
Online Appendix for “Sources of U.S. Wealth Inequality: Past, Present,

and Future”

Joachim Hubmer, Per Krusell, and Anthony A. Smith, Jr.∗

May 17, 2020

1 Computational appendix

1.1 Dynamic programming problem

The consumers’ dynamic programming problem is solved by value-function iteration using Carroll (2006)’s

endogenous grid-point method (EGM) on a grid for cash-on-hand and the persistent idiosyncratic shocks

(β, p).

Unlike in the original Aiyagari (1994) model, the support of the ergodic wealth distribution is un-

bounded in this framework. We use a log-spaced grid with 100 points for cash-on-hand (xi)
100
i=1 with a very

large upper bound (one million times average wealth) to minimize the truncation error.1 Cubic splines

are used to interpolate the value function along the wealth dimension.

The grid for the persistent component of individual productivity (pj)
17
j=1 is chosen to account for the

long right tail in earnings. First, we chose the grid points as the 0.0001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.925,

0.95, 0.975, 0.99, 0.999, ..., 0.99999999 quantiles of the unconditional (i.e., cross-sectional) p-distribution

(which is a Gaussian). Second, we compute the corresponding grid in actual efficiency units of labor

(ψ(p1), ..., ψ(p17)). Third, given that in the current period p = pj for j = 1, ..., 17, we use Gauss-Hermite

quadrature to integrate over p′|p, the value of idiosyncratic productivity in the next period, when updating

the value function. In doing so, we use linear interpolation in ψ(p)-space to evaluate the value function

off the grid (the value function is much more non-linear in p-space than in ψ(p)-space).2

Regarding the discount factor, we choose the grid points (βm)15m=1 as the Gauss-Hermite quadrature

points of the unconditional (i.e., cross-sectional) β-distribution (this will turn out to be useful when

integrating over the joint distribution to compute aggregate wealth). Again, when updating the value

function, we integrate over β′|β using Gauss-Hermite quadrature and linear interpolation in β-space.

∗The authors’ affiliations are, respectively, University of Pennsylvania; Institute for International Economic Studies,
NBER, and CEPR; and Yale University and NBER.

1Alternatively, given that the Pareto tail has stabilized at some x̄, one could in principle also impute the distribution for
x > x̄. However, this did not turn out to be necessary as the log-spaced grid—which works well as the curvature of the
value function is high only close to the borrowing constraint—allows for selecting a very large upper bound while keeping
the number of grid points computationally feasible.

2Note that these linear interpolation coefficients can be pre-computed, resulting in a 17× 17 - matrix wp, where wp
j,· are

the integration weights for evaluating next period’s value function on (p1, ..., p17) given that in the current period p = pj .
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In addition to the these three state variables, the setup requires numerical integration over the two

idiosyncratic i.i.d. shocks to earnings ν ′ and capital returns η′ (as they affect next period’s cash-on-hand

x′). As both shocks are normally distributed, we use Gauss-Hermite quadrature once again.

1.2 Computing the ergodic distribution

The focus on tiny population groups such as the top 0.01% of the wealth distribution implies that solving

for the ergodic distribution directly is more efficient than simulating a large number of agents and applying

the ergodic theorem. In doing so, simulation error is eliminated; instead one can directly control the

numerical error by updating the distribution until convergence.

Specifically, the EGM entails using a grid for assets (ai)
100
i=1. Given pj and βm, saving ai is optimal

with cash-on-hand x(ai; pj , βm) that solves

∂u(x(ai; pj , βm)− ai)
∂c

= βmE
[(

1 +
∂y′

∂a′

(
1− ∂τ(y′)

∂y

)
+
∂ỹ′

∂a′
(1− τ̃)

)
∂V (x′, p′, β′)

∂x
|pj , βm

]
, (1)

where x′ = ai + y′ − τ(y′) + (1− τ̃)ỹ′ + T, (2)

and
∂y′

∂a′
=

(
r + rX(ai) +

∂rX(ai)

