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Abstract

This paper shows that if the consumers in a “standard” real business cycle (RBC) model are
permitted to use near-rational decision rules—that is, decision rules from which they suffer
trivial utility losses—then it is difficult to distinguish the standard model from several competing
extensions on the basis of the models’ implications for a small set of key time series statistics.
Moreover, there exist near-rational alternatives to the standard model which reproduce exactly
the values of these statistics in observed time series. These findings suggest that RBC researchers
should examine much larger sets of second moments when evaluating the empirical performance
of RBC models.

1 Introduction

This paper examines the implications of near-rationality for the empirical evaluation of real business

cycle (RBC) models. In particular, this paper argues that the following methodological principles

are mutually incompatible:

1. The purpose of RBC studies is to “sort out” models: that is, the goal of RBC studies is

to identify the structure of technology and preferences underlying observed aggregate time

series.

2. RBC studies should focus on a limited set of moments of aggregate time series.

3. Economic models should not dogmatically rule out “sloppiness” of economic agents, from

which agents suffer trivial utility losses.
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Hansen and Wright (1992)’s survey of the labor market market in real business cycle theory

provides an excellent illustration of how methodological principles #1 and #2 guide research efforts

in real business cycles. Hansen and Wright (1992) trace, in particular, the development of a variety

of RBC models designed to improve the labor market performance of a “standard”, or baseline,

RBC model. The various models are compared to each other and to the observed data by focusing

on the models’ implications for a small set of time series statistics, with special emphasis on two

key labor market statistics: the variability of hours relative to wages and the contemporaneous

correlation of hours and wages. As Hansen and Wright (1992) document, the baseline model does a

relatively poor job of matching the observed values of the two labor market statistics. Hansen and

Wright (1992) exposit four extensions to the baseline model, each of which improves the ability of

the baseline model to match the observed values of the two labor market statistics.

The line of research summarized by Hansen and Wright (1992) shows the practical import of

the first two methodological principles. First, RBC researchers seek to find specifications of RBC

models which are consistent with the properties of aggregate times series (methodological principle

#1). Second, RBC researchers typically focus on a small set of aggregate time series statistics when

assessing the distance between model and data (methodological principle #2).

The purpose of this paper is to argue that the first two methodological principles are incompati-

ble with the third: if the consumers in real business cycle models are permitted to use near-rational

decision rules, then RBC researchers will not be able to sort out different specifications of RBC

models on the basis of their implications for a limited set of time series moments. Specifically, this

paper shows that the key time series moments of a baseline RBC model—the divisible labor model

of Hansen (1985)—are very sensitive to near-rational deviations from optimal behavior (see also

Cochrane (1989), Smith (1992), and Krusell and Smith (1993a)).

To give a concrete example, consider five key aggregate time series statistics: the variabilities

of consumption, investment, and hours relative to the variability of output, the variability of hours

relative to that of average productivity (wages), and the contemporaneous correlation of hours and

wages. In their survey article, Hansen and Wright (1992) report values of these statistics for the

baseline model was well as for four variations on the baseline model—models with, respectively,

nonseparable leisure, indivisible labor, government spending, and home production. They also

report the values of these five statistics for two different sets of U.S. observed time series (depending

on whether hours is measured using establishment or household survey data). The values of these

statistics vary widely in some cases, and none of the models comes close to matching simultaneously

the three labor market statistics in the observed data.

This paper shows that, for each of these six sets of statistics, one can find decision rules (i.e.,

functions mapping the current state into choices for capital and labor) which reproduce exactly

the given values of the five statistics, and yet carry trivial utility losses. In particular, for each

of these near-rational decision rules, a small consumer gains less than 3/100 of one percent of per

period consumption by switching to the optimal rule (given the near-rational behavior of all other
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consumer in the economy). In a well-defined sense, therefore, the range of time series statistics

generated by the set of RBC models within a small perturbation of the baseline model is very

large: under well-defined near-rational alternatives, the baseline model can reproduce not only the

time series statistics generated by other models, but also both sets of observed time series statistics.

