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GENERAL FRAMEWORK FOR THE PROOFS OF PROPOSITIONS 1–3

Letting ū(c1� c2) = u(c1� c2) + v(c1� c2), the first-order conditions for the
competitive consumer’s maximization problem are given by

(1 + τi)ū1(c1� c2)= r2ū2(c1� c2) and

(1 + τi)v1(c̃1� c̃2)= r2v2(c̃1� c̃2)�

where

c1 = r1k1 +w1 + s − (1 + τi)k2� c2 = r2k2 +w2�

c̃1 = r1k1 +w1 + s − (1 + τi)k̃2� and

c̃2 = r2k̃2 +w2�

Using the first-order conditions of the consumer, it is easy to show that k̄2 >¯̃
k2 and ū1(c1� c2) − v1(c̃1� c̃2) = u1(c1� c2) + v1(c1� c2) − v1(c̃1� c̃2) > 0. We will
use these below. The value function of the representative agent is given by

U(k̄1�P� τi) = ū(r1k̄1 +w1 − k̄2� r2k2 +w2)

− v(r1k̄1 +w1 + τi(k̄2 − ¯̃
k2)− ¯̃

k2� r2
¯̃
k2 +w2)�

Differentiating the value function with respect to τi and using the consumer’s
first-order conditions, we obtain

dU

dτi
= ū1(c1� c2)τi

dk̄2

dτi
+ ū2(c1� c2)

(
dr2

dτi
k̄2 + dw2

dτi

)

− v1(c̃1� c̃2)

{
k̄2 − ¯̃

k2 + τi
dk̄2

dτi

}
− v2(c̃1� c̃2)

(
dr2

dτi

¯̃
k2 + dw2

dτi

)
�

PROOF OF PROPOSITION 1: In partial equilibrium, dr2
dτi

= 0 and dw2
dτi

= 0.
Therefore, we obtain

dU

dτi
= (ū1(c1� c2)− v1(c̃1� c̃2))τi

dk̄2

dτi
− v1(c̃1� c̃2){k̄2 − ¯̃

k2}�
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2 P. KRUSELL, B. KURUŞÇU, AND A. A. SMITH, JR.

Since k̄2 >
¯̃
k2 and ū1(c1� c2) − v1(c̃1� c̃2) > 0, then dU

dτi
< 0 for all τi ≥ 0. There-

fore, the optimal tax rate has to be negative. Q.E.D.

PROOF OF PROPOSITION 3: In this case, dr2
dτi

k̄2 + dw2
dτi

= w′(k̄2)+ r ′(k̄2)k̄2 = 0

and dr2
dτi

¯̃
k2 + dw2

dτi
= r ′(k̄2)(

¯̃
k2 − k̄2)

dk̄2
dτi

. Using these relations,

dU

dτi
= (ū1(c1� c2)− v1(c̃1� c̃2))τi

dk̄2

dτi

− v1(c̃1� c̃2){k̄2 − ¯̃
k2} + v2(c̃1� c̃2)(k̄2 − ¯̃

k2)
dr(k̄2)

dτi

= (ū1(c1� c2)− v1(c̃1� c̃2))τi
dk̄2

dτi

+ v1(c̃1� c̃2){k̄2 − ¯̃
k2}

{
˜MRS

dr(k̄2)

dτi
− 1

}
�

where ˜MRS = v2(c̃1�c̃2)

v1(c̃1�c̃2)
, where MRS denotes “marginal rate of substitution.”

