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BY PER KRUSELL, BURHANETTIN KURUSCU, AND ANTHONY A. SMITH, JR.

GENERAL FRAMEWORK FOR THE PROOFS OF PROPOSITIONS 1-3

Letting i(cy, ;) = u(cy, c2) + v(cy, ¢z), the first-order conditions for the
competitive consumer’s maximization problem are given by

(14 1) (ci, ) =nin(c, ;) and
(14 7)v1(C1, &) =102(C, G,
where
a=nrnkit+w +s—A+1)k,, < =nrk,+w,
51=r1k1+w1+s—(1+7i)1;2, and

62 = r2k2 + w;,.

_ Using the first-order conditions of the consumer, it is easy to show that ky >

122 and u(cy, 2) — v1(G, &) = uy(cy, ) + vi(er, &) — vi(6y, &) > 0. We will
use these below. The value function of the representative agent is given by

U(ky, P, 7)) = it(riky 4wy — ky, roky +wy)
—v(riky 4wy + 7i(ky — k) — kg, aky + w,).

Differentiating the value function with respect to 7; and using the consumer’s
first-order conditions, we obtain

d =1u(c c).d_]€2 i (cr, C) d”zlz dw,
dr, N g TR N g T
T I 7 dl; - . dr, = dw
_UI(C1’02){k2_k2+TidT?}_v2(01’62)<d72;k2 dr?)'

PROOF OF PROPOSITION 1: In partial equilibrium, 92 = 0 and 42 = 0.
Therefore, we obtain

du o k - =
= (it (c1, &) — 01(&1, &) Tim— — 1(E1, E)ky — ko).
dTl' dTi
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Since k, > kz and it;(¢1, ;) — v1(¢4, G) > 0, then < 0 for all 7; > 0. There-
fore, the optimal tax rate has to be negative. Q.E.D.

PROOF OF PROPOSITION 3: In this case, d’Z kz + d"’z =w (ky) + ¥ (k))k, =0
and d’2 k2 + d“’2 =r (kz)(kz kz)%. Using these relatlons,

au _ . dk
dr. = (U1(cy, ) — vi(C1, &) T de
Y T = - e = dr(k
—v1(C1, O ky — kol +v2(61, G) (ky — k2) (7_2)
i} - dk,
= (w1 (1, €2) =01 (C1, €2))Ti——
dr(k
+on(en etk - B MRS -1,

where MRS = ”ZE? CZ;, where MRS denotes “marginal rate of substitution.”
Taking the derivative of the first-order condition for the actual choice with
respect to 7;, we can show that % < 0. We will show that 1 — hﬁﬁ/sd;(—fiz) >
0. This implies that Z—Z < 0 for all 7; > 0. Thus, the optimal tax is negative,
tEa\lt/is, 7; < 0. To show this, note that in equilibrium, r(l%z) x MRS = r(l%z) X

MRS =1 + 7;,, where MRS = 2.2 Therefore, it is enough to show that

uy(ci )"

1-— MRSdrd(—f?) > (. Taking the derivative of r(l%z) x MRS =1 + 7; with respect
to 7,, we obtain 1 — MRS d’(k” dMRS r(kz) Given that MRS = % and

‘fl—ﬁ? < 0, it is then clear that % > 0. Q.E.D.

PROOF OF PROPOSITION 2: In this case, %2 =0, k; =0, k, =0, ¢; = wy, and
¢, = w,. Given these, we obtain

W enenn®® |-kt n 2] e, en i
dTi_ll,ledT,- 1(C1, G2 ledT,- 21,2di2
) _ . dk
:(u1(cl,Cz)—v1(cl,cZ))T,-d—2
Ti

+ 'U](Cl, Cz)k2 (1 — MRSZrZ)

Ti

The key difference between the previous case and this one is that the consumer
consumes his endowment, that is, MRS = 2222 Therefore, 488 = 0, which

ity (wy,wy)



TEMPTATION AND TAXATION 3

implies that 1 — MRS‘”2 = 0. Second, ‘”‘2 = 0. Thus, we obtain that 4¥ =0

independent of 7;, Wthh implies that the consumer is indifferent to any T
Q.E.D.