These results suggest that, once one allows for the possibility of near-rational behavior, it is

difficult, on the basis of a limited set of time series moments, to distinguish the baseline model

from models with richer specifications of technology and preferences. This inability to distinguish

models renders problematic the task of deciding which specification of technology and preferences

underlies observed time series.

These results have important implications for the empirical evaluation of RBC models. Few

researchers will argue with the importance of methodological principle #1. Some may reject prin-

ciple #3, but it is difficult to justify ruling out behavior with trivial welfare consequences. Instead,

RBC researchers should modify principle #2 by examining much larger sets of moments—such

as impulse response functions or the entire autocovariance function of the vector of variables of

interest—when evaluating RBC models. For example, when the number of statistics increases from

five to eight, the welfare losses associated with decision rules chosen to match these statistics also

increase, in some cases by as much as a factor of six. This example suggests that as the set of

moments expands, the welfare costs of decision rules designed to reproduce these moments can in-

crease dramatically. The results in this paper therefore provide support for “full-system” methods

of evaluating the goodness-of-fit of equilibrium business cycle models, such as those pioneered by

Hansen and Sargent (1980) and applied to RBC models in Hansen and Sargent (1988) and Smith

(1993).

The paper is organized as follows. Section 2 presents the baseline RBC model and the four

extensions considered in this paper. Section 3 describes and implements the numerical procedure

for constructing decision rules which reproduce a given set of time series statistics. Section 4

describes and implements the numerical procedure for computing the welfare gain that a small

consumer realizes by switching to an optimal decision rule, given the suboptimal behavior of all

other consumers in the economy. Section 5 concludes briefly.

2 The Baseline RBC Model and Four Extensions

The five RBC models considered in this paper—the baseline model and four extensions—are drawn

directly from the survey article by Hansen and Wright (1992). This section briefly discusses each

of the five models. The reader is referred to Hansen and Wright (1992) for complete details.

The baseline real business cycle model is similar to the divisible labor model of Hansen (1985). It

takes the form of the following social planning problem, where Ct is period t aggregate consumption,

Xt is period t aggregate investment, Ht is period t aggregate hours, Kt is the aggregate capital
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stock at the beginning of period t, and zt is the period t technology shock:

max
{Kt}∞t=1, {Ht}∞t=0

E0

∞∑
t=0

βt (log(Ct) + A log(1−Ht)) (1)

subject to:

K0 and z0 given

Ct + Xt = Kα
t H1−α

t exp(zt)

Kt+1 = (1− δ) Kt + Xt

zt+1 = ρ zt + εt+1

εt+1 ∼ iidN(0, σ2
ε )

The depreciation rate δ, the discount parameter β, the autoregressive parameter ρ, capital’s share

of income α, and the utility parameter A satisfy: 0 ≤ δ ≤ 1, 0 < β < 1, |ρ| < 1, 0 < α < 1, and

A > 0.1 The period t state variables in the baseline economy defined by Problem (1) are Kt and zt;

the period t choice variables are Kt+1 and Ht. The solution to Problem (1) can be expressed as a

pair of time-invariant decision rules f and g mapping the state variables into the choice variables:

Kt+1 = f(Kt, zt) and Ht = g(Kt, zt).

The four extensions to the baseline model, surveyed by Hansen and Wright (1992), are designed

to improve the labor market performance of the baseline model. Specifically, the variability of hours

relative to output is lower in the baseline model than in the observed data; the variability of hours

relative to the variability of wages is lower in the model than in the data; and the contemporaneous

correlation of hours and wages is higher in the model than in the data. The four extensions to the

baseline model improve the performance of the baseline model along one or more of these three

dimensions. Briefly, the four extensions can be described as follows:

1. Nonseparable leisure (see Kydland and Prescott (1982)): Instantaneous utility depends on

a weighted average of current and past leisure. This extension increases the willingness of

individuals to engage in intertemporal substitution of leisure.

