages and hours are reflected in earnings with coefficients of 1, we
focus the discussion on earnings, shown in panel (a), to save space. Panels (b)
and (c) show the response of wages and hours. The diamond line in panel (a)
reports the response of the mean of earnit to a one-standard-deviation positive
shock to εω

it , the error term in the autoregressive component of wages. Earnings
rise by about .08 and the effect slowly decays, governed by the value .908 for
ρω. The pattern for earnings closely mirrors the response of wages (panel (b))
because the coefficient on the wage is 1 and the wage elasticity of hours is only
−�08.

The line with circles shows the effect of becoming unemployed when t =
10. The pattern is very interesting. The log of earnings drops by about −�6,
recovers by about two thirds after one year, and then slowly returns to the base
case. The initial drop is the combination of a drop of about −�4 in log hours
(panel (c)) and a drop of about −�2 in the wage (panel (b)). Hours recover
almost completely after one period. The wage increases by about .02 in the
first year and continues to recover slowly after that.

The drop in wages is due to three main factors. First, the distributed lag
coefficients on unemployment in the wage equation and ρ̂ω indicate that un-
employment reduces ωit by −�134 (.013) followed by an increase a year later
of .049 (.017) plus �134 ∗ (1 − �908) if the person leaves unemployment. After
that, the response of ωit to unemployment is governed by ρ̂ω. Second, the loss
of tenure lowers the wage by an average of .064 relative to the baseline average
for persons at t = 10. Third, since there is no selectivity in the job change in-
duced by the unemployment spell, on average, workers suffer a decline in υij(t)

equal to (1 −ρυ)E(υij(t)|t = 10)� or .021. On average, endogenous mobility fol-
lowing the unemployment spell leads υij(t) to move back up toward the base
case mean for a given value of t.

The pattern of a long-lasting impact of unemployment on earnings is broadly
consistent with a number of previous studies, including Jacobson, LaLonde,
and Sullivan (1993), who used establishment earnings records. Using the PSID

411.984 standard error bands were obtained by computing impulse responses using each of
the 300 values of the model parameters obtained by parametric bootstrap. The bands are quite
narrow, so we omit them to avoid cluttering the figures. They are available upon request.
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(a) Log earnings response

(b) Log wage response

FIGURE 3.—Mean Response of Key Variables to Various Shocks at t = 10. The figure displays
the response of the mean of log earnings, log wage, and log hours to various shocks that are
imposed when potential experience t = 10. The shocks are an unemployment shock, a job change
shock, a one- standard-deviation shock to the autoregressive component of wages, a job change
shock accompanied by a one- standard-deviation shock to the job-specific wage component, and
a job change shock accompanied by a one- standard-deviation shock to the job-specific hours
component. To construct the point estimates, we first use the model to simulate a large number
of individuals through t = 9. We then impose the shock indicated in the figures in period 10 on
all individuals. After that, we continue the simulation in accordance with the model. The panels
in the figure show the mean paths of log earnings, log wages, and log hours relative to the base
case. The base case represents the mean of the simulated paths in the absence of the specified
intervention in period 10. (Continues)

and a fixed effects strategy, Stevens (1997) found a 30% drop in earnings and a
14% drop in wages in the year of a layoff. Earnings recover substantially in the
first year, but wages recover very slowly. Her estimate of the initial earnings loss
is smaller than ours, perhaps because those who are laid off do not necessarily
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(c) Log hours response

FIGURE 3.—Continued.

become unemployed, and those who are unemployed at the survey date tend
to be in a long spell. The model permits us to examine effects that operate
through wages and hours separately, as well as to identify the specific channels
of influence.42

Finally, the figures report the response of wages, hours, and earnings to an
exogenous job change. In this case, JCit is set equal to 1 in period 10 for all
individuals with Et = Et−1 = 1, which one should think of as resulting from
a large positive realization of the i.i.d. component εJC

it that negatively affects
the relative attractiveness of the current job, rather than from a large draw of
υ′

ij′(t). The line marked with “×” shows the average response. Part of the de-
cline in earnings reflects the value of lost tenure (.064). In addition, since the
job change is not selective on υij , υij(t) declines by (1 − ρυ)E(υij(t)|t = 10) or
.021. The line with triangles is the effect of an exogenous job change that is
accompanied by a draw of ευ

ij(t) that is one standard deviation above its mean,
or .276. The net positive effect is large and highly persistent. These results are
mirrored in wages (panel (b)). In addition, we show the effect of an exogenous
job change that is accompanied by a one-standard-deviation increase of .162

