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A The integration principle applied to the baseline model

The 4× 4 Markov transition matrix for (ε, z), in its calibrated form, reads
0.8507 0.1159 0.0243 0.0091
0.1229 0.8361 0.0021 0.0389
0.5833 0.0313 0.2917 0.0938
0.0938 0.3500 0.0313 0.5250

 ,
with ordering (e, g), (e, b), (u, g), (u, b). This implies probabilities of finding a job, conditional on
last period’s employment status and on the aggregate shocks in the current and in the last period.
These job-finding probabilities can be ranked from least to most lucky as follows: the probability
of becoming employed next period (ε′ = 1) is,

1. conditional on ε = 0, z = g, and z′ = b, 0.0313/0.1250 = 0.2504 ≡ ī1;

2. conditional on ε = 0, z = b, and z′ = b, 0.3500/0.8750 = 0.4000 ≡ ī2;

3. conditional on ε = 0, z = g, and z′ = g, 0.5833/0.8750 = 0.6666 ≡ ī3;

4. conditional on ε = 0, z = b, and z′ = g, 0.0938/0.1250 = 0.7504 ≡ ī4;

5. conditional on ε = 1, z = g, and z′ = b, 0.1159/0.1250 = 0.9272 ≡ ī5;

6. conditional on ε = 1, z = b, and z′ = b, 0.8361/0.8750 = 0.9555 ≡ ī6;

7. conditional on ε = 1, z = g, and z′ = g, 0.8507/0.8750 = 0.9722 ≡ ī7; and

8. conditional on ε = 1, z = b, and z′ = g, 0.1229/0.1250 = 0.9832 ≡ ī8.
∗Princeton University, IIES, CEPR, and NBER
†University of Virginia and CIREQ
‡Federal Reserve Bank of New York
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Thus, our idiosyncratic shock it can end up in 9 relevant subintervals, defined by the cutoff values
ī1–̄i9, in each period. Let us take an example: if i ∈ [̄i6, ī7), the agent would have been employed
currently only if the aggregate and idiosyncratic shocks leading up to the last period made the agent
employed in that period and the current aggregate state would have been bad (independently of
what the state was last period).

For a realized sequence of idiosyncratic shocks {is}t
s=1 one can then compute an average em-

ployment outcome in period t by brute-force averaging across all {zs}t
s=1 sequences (appropriately

weighted by probabilities): given each such sequence of aggregate shocks, together with an employ-
ment status in period 0, the employment outcomes in all periods up to and including t are known:
they follow applying the cutoff values above in every time period.

The resulting employment process will have long memory in terms of the idiosyncratic shocks:
one generally needs to know all prior values of is, s < t, in order to know what the average
employment outcome is at t. However, it is possible to represent the new employment process
recursively. To this end, let Pgt denote the probability (or fraction of the time) that, among all
possible outcomes of the aggregate process, (i) the individual would have been employed in time
t, given his initial (time-0) employment status and an initial (time-0) value for the aggregate state
AND (ii) the aggregate state at time t would have been good. Similarly define Pbt as the probability
that the agent would have been employed in t jointly with a bad aggregate state in that period.
Letting πt denote the probability of a good aggregate state in period t given z0, these definitions
imply that πt −Pgt is the probability that the agent would have been unemployed in t jointly with
a good aggregate state in t and similarly that 1− πt − Pbt is the probability that the agent would
have been unemployed in t jointly with a bad aggregate state in t. The key insight now is that
the variables Pt ≡ (Pgt, Pbt) summarize all there is to know from history in order to know the
expected (average) value for employment in period t+ 1 given a value for it+1. I.e., Pt summarizes
all the relevant knowledge about {i1, i2, . . . , it}. This representation is possible because the joint
underlying process for employment and the aggregate state is first-order Markov.

The recursive structure needs to update Pt into Pt+1 given a value for it+1, and it needs to
assign a value for the average employment outcome in period t+1 conditional on the state variable
Pt summarizing the individual’s idiosyncratic history and it+1, the new idiosyncratic shock. The
latter is easy: the average value of employment across the aggregate shock outcomes will be εw/o

t+1 =
Pg,t+1 + Pb,t+1, because g and b are disjoint outcomes.

To understand how to update Pt given it+1 (in order to obtain Pt+1), note that in any given
period in the economy with cycles the consumer is in one of four possible states: he is either
employed or unemployed and the aggregate state is either good or bad. Denote these states by
(1, g), (1, b), (0, g), and (0, b). (As noted above, the probabilities of these four states can be
deduced from knowledge of Pgt, Pbt, and the probability that the aggregate state is good in period
t.) Suppose that the consumer is in state (1, g) in period t and that the aggregate state in period
t+1 is also good. If the consumer’s luck in period t+1, it+1, is sufficiently good, he will also be in
state (1, g) in period t+1. In this case, the consumer’s luck is “sufficiently good” if it+1 < π1|1gg ≡
P (εt+1 = 1|εt = 1, zt = g, zt+1 = g). The conditional probability π1|1gg, therefore, is a “cutoff”
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that determines whether the consumer’s luck is good or bad, given that he is employed in t and
that the aggregate state is good in both t and t+ 1. In total, there are eight such cutoffs, one for
each of the eight possible permutations of (εt, zt, zt+1), and these eight cutoffs define the 9 regions
described above.

