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Abstract: We examine the finite-sample behavior of estimators of the order of integration in a 
fractionally integrated time-series model. In particular, we compare exact time-domain likelihood 
estimation to frequency-domain approximate likelihood estimation. We show that over-differencing 
is of critical importance for time-domain maximum-likelihood estimation in finite samples. Over- 
differencing moves the differencing parameter (in the over-differenced model) away from the bound- 
ary of the parameter space, while at the same time obviating the need to estimate the drift parameter. 
The two estimators that we compare are asymptotically equivalent. In small samples, however, the 
time-domain estimator has smaller mean squared error than the frequency-domain estimator. 
Although the frequency-domain estimator has larger bias than the time-domain estimator for some 
regions of the parameter bias, it can also have smaller bias. We use a simulation procedure which 
exploits the approximate linearity of the bias function to reduce the bias in the time-domain 
estimator. 
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1 Introduction 

C o n s i d e r  the  s t a t i o n a r y  G a u s s i a n  f rac t iona l ly  in t eg ra t ed  m o d e l  wi th  drift: 

x,  = + (1 - L ) - % ,  (1) 

where  L is the  lag opera to r ,  e t are  i n d e p e n d e n t l y  a n d  iden t ica l ly  d i s t r ibu ted  as 
N(O, a2), a n d  d < �89 Va r i a t i ons  of this m o d e l  2 have  ga ined  p o p u l a r i t y  wi th  

empi r i ca l  researchers  as a wa y  of c a p t u r i n g  " l o n g - m e m o r y "  d y n a m i c s  (see, 
a m o n g  others ,  D i e b o l d  a n d  R u d e b u s c h  (1989), Lo  (1991), H a u b r i c h  a n d  Lo 
(1991), Shea  (1991), C h e u n g  a n d  Lai  (1993), Sowell  (1992a), a n d  Backus  a n d  Z i n  

1 We would like to thank Frank Diebold, John Geweke, James MacKinnon, and several anony- 
mous referees for helpful comments. We also would like to thank seminar participants at the 1994 
Meetings of the Canadian Econometrics Study Group and, in particular, Russell Davidson, Angelo 
Melino, Peter Robinson, Peter Schmidt, and Tony Wirjanto, for helpful comments. The authors' 
affiliations are, respectively: GSIA, Carnegie Mellon University; GSIA, Carnegie Mellon University; 
and GSIA, Carnegie Mellon University and NBER. 
2 The most common generalization of this model is the straightforward addition of stationary 
autoregressive and moving average dynamics. 
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(1993)). Since a primary goal of this research is to infer long-run economic 
behavior from observations measured over a relatively short time interval, the 
finite-sample properties of estimators of the parameters of the fractional model, 
especially d, have become an important practical consideration. 

Recently a number of papers (see, for example, Cheung and Diebold (1994) 
and Hauser (1992)) have commented on potential problems associated with the 
practice of centering sample observations around the sample mean and estimat- 
ing d by maximum likelihood assuming a zero drift (a procedure we refer to as 
mean-filtered maximum-likelihood estimation). By the very nature of the long 
memory, the sample mean converges to # relatively slowly when d > 0. This 
slow convergence may increase the chance that a large sampling error in a 
small-sample estimate of the mean biases the estimate of d. 

We argue that the basic message in these papers is correct, i.e. estimators that 
avoid estimation of the mean prior to d are preferable, but that mean filtering is 
not the only source of bias in maximum-likelihood estimators of d when d > 0. 
In particular, an important source of bias is the behavior of the likelihood 
function near the boundary of the parameter space. Since the likelihood func- 
tion is not defined for nonstationary models, i.e. for d > �89 the sampling distri- 
bution of the maximum-likelihood estimator lacks symmetry for values of d 
near �89 The resulting skewness in the sampling distribution of the maximum 
likelihood estimator leads this estimator to be biased in small samples. Since the 
frequency-domain objective function is well-defined for all values of d in finite 
samples, it is immune to this source of bias. Nonetheless, the frequency-domain 
estimator is not necessarily preferable to the exact time-domain maximum- 
likelihood estimator in finite samples. In fact, the contrary is true. In this paper 
we show how maximum-likelihood estimation should be applied in small sam- 
pies. We find that, after a simple bias correction, exact time-domain estimation 
typically yields estimators with less bias and smaller mean-squared error than 
the best frequency-domain estimator. 