42Kletzer (1998) surveyed the literature on job loss and wages. A number of studies exam-
ine how employer and industry tenure affects the size of the loss. When the problem of unob-
served worker heterogeneity (but not job heterogeneity) is addressed, there appear to be modest
tenure effects of the loss that are consistent with Altonji and William’s (2005) estimates used
here. Neal (1995) and Parent (2000) argued that industry tenure is more important than firm
tenure. Kambourov and Manovskii (2009) argued that occupational tenure is more important
than firm or industry tenure. As we noted earlier, one could extend the model we consider to
include industry and occupation transition equations, but we leave this to future research.
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in the job-specific hours component ξij(t). This is associated with a positive in-
crease in hours worked and in earnings that decays in half in the first few years
but slowly thereafter. Since ξij(t) is independent across jobs, the persistence
stems from the fact that when t is greater than 10, job changes with or without
unemployment are infrequent.43

We also use the model to estimate the effects of an exogenous job loss
and an exogenous job change on earnings variability using the methodology
described above. The circle line in panel (a) of Figure 4 graphs the ratio
of Var(earnit − earni�t−1) following an exogenous unemployment shock when
t = 10 to the baseline variance for the model. The variance ratio is slightly be-
low 1 when t = 10, it is 1.69 when t = 11� declines to 1.27 when t = 12� and
then slowly declines to 1 over the next 10 years. Panel (b) shows that the cor-
responding ratio for Var(earnit) is about .85 when t = 10, presumably because
differences in wages matter less when everyone is unemployed at the survey
date. It rises to 1.10 when t = 11 and then slowly declines to about 1.05. An ex-
ogenous job change induces a big spike in the ratio for Var(earnit − earni�t−1)
when t = 10. The corresponding ratio for Var(earnit) rises slowly following the
shock, presumably because in some cases the exogenous job change induces
additional ones. We have produced corresponding figures for shocks at t = 3
(not shown). The impact on the variance in that case is somewhat smaller and
less persistent.

5.4. Variance Decompositions

In this section, we use the model to measure the relative importance for the
variance of earnings, wages, and hours of the initial condition and shocks to
the autoregressive wage component, the i.i.d. hours shocks, the i.i.d. earnings
shocks, job changes and employment spells and the associated shocks, the per-
manent heterogeneity components μ and η, and the effects of education for
the white population. To do this, we first compute the variance of the sum of
the annual values of the levels of earnings, wages, and hours over a 40-year
career. We then repeat the simulation after setting the variance of the partic-
ular random component in the model to 0. We use the drop in the variance
relative to the base case as the estimated contribution of the particular type of
shock. Since the model is nonlinear, the contributions do not sum to 100% and
may be negative.44 We have normalized them to sum to 100. We report results

43We also computed, but do not report, the effects of shocks that occur when t = 3. The im-
mediate effect of unemployment on earnings and wages is somewhat smaller than when t = 10
because the decline in tenure and in υ is smaller. The effects are also less persistent. Job changes
accompanied by shocks to υ and to ξ also have less persistent effects.

44A few of the estimated variances contributions are, in fact, negative. We have verified that
variance in one shock can reduce the influence of other shocks. Variance in μ and in η increases
heterogeneity in turnover behavior, which tends to reduce the variance in the sum of earnings
and wages. On the other hand, the direct effects of μ on wages and hours and of η on hours
increases variance.
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(a) Response of cross-sectional variance of the first difference of log earnings to various
shocks at t = 10

(b) Response of cross-sectional variance of log earnings to various shocks at t = 10

FIGURE 4.—Panel (a) in the figure displays the response of the ratio of Var(earnit − earni�t−1)
to the baseline variance for the model, to various shocks that are imposed when potential expe-
rience t = 10. See note in Figure 3. Panel (b) displays the response of the ratio of Var(earnit ) to
the baseline variance for the model.

for the levels of variables, accounting for the experience profile in all variables.
The decompositions of the sums of the annual values of logs of earnings, hours,
and wages are similar (not reported). We use the parametric bootstrap distri-
bution of β̂ to estimate the standard errors of variance contributions, which
are reported in parentheses.

The results are in Table VI.A. The first row refers to the sum of lifetime earn-
ings. The earnings shocks εe

it account for only 5.9% of the variance in lifetime
earnings even though they account for about 15% of Var(earnit) in a given year
(Table VI.B). The reason for the relatively small contribution to lifetime earn-
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TABLE VI.A

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN LIFETIME EARNINGS, WAGE, AND
HOURS (IN LEVELS). BASELINE MODEL, FULL SRC SAMPLEa

I II III IV V VI VII VIII IX X XI
Contribution to Variance Breakdown of ‘Composite’

Variable εe εh εω Composite η μ EDUC ξ υ E JC

Lifetime 5.9 1.7 9.5 43.0 −4.7 15.9 28.7 8.4 33.9 1.5 −0.7
Earnings (0.3) (0.1) (1.0) (3.3) (2.0) (4.2) (2.2) (1.4) (3.3) (0.4) (0.3)

Lifetime 0 0 15.4 53.2 −6.0 4.7 32.7 0 52.8 1.2 −0.8
Wage (0.0) (0.0) (1.6) (3.4) (2.3) (5.0) (3.3) (0.0) (3.5) (0.4) (0.4)