For the proof of Proposition 4, see the proof to Proposition 8, which studies
a T-period economy with logarithmic utility.

PROOF OF PROPOSITION 5: The problem of the consumer can be written as

-0 1-o

C
L 4+ 8(1+ By)-—=2
— o 1—

Uk, ki, 7) = max(1 + y) f
C1,C2

~1—o ~l—o
_y|:max G + 6B e :|

C1,C) 1-— g 1-— g
s.t.
G+ — (1+Tz)—7”(k1)k1+w(kl)+s+ wik 2)(1+7i)=Y
”(kz) r(ks;
The first-order conditions are
L, 81 +By) rk) _, o etk
¢’ = 5y 1+TiC2 and ¢ =6,81+Tic2 .
\ﬁf—d
mky,mi)
This implies
Y
T Tet4n]” and
Y - _
1 k ; (1-0)/o
+ |: 1 + y ] [m( 2, T )]
S(1+By) - G
C = [Tliym(kz, Ti)] C1,

; Y
1+ (81 m(ky, 7))

and ¢, = [5,3m(k277'z)] /Ucl-

From these expressions we obtain

SA+BNT o e
1+|:ﬁi| [m(kz, 7i)]

€ L+ (881 [m(ks, )]0/
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and
& [B(l+v)]“"51 [B(1+7)}”"
= — =X = X1.
C 1+ﬁ'}’ o] 1+B’y

Then we can write the objective function of the government, inserting the ex-
pressions above, as

1-o 1-o

Ui, k)= (1+7) fl +6(1+ By) -2

(:;1—0- E]—(r
—y|—+8(1+ By
l1-0 1-0o

1-0o 1-0

1—0' 1—0'
+7[(1—x1 T +(1—x§ )oB U]
where

a=0—dk +flky)—k, and ¢, =1 —d)k,+ f(k).

Taking the derivative of the objective function with respect to 7; and inserting

dxy _ rBd+y) l/adxl
i = v oy ] , we obtain

d

151,7'[)

dk
=[—c"+ 67’(k2)c"’]—2
dr;

+y[—(1 = x1"9)e; 7 + (1 — x17)8Br(ky)c;
_ B+ . ]dx

_ o l-0 /A 7 o, l-0
y|:x1 —|—8,8|: 1+B7’i| x5,7¢, ar

Let 7} be the tax rate that maximizes the commitment utility. Then 7} will
generate the condition

;7 = 8r(ky)c”.
Using the first-order condition ¢; " = Mm(lzz, T;)¢, 7, this implies

I4+y
(1+By)

T m(ky, ) = r(k,).
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It is easy to see that ﬁ U(l%l, 121, 1) =0 at ¢ = 1. Thus the subsidy that maxi-

mizes utility under logarithmic utility is the same as the subsidy that maximizes
the commitment utility.
We now characterize the condition under which

d

Ti

U(ky, ki, 75) <0 for o>1

holds, so that for o > 1, the optimal subsidy is larger than the optimal sub-
sidy that maximizes commitment utility. To do this, we take the derivative of
%U (k1, k1, T7) with respect to o and evaluate at o = 1. If the derivative is

negative at o = 1, then %U(l%l, ki, 1) < 0 for ¢ marginally above o = 1. If
the derivative is positive at o = 1, then ﬁU (ky, ki, 77) > 0 for ¢ marginally
above o =1.