The paper is organized as follows. Section 2 presents the time-domain and 
frequency-domain estimators. Section 3 discusses the role of over-differencing. 
Section 4 compares the small samples properties of the time-domain and fre- 
quency-domain estimators. Section 5 discusses ways to correct for the bias of 
the time-domain estimator. Section 6 presents an empirical application of our 
proposed methods. Section 7 concludes. 

2 Maximum-Likelihood and Whittle-Likelihood Estimation 

The log of the likelihood function for a sample of size T, denoted by the T x 1 
vector XT = [x lx2 . . .  Xr]', generated by the process in equation (1) is: 



Fractional Integration with Drift: Estimation in Small Samples 105 

T T 1 
L(O; XT) = -- ~ 1og(Zn) -- 2- 1og(a2) -- 2 l~ 

1 
2a2 (XT -- #Jr)'ZT(d)-l(Xr -- #Jr)  , (2) 

where 0 = [# a 2 d], Jr is a T x 1 vector of ones and E T(d) is a T x T matrix 
defined by Var(XT) = 62Y~T(d). In other words, the vector of observations 
satisfies 

XT "~ N(#JT, a2Xr(d)) �9 (3) 

The functional form of Var(Xw) for a general fractionally integrated ARMA 
model is given in Sowell (1992b). Equation (2) is the exact likelihood function 
and values, fiT, ~lr and #~, that maximize this function are the maximum- 
likelihood estimates (MLE). 

Since each evaluation of the likelihood function involves the inversion of the 
(T • T) matrix ~r(d), computing the MLE can be costly. As outlined in Sowell 
(1989), however, the Toeplitz structure of Y,r(d) c a n  be used to alleviate much of 
this burden. Sowell (1992b) studies the properties of this estimator for the model 
in equation (1) and its autoregressive and moving average extensions, assuming 
# - - 0 .  

To avoid some of the computat ion associated with exact MLE, Cheung and 
Diebold (1994) suggest using the Fox and Taqqu (1986) frequency-domain ap- 
proximation to the likelihood function. Hauser (1992) reports small sample 
properties of a frequency-domain estimator similar to the one suggested by 
Cheung and Diebold (1994). Hauser 's estimator, which minimizes the "Whittle- 
likelihood" function, appears to perform better in small samples than the esti- 
mator  suggested by Fox and Taqqu (1986). The Whittle-likelihood function is 
defined as 

LW(d; XT) = ~ 1og(f(2j; d)) + ~, Iw(2J; XT) 
j=l j=l f(2j; d) (4) 

where m = (T - 1)/2, 2j = 2nj/T, Ir(2j; XT) is the periodogram of the sample X r 
and aZf(~j; d) is the spectral density function 3 of the model in (1). The Whittle- 
likelihood estimate (WLE) is the value for d that minimizes the function in (4). 
This estimator is asymptotically equivalent to the maximum-likelihood estima- 
tor. Note that the Whittle-likelihood function does not depend on #. Moreover, 
computat ion of the WLE does not require the inversion of a T • T matrix. 

Another reason that the MLE may appear to be more difficult to compute 
than the WLE is that it requires numerical optimization over three dimensions, 
#, a, and d, rather than one-dimensional optimization over d. The computa- 

3 For the ARMA extension of the model in equation (1), the spectral density depends on the 
autoregressive and moving-average parameters as well as on d. To evaluate the Whittle likelihood 
in this case, simply substitute the appropriate spectral-density function into equation (4). 
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tional burden associated with the MLE, however, can be reduced substantially 
by concentrating # and a out of the likelihood function (see, for example, 
Brockwell and Davis (1987)). In particular, the maximum likelihood of d can be 
computed by maximizing with respect to d the concentrated log-likelihood 
function given below: 

l(d; xr) = ~ loglY~r(d)l + log (X r - ~r (d )Jr ) ' 2 r (d ) - l (Xr  - ~r(d)Jr) , 

(5) 
where 

~T(d) = [J~.ZT(d)-I JT]-I  J~.ZT(d)-I XT �9 (6) 

Either the MLE or the WLE of d can be inserted into equation (6) to obtain an 
asymptotically efficient estimate of the drift. 4 

3 Over-Differencing 

In this section we show the critical role played by over-differencing in maximum- 
likelihood estimation of the fractional model with drift. By over-differencing we 
mean differencing of the observed data beyond what is necessary to achieve 
stationarity. The differencing data transformation accomplishes two tasks that 
are critical to proper application of MLE in finite samples. First, it moves the 
differencing parameter  (in the over-differenced model) away from the boundary 
of the parameter  space. Second, it eliminates the need to estimate the drift before 
estimating d. 