∂a
ai

)
, (3)

and
∂ỹ′

∂a′
=

(
σX(ai)η

′ +
∂σX(ai)

∂a
η′ai

)
. (4)

While the main advantage of the EGM is efficiency (x(ai; pj , βm) can be found without maximizing

the right-hand side of the Bellman equation), it is also convenient that the savings function is already

inverted. First, for all pj , βm, νq, ηh and for all ai, i = 1, ..., 100, there exists a unique level of asset holdings

a = s−1(ai; pj , βm, νq, ηh) such that saving ai is optimal.3 Second, we define a finer grid for asset holdings

(ki)
1000
i=1 and interpolate (using a cubic spline) to find the inverse savings function s−1(ki; pj , βm, νq, ηh).

Note that the borrowing constraint is binding for all k ≤ s−1(k1; pj , βm, νq, ηh). Finally, we can solve for

the ergodic distribution G(ki; pj , βm) ≡ Prob(k ≤ ki|p = pj , β = βm) at the grid points (ki)
1000
i=1 , (pj)

17
j=1

and (βm)15m=1. To simplify notation, we will denote by Gj,m(ki) this conditional cdf evaluated at grid

points (pj , βm). This distribution has to satisfy

Gj,m(ki) =

∫
p

∫
β

∫
ν

∫
η
G(s−1(ki; p, β, ν, η); p, β)dΓη(η)dΓν(ν)dΓβ(β|βm)dΓp(p|pj). (5)

Note that pj and βm are the realizations of the shock in period t + 1 and the integration is over the

shock values in period t. Nevertheless, e.g., Γβ(β|βm) is the correct distribution as for any stationary

Gaussian AR(1) process zt the conditional random variables zt|zt+1 and zt+1|zt have the same distribu-

tion.4 Starting from some initial distribution G0
j,m(ki) and using the short-hand notation s−1j,m,q,h(ki) =

3s−1(ai; pj , βm, νq, ηh) is defined as the unique a that solves

x(ai; pj , βm) = a+ y − τ(y) + (1− τ̃)ỹ + T,

where y = (r + rX(a))a+ wl(pj , νq) and ỹ = σX(a)ηha.
4That is, the densities satisfy fzt|zt+1

(x|y) = fzt+1|zt(x|y).
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s−1(ki; pj , βm, νq, ηh), we update until convergence according to

G1
j′,m′(ki) =

∑
j

wpj′,j

∑
m

wβm′,m

∑
q

wνq
∑
h

wηhĜ
0
j,m(s−1j,m,q,h(ki)). (6)

In (6), wνq and wηh are the Gauss-Hermite quadrature weights for the transitory shocks ν and η (normalized

to sum to one). The construction of the integration weights for the persistent shocks p and β is based

on linear interpolation in ψ(p)- and β-space, respectively (see details below). Ĝ0
j,m(·) linearly interpolates

G0
j,m(ki) off the grid in the k-dimension.

Integration weights wpj,′j and wβm′,m. Consider the persistent earnings shock p. Conditional on its

value in the next period being p′ = pj′ for some fixed j′ ∈ {1, ..., 17}, the integration over the current

period value p is with respect to the distribution of p, conditional on p′, where p|p′ ∼ N(ρP p′ + (1 −
ρP )µP , σP ). Gauss-Hermite quadrature, here with ten sample points, entails evaluating the function of

interest G(s−1(ki; p, β, ν, η); p, β) at (p̃n)10n=1, where p̃n = ρP p′+(1−ρP )µP +
√

2σP x̃n and (x̃n)10n=1 are the

roots of the Hermite polynomial, and approximating the integral using the associated weights (w̃n)10n=1 as

≈ 1√
π

10∑
n=1

w̃nG(s−1(ki; p̃n, β, ν, η); p̃n, β).