Lifetime 0 3.6 0.5 58.9 1.5 32.9 2.6 54.2 1.2 3.6 −0.1
Hours (0.0) (0.2) (0.2) (10.1) (4.0) (11.3) (0.8) (9.8) (0.6) (0.6) (0.1)

aEntries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings,
wage, and hours, and are expressed as a percentage of the lifetime variance in the basecase. In the basecase, we simu-
late the full estimated model. To compute the contribution of a particular shock, we simulate the model again, setting
the variance of a given shock to zero for all t . We then compute the variance of the appropriate variables. The dif-
ference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions
do not sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of
the initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage
and hours components, employment and unemployment shocks, and job change shocks. In columns VIII through XI,
we decompose column IV. Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with
Var(ξ) set to 0, X the marginal contribution of unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI
displays the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment. The vari-
ance of the levels of lifetime earnings, wages, and hours are 560,278; 90,803; and 253,504,501, respectively. Bootstrap
standard errors are in parentheses.

ings is that the shocks are not very persistent. Similarly, the i.i.d. hours shocks
εh
it contribute only 1.7% of the variance in lifetime earnings but account for

between 6.2% and 7.5% of the variance in a year’s earnings (Table VI.B). One
can easily self-insure against these shock categories. In contrast, in column III,
the initial condition εω

i1 and the i.i.d. shocks to ωit are together responsible for
9.5% of the variance in lifetime earnings. The 9.5% figure reflects the fact that
these shocks account for 15.4% of the variance in lifetime wages.45 They con-
tribute little to the variance in hours because the response of hours to wages is
small.

The most striking result is in column IV, which shows the collective im-
pact of job-specific hours and wage components, unemployment spells, and
job changes. Altogether, mobility and unemployment-related shocks account
for 43.0%, 53.2%, and 58.9% of the variance in lifetime earnings, wages, and
hours, respectively. Given the interactions among the job change and employ-
ment related factors, we break down their relative contributions by first turn-
ing off the job-specific hours shocks, then turning off both job-specific hours

45The separate contributions of ωi1 and the shocks εω
it are 3.0 and 6.5 percent in the case of

earnings and 4.1 and 11.3 percent in the case of wages.
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TABLE VI.B

DECOMPOSITION OF CROSS-SECTIONAL VARIANCE IN EARNINGS, WAGE, AND HOURS IN
LEVELS AT DIFFERENT t (POTENTIAL EXPERIENCE). BASELINE MODEL, FULL SRC SAMPLEa

I II III IV V VI VII VIII IX X XI XII
Contribution to Variance Breakdown of ‘Composite’Variable/

Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC Variance

Earnings
t = 1 11.1 7.5 28.1 18.4 0.4 11.9 22.5 9.4 7.9 1.0 0 115�82

(0.4) (0.3) (3.2) (2.0) (0.4) (3.4) (1.2) (1.6) (1.5) (0.2) (0.0)
t = 5 14.6 6.2 19.3 29.3 0.5 10.0 20.1 8.6 21.5 0.9 −1.7 256�95

(0.6) (0.3) (1.7) (2.2) (0.8) (3.1) (1.2) (1.4) (2.2) (0.2) (0.2)
t = 10 15.5 6.7 14.6 33.9 −1.5 11.0 19.9 8.2 26.7 1.0 −2.0 447�63

(0.8) (0.4) (1.3) (2.6) (1.1) (3.2) (1.3) (1.3) (2.6) (0.3) (0.3)
t = 20 15.4 6.9 12.2 37.9 −2.1 10.5 19.1 7.3 30.4 1.2 −1.1 745�96

(0.9) (0.5) (1.2) (2.5) (1.5) (3.1) (1.4) (1.4) (2.6) (0.3) (0.2)
t = 30 14.7 6.6 10.9 39.9 −1.7 10.8 18.8 7.7 31.9 0.7 −0.4 796�75

(0.8) (0.5) (1.1) (2.6) (2.1) (3.2) (1.4) (1.3) (2.6) (0.2) (0.2)
t = 40 15.3 6.6 11.4 40.6 −1.8 9.0 18.9 7.6 32.9 0.3 −0.2 771�98

(0.9) (0.5) (1.2) (2.5) (2.1) (3.3) (1.4) (1.3) (2.6) (0.2) (0.1)

Wage
t = 1 0 0 52.0 15.9 0 4.0 28.1 0 15.9 0 0 16�54

(0.0) (0.0) (4.8) (2.8) (0.0) (4.2) (1.5) (0.0) (2.8) (0.0) (0.0)
t = 5 0 0 33.9 37.1 0.8 3.2 24.9 0 38.5 0.4 −1.8 34�39

(0.0) (0.0) (2.9) (2.8) (0.7) (3.8) (1.7) (0.0) (2.8) (0.2) (0.3)
t = 10 0 0 27.1 47.0 −2.3 2.9 25.3 0 48.1 0.8 −1.9 56�93

(0.0) (0.0) (2.4) (3.1) (1.1) (4.2) (2.1) (0.0) (3.0) (0.3) (0.4)
t = 20 0 0 21.8 52.5 −2.9 4.2 24.4 0 52.2 1.2 −0.8 94�33