In addition to Whittle-likelihood estimation, over-differencing provides an- 
other simple estimator for d that does not require knowledge of#. Operating on 
both sides of equation (1) with (1 - L), i.e. first-differencing equation (1), yields 
a fractionally integrated series, (1 - L ) x ,  that has no drift. The over-differenced 
model can be written: 

Axt =- (1 - L)x,  = (1 - L)-%, , (7) 

where 6 = d - 1. Note that, by construction, the drift parameter  # equals 0 in 
the over-differenced model. Therefore, by working with the first differences 
{Ax,} of the observed series {xt}, we can always estimate the fractional parame- 
ter 6 without regard to the drift parameter: simply add 1 to the estimate of 6 in 
the over-differenced model given by equation (7). In finite samples, differencing 

4 Note that equation (5), which is the generalized least squares (GLS) estimator from a regression 
of X r on Jr, can be derived in the usual way from the first-order conditions associated with 
maximizing the likelihood function (2). A similar equation can be derived to obtain an asymptoti- 
cally efficient GLS estimate of ~2. 
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reduces the number of observations, thereby entailing a loss of information. 
This loss of information is analogous to dropping the zero-frequency observa- 
tion in the Whittle likelihood. We explore the implications of this loss of infor- 
mation below. 

As we have discussed above, the estimation of the drift in long-memory 
models has become an area of some controversy. Cheung and Diebold (1994) 
and Hauser (1992) show by means of Monte Carlo experiments that the bias in 
the mean-filtered maximum likelihood estimator increases substantially as d 
approaches �89 They attribute this bias to the slow convergence of the sample 
mean ~r  to the drift parameter # when 0 < d < �89 Hauser (1992) concludes 
that this problem is sufficiently serious that the Whittle-likelihood estimator is 
always preferable to the MLE. 

Although the slow convergence of estimators of # may explain part of the 
poor finite-sample performance of MLE, we argue here that there is an alterna- 
tive reason for the finite-sample bias of MLE when d > 0: in particular, the 
proximity of the true value of d to the boundary of the parameter space (i.e. �89 
To assess the impact of the boundary of the parameter space on the sampling 
distribution of the MLE, we conduct a Monte Carlo study of the MLE of d in 
model (1) with d = 0.45 and # = 0. 6 We generate 10,000 simulated samples, each 
consisting of T = 100 observations, from the joint distribution given in equa- 
tion (3). For each of these samples, we compute the MLE of d (with 0 "2 c o n c e n -  

t r a t e d  out) and the WLE of d. Since the likelihood function given by equation 
(5) is not defined for d _> �89 (and tends to - ~  as d tends to �89 all the MLE's of 
d are less than 1. Figure 1 plots histograms using the 10,000 MLE and WLE 
estimates. 

Note the high degree of skewness in the MLE's sampling distribution. The 
downward bias reported in Cheung and Diebold (1994) and Hauser (1992) 
reflects this skewness. The WLE's sampling distribution is much more symmet- 
ric around 0.45: this symmetry helps to explain the WLE's relative lack of bias 
when d = 0.45. 

In this Monte Carlo study, it is clear that proximity to the boundary of the 
parameter space, rather than slow convergence in estimating the drift, underlies 
the bias in the MLE: by construction, the drift in the over-differenced model is 
zero and we therefore do not need to estimate it. This finding suggests that 
before MLE is undertaken in small samples, and especially when d is near �89 the 
observed series should be differenced beyond what would be necessary to yield 
stationarity. This is the maximum-likelihood estimation procedure that we 
compare to the Whittle-likelihood estimator in the next section. 

s Note that the concentrated log-likelihood function given in equation (5) depends on the GLS 
estimate l~r(d) of #. For d e (-~,1 ~)1 it can be shown that ftr(d) and 2 r  converge at the same rate to 
/~. Thus  concentrated max imum likelihood does not  circumvent any potential problems introduced 
by the need to estimate/~. 
6 Without  loss of generality, o -2 can be normalized to 1. 
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Fig. 1. Sampling distributions for M L E  and WLE: T = 100, d = 0.45 

4 Finite-Sample Properties of MLE and WLE 

Sowell (1992b) studies the small-sample properties of the MLE of d when # = 0. 
Since, as we showed in Section 3, over-differencing can be used to eliminate the 
drift parameter, these results are also applicable in models with unknown drift. 
Since we advocate over-differencing as a way of eliminating finite-sample bias 
in MLE, we need to explore the properties of MLE for smaller values of d 
in equation (1) than are covered in Sowell (1992b). We likewise extend the 
Hauser (1992) Monte Carlo results for WLE to a larger range of values for the 
fractional-differencing parameter. 