Of course, p̃n will in general not lie on the pj-grid, where the function value is known, requiring interpo-

lation. Using linear interpolation, we can pre-compute the integration weights (wpj′,j)
17
j=1 we put on eval-

uating the function of interest at (G(s−1(ki; pj , β, ν, η); pj , β))17j=1 in an efficient manner: for n = 1, ..., 10,

locate j(n) such that pj(n) ≤ p̃n ≤ pj(n)+1 and compute the linear interpolation coefficient in ψ(p)-space

λn as

λn =
ψ(p̃n)− ψ(pj(n))

ψ(pj(n)+1)− ψ(pj(n))
.

Then, looping over n = 1, ..., 10, add (1−λn) 1√
π
w̃n to wpj′,j(n) and λn

1√
π
w̃n to wpj′,j(n)+1. The construction

of the integration weights for β is analogous, except that linear interpolation can be performed directly

in β-space.

Computing moments of the distribution. For example, aggregate wealth is given by

K =

∫
p

∫
β

(∫
k
kdG(k|p, β)

)
fp(p)fβ(β)dpdβ, (7)

where fp(·) and fβ(·) are the unconditional (i.e., cross-sectional) normal densities of the persistent shocks

p and β. We integrate numerically according to

K̂ =
17∑
j=1

w̄pj

15∑
m=1

w̄βm

(
k1Gj,m(k1) +

1000∑
i=2

ki−1 + ki
2

(Gj,m(ki)−Gj,m(ki−1))

)
. (8)

As the discount factor grid (βm)15m=1 was chosen as the Gauss-Hermite sample points, we set (w̄βm)15m=1

to be the associated Gauss-Hermite quadrature weights. Recall that the Pareto tail transformation of
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the persistent earnings component p prompted us to define a grid (pj)
17
j=1 with a particular emphasis on

the right tail. Hence, we (pre-)compute the integration weights (w̄pj )
17
j=1 manually: (i) define a very fine

equally spaced grid (p̂n)Nn=1 (if, say, N = 100, 000, this has to be carried out only once) that covers the

coarser grid (pj)
17
j=1; (ii) for all n = 1, ..., N , locate j(n) and compute λn as above; (iii) looping over

n = 1, ..., N , add (1 − λn)fp(p̂n) to w̄pj(n) and λnfp(p̂n) to w̄pj(n)+1 (fp(·) is the pdf of p ∼ N(µP , σP )
1−ρP );

and (iv) finally, normalize such that
∑17

j=1 w̄
p
j = 1.5

1.3 Transition experiments

The perfect-foresight transition experiment is computationally straightforward. Given the calibrated

initial steady state (K?, r?, T ?), we solve for the new steady state (K??, r??, T ??) given the new exogenous

environment. Next, we search for a fixed point in (Kt, rt, Tt)
t1
t=t0+1-space where t1−t0 is chosen to be large

enough such that (Kt1 , rt1 , Tt1) ≈ (K??, r??, T ??). For each iteration, we first solve for the value functions

and corresponding (inverse) savings decisions backwards and subsequently roll the distribution forward,

as described in the previous sections for the steady state. Note that now the grids and integration weights

for the earnings process components are time-varying.6

The myopic transition experiment is conceptually very different. Given a period t distribution Gtj,m(ki)

and savings decisions stj,m,q,h(k) (reflecting factor prices rt, wt, transfers Tt and exogenous environment

θt, all naively assumed to persist forever), Gt+1
j,m(ki) is obtained as in (6).7 In turn, Gt+1

j,m(ki) and θt+1

determine Kt+1 (thus wt+1), rt+1, and Tt+1. The surprised agents expect this new endogenous and

exogenous environment to prevail forever; hence, we solve the dynamic programming problem given this

environment and accordingly obtain st+1
j,m,q,h(k). Note that no fixed point problem has to be solved, and

the capital stock converges to the same new steady state as under perfect foresight. Theoretically, this

strategy could give rise to oscillatory paths of capital. However, this turns out not to be the case in our

application.
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