2. Indivisible labor (see Hansen (1985)): Individuals are constrained, in each period, to work

either zero hours or some fixed number of hours greater than zero. Under this extension, the

instantaneous utility function of the representative agent is linear in aggregate hours, leading

to a large intertemporal substitution effect.

3. Government spending (see Christiano and Eichenbaum (1992)): Stochastic government spend-

ing, modelled as a pure drain on output, is introduced into the baseline model. The intro-

duction of a shock which shifts the labor supply curve lowers the correlation between hours

and wages.
1The specific parameter values for the baseline model are: δ = 0.025, β = 0.99, ρ = 0.95, α = 0.36, σε = 0.007,

and A = 1.721365 (A is chosen so that the deterministic steady state value of Ht is one-third).
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4. Home production (see Benhabib, Rogerson, and Wright (1991)): A household (nonmarket)

production sector is added to the baseline model. This modification increases the volatility of

hours worked in the market sector, since individuals can now substitute between the market

and nonmarket sectors of the economy in response to technology shocks in the two sectors.

The reader is referred to the excellent exposition in Hansen and Wright (1992) for further details

concerning the functional forms, parameter values, etc. underlying each of the above extensions.

Table 1 reports time series statistics for each of the five models, as well as for two different

sets of observed time series, depending on whether hours worked is measured using establishment

survey data or household survey data. This paper focuses on eight key statistics: σc/σy, σx/σy,

σh/σy, σh/σw, σhw, σwy, σcy, and σhy, where c denotes consumption, h denotes hours, x denotes

investment, y denotes output, w denotes wages (i.e., the marginal product of labor), σi is the

unconditional standard deviation of series i, and σij is the contemporaneous correlation between

series i and series j.2

The observed sample consists of postwar U.S. aggregate time series for the period 1947:1 to

1991:3, a total of 179 quarters. The time series statistics implied by a given model are calculated

by generating 100 statistically independent simulations of the model’s time series, with 179 obser-

vations in each time series, and then computing sample means of the relevant statistics across the

100 simulations. For both observed and simulated data, the Hodrick-Prescott (HP) filter is applied

separately to the natural logarithm of each of the time series prior to the computation of time se-

ries statistics. The models are solved using standard techniques, in particular, the linear-quadratic

solution method pioneered by Kydland and Prescott (1982) and used by, among others, Hansen

(1985), Christiano (1990), and McGrattan (1990).

TABLE 1: EIGHT STATISTICS OF INTEREST

σc/σy σx/σy σh/σy σh/σw σhw σwy σcy σhy

Household data 0.45 2.78 0.78 1.37 0.07 0.63 0.71 0.82
Establishment data 0.45 2.78 0.96 2.15 −0.14 0.31 0.71 0.90

Baseline model 0.31 3.15 0.49 0.94 0.93 0.99 0.89 0.98
Nonseparable leisure 0.29 3.23 0.65 1.63 0.80 0.92 0.87 0.97
Indivisible labor 0.29 3.25 0.76 2.63 0.76 0.87 0.87 0.98
Government spending 0.54 3.08 0.55 0.90 0.49 0.88 0.55 0.85
Home production 0.51 2.73 0.75 1.92 0.49 0.75 0.71 0.94

2The numbers in Table 1 are drawn directly from Hansen and Wright (1992), with the exception of the last three
statistics for each of the five models, which Hansen and Wright (1992) do not report. To verify the accuracy of the
model statistics, I solved each of the models independently, replicating the numbers reported in Hansen and Wright
(1992), while at the same time generating values for the remaining three statistics.
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3 Finding Decision Rules to Match the Moments

This section describes and implements the numerical procedure for finding decision rules which

reproduce some, or all, of the statistics in a given row of Table 1.