In period t, the consumer could also be in state (1, b), (0, g), or (0, b). In each case, if the
aggregate state in period t + 1 is good and the consumer’s luck in t + 1 is below the relevant
cutoff, he will be in state (1, g) in period t+ 1. Pg,t+1 is then a weighted average of four indicator
functions (each of which indicates whether it+1 is above or below the appropriate cutoff). The
weights corresponding to the period-t probabilities of the four states (1, g), (1, b), (0, g), and (0, b),
multiplied in each case by the conditional probability of transiting to a good aggregate state in
t+ 1 given the aggregate state in t. Similarly, Pb,t+1 is also the weighted average of four indicator
functions, appropriately weighted.

As described above, in the baseline model the variable it+1 can fall into any one of the 9 regions
defined by the cutoffs ī1–̄i9 above. The exact updating formulas for the baseline model are:

1. it+1 ∈ [0, ī1): Pg,t+1 = πt+1 and Pb,t+1 = 1− πt+1;

2. it+1 ∈ [̄i1, ī2): Pg,t+1 = πt+1 and Pb,t+1 = Pgtπb|g + (1− πt)πb|b

3. it+1 ∈ [̄i2, ī3): Pg,t+1 = πt and Pb,t+1 = Pgtπb|g + Pbtπb|b;

4. it+1 ∈ [̄i3, ī4): Pg,t+1 = Pgtπg|g + (1− πt)πg|b and Pb,t+1 = Pgtπb|g + Pbtπb|b;

5. it+1 ∈ [̄i4, ī5): Pg,t+1 = Pgtπg|g + Pbtπg|b and Pb,t+1 = Pgtπb|g + Pbtπb|b;

6. it+1 ∈ [̄i5, ī6): Pg,t+1 = Pgtπg|g + Pbtπg|b and Pb,t+1 = Pbtπb|b;

7. it+1 ∈ [̄i6, ī7): Pg,t+1 = Pgtπg|g + Pbtπg|b and Pb,t+1 = 0;

8. it+1 ∈ [̄i7, ī8): Pg,t+1 = Pbtπg|b and Pb,t+1 = 0; and

9. it+1 ∈ [̄i8, 1]: Pg,t+1 = Pb,t+1 = 0.

One needs to spell through these carefully to see that they are correct. We have, and for verification
we have also (i) simulated this process for various draws of the idiosyncratic process {it}T

t=1 (where
T is large) and, based on the resulting {Pt}T

t=1 sequence, computed the associated employment
outcomes and (ii) made sure that the resulting values are replicated for the same {it}T

t=1 draws by
a brute-force averaging across aggregate shock processes. They do.

Appendix B displays the general updating formula (expressed as a weighted average of indicator
functions), for the baseline case (expressed as a weighted average of indicator functions), and
Appendix D displays it for the model with short- and long-term unemployment.
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B Computational algorithm for the benchmark model

B.1 General algorithm

This section outlines the computational algorithm applying the integration principle to our model
and computing the transition path.1 Note that the business cycle is eliminated in the beginning
of period 1, after all the period-1 shocks are realized. Thus z1 and k̄1 are given. At the individual
level, the distribution of k1, ε1, and β̃1 are given from one point in the simulation that corresponds
to z1 and k̄1. ε1 provides the initial conditions for each individuals: if z1 = g and ε1 = 1, Pg1 = 1
and Pb1 = 0; if z1 = b and ε1 = 1, Pg1 = 0 and Pb1 = 1; and if ε1 = 0, Pg1 = 0 and Pb1 = 0. (Recall
that Pgt is the joint probability of zt = g and εt = 1 and that Pbt is the joint probability of zt = b

and εt = 1.)
The general computational strategy is to first postulate the time path of aggregate capital,

solve for the agents’ decisions given this path, and then verify that that the time path for aggregate
capital implied by agents’ aggregated decisions matches the postulated time path.

We postulate the time path for 600 periods. Then we divide the 600 periods into the first 125
periods and the final 475 periods. We solve the consumer’s problem backwards—first solve for the
final 475 periods and then for the first 125 periods. After the optimization problem is solved, we
simulate the economy with many consumers (we use 90,000 consumers) and generate the path for
aggregate capital by summing up individual savings. Finally, we check whether this simulated path
of capital stock is the same as the initially postulated time path. The following explains these steps
more in detail.

1. First, postulate the path of the aggregate capital stock for 600 periods. We use the average
of the law of motions of the capital stock in the fluctuating economy to generate the initial
guess.