Figures 2-5 summarize Monte Carlo results for three different estimators of 
the fractional differencing parameter d in the model given by equation (1), with 
# = 0. The three estimators are (concentrated) MLE, WLE, and bias-corrected 
MLE, which we discuss in Section 5. 

Figures 2 and 4 graph estimates of bias and mean squared error (MSE), 
respectively, of the three estimators of d as a function of the true value of d when 
the sample size T = 50. Figures 3 and 5 display corresponding graphs for the 
sample size T = 100. 7 Estimates of bias and MSE are based on 1,000 indepen- 
dent replications (with different seeds for the random number generator for each 

7 Existing results in Cheung and Diebold (1994) and Hauser  (1992) suggest that MLE and WLE 
perform equally well in samples of size 200 or larger. 
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Fig. 3. Bias for T = 100 (MLE are o's, WLE are + 's, bias-corrected MLE are x 's) 

va lue  of d). T o  take  in to  a c c o u n t  the  loss of  i n f o r m a t i o n  en ta i l ed  by  first 
differencing,  the  M o n t e  Ca r l o  resul ts  for W L E  are based  o n  samples  of  size 
T + 1 while the M o n t e  Ca r l o  resul ts  for M L E  are based  o n  samples  of  size T. 
F o r  M L E  a n d  b ias -cor rec ted  M L E ,  we c o m p u t e  bias  a n d  M S E  for 23 equa l ly  
spaced va lues  of d in  the in te rva l  [ - 2 ,  0.2]. F o r  W L E ,  we c o m p u t e  b ias  a n d  
M S E  for 18 equa l ly  spaced va lues  of d in  the r ange  [ - 1 . 1 ,  0.6]. 8 

s To generate simulated samples for values of d > �89 we use the last T partial sums of 400 
observations from a model with fractional differencing parameter equal to d - 1. 



110 A . A .  Smith Jr. et al. 

0.06 

O.OSS 

0.05 

0.045 

0.04 
uJ 

0.035 

0 . 0 2 5  

0 . ~  

0 . 0 1 5  I 

0 . 0 1  

- , r  . . . . .  

i 
- 2  -1.5 -1 -O.S 0 0.5 

fractional difference parameter 

Fig. 4. MSE for T = 50 (MLE are o's, WLE are + 's, bias-corrected MLE are • 's) 

0.045 

0.04 

0.035 

0.03 

~ 0 . 0 2 5  

0 . 0 2  

0 . 0 1 5  

0.01 

0.005 i i ~ i r i 
- 2  - I  .5 -1 -4].5 0 0.5 

fractional difference parameter 

Fig. 5. M S E  for T = 100 (MLE are o's, W L E  are + 's, bias-corrected M L E  are • 's) 

In the Monte Carlo experiments for MLE, d ranges from - 2  to 0.2. As 
discussed in Section 3, for values of d e (0.2, 0.5) the sampling distribution of the 
MLE becomes skewed, leading to large negative biases of the MLE and there- 
fore to poor  small-sample performance. The range [ - 2 ,  0.2] is sufficiently large 
to encompass estimation (after differencing) of the time-trend model in Sowell 
(1992a) and Hauser (1992) (see the discussion at the end of this section). The 
WLE results range from -1 .1  to 0.6 to cover a comparable range for the 
fractional differencing parameter in an undifferenced model. 

The most notable feature of the Figures 2-5  is the poor  small-sample perfor- 
mance of the WLE when d < - �89 Bias and MSE increase substantially as d falls. 
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By contrast, the bias of the MLE is nearly constant for d s [ -  2, 0.2] while the 
MSE of the MLE increases moderately as d falls. For  d _> 0.2, both MLE and 
WLE are downward biased, but the bias for WLE is less than the bias for MLE. 
These results are consistent with those in Cheung and Diebold (1994) and 
Hauser (1992). Nonetheless, for all values of d in the range [ - 2 ,  0.2], MSE for 
MLE is less than MSE for WLE, although the differences for some values of d 
are not significantly different from zero (recall that we use only 1,000 replica- 
tions to generate the Monte Carlo results). 