As a first step, replace the optimal decision rules f and g with arbitrary log-linear functions

which depend not only on the current state variables but also on lagged capital and lagged hours.3

These decision rules, together with the constraints to Problem (1), lead to the following dynamic

equations of motion (given initial conditions K0, z0, K−1, and H−1):

log Kt+1 = a0 + a1 log Kt + a2 zt + a3 log Kt−1 + a4 log Ht−1 (2)

log Ht = b0 + b1 log Kt + b2 zt + b3 log Kt−1 + b4 log Ht−1 (3)

Xt = Kt+1 − (1− δ) Kt (4)

Yt = Kα
t H1−α

t exp(zt) (5)

Ct = Yt −Xt (6)

wt = (1− α)Yt/Ht (7)

zt+1 = ρ zt + εt+1, εt+1 ∼ iidN(0, σ2
ε ) (8)

In equation (7), wt is the period t wage rate (i.e., the marginal product of labor in period t).

The decision rule coefficients (ai, bi), i = 0, . . . , 4, in equations (2) and (3) are free parameters

to be chosen so that the equations of motion (2)–(8) reproduce a given set of time series statistics.4

Since the statistics in Table 1 depend only on second moments, and since the decision rule coeffi-

cients a0 and b0 have no effect on the second moment properties of the equations of motion (2)–(8),

restrict these coefficients as follows:

a0 = (1− a1 − a3) log K̄ − a4 log H̄ (9)

and

b0 = (1− b4) log H̄ − (b1 + b3) log K̄, (10)

where K̄ and H̄ are the deterministic steady state values of capital and hours in Problem (1).

These restrictions ensure that, no matter what the values of (ai, bi), i = 1, . . . , 4, the unconditional

means of Kt and Ht are, respectively, K̄ and H̄, i.e., precisely what they would be if the optimal

decision rules were used in place of the arbitrary decision rules (2) and (3).

Given a vector of decision rule parameters Ψ ≡ [ a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 ]′, simulation

methods can be used to calculate consistent estimates of the second moments implied by the

equations of motion (2)–(8). For example, to calculate a consistent estimate of the contemporaneous
3I am assuming that all consumers use the same decision rules, so that there is no need, as there is in Section 4,

to make a distinction between individual and aggregate variables.
4Note that if the optimal decision rules are approximated by log-linear functions of the current state variables,

then a3 = a4 = b3 = b4 = 0, while a0, a1, a2, b0, b1, and b2 can be expressed as nonlinear functions of the underlying
model (structural) parameters.
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correlation between the HP-filtered log of output and the HP-filtered log of consumption in samples

of size T , generate N statistically independent simulations of the equations of motion (2)–(8) (with

T time periods in each simulation), compute the desired statistic in each of the N simulations, and

then compute the sample mean of these statistics across the N simulations.5

Suppose that one is interested in choosing the decision rule parameters Ψ to match an s × 1

vector of statistics S̄. For example, S̄ might consist of the first five statistics in a given row of

Table 1.6 Let SN (Ψ) be the corresponding vector of statistics implied by the equations of motion

(2)–(8) when the decision rule parameters are equal to Ψ. Each element of the vector SN (Ψ) is

computed using the simulation procedure described in the previous paragraph; the subscript ‘N ’

indicates that N independent simulations are used to calculate SN (·).
To find a set of decision rule parameters which generates the vector of statistics S̄, solve the

following minimization problem:

Ψ̄N ≡ arg min
Ψ

(S̄ − SN (Ψ))′ (S̄ − SN (Ψ)) (11)

subject to (9) and (10). The simulation error in Ψ̄N can be made as small as desired by increasing

N , the number of independent simulations of equations (2)–(8) used to calculate SN (·).
If s, the dimension of S̄, is equal to eight, then Ψ̄N is exactly identified: there are eight free

decision rule parameters which can be varied to match eight statistics of interest, so that the

minimum value of the objective function on the right hand side of (11) is zero.7 If s < 8, then Ψ̄N

is underidentified, in which case one must impose additional identifying restrictions. For the case

s = 5, which I investigate below, I set a3 = a4 = b3 = 0.