2. We solve the consumer’s problem backwards. In the final 475 periods, the exogenous variables,
such as z, u, and πz are set to their limit values (z = 1, u = (ug +ub)/2, and πz = 0.5). Thus,
we treat this economy as a stationary on except for the movement in k̄ (k̄ settles much more
slowly than do the exogenous variables). We summarize the movement of the capital stock
by the law of motion k̄′ = H(k̄). In practice, we use a (log-)linear function for H(·), with the
initial value of the law of motion obtained by applying ordinary least squares to the data on
aggregate capital for the final 475 periods. The Bellman equation is:

V (k, Pg, Pb, β̃; k̄) = max
c,k′

{U(c) + β̃E[V (k′, P ′
g, P

′
b, β̃

′; k̄′)|Pg, Pb, β̃]}

subject to

c+ k′ = r(k̄, 1− ū)k + w(k̄, 1− ū)(Pg + Pb) + g(1− Pg − Pb) + (1− δ)k,

1Also see Mukoyama and Şahin (2005, Appendix C and D) for a detailed exposition of the implementation of
the integration principle. Note that Krusell and Smith (2002) and Mukoyama and Şahin (2005, 2006) use Markov
approximations to the P processes while here we use the P s directly in the computation.
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and
k̄′ = H(k̄).

As is explained in Appendix A, P ′
g and P ′

b are functions of a random variable i′ ∼ U [0, 1].

P ′
g(i

′) = Pr[z′ = g, ε′ = 1|i′]
=
∑

z=g,b[Pr[z′ = g, ε′ = 1|i′, z, ε = 1]Pz + Pr[z′ = g, ε′ = 1|i′, z, ε = 0](1/2− Pz)]
=
∑

z=g,b[Pr[ε′ = 1|i′, z′ = g, z, ε = 1]πg|zPz + Pr[ε′ = 1|i′, z′ = g, z, ε = 0]πg|z(1/2− Pz)]
=
∑

z=g,b[I(i
′ ≤ π11|zg)πg|zPz + I(i′ ≤ π01|zg)πg|z(1/2− Pz)]

and

P ′
b(i

′) = Pr[z′ = b, ε′ = 1|i′]
=
∑

z=g,b[Pr[z′ = b, ε′ = 1|i′, z, ε = 1]Pz + Pr[z′ = b, ε′ = 1|i′, z, ε = 0](1/2− Pz)]
=
∑

z=g,b[Pr[ε′ = 1|i′, z′ = b, z, ε = 1]πb|zPz + Pr[ε′ = 1|i′, z′ = b, z, ε = 0]πb|z(1/2− Pz)]
=
∑

z=g,b[I(i
′ ≤ π11|zb)πb|zPz + I(i′ ≤ π01|zb)πb|z(1/2− Pz)],

where I(·) is the indicator function equaling 1 if the statement is true and 0 if it is false. Note
that this is just a compact way of writing the transition rules in Appendix A. The prices are:

r(k̄, 1− ū) = αk̄α−1(1− ū)1−α

and
w(k̄, 1− ū) = (1− α)k̄α(1− ū)−α.

The expectation operator in the Bellman equation is taken over i′ and β̃′ values. In practice,
we divide the [0, 1] into 4× 2 + 1 = 9 subintervals when we take an expectation with respect
to the i′s, as is explained in Appendix A. The dynamic-programming problem is solved in
a similar way to that used in Krusell and Smith (1998). We use 6 grids in each P direction
(or, more precisely, on the conditional probability P̂ , as is detailed below) and apply linear
interpolation to the value function when evaluating the values under P ′ (which are usually
not on the grid).

3. For t = 1, ..., 125, we solve backwards for the path. Now the exogenous parameters move over
time and we treat each period differently (for example, the value function has the index t).
First, we provide the terminal value function: V126(k, Pg, Pb, β̃) = V (k, Pg, Pb, β̃; k̄126), and
we then calculate the probability that the aggregate state is z at time t, πz

t , for t = 1, ..., 125:
πg

1 = 1 if z1 = g and πg
1 = 0 if z1 = b. It is always the case that πb

t = 1 − πg
t , and

πg
t+1 = πg

t πg|g + (1− πg
t )πg|b. zt can be calculated using zt = πg

t g + (1− πg
t )b. ut can also be

calculated as zt = πg
t ug + (1− πg

t )ub. Thus the prices are

rt = αztk̄
α−1
t (1− ut)1−α

and
wt = (1− α)ztk̄α

t (1− ut)−α.
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Given these, we can solve the consumer’s problem, working backwards. The Bellman equation
is:

Vt(k, Pg, Pb, β̃) = max
c,k′

{U(c) + β̃Et[Vt+1(k′, P ′
g, P

′
b, β̃

′)|Pg, Pb, β̃]}

subject to
c+ k′ = rtk + wt(Pg + Pb) + g(1− Pg − Pb) + (1− δ)k,

Again, P ′
g and P ′

b are functions of a random variable i′ ∼ U [0, 1].