Taking the derivative of the first-order condition for the actual choice with
respect to τi, we can show that dk̄2

dτi
< 0. We will show that 1 − ˜MRS dr(k̄2)

dτi
>

0. This implies that dU
dτi

< 0 for all τi ≥ 0. Thus, the optimal tax is negative,

that is, τi < 0. To show this, note that in equilibrium, r(k̄2) × MRS = r(k̄2) ×
˜MRS = 1 + τi� where MRS = ū2(c1�c2)

ū1(c1�c2)
� Therefore, it is enough to show that

1 − MRS dr(k̄2)

dτi
> 0� Taking the derivative of r(k̄2)× MRS = 1 + τi with respect

to τi, we obtain 1 − MRS dr(k̄2)

dτi
= dMRS

dτi
r(k̄2)� Given that MRS = ū2(c1�c2)

ū1(c1�c2)
and

dk̄2
dτi

< 0, it is then clear that dMRS
dτi

> 0. Q.E.D.

PROOF OF PROPOSITION 2: In this case, dw2
dτi

= 0, k̄1 = 0, k̄2 = 0, c1 = w1, and
c2 =w2. Given these, we obtain

dU

dτi
= ū1(c1� c2)τi

dk̄2

dτi
− v1(c̃1� c̃2)

{
−¯̃
k2 + τi

dk̄2

dτi

}
− v2(c̃1� c̃2)

dr2

dτi

¯̃
k2

= (ū1(c1� c2)− v1(c̃1� c̃2))τi
dk̄2

dτi

+ v1(c̃1� c̃2)
¯̃
k2

(
1 − ˜MRS

dr2

dτi

)
�

The key difference between the previous case and this one is that the consumer
consumes his endowment, that is, MRS = ū2(w1�w2)

ū1(w1�w2)
. Therefore, dMRS

dτi
= 0� which
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implies that 1 − ˜MRS dr2
dτi

= 0. Second, dk̄2
dτi

= 0. Thus, we obtain that dU
dτi

= 0
independent of τi, which implies that the consumer is indifferent to any τi.

Q.E.D.

For the proof of Proposition 4, see the proof to Proposition 8, which studies
a T -period economy with logarithmic utility.

PROOF OF PROPOSITION 5: The problem of the consumer can be written as

U(k1� k̄1� τi) = max
c1�c2

(1 + γ)
c1−σ

1

1 − σ
+ δ(1 +βγ)

c1−σ
2

1 − σ

− γ

[
max
c̃1�c̃2

c̃1−σ
1

1 − σ
+ δβ

c̃1−σ
2

1 − σ

]

s.t.

c1 + c2

r(k̄2)
(1 + τi)= r(k̄1)k1 +w(k̄1)+ s + w(k̄2)

r(k̄2)
(1 + τi)= Y�

The first-order conditions are

c−σ
1 = δ(1 +βγ)

1 + γ

r(k̄2)

1 + τi︸ ︷︷ ︸
m(k̄2�τi)

c−σ
2 and c̃−σ

1 = δβ
r(k̄2)

1 + τi
c̃−σ

2 �

This implies

c1 = Y

1 +
[
δ(1 +βγ)

1 + γ

]1/σ

[m(k̄2� τi)](1−σ)/σ

and

c2 =
[
δ(1 +βγ)

1 + γ
m(k̄2� τi)

]1/σ

c1�

c̃1 = Y

1 + [δβ]1/σ [m(k̄2� τi)](1−σ)/σ
and c̃2 = [δβm(k̄2� τi)]1/σ c̃1�

From these expressions we obtain

c̃1

c1
=

1 +
[
δ(1 +βγ)

1 + γ

]1/σ

[m(k̄2� τi)](1−σ)/σ

1 + [δβ]1/σ[m(k̄2� τi)](1−σ)/σ
= x1
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and

c̃2

c2
=

[
β(1 + γ)

1 +βγ

]1/σ
c̃1

c1
= x2 =

[
β(1 + γ)

1 +βγ

]1/σ

x1�

Then we can write the objective function of the government, inserting the ex-
pressions above, as

U(k̄1� k̄1� τi) = (1 + γ)
c1−σ

1

1 − σ
+ δ(1 +βγ)

c1−σ
2

1 − σ

− γ

[
c̃1−σ

1

1 − σ
+ δ(1 +βγ)

c̃1−σ
2

1 − σ

]