First, for later use, we compute the objects

1 L ey, -2
(o

d’T,‘
3(1+ 897" ]
_~ 7 —[8B81Y° _
|: I+y :| [oF] dm(k,, ;)
[1+ [8B1Yo[m(ky, )10 -/7 2 di
zl—oHﬂm@bﬂ%
o dr;
de _ B(l + ’)’) Ve dX1
d’T,‘ o 1 + ,3’)’ dT,' ’
and
- _ 6(1—-p)
H :1 = k s Ti 1 .
o =) =lmlee, )1 7S
Second, to find ‘(%, take the derivative of the expression ¢, = %ﬁ” X
m(l%z, 7:)c, 7 with respect to 7; to obtain
] 51+BY) ., )
dk2 . 1 + Y 2 dm(kZ’ Ti)
o S(1 _ _ ,
a |:0'cl_g_1 + 062—0—17( +By) m(k, Ti)’”(kz)] dri
1+
dm(ks, )

= 113
dT,‘



6 P. KRUSELL, B. KURUSCU, AND A. A. SMITH, JR.

We know that % < 0 and thus W < 0 too. Moreover, H (o = 1) =
d4+By) __«a

14y or(ky)[14+1/81°

At o =1, we have that

1+y+38(1+By) and 10— B 1+vy+6(14+By)
(1+v)(1+8B) T1+By (1+6B)

X1 =

. . . d T T
Using the expressions above, we can write p U(ky, ky, 7)) as

d L. I *
d_’TlU(kl’ kla Tl')

dm(ky, 7;
=y[~(1—x1") + (1 —x} ”)B]Hzc;”%
1
K1 K1y
l1-0o
e
ag
——
Kn
o so[BAENT 7 (100 g, - 42 0k2, 70)
x[x1 +8ﬁ[ 17 By :| [67(k2)] Hic ar, .

Ky

Take the derivative of ﬁ Uk, ki, 7F) with respect to o to obtain

d[ d
dO' |:dTl U(k1> k]a T; )]

dK, dKy, dKy dK»
=K K - K
"do tRe do do do

If we evaluate this expression at o = 1, we obtain

d[ d - - 1
_|: U(khklaT;‘k)]_
Y

do d'T,'
_ dKn dKZl
=Ko do K do
_(A+By 8 dm(ky, 7)) dKyy
1+vy orky)[1+8] d do
8(1-B) dm(ky, 7)) dKy

_ iy, mypt Gk, 1)
1+7+8(1+By)[m( 2 7o)l dr; do’
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dK21 dKM

=—— and

Aty
1+By

d[ d
d0'|:d U(klakl’T ):|

:dm(kai) o1+ Bvy)
dri (14 y)r(ks)
B 1+vy+56(1+pBy)
X[<Blog[1+ﬁv (1+0B) ]

o [1+7+8(1+BV)D L (1-p8) }
A+yA+8B) JJ[1+8] 1+y+8(1+By)]

where
serting m(kz, T,) =

= Blog(x,) —log(x,). Evaluating at o = 1 and in-
r(kz), we obtain

Since d’"(k2 ™ <, if

(Blo[ B 1+7+6(1+B7)]
8158y  (d+op)
| [1+'y+6(1+ﬁv)]> 1 (1-8)
—log >0,
A+v)(1+9B) [1+6] 14+vy+00+By)

then el b <y (k " kl, T} 1+ 5 < 0 at o = 1. Therefore, it is optimal to increase the

sub51dy for o > 1 if this condition above holds.

; _ BU+y+5(1+B8)) 14+y+5(1+8)
(1T<;)(slhc3))w that it holds, let ¢ (B, v, 8) = B log(m) —log(m) +
—-B)(1+

Tt First, it is easy to show that lim,_. ., ¢(8, v, 6) = 0. Second, we show

that %j"s) < 0 for all B, 6 < 1, which implies that ¢(8, v, §) > 0 for all finite
vy>0andB,86 <1:

(I+6B)(1+By)— B +v+o(1+ By))
de(B,v,90) _ B (1+By)?
dy 1+vy+6(1+By)
1+ By
I+ +y)—(1+y+o(l+By)
(1+vy)?
1+vy+6(1+ By)
1+vy
_(1=-pA+8)1+8B)
(I+7y+8(1+By))?
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_ 1-B
T 14+ y+8(1+B8y)
X{ B 5 (1+8)(1+55)}
1+By 1+y 14+4y+86(1+By)
_ 1-B
S 14+ y+8(1+By)