P ′
g(i

′) = Pr[z′ = g, ε′ = 1|i′]
=
∑

z=g,b[Pr[z′ = g, ε′ = 1|i′, z, ε = 1]Pz + Pr[z′ = g, ε′ = 1|i′, z, ε = 0](πz
t − Pz)]

=
∑

z=g,b[Pr[ε′ = 1|i′, z′ = g, z, ε = 1]πg|zPz + Pr[ε′ = 1|i′, z′ = g, z, ε = 0]πg|z(πz
t − Pz)]

=
∑

z=g,b[I(i
′ ≤ π11|zg)πg|zPz + I(i′ ≤ π01|zg)πg|z(πz

t − Pz)]

and

P ′
b(i

′) = Pr[z′ = b, ε′ = 1|i′]
=
∑

z=g,b[Pr[z′ = b, ε′ = 1|i′, z, ε = 1]Pz + Pr[z′ = b, ε′ = 1|i′, z, ε = 0](πz
t − Pz)]

=
∑

z=g,b[Pr[ε′ = 1|i′, z′ = b, z, ε = 1]πb|zPz + Pr[ε′ = 1|i′, z′ = b, z, ε = 0]πb|z(πz
t − Pz)]

=
∑

z=g,b[I(i
′ ≤ π11|zb)πb|zPz + I(i′ ≤ π01|zb)πb|z(πz

t − Pz)].

4. Having solved the consumer’s decision problem, we can simulate the economy. We assign an
initial distribution for the individual state variables and then simulate consumers’ decisions
(we use 90,000 consumers). Adding up the implied saving choices, we obtain the time series
for k̄t. Using this path, we check whether it reproduces the initially postulated path. If not,
we update k̄2, ..., k̄126 and the law of motion H(k̄) by ordinary least squares. We repeat until
convergence.

B.2 Issues in actual implementation

In practice, we work on the conditional probabilities for P s rather than with the joint probabilities.
We define P̂z as the probability of being employed conditional on the aggregate state z. Here, in
the first step (since the probability of each aggregate state is 1/2),

P̂g =
Pg

1/2
= 2Pg (1)

and
P̂b =

Pb

1/2
= 2Pb. (2)

The new problem becomes (with the new value function V̂ )

V̂ (k, P̂g, P̂b, β̃; k̄) = max
c,k′

{U(c) + β̃E[V̂ (k′, P̂ ′
g, P̂

′
b, β̃

′; k̄′)|P̂g, P̂b, β̃]}

subject to

c+ k′ = r(k̄, 1− ū)k + w(k̄, 1− ū)
(

1
2
P̂g +

1
2
P̂b

)
+ g

(
1− 1

2
P̂g −

1
2
P̂b

)
+ (1− δ)k,
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and
k̄′ = H(k̄).

From (1) and (2), P̂ ′
g(i

′), P̂ ′
g(i

′) can be calculated by

P̂ ′
g(i

′) = 2P ′
g(i

′)
= 2

∑
z=g,b[I(i

′ ≤ π11|zg)πg|zPz + I(i′ ≤ π01|zg)πg|z(1/2− Pz)]
=
∑

z=g,b[I(i
′ ≤ π11|zg)πg|zP̂z + I(i′ ≤ π01|zg)πg|z(1− P̂z)]

and
P̂ ′

b(i
′) = 2P ′

b(i
′)

= 2
∑

z=g,b[I(i
′ ≤ π11|zb)πb|zPz + I(i′ ≤ π01|zb)πb|z(1/2− Pz)]

=
∑

z=g,b[I(i
′ ≤ π11|zb)πb|zP̂z + I(i′ ≤ π01|zb)πb|z(1− P̂z)].

The advantage of using conditional probabilities is that we can ensure that the labor-income terms
in the budget constraint, w(k̄, 1 − ū)(P̂g/2 + P̂b/2) and g(1 − P̂g/2 − P̂b/2), are positive as long
as P̂g, P̂b ∈ [0, 1], and we can utilize the entire [0, 1] domain for P̂g and P̂b. (Here, it is not a big
advantage since we can instead just restrict Pg, Pb ∈ [0, 0.5]. However, the advantage is much larger
in the second step, since the corresponding domain becomes time-variant.)

Similarly, in the second step of the optimization, define

P̂g =
Pg

πg
t

(3)

and
P̂b =

Pb

πb
t

. (4)

Note that we have to be careful about the initial point—we cannot divide when πz
t = 0. To avoid

this, we can start from πg
t = 1− ε and πb

t = ε for a very small ε, for example.
The problem becomes

V̂t(k, P̂g, P̂b, β̃) = max
c,k′

{U(c) + β̃Et[V̂t+1(k′, P̂ ′
g, P̂

′
b, β̃

′)|P̂g, P̂b, β̃]}

subject to
c+ k′ = rtk + wt(π

g
t P̂g + πb

t P̂b) + g(1− πg
t P̂g − πb

t P̂b) + (1− δ)k.

Again, P ′
g and P ′

b are functions of a random variable i′ ∼ U [0, 1]:

P̂ ′
g(i

′) = 1
πg

t+1
P ′

g(i
′)

=
∑

z=g,b

[
I(i′ ≤ π11|zg)

πg|z
πg

t+1
Pz + I(i′ ≤ π01|zg)

πg|z
πg

t+1
(πz

t − Pz)
]

=
∑

z=g,b

[
I(i′ ≤ π11|zg)

πz
t

πg
t+1
πg|zP̂z + I(i′ ≤ π01|zg)

πz
t

πg
t+1
πg|z(1− P̂z)

]
and

P̂ ′
b(i

′) = 1
πb

t+1
P ′

b(i
′)

=
∑

z=g,b

[
I(i′ ≤ π11|zb)