= c1−σ
1

1 − σ
+ δ

c1−σ
2

1 − σ

+ γ

[
(1 − x1−σ

1 )
c1−σ

1

1 − σ
+ (1 − x1−σ

2 )δβ
c1−σ

2

1 − σ

]
�

where

c1 = (1 − d)k̄1 + f (k̄1)− k̄2 and c2 = (1 − d)k̄2 + f (k̄2)�

Taking the derivative of the objective function with respect to τi and inserting
dx2
dτi

= [β(1+γ)

1+βγ
]1/σ dx1

dτi
, we obtain

d

dτi
U(k̄1� k̄1� τi)

= [−c−σ
1 + δr(k̄2)c

−σ
2 ]dk̄2

dτi

+ γ[−(1 − x1−σ
1 )c−σ

1 + (1 − x1−σ
2 )δβr(k̄2)c

−σ
2 ]dk̄2

dτi

− γ

[
x−σ

1 c1−σ
1 + δβ

[
β(1 + γ)

1 +βγ

]1/σ

x−σ
2 c1−σ

2

]
dx1

dτi
�

Let τ∗
i be the tax rate that maximizes the commitment utility. Then τ∗

i will
generate the condition

c−σ
1 = δr(k̄2)c

−σ
2 �

Using the first-order condition c−σ
1 = δ(1+βγ)

1+γ
m(k̄2� τi)c

−σ
2 , this implies

(1 +βγ)

1 + γ
m(k̄2� τ

∗
i )= r(k̄2)�
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It is easy to see that d
dτi

U(k̄1� k̄1� τ
∗
i ) = 0 at σ = 1. Thus the subsidy that maxi-

mizes utility under logarithmic utility is the same as the subsidy that maximizes
the commitment utility.

We now characterize the condition under which

d

dτi
U(k̄1� k̄1� τ

∗
i ) < 0 for σ > 1

holds, so that for σ > 1, the optimal subsidy is larger than the optimal sub-
sidy that maximizes commitment utility. To do this, we take the derivative of
d
dτi

U(k̄1� k̄1� τ
∗
i ) with respect to σ and evaluate at σ = 1. If the derivative is

negative at σ = 1, then d
dτi

U(k̄1� k̄1� τ
∗
i ) < 0 for σ marginally above σ = 1. If

the derivative is positive at σ = 1, then d
dτi

U(k̄1� k̄1� τ
∗
i ) > 0 for σ marginally

above σ = 1.
First, for later use, we compute the objects

dx1

dτi
= 1 − σ

σ
[m(k̄2� τi)](1−2σ)/σ

×

[
δ(1 +βγ)

1 + γ

]1/σ

− [δβ]1/σ

[1 + [δβ]1/σ [m(k̄2� τi)](1−σ)/σ]2

dm(k̄2� τi)

dτi

= 1 − σ

σ
H1

dm(k̄2� τi)

dτi
�

dx2

dτi
=

[
β(1 + γ)

1 +βγ

]1/σ
dx1

dτi
�

and

H1(σ = 1)= [m(k̄2� τi)]−1 δ(1 −β)

(1 + γ)[1 + δβ]2
�

Second, to find dk̄2
dτi

, take the derivative of the expression c−σ
1 = δ(1+βγ)

1+γ
×

m(k̄2� τi)c
−σ
2 with respect to τi to obtain

dk̄2

dτi
=

δ(1 +βγ)

1 + γ
c−σ

2[
σc−σ−1

1 + σc−σ−1
2

δ(1 +βγ)

1 + γ
m(k̄2� τi)r(k̄2)

] dm(k̄2� τi)

dτi

= H2
dm(k̄2� τi)

dτi
�
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We know that dk̄2
dτi

< 0 and thus dm(k̄2�τi)

dτi
< 0 too. Moreover, H2(σ = 1) =

(1+βγ)

1+γ

c1
σr(k̄2)[1+1/δ] .