X{B+By+8+637_1+8+8ﬁ+82,8}
1+y+By+By* 1+y+8+88y ]

The numerator of the term in curly brackets is

=[B+By+ 5+ 0BYl+I[By+ By + 8y + 8By’
+[8B + 6By + &% + 6°BY]

+[8B8%y + 8By’ + 8’ By + 8° B>y’

—[1+6+8B+ 8Bl — [y + 8y + 8By + 8By

—[By + 8By + 6B°y + 8°By]

—[BY’ + 8By + 6B’y + 8°B*Y’]
=B+By+8+6By—1-86B—y—-&p%y
=B-D+8A-B)+y(B—1)+8&By(1—-p)
=(1-pI&+ 8By —1-7]
=(1-PB)I81+By) — A+l

Using this expression in “£:22) we obtain

de(B, v, 0) _ (1-pB)? 1+ By)—1+y)
dy 14+y+8(1+By)> A+yA+By

Note that §*(1+ By) <1+ yforall 8, B < 1. As a result, %’yy”s) < 0 forall 6,
B<1.

Next, we show that - ZEZEZ;;)LM > 0. For this purpose, let k,(7;(c)) be
the competitive-equilibrium savings associated with the optimal tax policy
7:(0) and let k5(o) be the commitment savings for a given o. We show that
L (ky(1i(0)) — k5(0))|o=1 > 0. Thus, the competitive-equilibrium savings un-
der the optimal policy is higher than commitment savings when o is marginally
higher than 1. To see this, first consider the consumer’s optimality conditions
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under commitment and in competitive equilibrium.

of ' (k3(a)) <y}(;§7k(§(£;r)))“ =1 under commitment,
o(1+ By)

(I+y)(1+7(0))

% <YI — ky(7i(0))

[ (ky(1:i(0)))

We can rewrite this problem as

f,(kZ(Ti(O')))
) =1 in competitive equilibrium.

F(ki(o),0)=1 under commitment,

(1+8v)
1+y)A+7i(0)

F(ki(o),0)=1 incompetitive equilibrium,
where F(k,, 0) = Sf’(kz)(%)”. We know that
k5(1) = ky(7:i(1)),
(1+By) _
A+yA+7(o)
(1) <O0.

Next, take the derivative of the commitment and competitive-equilibrium
optimality condition with respect to o to obtain

dks(o)| Bk, D
do |, Fi(ks(),1)°
dka(ri(o) | __Fle@d), D - nMF k(). 1)
do |, Fulk(n),D) - (0+nd)Fk(n),1)

Since k5(1) = k,(7;(1)), taking the difference yields

y L.  H()Flha(r (1), 1)
o femion — ksl = e D

Note that 7/(1) < 0 and it is easy to see that F;(k,(7;(1)),1) < 0. As a re-

sult, 7 (k2 (7i(0)) —k5(0))|p=1 > 0. This directly implies that ;- (275, >

0. Q.E.D.

PROOF OF PROPOSITION 7: To prove this proposition, we solve the con-
sumer’s problem backward, find her optimal consumption choices, and use
those decision rules to obtain her value function.
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Problem at time T — 1: The consumer’s problem reads

max (14 y)log(cr_1) + 6(1 + By)log(cr)

CT—1-¢T

— v max log(¢r_;) + 6B log(cr)

CT-1-¢T

subject to the budget constraints

cra+ A+ 7ir)kr= ”(lzrq)kr +w(kr)+sr and
cr=Yr= r(];T)kT + w(l;T)~

The rest-of-lifetime budget constraint is thus

1+T,‘ _ = -
cro1+ CT+T1 =r(kr—)kr— +w(kr_y) + sr-1
r kT)
- 14T
+wlky) —=———=Y7r_,.
r(kr)

The first-order condition is —— = 23489 1) L ‘Inqerting ¢y into the rest-of-
cr_1 1+y 1+Ti,T—1 cr

lifetime budget constraint, we obtain

Cro1 = I+y and
T Iy e+
o 4By rkp)
! 1+y+6(1+By) 1+ 717 =
This implies
i 1 i 88 r(kr)
Croi=——Yr; and ¢p= Yr ;.
T-1 1+5’8T1 T 1—|—5,81—|—T,-,T,1T1

Notice that the ¢ and the ¢ are constant multiples of each other. As a result,
the value function becomes

Ur_i(ky_q, IET,l, 7) =log(cr_1) + &log(cr) + a constant.