πb|z
πb

t+1
Pz + I(i′ ≤ π01|zb)

πb|z
πb

t+1
(πz

t − Pz)
]

=
∑

z=g,b

[
I(i′ ≤ π11|zb)

πz
t

πb
t+1
πb|zP̂z + I(i′ ≤ π01|zb)

πz
t

πb
t+1
πb|z(1− P̂z)

]
.
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C Calculating the welfare gain

As in Lucas (1987), our measure of the welfare gain from eliminating the business cycle, λ, satisfies
(we now change the notation of the discount factor so that we can be explicit about its stochastic
nature)

E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)
log((1 + λ)ct)

]
= E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)
log(c̃t)

]
,

where β(j) is the discount factor from time j − 1 to j (known at time j) and β(0) = 1. β(1) is
known at time 0—it is an initial condition. ct is consumption in the economy with business cycles
and c̃t is consumption in the economy with business cycles.

λ can be calculated as follows.2

λ = exp

(
V − Ṽ
d

)
− 1,

where

V = E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)
log(ct)

]
and

Ṽ = E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)
log(c̃t)

]
can easily be calculated from the value functions. d is defined as

d ≡ E0

[ ∞∑
t=0

(
t∏

t=0

β(j)

)]
.

Let d̄i be the value of d when β(1) = βi (i ∈ {h,m, l}). Let the vector D be defined as

D ≡

 d̄h

d̄m

d̄l

 .
D satisfies the following equation:

D = I + BΩD,

where

I ≡

 1
1
1

 ,

Ω ≡

 ωhh ωhm ωhl

ωmh ωmm ωml

ωlh ωlm ωll

 ,
2The welfare measure in the main text is in percentage points, i.e. λ× 100.
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and

B ≡

 βh 0 0
0 βm 0
0 0 βl

 .
Therefore,

D = (I−BΩ)−1I,

where I is the 3× 3 identity matrix.

D Algorithm for the model with short- and long-run unemploy-
ment

D.1 Notation

Let ε ∈ {l, f, s, e} denote long-term unemployment after the second unemployment period, long-
term unemployment in the first unemployment period (“fired”), short-term unemployment, and
employment, respectively. z = g is the good state and z = b is the bad state (from the second
consecutive period). The transition matrix for z is now

The individual employment states evolve according to the following matrices.

• For (z, z′) = (g, g),
πll|gg πlf |gg πls|gg πle|gg

πfl|gg πff |gg πfs|gg πfe|gg

πsl|gg πsf |gg πss|gg πse|gg

πel|gg πef |gg πes|gg πee|gg

 =


0.50 0 0 0.50
0.50 0 0 0.50
0.25 0 0 0.75
0 0 0.03 0.97

.


• For (g, b), 

πll|gb πlf |gb πls|gb πle|gb

πfl|gb πff |gb πfs|gb πfe|gb

πsl|gb πsf |gb πss|gb πse|gb

πel|gb πef |gb πes|gb πee|gb

 =


0.94 0 0 0.06
0.94 0 0 0.06
0.75 0 0 0.25
0 0.04 0.03 0.93

.


• For (b, g), 

πll|bg πlf |bg πls|bg πle|bg
πfl|bg πff |bg πfs|bg πfe|bg
πsl|bg πsf |bg πss|bg πse|bg
πel|bg πef |bg πes|bg πee|bg

 =


0.17 0 0 0.83
0.17 0 0 0.83
0.03 0 0 0.97
0 0 0.03 0.97

.


• For (b, b), 

πll|bb πlf |bb πls|bb πle|bb
πfl|bb πff |bb πfs|bb πfe|bb
πsl|bb πsf |bb πss|bb πse|bb
πel|bb πef |bb πes|bb πee|bb

 =


0.99 0 0 0.01
0.99 0 0 0.01
0.03 0 0 0.97
0 0 0.03 0.97

.


Computation of equilibrium for the economy with aggregate shocks is more involved than in the
homogeneous unemployment case, since now we have 3 aggregate states and 4 individual states,
but does not significantly depart in complexity or difficulty from Krusell and Smith (1998).
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D.2 Transition dynamics

The general computational strategy is the same as for the case of homogeneous unemployment in
Appendix B, though it is more involved because of the many state variables.

1. First we postulate the path for the aggregate capital stock.

2. As in the previous section, we start from t ≥ 126. The Bellman equation is:

V (k,P, β̃; k̄) = max
c,k′

{U(c) + β̃E[V (k′,P′, β̃′; k̄′)|P, β̃]}

subject to

c+ k′ = r(k̄, 1− ū)k + w(k̄, 1− ū)
∑

z=g,b

P e
z + ψs

∑
z=g,b

(P s
z + P f

z ) + ψl

∑
z=g,b

P l
z + (1− δ)k,

and
k̄′ = H(k̄).