At σ = 1, we have that

x1 = 1 + γ + δ(1 +βγ)

(1 + γ)(1 + δβ)
and x2 = β

1 +βγ

1 + γ + δ(1 +βγ)

(1 + δβ)
�

Using the expressions above, we can write d
dτi

U(k̄1� k̄1� τ
∗
i ) as

d

dτi
U(k̄1� k̄1� τ

∗
i )

= γ [−(1 − x1−σ
1 )+ (1 − x1−σ

2 )β]︸ ︷︷ ︸
K11

H2c
−σ
1

dm(k̄2� τi)

dτi︸ ︷︷ ︸
K12

− γ
1 − σ

σ︸ ︷︷ ︸
K21

×
[
x−σ

1 + δβ

[
β(1 + γ)

1 +βγ

]1/σ
x−σ

2 [δr(k̄2)](1−σ)/σ

]
H1c

1−σ
1

dm(k̄2� τi)

dτi︸ ︷︷ ︸
K22

�

Take the derivative of d
dτi

U(k̄1� k̄1� τ
∗
i ) with respect to σ to obtain

d

dσ

[
d

dτi
U(k̄1� k̄1� τ

∗
i )

]
1
γ

=K11
dK12

dσ
+K12

dK11

dσ
−K21

dK22

dσ
−K22

dK21

dσ
�

If we evaluate this expression at σ = 1, we obtain

d

dσ

[
d

dτi
U(k̄1� k̄1� τ

∗
i )

]
1
γ

=K12
dK11

dσ
−K22

dK21

dσ

= (1 +βγ)

1 + γ

δ

σr(k̄2)[1 + δ]
dm(k̄2� τi)

dτi

dK11

dσ

− δ(1 −β)

1 + γ + δ(1 +βγ)
[m(k̄2� τi)]−1dm(k̄2� τi)

dτi

dK21

dσ
�
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where dK21
dσ

= − 1
σ2 and dK11

dσ
= β log(x2) − log(x1). Evaluating at σ = 1 and in-

serting m(k̄2� τi)= 1+γ

1+βγ
r(k̄2), we obtain

d

dσ

[
d

dτi
U(k̄1� k̄1� τ

∗
i )

]
1
γ

= dm(k̄2� τi)

dτi

δ(1 +βγ)

(1 + γ)r(k̄2)

×
[(

β log
[

β

1 +βγ

1 + γ + δ(1 +βγ)

(1 + δβ)

]

− log
[

1 + γ + δ(1 +βγ)

(1 + γ)(1 + δβ)

])
1

[1 + δ] + (1 −β)

1 + γ + δ(1 +βγ)

]
�

Since dm(k̄2�τi)

dτi
< 0, if

(
β log

[
β

1 +βγ

1 + γ + δ(1 +βγ)

(1 + δβ)

]

− log
[

1 + γ + δ(1 +βγ)

(1 + γ)(1 + δβ)

])
1

[1 + δ] + (1 −β)

1 + γ + δ(1 +βγ)
> 0�

then d
dσ

[ d
dτi

U(k̄1� k̄1� τ
∗
i )] 1

γ
< 0 at σ = 1. Therefore, it is optimal to increase the

subsidy for σ > 1 if this condition above holds.
To show that it holds, let ϕ(β�γ�δ)= β log(β(1+γ+δ(1+βγ))

(1+βγ)(1+δβ)
)− log( 1+γ+δ(1+βγ)

(1+γ)(1+δβ)
)+

(1−β)(1+δ)

1+γ+δ(1+βγ)
. First, it is easy to show that limγ→∞ ϕ(β�γ�δ)= 0. Second, we show

that dϕ(β�γ�δ)

dγ
< 0 for all β�δ < 1, which implies that ϕ(β�γ�δ) > 0 for all finite

γ > 0 and β�δ < 1:

dϕ(β�γ�δ)

dγ
= β

(1 + δβ)(1 +βγ)−β(1 + γ + δ(1 +βγ))