(0.0) (0.0) (2.1) (3.1) (1.8) (4.0) (2.3) (0.0) (3.1) (0.4) (0.4)
t = 30 0 0 19.6 54.1 −1.4 3.8 23.9 0 53.5 0.9 −0.3 107�69

(0.0) (0.0) (2.0) (3.0) (1.9) (3.9) (2.3) (0.0) (3.0) (0.3) (0.2)
t = 40 0 0 20.4 54.2 −0.3 2.8 22.8 0 53.9 0.4 −0.1 116�95

(0.0) (0.0) (2.1) (3.0) (2.0) (4.0) (2.4) (0.0) (3.0) (0.2) (0.1)

(Continues)

and wage shocks, then turning off hours, wage, and unemployment shocks,
and finally turning off hours, wage, and unemployment and the idiosyncratic
job change shocks (εJC

it ). We choose this order because the employment transi-
tions and job changes that are induced by εEE

it � εUE
it , and εJC

it matter for variance
primarily because jobs pay different wages and require different hours rather
than because of the direct impact of unemployment and job changes on wages
and hours. The estimates are reported in columns VIII, IX, X, and XI. For
earnings, job-specific wage shocks are more important than hours shocks. Job-
specific wage shocks dominate for wages, while job-specific hours shocks dom-
inate for hours but also contribute 8.4% to the earnings variance. Some of the
changes in hours within and across jobs may be due to changes in preferences
and may not represent risk.
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TABLE VI.B—Continued

I II III IV V VI VII VIII IX X XI XII
Contribution to Variance Breakdown of ‘Composite’Variable/

Potential
Experience εe εh εω Composite η μ EDUC ξ υ E JC Variance

Hours
t = 1 0 29.6 0.9 47.7 2.9 15.2 3.8 36.8 0.2 10.7 0 356,086�27

(0.0) (1.4) (0.3) (5.7) (1.8) (5.0) (0.3) (5.6) (0.1) (0.4) (0.0)
t = 5 0 32.0 0.8 48.0 2.7 15.3 1.2 41.6 0.4 5.9 0.1 351,037�44

(0.0) (1.3) (0.2) (6.2) (1.6) (5.3) (0.4) (6.3) (0.3) (1.0) (0.0)
t = 10 0 32.4 0.6 48.3 1.9 15.9 0.9 42.1 0.3 5.7 0.2 372,140�59

(0.0) (1.4) (0.2) (6.3) (1.4) (5.3) (0.4) (6.2) (0.3) (0.6) (0.1)
t = 20 0 32.4 0.5 48.2 1.4 16.2 1.4 41.7 0.2 6.2 0.1 377,299�33

(0.0) (1.4) (0.2) (6.5) (2.0) (5.6) (0.5) (6.4) (0.5) (0.6) (0.0)
t = 30 0 33.5 0.7 46.7 2.9 15.0 1.2 43.3 0.3 3.1 0.0 352,501�77

(0.0) (1.5) (0.2) (6.4) (1.6) (5.5) (0.5) (6.4) (0.5) (0.6) (0.0)
t = 40 0 34.6 0.6 46.9 0.2 15.9 1.8 45.5 0.3 1.1 0.0 308,443�34

(0.0) (1.6) (0.2) (6.8) (2.0) (5.8) (0.5) (6.8) (0.4) (0.6) (0.0)

aEntries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage,
and hours for a cross section of simulated individuals with potential experience t . The contribution is expressed as
a percentage of the variance in the basecase. In the basecase, we simulate the full estimated model. To compute the
contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for
all t . We then compute the variance of the appropriate variables at the specified value of t . The difference relative
to the basecase is the contribution of the given shock. Since the model is nonlinear, the contributions do not sum
up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the
initial draw of ωi1 and the subsequent shocks εωit . Column IV is the combined contribution of the job match wage
and hours components, unemployment shocks, and job change shocks. In columns VIII through XI, we decompose
column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with Var(ξ) set to
0, X is the marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column
XI is the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment. Column XII
is the cross-sectional variance of simulated earnings, wage, and hours, across individuals with potential experience t .
Bootstrap standard errors are in parentheses.