Here, P is the vector of P ε
z s (the joint probability that the aggregate state is z and the

individual state is ε, if there were aggregate fluctuations). We do not need to keep track of
all the P s: it is sufficient to have P e

g , P e
b , P s

g , P s
b , and P f

b as state variables.3 This is because
P l

z = πz − P e
z − P s

z − P f
z and P f

g = 0. P ε
z evolves according to

P ε′
z′ (i

′) = Pr[z′, ε′|i′]
=
∑

z=g,b

∑
ε=e,s,f,l Pr[z′, ε′|i′, z, ε]P ε

z

=
∑

z=g,b

∑
ε=e,s,f,l Pr[ε′|i′, z′, z, ε]πz′|zP

ε
z .

(5)

Calculating Pr[ε′|i′, z′, z, ε] is harder in this case. Before, we set Pr[ε′ = 1|i′, z′, z, ε] = 1 if
i′ ≤ πεε′|zz′ and zero otherwise; and Pr[ε′ = 0|i′, z′, z, ε] = 1 if i′ > πεε′|zz′ and zero otherwise.

Now we have four idiosyncratic states instead of two, so we adopt the following cutoff rule:

Pr[ε′ = e|i′, z′, z, ε] =

{
1 if i′ ∈ [0, πεe|zz′ ]
0 otherwise

Pr[ε′ = s|i′, z′, z, ε] =

{
1 if i′ ∈ (πεe|zz′ , πεe|zz′ + πεs|zz′ ]
0 otherwise

Pr[ε′ = f |i′, z′, z, ε] =

{
1 if i′ ∈ (πεe|zz′ + πεs|zz′ , πεe|zz′ + πεs|zz′ + πεf |zz′ ]
0 otherwise

Pr[ε′ = l|i′, z′, z, ε] =

{
1 if i′ ∈ (πεe|zz′ + πεs|zz′ + πεf |zz′ , 1]
0 otherwise

.

We keep the structure that a low i is “lucky” and a high i is “unlucky.” In the computation,
we divide the interval of possible is in [0, 1] into subintervals by these cutoff thresholds when
we take expectations in the Bellman equation.

3Note that here we do not need to make distinctions between the zb state and the zd state.
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Again, in the actual computation, we work with conditional probabilities (but not conditional
only on the aggregate states); we define these conditional probabilities, P̂ ε

z , as follows.

P̂ e
g ≡

P e
g

πg
t

, (6)

P̂ e
b ≡

P e
b

πb
t

, (7)

P̂ s
g ≡

P s
g

πg
t (1− P̂ e

g )
, (8)

P̂ s
b ≡

P s
b

πb
t (1− P̂ e

b )
, (9)

P̂ f
b ≡

P f
b

πb
t (1− P̂ e

b )(1− P̂ s
b )
. (10)

Then, the problem becomes

V̂ (k, P̂, β̃; k̄) = max
c,k′

{U(c) + β̃E[V (k′, P̂′, β̃′; k̄′)|P̂, β̃]}

subject to
c+ k′ = r(k̄, 1− ū)k + Iw + Iu1 + Iu2 + (1− δ)k

and
k̄′ = H(k̄).

Here,
Iw ≡ w(k̄, 1− ū)

∑
z=g,b

P e
z = w(k̄, 1− ū)

∑
z=g,b

πz
t P̂

e
z ,

Iu1 ≡ ψs

∑
z=g,b

(P s
z + P f

z ) = ψs

 ∑
z=g,b

πz
t (1− P̂ e

z )P̂ s
z + πb

t (1− P̂ e
b )(1− P̂ s

b )P̂ f
b

 ,
and

Iu2 ≡ ψl
∑

z=g,b P
l
z

= ψl
∑

z=g,b(π
z
t − P e

z − P s
z − P f

z )
= ψl

[
1− πg

t (P̂ e
g + (1− P̂ e

g )P̂ s
g )− πb

t (P̂
e
b + (1− P̂ e

b )P̂ s
b + (1− P̂ e

b )(1− P̂ s
b )P̂ f

b )
]
.

The evolution of P̂ ε
z can be obtained from the above relationships. In particular, we can

convert P̂ s into P s using the equations (6)-(10), calculate the transition of P s by (5), and
transform the P s back to P̂ s using (6)-(10) once again. Here, since all the exogenous variables
are already settled, we can use πz

t = 1/2.

Again, the advantage of working on the conditional distributions is that we can ensure that
Iw, Iu1, and Iu2 are all positive for P̂ e

g , P̂
e
b , P̂

s
g , P̂

s
b , P̂

f
b ∈ [0, 1]. We put 5 grid points in each

P̂ direction and linearly interpolate the value functions when evaluating the value at P̂ ′.