As we argue in Section 3. for d e (0.2, �89 we recommend differencing prior to 
estimation by MLE. To compare WLE in an undifferenced model to MLE in a 
differenced model, one must compare bias and MSE at two different values of d 
in Figures 2-5. For  example, if the true value of d is 0.4, one must compare the 
performance of WLE at d to the Performance of MLE at d - 1 = -0 .6 .  It is 
clear from the figures that MLE (in an over-differenced model) continues to 
perform well relative to WLE (in an undifferenced model) when d e (0.2, �89 For  
example, when T = 50 and d = 0.4, MSE for WLE is 0.0227, whereas MSE for 
MLE at d = - 0 . 6  is 0.0222. These results show that the loss of information 
entailed by first differencing is no more severe than the loss of information 
entailed by dropping the zero frequency when using WLE to estimate d. 

The dramatic increase in the bias of WLE when d < - �89 has important  impli- 
cations for the use of fractionally-intergrated models to test between trend- 
stationarity and difference-stationarity. Consider the deterministic-trend model: 
Yt = # t  + et, where e t ~ i idN(O, 0"2). Lagging this equation one period and sub- 
tracting the result from the original equation, one obtains the model: A y  t = 

/~ + (1 - L ) e ,  Next consider the difference-stationary model: Yt =/~ + Yt-a + et, 
which can be rewritten as A y  t = # + et- Both of these alternative models can be 
nested within the following fractionally-integrated model: 

d y  t = # + (1 -- L ) - %  t . (8) 

Note that the right hand side of this equation is identical to the right hand side 
of equation (1). When d = -  1, equation (8) reduces to the trend-stationary 
model with a deterministic linear time trend; when d = 0, equation (8) reduces 
to the difference stationary model. To test for trend-stationarity, one must 
therefore test the null hypothesis that d = - 1. As Figures 2 and 4 show, WLE 
produces severely biased estimates of d when d < - �89  Since this bias is positive, 
WLE tends to favor the difference-stationary model over the trend-stationary 
model. Since MLE displays much smaller bias than WLE when d < - �89  MLE 
is clearly preferred to WLE when using the nesting model (8) to distinguish 
between trend-stationarity and difference-stationarity. 9 

9 For a variety of macroeconomic time series, d lies between 0 and -- 1 in the model given by 
equation (8). In this case, therefore, it is not necessary to over-difference in order to move d away 
from the boundary of the parameter space. 
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Although we find in Section 4 that MLE tends to have smaller MSE than WLE 
for d E [ - 2 ,  0.2], we also find that MLE tends to have larger bias than WLE 
when d > - �89 In this section, we propose methods to correct the bias of the 
MLE. 

Figures 2 and 4 show that the bias of the maximum-likelihood estimator of d 
is nearly constant over the range [ - 2 ,  0.2]. In particular, the average bias of 
MLE over the range [ - 2 ,  0.2] is -0 .0226 for T = 50 and -0 .0115 for T = 100. 
This finding suggests a simple procedure for correcting the bias of the MLE 
when d ~ I--2,  0.2]: add a constant to the MLE. For  samples of size T = 100 
one would add 0.0115 and for samples of size T = 50 one would add 0.0226. 
This adjustment does not affect the standard deviation of the estimator but does 
generally lower the MSE by reducing the bias. For other sample sizes, one 
would have to compute these quantities through comparable simulations. 

An obvious extension of this procedure allows for bias correction to vary not 
only with sample size but also with the value of d. Let Or be a consistent estimate 
of a vector of parameters in a general finite-dimensional model. Define br(O) - 
E(Orl O) - O, where 0 is the population "true" parameter vector, br(O) is the bias 
function: it maps the population parameters 0 into the bias of the estimator of 0 
in a sample of size T. In general, br(O) ~ O, so that 0r is a biased estimator of 0. 
If br(0) is linear in 0, however, this bias can be eliminated. Define hr(O ) = 
0 + br(0). If br is linear, then the inverse of h r evaluated at Or is an unbiased 
estimator of 0. l~ To see this, note that linearity of br implies linearity of hr. 
Thus E(hTI(OT)[O) = hrt(E(OT[O)) =- hTl(hr(O)) = O. This fact motivates the fol- 
lowing bias-corrected estimator: 

Or = h} 1 (Or) �9 (9) 

When b r is nonlinear, 0r is, in general, biased. In many circumstances, however, 
bias correction can still do a very good job of reducing bias (see, for example, 
MacKinnon and Smith (1995)). 