Now rewrite the value function in period T — 1 to be used in the problem
of the consumer in period 7" — 2 by inserting the consumption allocations as
functions of Y;_,. This delivers

Ur_i(kr1, kr_1,7) = (14 8)log(Yr_y) + 8log(r(kr) /(1 + 7ir1))

+ a constant.



TEMPTATION AND TAXATION 11

Problem at time T — 2: Using the T — 2 budget constraint and the rest-of-
lifetime budget constraint at time 7' — 1 for the consumer, we obtain the rest-
of-lifetime budget constraint at time 7' — 2 as
1+ 772

Cr_r+ =
"~ r(kr—y)

Yroi=Yr,

=r(kr_)kr— +wkr_y) + 572
w(kr_1) + 571
r(kr_1)
w(kr)
r(kr_)r(kr)

The objective of the government is to maximize

A+7ir)

A+7ir2)A+7i7-0).

max (1+vy)log(cr—,)

cr—2,Yr1

r(kr)

1+ 77

+8(1+By)|:(1+8)log(YT_1)+8log< >+ aconstant]

—+v max log(¢r_n)
er—2,Y7-1

r(kr)

1 Ti,T-1

+ 68 |:(1 +6) log(f’T_l) + 810g( ) + a constant].

The first-order condition is

1 80+8)1A+py) rtkr) 1
cra 1+ T+7i72Yr

Using the budget constraint, we obtain

Crr = 1+ Y. and
Ty +8(1+8)1+8y)
S(1+8)+By)  rlkr)
T-1 T-2-

T 1ty +o(l+0) 1+ By) 1+ Tir

Inserting Y7_; in terms of c¢y_; into the consumer’s problem, we obtain the
Euler equation

1 8(1+8)(A+By) rlkry) 1
cra l4+y+8(1+By) 1+ TiT—2 Cr1
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The temptation allocations are given by
¢ ! Y and
Croa=————"=Y7_

T-2 1+8,8(1+3)T2
g _ B+ rlkr)
T8+ 8) 1+ Tirs

The objective function of the government is

T-2-

Ur_o(kr-a, 12772, 7;) =log(cr—2) + 6(1+ 86)log(Yr_1)

+ &2 log<7r(kT)

) + a constant.
1+7ir

Since cr_; is a multiple of Y;_; and cr is a multiple of (lff—zl)YT,l, by insert-
ing them we obtain ’
Ur_o(kr-a, 12772, 7;) = log(cr—,) + 6log(cr-1)
+ 8”log(cr) + a constant.
Problem at T — 3: The first-order condition for the consumer is
1 8(1+8+8)(1+py) rtkrs) 1
crs 1+ 14773 Y7

81+ 8+ U +By) rlhkro) 1
14+ y+ 80+ +BY) 1+ Tir 30

Ur_s(kr_a, k3, 7) = log(cr_3) + 8log(cr_»)
+ 8%log(cr—1) + log(cr) + a constant.

Continuing this procedure backward completes the proof. Q.E.D.

PROOF OF PROPOSITION 9: We solve the problem of the consumer and find
tax rates that implement the commitment allocation. Proposition 6 implies that
the problem of a consumer at age ¢ is given by

1-o

C
max ! + 8BUt+1(Yt+1)

¢, Yy 1 — g

subject to

1+’T,"t

T

¢+ Y=Y,



TEMPTATION AND TAXATION 13

where

l—u'

UI(Y)_

s 0BU 1 (Yinr).