(1 +βγ)2

1 + γ + δ(1 +βγ)

1 +βγ

−
(1 + δβ)(1 + γ)− (1 + γ + δ(1 +βγ))

(1 + γ)2

1 + γ + δ(1 +βγ)

1 + γ

− (1 −β)(1 + δ)(1 + δβ)

(1 + γ + δ(1 +βγ))2
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= 1 −β

1 + γ + δ(1 +βγ)

×
{

β

1 +βγ
+ δ

1 + γ
− (1 + δ)(1 + δβ)

1 + γ + δ(1 +βγ)

}

= 1 −β

1 + γ + δ(1 +βγ)

×
{
β+βγ + δ+ δβγ

1 + γ +βγ +βγ2
− 1 + δ+ δβ+ δ2β

1 + γ + δ+ δβγ

}
�

The numerator of the term in curly brackets is

= [β+βγ + δ+ δβγ] + [βγ +βγ2 + δγ + δβγ2]
+ [δβ+ δβγ + δ2 + δ2βγ]
+ [δβ2γ + δβ2γ2 + δ2βγ + δ2β2γ2]
− [1 + δ+ δβ+ δ2β] − [γ + δγ + δβγ + δ2βγ]
− [βγ + δβγ + δβ2γ + δ2β2γ]
− [βγ2 + δβγ2 + δβ2γ2 + δ2β2γ2]

= β+βγ + δ2 + δ2βγ − 1 − δ2β− γ − δ2β2γ

= (β− 1)+ δ2(1 −β)+ γ(β− 1)+ δ2βγ(1 −β)

= (1 −β)[δ2 + δ2βγ − 1 − γ]
= (1 −β)[δ2(1 +βγ)− (1 + γ)]�

Using this expression in dϕ(β�γ�δ)

dγ
, we obtain

dϕ(β�γ�δ)

dγ
= (1 −β)2

(1 + γ + δ(1 +βγ))2

δ2(1 +βγ)− (1 + γ)

(1 + γ)(1 +βγ)
�

Note that δ2(1 +βγ) < 1 + γ for all δ�β < 1. As a result, dϕ(β�γ�δ)

dγ
< 0 for all δ,

β< 1.
Next, we show that d

dσ
( c2(τi(σ))

c1(τi(σ))
)|σ=1 > 0. For this purpose, let k2(τi(σ)) be

the competitive-equilibrium savings associated with the optimal tax policy
τi(σ) and let kc

2(σ) be the commitment savings for a given σ . We show that
d
dσ
(k2(τi(σ)) − kc

2(σ))|σ=1 > 0. Thus, the competitive-equilibrium savings un-
der the optimal policy is higher than commitment savings when σ is marginally
higher than 1. To see this, first consider the consumer’s optimality conditions
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under commitment and in competitive equilibrium.

δf ′(kc
2(σ))

(
y1 − kc

2(σ)

f (kc
2(σ))

)σ

= 1 under commitment,

δ(1 +βγ)

(1 + γ)(1 + τi(σ))
f ′(k2(τi(σ))

)
×

(
y1 − k2(τi(σ))

f (k2(τi(σ)))

)σ

= 1 in competitive equilibrium.

We can rewrite this problem as

F(kc
2(σ)�σ)= 1 under commitment,

(1 +βγ)

(1 + γ)(1 + τi(σ))
F(kc

2(σ)�σ)= 1 in competitive equilibrium,

where F(k2�σ)= δf ′(k2)(
y1−k2
f (k2)

)σ . We know that

kc
2(1)= k2(τi(1))�

(1 +βγ)

(1 + γ)(1 + τi(σ))
= 1�

τ′
i(1) < 0�

Next, take the derivative of the commitment and competitive-equilibrium
optimality condition with respect to σ to obtain

dkc
2(σ)

dσ

∣∣∣∣
σ=1

= −F2(k
c
2(1)�1)