In general, hr is unknown. To make this estimator operational, we use simu- 
lation to estimate this function and a simple iterative scheme to compute its 
inverse. To estimate hr(0), we proceed as follows. First, given the value of 0, 
generate n i.i.d, simulated samples from the given model, each with T observa- 
tions. Next, for each simulated sample, estimate 0; let 0~ ) be the ith such esti- 
mate. Finally, define/~r,,(0) - n -1 ~i%1 @(0). ~r,, is a consistent (in n) estimate 
of h r . 

10 Andrews (1993) proposes a similar procedure to obtain median-unbiased estimates for 
autoregressive/unit root models. However, we are concerned with obtaining mean-unbiased esti- 
mates. MacKinnon  and Smith (1995) consider this mean-unbiased estimator in other models. 
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Using flT, n in  place of h r, (~T c a n  then be computed  iteratively as follows: 

0(~ +1) = S0(T j) -~- (1 -- S)(0r + 0(r j) --/~r,,(0TU))) , (10) 

where s e [0, 1), 0(~ ) is the bias-corrected estimate at the beginning of the j t h  
iteration, and 0 (1) = O r. Note  that  if 0(~ +1) = 0(~ ) = 0(T ~~ then equat ion (10) re- 
duces to: 0 r = hv,,(0(r~)). Thus, up to the approximat ion  error  in hr, n (which we 
can make  arbitrarily small by increasing n), 0(r ~) is the bias-corrected estimate 
defined by equat ion (9). In practice, we stop the iterations when the difference 
between successive estimates is smaller than a given tolerance. 

Figures 2 and 3 plot estimates of  the bias functions for the M L E  of d in 
samples of  size 50 and 100. These figures show that  the bias functions are very 
close to linear over the range [ - 2 ,  0.2]: in fact, as discussed above, they are very 
nearly constant.  Thus one would expect bias correction to reduce the bias of the 
M L E  almost  to zero. 

Figures 2 - 5  also report  estimates of the bias and MSE of the bias-corrected 11 
max imum likelihood estimates. 12 As expected, bias correction is very successful 
at reducing the bias, typically by a factor of  10 or more. Mean  squared error 
also tends to fall as a result of the reduct ion in bias. In principle, however, MSE 
can be larger for the bias-corrected est imator est imator than for the original 
MLE.  To see this, consider the case where hr(d ) is linear. In this case, the 

to the M L E  by dr  = m t (dr - b), where m is 
4 

bias-corrected est imator is related 

thes lope  of hr(d ) and b is the intercept. The relationship between the variance 
of dT and the variance of dr,  therefore, depends on the value of m: 

Var(dr)  - Var(clr) 
m 2 

When  m > 1, the bias-corrected estimator has smaller variance than the MLE,  
so that  MSE unambiguously  falls. When m < 1, the bias-corrected est imator 
has larger variance than the MLE:  this increase in variance can offset the 
reduct ion in bias, leading possibly to an increase in MSE. For  the present model  
with d s [ - 2 ,  0.2], however, m is only slightly smaller than 1. Thus the vari- 
ances of  the M L E  and of the bias-corrected M L E  are nearly identical, implying 
that  the bias-corrected M L E  tends to have smaller MSE than the MLE.  

11 Given the approximate linearity of the bias function for the MLE, we adopt a method for 
finding the approximate inverse of h T that is faster than the general iterative algorithm described 
above. In particular, we compute the bias of the MLE using 10,000 simulated samples on a fine grid 
of values for d in the interval [ -2 ,  0.1]. We then fit a line through these points using ordinary least 
squares and use the inverse of the fitted line to calculate the bias-corrected MLE's. For the empirical 
application in Section 6, we use the iterative algorithm summarized in equation (10). 
12 Note that in principle we could also apply a similar bias correction procedure to the WLE. 
However, the nonlinearity of the bias function for WLE suggests that bias correction would not 
perform as well for the WLE as it does for the MLE. 
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6 An Empirical Application 

This section applies the bias-correction method described in Section 5 to the 
estimation of a fractionally integrated model of the natural log of quarterly U.S. 
real G N P  for the time period 1947:1 to 1989:4) 3 The fractionally integrated 
model which we estimate takes the form of equation (8) with the addition of 
autoregressive and moving average dynamics for the error term et. Specifically, 
it is assumed that: 

(1 + ~ L  + ~2L 2 + ' "  + ~pLP)et = (1 + O~L + Oe L2 + ' "  + OqLq)~lt (11) 

where t h ~ iidN(O, o -2) and L is the lag operator. Equations (8) and (11) define a 
fractional ARIMA(p,  d, q) model. 