For each row of Table 1 (except the row corresponding to the baseline model), Problem (11) is

solved for two different sets of statistics S̄. For the first set of statistics, s = 5 and S̄ consists of the

statistics in the first five columns of Table 1: in particular, σc/σy, σx/σy, σh/σy, σh/σw, and σhw,

with all time series logged and HP-filtered prior to the computation of statistics. For this case, as

noted above, there are five free decision rule parameters. For the second set of statistics, s = 8 and

S̄ consists of the eight statistics in a given row of Table 1: in particular, the five statistics listed

above, together with σwy, σcy, and σhy. For this case, there are eight free decision rule parameters.

Appendix A reports the results. The number of independent simulations N is set to 100 (the

same number of simulations used to construct the last five rows of Table 1) and the length T of each

simulation is set to 179 (the number of observations in the observed time series). In every case, it

is possible to find a set of decision rule parameters to match exactly the required set of statistics.

Appendix A tabulates the decision rule coefficients for each case. For purposes of comparison,
5Note that this is precisely the same procedure that is used to compute the statistics in the last five rows of Table

1.
6Note that sampling error in S̄ is ignored here: the vector S̄ is treated simply as a fixed set of numbers.
7I am assuming, of course, that there exists a solution to Problem (11), i.e., that there exists a Ψ̄N which satisfies

all of the identifying restrictions. In the numerical results I report below, this assumption is always satisfied.
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Appendix A also gives the decision rule coefficients for a log-linear approximation to the optimal

decision rules f and g associated with Problem (1).

4 Computing Welfare Gains

This section computes the welfare gain that a small consumer realizes by switching to the optimal

decision rule, given that all other consumers in the economy are using one of the suboptimal decision

rules computed in Section 3 and tabulated in Appendix A. Put differently, this section provides

a quantitative answer to the following question: To what extent can a rational consumer take

advantage of the irrationality of all other consumers in the economy?

To answer this question, consider the decision problem faced by a small (measure zero) rational

consumer. The consumer faces the following budget constraint in any given period:

ct + xt = rt kt + wt ht, (12)

where ct is the consumer’s period t consumption, xt is the consumer’s period t investment in capital,

kt is the consumer’s holdings of capital at the beginning of period t, ht is the consumer’s period

t hours of work, rt is the period t rental price of capital, and wt is the period t wage rate. The

consumer’s holdings of capital accumulate according to:

kt+1 = (1− δ) kt + xt. (13)

The prices rt and wt are determined by the first-order conditions to the static optimization

problem faced by the economy’s constant-returns-to-scale firm (whose production function is Yt =

Kα
t H1−α

t exp(zt)):

rt = α Kα−1
t H1−α

t exp(zt) (14)

and

wt = (1− α) Kα
t H−α

t exp(zt), (15)

where Kt is the period t aggregate capital stock and Ht is period t aggregate hours of work. Since

the small consumer’s actions do not affect the aggregates Kt and Ht, the consumer takes the prices

rt and wt as given when solving his optimization problem.

Finally, the consumer knows the (common) decision rules used by measure one of the economy’s

consumers:

Kt+1 = f̃(Kt,Kt−1,Ht−1, zt) (16)

and

Ht = g̃(Kt,Kt−1,Ht−1, zt). (17)
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These decision rules determine the dynamic behavior of the economy’s aggregates Kt and Ht.8

The optimization problem faced by a measure zero rational consumer is:

max
{kt}∞t=1, {ht}∞t=0

E0

∞∑
t=0

βt (log(ct) + A log(1− ht)) , (18)

given k0, K0, K−1, H−1, and z0, subject to (12)–(17) and the stochastic law of motion (8) for the

technology shock zt. The state variables for this problem are kt, Kt, Kt−1, Ht−1, and zt; the choice

variables are kt+1 and ht. The solution to this problem consists of a pair of time-invariant decision

rules expressing the choice variables as functions of the state variables. Note that the consumer’s

decision rules depend on lagged capital Kt−1 and lagged hours Ht−1 if and only if these variables

enter the decision rules f̃ and g̃ in equations (16) and (17).