F1(k
c
2(1)�1)

�

dk2(τi(σ))

dσ

∣∣∣∣
σ=1

= −F2(k2(τi(1))�1)
F1(k2(τi(1))�1)

+ τ′
i(1)F(k2(τi(1))�1)

(1 + τi(1))F1(k2(τi(1))�1)
�

Since kc
2(1)= k2(τi(1)), taking the difference yields

d

dσ

(
k2(τi(σ))− kc

2(σ)
)|σ=1 = τ′

i(1)F(k2(τi(1))�1)
(1 + τi(1))F1(k2(τi(1))�1)

�

Note that τ′
i(1) < 0 and it is easy to see that F1(k2(τi(1))�1) < 0. As a re-

sult, d
dσ
(k2(τi(σ))−kc

2(σ))|σ=1 > 0. This directly implies that d
dσ
( c2(τi(σ))

c1(τi(σ))
)|σ=1 >

0. Q.E.D.

PROOF OF PROPOSITION 7: To prove this proposition, we solve the con-
sumer’s problem backward, find her optimal consumption choices, and use
those decision rules to obtain her value function.
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Problem at time T − 1: The consumer’s problem reads

max
cT−1�cT

(1 + γ) log(cT−1)+ δ(1 +βγ) log(cT )

− γ max
c̃T−1�c̃T

log(c̃T−1)+ δβ log(c̃T )

subject to the budget constraints

cT−1 + (1 + τi�T−1)kT = r(k̄T−1)kT +w(kT)+ sT and

cT = YT = r(k̄T )kT +w(k̄T )�

The rest-of-lifetime budget constraint is thus

cT−1 + cT
1 + τi�T−1

r(k̄T )
= r(k̄T−1)kT−1 +w(k̄T−1)+ sT−1

+w(k̄T )
1 + τi�T−1

r(k̄T )
= YT−1�

The first-order condition is 1
cT−1

= δ(1+βγ)

1+γ

r(k̄T )

1+τi�T−1

1
cT
� Inserting cT into the rest-of-

lifetime budget constraint, we obtain

cT−1 = 1 + γ

1 + γ + δ(1 +βγ)
YT−1 and

cT = δ(1 +βγ)

1 + γ + δ(1 +βγ)

r(k̄T )

1 + τi�T−1
YT−1�

This implies

c̃T−1 = 1
1 + δβ

YT−1 and c̃T = δβ

1 + δβ

r(k̄T )

1 + τi�T−1
YT−1�

Notice that the c and the c̃ are constant multiples of each other. As a result,
the value function becomes

UT−1(kT−1� k̄T−1� τ)= log(cT−1)+ δ log(cT )+ a constant�

Now rewrite the value function in period T − 1 to be used in the problem
of the consumer in period T − 2 by inserting the consumption allocations as
functions of YT−1. This delivers

UT−1(kT−1� k̄T−1� τ) = (1 + δ) log(YT−1)+ δ log(r(k̄T )/(1 + τi�T−1))

+ a constant�
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Problem at time T − 2: Using the T − 2 budget constraint and the rest-of-
lifetime budget constraint at time T − 1 for the consumer, we obtain the rest-
of-lifetime budget constraint at time T − 2 as

cT−2 + 1 + τi�T−2

r(k̄T−1)
YT−1 = YT−2

= r(k̄T−2)kT−2 +w(k̄T−2)+ sT−2

+ w(k̄T−1)+ sT−1

r(k̄T−1)
(1 + τi�T−2)

+ w(k̄T )

r(k̄T−1)r(k̄T )
(1 + τi�T−2)(1 + τi�T−1)�

The objective of the government is to maximize

max
cT−2�YT−1

(1 + γ) log(cT−2)

+ δ(1 +βγ)

[
(1 + δ) log(YT−1)+ δ log

(
r(k̄T )