Sowell (1992a) argues that a fractional ARIMA(3, d, 2) model provides a 
good fit to the behavior of log real GNP.  This model has eight unknown 
parameters to be estimated: the fractional differencing parameter  d, three auto- 
regressive parameters (~1, ~2, and ~3), two moving average parameters (01 and 
Oa), the drift #, and the innovation variance rr 2. The model is estimated using 
exact t ime-domain maximum likelihood, with tt and o -2 concentrated out of the 
likelihood function as described in Section 2. Sowell (1992b) shows how to com- 
pute Var(Yr), where Yr-- - [AylAy2. . .AYr] ' ,  for a fractional ARIMA(p, d, q) 
model. For  scaling purposes, each observation Ay t is divided by the sample 
standard deviation of Ay t (i.e. 0.010728). 

The first row of Table 1 reports the maximum likelihood point estimates and 
the second row reports estimated asymptotic standard errors. These estimates 
differ slightly from the estimates reported in Sowell (1992a) because we use 
concentrated rather than mean-filtered maximum likelihood to obtain the 
estimates. 

The third row of Table 1 reports the bias-corrected maximum likelihood 
estimates, t4 These estimates are computed using the iterative algorithm de- 
scribed in Section 5, with n = 200. t5 Forty iterations starting from the (un- 
corrected) maximum likelihood estimates are sufficient to obtain convergence to 
three decimal places. Our  success in computing bias-corrected estimates for a 
richly parameterized model with eight parameters suggests that the bias correc- 
tion procedures advocated in Section 5 can be applied in a wide variety of 
circumstances. The reported standard errors are asymptotically correct for both 
estimates. 

Some of the bias-corrected estimates differ substantially from the original 
estimates. The bias-corrected estimate of d, for example, moves 25G closer to 

13 Since we work with the first differences of log real GNP, the data set consists of 171 quarterly 
observations. 
14 Note that the standard errors reported in the second row of Table 1 are asymptotically valid 
both for the uncorrected and for the corrected ML estimates. 
as We find that when n = 200 simulation error is very small relative to the uncertainty in the 
observed data. 
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Table 1. Parameter estimates for the fractional ARIMA(3, d, 2) model standard errors reported in 
parenthesis 

d 0~1 02 r 01 02 a 2 

Maximum Likelihood (ML) -0.61 - 1.20 0.94 -0.52 -0.29 0.81 0.78 
(.29) (.30) (.25) (.16) (.10) (.12) (.08) 

Bias-Corrected ML -0.46 - 1.03 0.73 -0.46 --0.25 0.76 0.79 

zero. More importantly, the bias-corrected estimate ofd  is closer to - � 8 9  than the 
original estimate. Recall from the end of Section 4 that d = - 1  corresponds 
to a trend-stationary model and d = 0 corresponds to a difference-stationary 
model. The proximity of the bias-corrected estimate of d to - � 8 9  reinforces the 
finding in Sowell (1992a) that the postwar U.S. time series for real G N P  are not 
informative enough to distinguish between trend-stationarity and difference- 
stationarity. 

7 Final Remarks 

We advocate the estimation of fractionally integrated models by first differenc- 
ing the observed time series and then using time-domain maximum likelihood. 
This procedure eliminates the boundary problems associated with positive 
values of d, eliminates the nuisance drift parameter, and avoids the large bias of 
WLE of d < - �89 The conclusions that we have drawn for the simple fractionally 
integrated model may not generalize to more highly parameterized models (i.e. 
models with stationary autoregressive and moving average dynamics). Further 
Monte Carlo analysis is needed before we can draw any more general con- 
clusions. Nonetheless, in a more complicated model, it is doubtful that the 
frequency-domain estimator will exhibit less bias than it does in the simple 
model. The bias correction procedure that we use in this paper works quite well 
for the maximum-likelihood estimator in the fractional model. This approach 
appears quite promising and warrants further study in more general settings. 
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