Finally, we turn to the three permanent heterogeneity components for
whites: η, μ, and EDUC. Surprisingly, the estimates in column V indicate that
the mobility component η does not play much of a role. The point estimate
is actually negative. However, μ accounts for 15.9% (4.2%) of the variance in
lifetime earnings and 32.9% (11.3%) of the variance in work hours, but only
4.7% (5.0%) of the variance in wages. The positive direct effect that μ has on
the wage variance is partially offset by its role in reducing job changes and tran-
sitions into unemployment. Education is very important, contributing 28.7% of
the variance in lifetime earnings and 32.7% of the variance in lifetime wages,
but only 2.6% of the variance in lifetime hours. The combined variance con-
tribution of η, μ, and EDUC and the initial draws ωi1 and υi1 of ωit and υit is
55.3% for lifetime earnings, 44.6% for lifetime wages, and 39.5% for lifetime
hours.
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5.5. Sensitivity to Alternative Measurement Error Assumptions

In Appendix D of the Supplemental Material, we present model estimates
for alternative assumptions about measurement error. Relative to the standard
errors, the changes in the parameters of the EE, UE, JC, earnings, and hours
equations are minor. Most of the parameters of the wage equation are also
insensitive to the measurement error assumptions, but there are four impor-
tant exceptions. The coefficient δw

μ on the permanent productivity component
μ falls from .081 (.035) for the parameter values we chose to .017 when we use
the alternative, higher values of .130 for σmw and .121 for σmh. The decline in
the importance of the fixed heterogeneity term is accompanied by an increase
in ρυ from .691 (.049) to .782, an increase in συ1 from .165 to .243, a decline
in σω from .089 (.005) to .033, and a decline in the values of σw1 for the four
race-education categories. The net effect of these changes is to reduce the role
of the permanent productivity component and the persistent wage component
ωit in the variation of wages across people and the persistence over time. The
variance decompositions are qualitatively similar to the results for our assumed
values of the measurement error variances, but show a large decline in the im-
portance of μ and ωit that is balanced by a large increase in the importance of
shocks associated with job changes and employment transitions. The impulse
response functions of earnings, wages, and hours to various shocks are virtually
identical to those discussed above, with the obvious exception that the decline
in σω leads to a proportional decline in the effect of a one-standard-deviation
shock to ωit�

We strongly prefer the results based on the lower values for σmw and σmh.
Given that we do not find evidence of a unit root in the wage process, a value
close to 0 for δw

μ is implausible. For example, the substantial correlation across
siblings and between parents and children in wage rates conditional on edu-
cation and race points to a fixed heterogeneity component that is correlated
across siblings and across generations.46 However, it is important to emphasize
that most of our results are not sensitive to the measurement error assump-
tions.

6. RESULTS FOR LOW AND HIGH EDUCATION SAMPLES

Columns V and VIII in Table IV report point estimates of the baseline model
estimated on SRC subsamples of whites with a high school degree or less and
whites with more than high school education. We focus on whites to avoid
confounding the effect of education with the effect of race, given that blacks
tend to be less educated than whites. Results for all whites (not shown) are
basically similar to the results for the full sample.

46See Black and Devereux (2011) for a survey of the literature on family correlations in eco-
nomic outcomes.
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The point estimates are quite similar overall, given standard errors.47 How-
ever, a few differences are worth noting. First, mobility is much less sensitive
to seniority in the high education sample. Second, JC responds more posi-
tively to outside offers and more negatively to μ in the high education sample.
Third, the relative importance of μ and η in the EE equation is reversed in the
two subsamples. Fourth, unemployment is less common for the high education
sample. The decompositions of the experience profile of wages in Figures B.1
and B.2 of the Supplemental Material show more growth in υ with t in the
educated sample: .148 versus .114 after 35 years. Both σω and σω1 are consid-
erably larger for the higher education sample, and autoregressive parameters
ρυ and ρω are also larger. These differences result in a much larger contribu-
tion of ω to the variance of wages and earnings for the more highly educated.
The standard deviation of the i.i.d. component of hours is much larger for the
less educated sample (.17 versus .10), which probably reflects greater variation
in overtime hours and in unemployment spells. On the other hand, σξ is larger
for the high education group.

Figures B.3 through B.6 of the Supplemental Material report impulse re-
sponse functions for the two groups. They are similar to those for the full sam-
ple.

The variance decompositions show that shocks associated with mobility and
employment transitions play a key role in the variance of lifetime earnings,
wages, and hours for both samples (Tables B.I–B.IV of the Supplemental Ma-
terial). They account for 50.2% of variance in the sum of earnings for the high
education group and 42.4% for the low education group. The corresponding
values for wages are 56.2% and 66.6%. Employment shocks and i.i.d. hours
shocks are more important for the low education sample. The job-specific
hours component ξ is more important for the high education sample. The
persistent wage component ωit makes a big variance contribution in the high
education sample and a small one in the low education, while the roles are
reversed in the case of μ, which plays only a small role in the high education
sample. (The point estimate of the contribution of μ to the variance of wages
is actually a small negative.) Within-group variation in education is important
in the high education sample. Although we have focused on the percentage
contributions, it is important to point out that the variance of the sum of life-
time earnings is much larger for the high education sample: $990,304 versus
$140,540 in year-2000 dollars.