1 + τi�T−1

)
+ a constant

]
− γ max

c̃T−2�ỸT−1

log(c̃T−2)

+ δβ

[
(1 + δ) log(ỸT−1)+ δ log

(
r(k̄T )

1 + τi�T−1

)
+ a constant

]
�

The first-order condition is

1
cT−2

= δ(1 + δ)(1 +βγ)

1 + γ

r(k̄T−1)

1 + τi�T−2

1
YT−1

�

Using the budget constraint, we obtain

cT−2 = 1 + γ

1 + γ + δ(1 + δ)(1 +βγ)
YT−2 and

YT−1 = δ(1 + δ)(1 +βγ)

1 + γ + δ(1 + δ)(1 +βγ)

r(k̄T−1)

1 + τi�T−2
YT−2�

Inserting YT−1 in terms of cT−1 into the consumer’s problem, we obtain the
Euler equation

1
cT−2

= δ(1 + δ)(1 +βγ)

1 + γ + δ(1 +βγ)

r(k̄T−1)

1 + τi�T−2

1
cT−1

�
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The temptation allocations are given by

c̃T−2 = 1
1 + δβ(1 + δ)

YT−2 and

ỸT−1 = δβ(1 + δ)

1 + δβ(1 + δ)

r(k̄T−1)

1 + τi�T−2
YT−2�

The objective function of the government is

UT−2(kT−2� k̄T−2� τi) = log(cT−2)+ δ(1 + δ) log(YT−1)

+ δ2 log
(

r(k̄T )

1 + τi�T−1

)
+ a constant�

Since cT−1 is a multiple of YT−1 and cT is a multiple of ( r(k̄T )

1+τi�T−1
)YT−1, by insert-

ing them we obtain

UT−2(kT−2� k̄T−2� τi) = log(cT−2)+ δ log(cT−1)

+ δ2 log(cT )+ a constant�

Problem at T − 3: The first-order condition for the consumer is

1
cT−3

= δ(1 + δ+ δ2)(1 +βγ)

1 + γ

r(k̄T−2)

1 + τi�T−3

1
YT−2

= δ(1 + δ+ δ2)(1 +βγ)

1 + γ + δ(1 + δ)(1 +βγ)

r(k̄T−2)

1 + τi�T−3

1
cT−2

�

UT−3(kT−2� k̄T−3� τi) = log(cT−3)+ δ log(cT−2)

+ δ2 log(cT−1)+ log(cT )+ a constant�

Continuing this procedure backward completes the proof. Q.E.D.

PROOF OF PROPOSITION 9: We solve the problem of the consumer and find
tax rates that implement the commitment allocation. Proposition 6 implies that
the problem of a consumer at age t is given by

max
ct �Yt+1

c1−σ
t

1 − σ
+ δβUt+1(Yt+1)

subject to

ct + 1 + τi�t

rt+1
Yt+1 = Yt�
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where

Ut(Yt)= c1−σ
t

1 − σ
+ δβUt+1(Yt+1)�

We guess and verify that Ut+1(Yt)= bt
Y 1−σ
t

1−σ
� where bT = 1. The optimality con-

dition for the consumer is given by

c−σ
t = δβbt+1

rt+1

1 + τi�t
Y−σ

t+1�

Inserting this into the budget constraint, we obtain

ct = Yt

1 + (δβbt+1)1/σ

(
rt+1

1 + τi�t

)(1−σ)/σ
�

Yt+1 =

(
δβbt+1

rt+1

1 + τi�t

)1/σ

Yt

1 + (δβbt+1)1/σ

(
rt+1

1 + τi�t

)(1−σ)/σ
�

Using these decision rules, we obtain

bt =
1 + 1

β
(δβbt+1)

1/(σ)

(
rt+1

1 + τi�t

)(1−σ)/σ

(
1 + (δβbt+1)1/(σ)