We guess and verify that U, (Y;) = b,~—, where by = 1. The optimality con-
dition for the consumer is given by

=8Bbi1——— 1 + ™ — Y.

Inserting this into the budget constraint, we obtain

Y,

€= r (1-0)/o
1 S o t+1
+ (6Bb.11) <—1 n Ti,t)
( 1/o
‘SBbz+l ) Yt
1 +
Y=

" (1-0)/o *
14 (8Bby, )V [ L
+(8Bb:11) (1_'_7_”)

Using these decision rules, we obtain

1+7it

(1-o)/o\ 1-0
1+ (88by, 1)@
(1+@Bbenn (=) )

Note that the optimality condition for the consumer can be written as

o = B2 (14 oy ()Y e
' t+11+ » +2 1+ 7o +1°

1 o Feit (1-0)/o
1+ E(ﬁﬁbm) —

t=

(1-0)/o
8Bb..)"" [ — 22— )
-0 B ﬂ( B H—Z) (1 + Tl t+1 —0

+ T 7, (1-0)/o +1°
1+ (5,3bz+2)1/"<1+—:_2>
it+1
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To implement the commitment allocation, the government should set

1 ) (I-o)/o
1+ E(S,Bbwrz)]/a <L)

B 1+ 70 .
T+, e OO
T 14 (8Bb )V ;)
(2Bbr12) <1+’Ti,t+1

where r, for all # is the equilibrium interest rate that arises under commitment,
that is, r, = r(k,).

The recursive formulas for b, and 7;, jointly determine the sequence of
optimal tax rates. We solve these formulas backward noting that by =1 and
bT+1 =0. ThUS, TiT-1 = B —1 and bT—l =

H_al/ar(l*ff)/v . .
W. Contlnulng back-
(1+B8%ry )

1- 1-

51 bT L= 1*‘31/”"(1‘710)/”(1+51/”’(T rr)/tr)

d-0)/a > -2 =
1+p8Yory,

B—1
TiT-3 = = - -
1 + ,8(61/0—7';-_10)/0— + 62/07’;_10-)/07’; 0’)/0')

ward, we obtain 7;r_, =
’ T2 A+ps1o =1 (14510 /1=y 1-07

b

and
1- 1— 1—
TiT—4 = (B _ 1)/(1 4 B(Sl/ar(Tizo')/(r + 82/07’;72”)/”}”;-710)/0
3/0,(-0)/o (1—0)/o (1-0)/c
+ 87, sy Ty ))

One can notice the pattern in the expressions above, which implies the optimal
tax for period ¢ is given by

B—1
T m _
1+B Z (al/o)mf(ﬂr]) l_[ r(kn)(17”>/”

m=t+2 n=t+2

Ti,t =

We can also show that as T — oo, the optimal tax rate converges to a nega-
tive value. To see this, let {c{};°, be the consumption sequence associated with

the commitment solution. Inserting the commitment Euler equation C’L—tl =
t
(6r.41)"7 into the tax expression, we obtain

B—1
Tijt = c c c .
B [c C c
+2 143 T
1+c—|:—+—+"'+—:|
CiraLT+2  Teg2li43 Tepoley3...I'r
Note that
ct c cs
c 42 +3 T _Vy¢
Ct+1+—+—+"'+7—y,+1,

Tiyo o Teoligs Teoleg3 oo I
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where Y7 is the lifetime income at time ¢ associated with the commitment so-
lution. Thus, the optimal tax rate can be written as

1 Cii
(B— )Y—C

t+1

Tit =

1-p)

Crit ’
Y¢ +B

t+1

Note that since c;,,/ Y/, > 0 for any ¢ and T, we obtain that 7;, < 0 for all ¢.
Moreover, since the equilibrium allocation under the optimal tax sequence
is the same as the allocation associated with the commitment solution and
since self-control cost is zero, the optimal tax policy delivers first-best wel-
fare. Q.E.D.
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