3. The other steps are similar to those in Appendix B. For the first 125 periods, πz
t changes

over time: it evolves according to πz′
t+1 =

∑
z=g,b πz′|zπ

z
t .
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E More tables

E.1 One type of unemployment

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 0.861 0.261 0.070 −0.050 −0.093 0.228 1.088 1.689
ε = 1 0.263 0.156 0.045 −0.057 −0.096 0.228 1.090 1.691
ε = 0 1.691 0.671 0.254 0.033 −0.057 0.233 1.067 1.643

Average utility gains by wealth group (k̄ = 11.2, z = zb)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 0.278 0.175 0.043 −0.059 −0.078 0.219 0.993 1.552
ε = 1 0.247 0.166 0.040 −0.060 −0.078 0.219 0.994 1.551
ε = 0 0.579 0.345 0.113 −0.013 −0.054 0.201 0.979 1.531

Average utility gains by wealth group (k̄ = 12.3, z = zg)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 0.393 0.207 0.050 −0.056 −0.079 0.224 1.020 1.577
ε = 1 0.250 0.171 0.035 −0.064 −0.083 0.226 1.022 1.566
ε = 0 0.821 0.416 0.169 0.012 −0.044 0.206 1.000 1.667

Average utility gains by wealth group (k̄ = 12.3, z = zb)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = 1, β = low 0.636 0.470 0.303 0.080 0.432 1.202 1.510
ε = 1, β = middle 0.316 0.181 0.046 −0.095 0.668 1.479 1.787
ε = 1, β = high 0.120 0.033 −0.022 0.014 1.041 1.864 2.176
ε = 0, β = low 3.808 1.867 0.732 0.182 0.419 1.199 1.509
ε = 0, β = middle 2.890 1.314 0.390 −0.033 0.653 1.476 1.787
ε = 0, β = high 2.107 0.884 0.183 0.006 1.025 1.860 2.175

Utility gains for different types of agents (k̄ = 11.2, z = zb)
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Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = 1, β = low 0.563 0.356 0.241 0.099 0.369 1.069 1.338
ε = 1, β = middle 0.264 0.090 0.010 −0.076 0.599 1.343 1.613
ε = 1, β = high 0.089 0.001 −0.007 0.040 0.970 1.723 1.995
ε = 0, β = low 1.508 0.644 0.420 0.164 0.360 1.067 1.337
ε = 0, β = middle 1.034 0.321 0.138 −0.039 0.588 1.340 1.612
ε = 0, β = high 0.681 0.131 0.033 0.022 0.959 1.720 1.995

Utility gains for different types of agents (k̄ = 12.3, z = zg)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = 1, β = low 0.648 0.364 0.228 0.094 0.386 1.107 1.382
ε = 1, β = middle 0.328 0.095 0.008 −0.080 0.619 1.382 1.659
ε = 1, β = high 0.134 0.004 −0.009 0.035 0.992 1.765 2.044
ε = 0, β = low 3.022 0.850 0.507 0.188 0.375 1.104 1.381
ε = 0, β = middle 2.259 0.487 0.208 −0.024 0.605 1.380 1.658
ε = 0, β = high 1.625 0.256 0.074 0.015 0.977 1.762 2.043

Utility gains for different types of agents (k̄ = 12.3, z = zb)
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E.2 Short- and long-term unemployment

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 7.415 2.640 1.225 0.525 0.397 1.136 4.463 6.960
ε = e 1.504 0.917 0.825 0.336 0.267 1.092 4.464 6.951
ε = s 2.057 1.221 1.096 0.453 0.348 1.167 4.509 6.749
ε = f 14.512 9.071 6.059 3.020 2.355 1.746 4.566 6.976
ε = l 18.973 10.971 6.335 3.205 2.555 1.719 4.253 7.098

Average utility gains by wealth group (k̄ = 11.3, z = zd)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 20.632 9.994 1.325 0.421 0.332 1.137 4.233 6.595
ε = e 1.579 1.417 0.917 0.393 0.323 1.116 4.237 6.580
ε = s 1.958 1.139 0.510 0.411 1.080 4.074 6.614
ε = l 20.804 11.068 6.805 3.290 2.437 1.676 4.249 6.673

Average utility gains by wealth group4 (k̄ = 11.3, z = zb)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 2.092 1.684 0.838 0.456 0.392 1.135 4.264 6.672
ε = e 1.727 1.599 0.795 0.432 0.377 1.131 4.270 6.670
ε = s 3.207 3.057 1.613 0.925 0.791 1.210 4.062 6.811
ε = l 4.830 3.810 1.861 1.278 1.091 1.371 4.213 5.937

Average utility gains by wealth group (k̄ = 12.1, z = zg)

Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 3.385 2.010 1.026 0.576 0.447 1.148 4.212 6.627
ε = e 1.493 1.414 0.680 0.373 0.323 1.107 4.194 6.629
ε = s 1.925 1.722 0.855 0.472 0.410 1.106 4.301 6.827
ε = f 9.100 8.185 4.679 2.936 2.435 1.615 4.347 6.246
ε = l 11.167 8.670 4.504 3.141 2.645 1.690 4.502 6.460

Average utility gains by wealth group (k̄ = 12.1, z = zd)

4In the simulated data, there are no agents with ε = s and asset holdings below the first percentile.
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Utility gain in percentage consumption
< 1 1–5 5–25 25–50 50–75 75–95 95–99 > 99

All 5.339 2.153 1.188 0.594 0.361 1.137 4.215 6.620
ε = e 1.517 1.424 0.704 0.372 0.323 1.104 4.212 6.596
ε = s 1.777 1.713 0.894 0.481 0.413 1.211 4.052 6.989
ε = l 11.122 8.517 4.411 3.143 2.663 1.637 4.304 6.655