(
rt+1

1 + τi�t

)(1−σ)/σ)1−σ
�

Note that the optimality condition for the consumer can be written as

c−σ
t = δrt+1

βbt+1

1 + τi�t

(
1 + (δβbt+2)

1/σ

(
rt+2

1 + τi�t+1

)(1−σ)/σ)−σ

c−σ
t+1�

Inserting bt+1 yields

c−σ
t = δrt+1

β

1 + τi�t

1 + 1
β
(δβbt+2)

1/σ

(
rt+2

1 + τi�t+1

)(1−σ)/σ

1 + (δβbt+2)1/σ

(
rt+2

1 + τi�t+1

)(1−σ)/σ
c−σ
t+1�
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To implement the commitment allocation, the government should set

β

1 + τi�t

1 + 1
β
(δβbt+2)

1/σ

(
rt+2

1 + τi�t+1

)(1−σ)/σ

1 + (δβbt+2)1/σ

(
rt+2

1 + τi�t+1

)(1−σ)/σ
= 1�

where rt for all t is the equilibrium interest rate that arises under commitment,
that is, rt = r(k̄t).

The recursive formulas for bt and τi�t jointly determine the sequence of
optimal tax rates. We solve these formulas backward noting that bT = 1 and

bT+1 = 0. Thus, τi�T−1 = β − 1 and bT−1 = 1+δ1/σ r
(1−σ)/σ
T

(1+βδ1/σ r
(1−σ)/σ
T )1−σ

. Continuing back-

ward, we obtain τi�T−2 = β−1

1+βδ1/σ r
(1−σ)/σ
T

, bT−2 = 1+δ1/σ r
(1−σ)/σ
T−1 (1+δ1/σ r

(1−σ)/σ
T )

(1+βδ1/σ r
(1−σ)/σ
T−1 (1+δ1/σ r

(1−σ)/σ
T ))1−σ

,

τi�T−3 = β− 1

1 +β(δ1/σr(1−σ)/σ
T−1 + δ2/σr(1−σ)/σ

T−1 r(1−σ)/σ
T )

�

and

τi�T−4 = (β− 1)/
(
1 +β

(
δ1/σr(1−σ)/σ

T−2 + δ2/σr(1−σ)/σ
T−2 r(1−σ)/σ

T−1

+ δ3/σr(1−σ)/σ
T−2 r(1−σ)/σ

T−1 r(1−σ)/σ
T

))
�

One can notice the pattern in the expressions above, which implies the optimal
tax for period t is given by

τi�t = β− 1

1 +β

T∑
m=t+2

{
(δ1/σ)m−(t+1)

m∏
n=t+2

r(k̄n)
(1−σ)/σ

} �

We can also show that as T → ∞� the optimal tax rate converges to a nega-
tive value. To see this, let {cct }∞

t=0 be the consumption sequence associated with
the commitment solution. Inserting the commitment Euler equation

cct+1
cct

=
(δrt+1)

1/σ into the tax expression, we obtain

τi�t = β− 1

1 + β

cct+1

[
cct+2

rt+2
+ cct+3

rt+2rt+3
+ · · · + ccT

rt+2rt+3���rT

] �
Note that

cct+1 + cct+2

rt+2
+ cct+3

rt+2rt+3
+ · · · + ccT

rt+2rt+3 · · · rT = Yc
t+1�
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where Yc
t is the lifetime income at time t associated with the commitment so-

lution. Thus, the optimal tax rate can be written as

τi�t =
(β− 1)

cct+1

Yc
t+1

(1 −β)
cct+1

Yc
t+1

+β

�

Note that since cct+1/Y
c
t+1 > 0 for any t and T , we obtain that τi�t < 0 for all t.

Moreover, since the equilibrium allocation under the optimal tax sequence
is the same as the allocation associated with the commitment solution and
since self-control cost is zero, the optimal tax policy delivers first-best wel-
fare. Q.E.D.
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