47We modified the bootstrap standard error procedure to avoid computational problems as-
sociated with the relatively small size of the low education and the high education subsamples.
Specifically, we computed each parametric bootstrap replication using double the size of the cor-
responding PSID subsample. The reported standard errors are

√
2 times the standard deviation

of the parameter estimates across the 300 bootstrap replications.
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7. A MULTINOMIAL MODEL OF EMPLOYMENT TRANSITIONS AND
JOB CHANGES

In this section, we replace the sequential model of employment transitions
and job-to-job changes consisting of equations (6) and (7) with a multinomial
choice model of the decision to stay in the current job, move to another job, or
leave employment. Let the latent variable EES∗ denote the value of remaining
employed in the current job relative to the value of unemployment:

EES∗
it = Xi�t−1γ

EES

X + γEES

TENTENi�t−1 + γEES

ED min(EDi�t−1�9)(19)

+ γEES

ws wages
it + δEES

υj(t−1)υij(t−1) + δEES

μ μi + δEES

η ηi

+ εEES

it given Ei�t−1 = 1�

The equation for EES∗
it has the cleanest interpretation if continuing with a firm

is entirely up to the worker. In reality, the coefficients capture both the effects
of variables on the worker’s valuation of the current job relative to unemploy-
ment and effects that operate through the worker’s net value to the firm. The
shocks εEES

it are also a mix of preference shocks and shocks to the productivity
of the job match that are not fully reflected in the wage. A large negative shock
to εEES

it could arise from a temporary labor supply shock or from a decline
in firm productivity that leads to a layoff.48 Employment duration and tenure
both capture state dependence that arises from locational decisions, arrange-
ments within the household, employment-based social networks, and other fac-
tors. In the case of employment duration, habit formation in work preferences
could play a role. In the case of TENi�t−1, part of the effect is the value of
tenure-related increases in nonwage fringe benefits, such as pensions and paid
vacation. Part is through the effects of TENi�t−1 on the layoff probability that
arise because firms share in specific human capital investments and/or follow
seniority-based layoff policies. Note that all of the determinants of wages

it are
allowed to have an independent influence on EES∗

it � with the exception of ωit�
which affects log wages in all jobs equally.

EEQ∗
it is the value of moving to a new job relative to the utility of unemploy-

ment:

EEQ∗
it = Xi�t−1γ

EEQ

X + γEEQ

TENTENi�t−1 + γEEQ

w′ wage′
it + δEEQ

υ′j′(t)υ
′
ij′(t)(20)

+ δEEQ

μ μi + δEEQ

η ηi + εEEQ

it given Ei�t−1 = 1�

where υ′
ij′(t) is a draw of the job-specific component for an alternative job j′(t)

in t and wage′
it is the value of wagelat

it evaluated at υij(t) = υ′
ij′(t) and TENi�t−1 = 0�

48It would be interesting in future work to expand the model to distinguish between quits and
layoffs on the basis of self reports.
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We include TENi�t−1 because it may influence the costs of changing jobs. The
coefficient δEEQ

υ′j′(t) allows υ′
ij′(t) to influence job-to-job mobility independently

of its effect on wage′
it .

49 The odds of actually getting an alternative offer are
reflected in the parameters.

The relationship between εEEQ

it and εEES

it depends on the relative importance
of transitory availability of job opportunities versus labor supply preferences
in determining the employment of male household heads at a point in time. If
labor supply preferences are key, then one would expect a positive correlation
between the two, since both compare the value of employment opportunities
to unemployment. However, if labor market frictions and job destruction is
important, then the two may be only weakly correlated. We assume that, for
male household heads, frictions dominate, so that εEEQ

it and εEES

it are uncorre-
lated. Keep in mind that both equations contain the permanent heterogeneity
components μi and ηi.

The indicator EES
it for whether the worker remains employed in his current

job is determined by

EES
it = I

(
EES∗

it > EEQ∗
it and EES∗

it > 0
)

given Ei�t−1 = 1�(21)

The indicator EEQ
i for whether the worker remains employed and moves to a

new job is

EEQ
it = I

(
EES∗

it < EEQ∗
it and EEQ∗

it > 0
)

given Ei�t−1 = 1�(22)

The indicator EEit is EES
it + EEQ

it . The indicator JCit for a job change condi-
tional on remaining employed is EEQ

it |EEit = 1. Since a job-to-job move in-
volves a comparison of EES∗ and EEQ∗ as well as a comparison of the value
of changing jobs to unemployment, variables and error components influence
EEit , EEQ

it , and JCit through both (19) and (20).

7.1. Results for the Multinomial Model

Appendix C of the Supplemental Material presents the results for the multi-
nomial model. Here we provide a few highlights. The predictions and fit of
the model to the PSID are similar to those for the baseline model. Both em-
ployment duration and tenure raise EE, and tenure has a substantial negative
effect on JC. The values of υij(t−1) and υ′

ij′(t) both increase the probability that
the worker remains employed. As in the baseline model, the probability that

49An independent effect should arise from at least two mechanisms. First, υ′
ij′(t) is job-specific

and differs in persistence from the other wage components. Second, to the extent that it reflects
match-specific productivity that is shared by the worker and firm, it will also be positively associ-
ated with the firm’s valuation of the match conditional on the wage and thus be negatively related
to the layoff probability. Workers should value the security.