Average utility gains by wealth group (k̄ = 12.1, z = zb)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 1.960 1.844 1.524 0.885 1.191 4.017 5.101
ε = e, β = middle 1.062 0.957 0.695 0.277 2.089 5.540 6.669
ε = e, β = high 0.636 0.615 0.612 0.884 4.353 8.033 9.212
ε = s, β = low 2.749 2.508 1.904 1.027 1.181 4.014 5.104
ε = s, β = middle 1.685 1.477 0.988 0.370 2.071 5.537 6.668
ε = s, β = high 1.054 0.922 0.744 0.879 4.331 8.030 9.212
ε = f , β = low 22.119 16.464 10.074 4.093 1.191 4.008 5.102
ε = f , β = middle 16.336 12.143 7.258 2.551 1.996 5.529 6.670
ε = f , β = high 10.755 7.913 4.497 1.606 4.218 8.020 9.213
ε = l, β = low 30.194 21.159 11.223 4.333 1.182 4.006 5.101
ε = l, β = middle 22.226 15.627 8.150 2.737 1.982 5.527 6.669
ε = l, β = high 14.676 10.277 5.125 1.683 4.200 8.018 9.212

Utility gains for different types of agents (k̄ = 11.3, z = zd)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.066 1.981 1.643 0.966 1.155 3.606 4.617
ε = e, β = middle 1.153 1.076 0.793 0.338 1.940 5.052 6.112
ε = e, β = high 0.663 0.644 0.625 0.861 4.072 7.429 8.527
ε = s, β = low 2.865 2.685 2.039 1.113 1.153 3.603 4.616
ε = s, β = middle 1.778 1.628 1.099 0.436 2.021 5.048 6.111
ε = s, β = high 1.085 0.984 0.768 0.860 4.191 7.425 8.526
ε = l, β = low 30.340 23.461 11.716 4.471 1.161 3.593 4.616
ε = l, β = middle 22.347 17.335 8.539 2.850 2.038 5.035 6.110
ε = l, β = high 14.728 11.397 5.371 1.711 4.211 7.409 8.526

Utility gains for different types of agents (k̄ = 11.3, z = zb)
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Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.469 1.833 1.632 1.051 1.126 3.703 4.812
ε = e, β = middle 1.451 0.927 0.775 0.390 1.995 5.179 6.338
ε = e, β = high 0.861 0.727 0.730 0.904 4.209 7.613 8.821
ε = s, β = low 5.854 3.526 2.994 1.700 1.121 3.699 4.813
ε = s, β = middle 4.056 2.215 1.797 0.834 1.967 5.174 6.339
ε = s, β = high 2.575 1.413 1.218 1.011 4.171 7.607 8.822
ε = l, β = low 8.334 4.741 3.966 2.141 1.111 3.695 4.812
ε = l, β = middle 5.969 3.162 2.545 1.143 1.941 5.169 6.338
ε = l, β = high 4.056 1.964 1.604 1.080 4.138 7.602 8.821

Utility gains for different types of agents (k̄ = 12.1, z = zg)

Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.052 1.588 1.433 0.964 1.115 3.621 4.598
ε = e, β = middle 1.144 0.750 0.635 0.333 1.967 5.069 6.093
ε = e, β = high 0.661 0.627 0.651 0.860 4.138 7.455 8.515
ε = s, β = low 2.781 1.949 1.728 1.108 1.105 3.619 4.597
ε = s, β = middle 1.722 1.030 0.858 0.430 1.949 5.066 6.092
ε = s, β = high 1.052 0.751 0.732 0.858 4.117 7.451 8.514
ε = f , β = low 21.258 9.674 7.974 4.172 1.120 3.611 4.598
ε = f , β = middle 15.720 6.961 5.627 2.619 1.882 5.056 6.092
ε = f , β = high 10.330 4.269 3.347 1.609 4.012 7.451 8.512
ε = l, β = low 27.883 10.670 8.656 4.405 1.112 3.609 4.597
ε = l, β = middle 20.573 7.737 6.164 2.800 1.868 5.053 6.091
ε = l, β = high 13.572 4.817 3.715 1.685 3.997 7.435 8.511

Utility gains for different types of agents (k̄ = 12.1, z = zd)
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Wealth percentile
Type of agent constr. 0.005 0.05 0.5 0.95 0.995 0.999
ε = e, β = low 2.060 1.609 1.439 0.964 1.107 3.621 4.647
ε = e, β = middle 1.149 0.766 0.639 0.334 1.963 5.074 6.147
ε = e, β = high 0.671 0.635 0.660 0.872 4.144 7.469 8.583
ε = s, β = low 2.790 1.977 1.734 1.109 1.098 3.618 4.645
ε = s, β = middle 1.729 1.051 0.862 0.430 1.946 5.070 6.146
ε = s, β = high 1.063 0.763 0.742 0.869 4.123 7.466 8.582
ε = l, β = low 27.910 10.884 8.661 4.389 1.105 3.608 4.646
ε = l, β = middle 20.592 7.903 6.167 2.787 1.865 5.058 6.145
ε = l, β = high 13.591 4.940 3.723 1.688 4.003 7.450 8.580

Utility gains for different types of agents (k̄ = 12.1, z = zb)
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