1448 J. G. ALTONJI, A. A. SMITH, JR., AND I. VIDANGOS

an employed worker moves to a new job depends negatively on υij(t−1) and pos-
itively on υ′

ij′(t), but the effect of υij(t−1) is close to 0 and υ′
ij′(t) is relatively more

important in the multinomial case. Overall, the estimates of the response of
earnings, the wage rate, and hours to various shocks are very similar to those
for the baseline model. In particular, an unemployment shock leads to a de-
cline in log earnings of −�58 due to declines in both hours and wages. Hours
recover quickly, but the wage loss persists. The positive effect of an unemploy-
ment shock on the variance of the first difference in earnings is more persis-
tent in the multinomial model. General skill accumulation, job shopping (i.e.,
growth in υij(t)), and accumulation of tenure account for 81.0%, 7.3%, and
13.9% of the implied .819 increase in log wages over the first 30 years of a ca-
reer. The contribution of job shopping is smaller than in the baseline model
and seems implausibly low to us.

Qualitatively, the multinomial results are similar to those for the baseline
model, in that shocks associated with employment and job mobility play a very
large role. They account for 28.1%, 35.6%, and 53.6% of the variance of life-
time earnings, lifetime wage rates, and lifetime hours. These values are large,
but are smaller than the baseline estimates. On the other hand, the permanent
heterogeneity components η and especially μ play a more important role than
in the baseline model. The μ component accounts for 24.5% of the variance in
earnings, 14.6% of the variance in wages, and 22.4% of the variance in hours,
which compare to 15.9%, 4.7%, and 32.9% in the baseline. The larger contri-
bution of μ to earnings and wages stems from the fact that the factor loading δw

μ

on μ in the wage equation is larger in the multinomial model than in the base-
line model. The standard deviation of υij(t) is also smaller in the multinomial
case than in the baseline model, which helps explain the reduced contribution
of employment and job mobility.

8. CONCLUSION

In this paper, we study earnings across individuals and over careers. To this
end, we construct a model of earnings dynamics from equations governing em-
ployment transitions, job changes without unemployment, wages, and work
hours. Since both state dependence and heterogeneity are important and one
cannot determine the role of one without accounting for the other, our models
incorporate state dependence in employment, job changes, and wages, while
also including multiple sources of unobserved heterogeneity as well as job-
specific error components in both wages and hours. These turn out to play an
important role in the variance of lifetime earnings. The equations of our model
can be viewed as approximations to the decision rules suggested by structural
models of employment transitions, job search, and labor supply, while at the
same time providing a rich statistical description of the earnings process. Our
simulation-based estimation strategy permits us to handle a highly unbalanced
sample in the context of a dynamic model that mixes discrete and continuous
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variables and allows for both state dependence and multifactor heterogeneity
and for measurement error. Vidangos (2009) showed the potential for using
models of the type we develop by studying the implications of a related multi-
equation model of family income for precautionary behavior, welfare, and the
value of insurance within the context of a lifecycle consumption model.50

Our results address many important questions concerning wages, hours, and
earnings over a career. In accord with many other studies, we find that educa-
tion, race, and unobserved permanent heterogeneity all play important roles in
employment transitions and job changes, and that labor supply of male house-
hold heads is inelastic. By accounting for both unobserved individual hetero-
geneity and job-specific heterogeneity, we are able to show that a substantial
portion of the strong negative relationship between job seniority and job mo-
bility found in many previous studies is causal. Job changes are induced by
high outside offers and deterred by the job-specific wage component of the
current job. Job offers are strongly positively related to the job-specific com-
ponent of the current job, in contrast to the usual assumption in the search
literature that offers are drawn at random. The dependence may arise because
firms base offers to prospective new hires in part on wages in the prior firm,
because the job-specific component partially reflects demand shocks affecting
jobs in a narrowly defined industry, occupation, and region, and/or because an
individual’s job search network depends on the quality of his current job.

Overall, wages are highly persistent, but do not contain a random walk com-
ponent. The persistence results from permanent heterogeneity, the job-specific
wage component, and strong persistence in the stochastic component that re-
flects the value of the worker’s general skills.

We also contribute to the displaced workers literature by providing a full
decomposition of earnings losses from unemployment. Short-term earnings
losses from unemployment are dominated by hours and long-term losses are
dominated by wages, with lost tenure, movement to a lower-paying job, and
a drop in the autoregressive skill component all playing a role. We find gen-
eral human capital accumulation is the dominant source of wage growth over
a career, although job tenure and job mobility both play significant roles.

Finally, job mobility and unemployment play a key role in the variance of
career earnings. They operate primarily by leading to large changes in job-
specific components of wages and hours rather than through their direct ef-
fects on wages and hours. For whites in our full sample, job-specific hours
and wage components, unemployment shocks, and job shocks together ac-
count for 43.0%, 53.2%, and 58.9% of the variance in lifetime earnings, wages,
and hours, respectively. Job-specific wage shocks are more important than
job-specific hours shocks for earnings. Job-specific wage shocks dominate for
wages, while job-specific hours shocks dominate for hours. Education accounts

50He allowed for additional sources of variation in family income, such as health and disability
shocks, but used a simpler model of job mobility. See also Low, Meghir, and Pistaferri (2010).
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for about 30% of the variance in lifetime earnings and wages, but makes little
difference for hours. The combined variance contribution of variables deter-
mined by the first year of employment (η, μ, and EDUC and the initial draws
ωi1 and υi1 of ωit and υit) is 55.3% for lifetime earnings, 44.6% for lifetime
wages, and 39.5% for lifetime hours.

There are a number of extensions to the model that would be worth explor-
ing. Thus far, we simply remove year effects from wages, hours, and earnings,
but it would be natural to add aggregate shocks to the model. It would also
be natural to extend the model to explore changes in the stability of earnings,
building on work by Gottschalk and Moffitt (1994, 2008), Haider (2001), Shin
and Solon (2008), DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013),
and others. This would require a very different auxiliary model. With matched
employer-employee data such as those used by Abowd et al. (1999) and Bagger
et al. (2011), one could distinguish firm-specific risk associated with observed
as well as unobserved variables from job-match-specific risk. A much more am-
bitious extension would be to construct a model of the household income of an
individual that incorporates marriage, divorce, and death of a spouse. This will
be pursued in separate work.

Given the large number of issues that the paper already addresses, we do not
attempt the formidable task of seeking to identify how much of the stochastic
variation in earnings that we analyze is anticipated by agents, how far in ad-
vance they anticipate it, how much is insured, and how much is an endogenous
response to changes in opportunity sets or preferences. Adding a family income
model (with private and public transfers), as in Vidangos (2009), gets partially
at the question of insurance. Dealing with expectations is more difficult. One
needs either data on expectations or an expanded model that incorporates de-
cisions that depend on and/or reveal the information set of the agent, such
as consumption choices. Work by Blundell and Preston (1998), Blundell, Pista-
ferri, and Preston (2008), Cunha, Heckman, and Navarro (2005), and Guvenen
and Smith (2010) illustrate the latter approach. A fully structural model that
incorporates search frictions and hours constraints is probably needed to sep-
arate the role of preferences from labor market constraints.

APPENDIX A: DECOMPOSING CAREER WAGE GROWTH INTO THE
EFFECTS OF GENERAL HUMAN CAPITAL, TENURE, AND JOB SHOPPING

Let wageo
it ≡ (wageit −δw

μμi−γw
BLACKBLACKi−γw

EDUCEDUCi). Wage growth
over a career is the sum of the effect of general human capital accumulation,
the accumulation of job tenure, the gains from job shopping, and the cumula-
tive effect of unemployment shocks on the general wage component ωit . That
is,

E
(
wageo

it |t
) = [

tγw
t + t2γw

t2 + t3γw
t3

] + E
(
P(TENit)|t

)
γw

TEN

+ E(υij(t)|t)+ E(ωit |t)�
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where the terms are implicitly conditional on employment Eit = 1, [tγw
t +

t2γw
t2 + t3γw

t3] is the value of the general human capital cubic polynomial in po-
tential experience t, E(P(TENit)|t)γw

TEN is the expected value of the tenure
polynomial, and E(υij(t)|t) and E(ωit |t) are the expected values of the job
match and general productivity components. We use simulated data from the
model to compute the values of E(ωit |t), E(υij(t)|t), and E(P(TENit)|t)γ̂w

TEN,
where γ̂w

TEN is taken from Altonji and Williams (2005). Figure 1 graphs

E
(
wageo

it |t
)
�

[
tγw

t + t2γw
t2 + t3γw

t3

]
�

E
(
P(TENit)|t

)
γw

TEN� and E(υij(t)|t)�
with value at t = 1 set to 0 in each case. E(ωit |t) takes on the values −�008,
−�016, −�024, −�020, and −�012 when t is 5, 10, 20, 30, and 40, respectively. It
is not displayed to reduce clutter.

The above calculations include both employed and unemployed individu-
als and thus reflect actual wages for the employed and the “latent” wage
for the unemployed, for whom TENit is 0. The values of E(ωit |t�Eit = 1),
E(wageo

it |t�Eit = 1), [tγw
t + t2γw

t2 + t3γw
t3], E(P(TENit)|t�Eit = 1)γw

TEN, and
E(υij(t)|t�Eit = 1) are very similar to unconditional values and are not reported.
The small differences reflect the fact that the distribution of ωit , υij(t), and
TENit at each value of t is related to employment status. Note that part of the
relationship between t and wages in panel data restricted to employed work-
ers is due to selection. The positive dependence of employment on the wage
means that selection into employment on μ, υ, and ω varies slightly with expe-
rience. For example, E(ω|t�Eit = 1) declines by −�01 over the first 10 years and
−�016 over the first 30 years. Our estimates of the experience profile account
for selection bias stemming from all of the error components.
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