Log-linear approximations to the consumer’s optimal decision rules are computed using a so-

lution method based on linear-quadratic approximations (see, for example, Kydland and Prescott

(1982), Hansen (1985), Christiano (1990), and McGrattan (1990)). This solution method, in brief,

works as follows: substitute the constraints (12)–(17) into the period t utility function, approximate

the period t utility function by a second-order Taylor series about the deterministic steady state,

and then solve the resulting linear-quadratic programming problem by iterating on the matrix

Ricatti equation (see Chapter 1 of Sargent (1987)).

The consumer’s optimal decision rules vary with the decision rules f̃ and g̃ used by all other

consumers in the economy. Appendix B reports optimal decision rules for twelve different choices

for f̃ and g̃: in particular, the twelve decision rules listed in Appendix A. For example, the first pair

of decision rules in Appendix B characterizes the optimal behavior of a small rational consumer in

an economy whose aggregate dynamics replicate the the first five statistics listed in Table 1 for the

establishment survey data.

How much does a small rational consumer gain by using an optimal decision rule rather than

the decision rule used by all other consumers in the economy? To answer this question in an

economically meaningful way, express the increase in expected utility realized by a small rational

consumer in terms of a uniform percentage increase in consumption across all periods of the planning

horizon. Specifically, solve for λ in the following equation:

E0

∞∑
t=0

βt (log((1 + λ) c̃t) + A log(h̃t)) = E0

∞∑
t=0

βt (log(c?
t ) + A log(h?

t )), (19)

where {c?
t } and {h?

t } are the optimal consumption and hours sequences chosen by the small rational

consumer and {c̃t} and {h̃t} are the consumption and hours sequences generated by the decision
8Note that all consumers in the economy face the same budget constraint (12). This implies that, no matter

what the decision rules f̃ and g̃ used by the nonoptimizing consumers, markets clear and the firm maximizies profits
so long as prices are determined according to equations (14) and (15). Thus consumers using f̃ and g̃ to make
their investment and hours decisions can be viewed as operating in the same decentralized environment as the small
rational consumer whose decision problem is considered in this section.
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rules f̃ and g̃ used by all other consumers in the economy. The solution is:

λ = 1− exp[(1− β) (U? − Ũ)], (20)

where U? ≡ E0
∑∞

t=0 βt (log(c?
t ) + A log(h?

t )) and Ũ ≡ E0
∑∞

t=0 βt (log(c̃t) + A log(h̃t)). The

increase in expected utility U?−Ũ realized by a small rational consumer is equivalent to a 100×λ%

increase in consumption, uniformly across all periods and states. Simulation methods are used to

compute consistent estimates of U? and Ũ . These estimates are then inserted into equation (20) to

yield a consistent estimate of λ. The standard error of the estimated value of λ is computed using

standard results from asymptotic theory.

Table 2 tabulates consistent estimates of the welfare gains associated with the optimal decision

rules reported in Appendix B.

TABLE 2: ESTIMATED WELFARE GAINS

Number of statistics matched (s)
s = 5 s = 8

Establishment survey data 0.054% 0.332%
(0.002) (0.020)

Household survey data 0.063% 0.372%
(0.002) (0.029)

Nonseparable leisure model 0.0049% 0.0049%
(0.0005) (0.0005)

Indivisible labor model 0.0104% same as
(0.0007) s = 5

Home production model 0.043% 0.088%
(0.002) (0.006)

Government spending model 0.048% 0.109%
(0.002) (0.009)

Notes: The first number in each cell is a consistent estimate of λ (expressed as a percentage); the
second number in each cell (in parentheses) is the estimated standard error of the point estimate.
For example, if measure one of the economy’s consumers use decision rules which reproduce the first
five statistics listed in Table 1 for the establishment survey data, then a small rational consumer
gains an equivalent of 0.054% of per period consumption by using an optimal decision rule (given
the decision rules used by all other consumers in the economy).

The welfare gains tabulated in Table 2 show that if the number of statistics matched is equal to

five (i.e., if the decision rules used by measure one of consumers reproduce the first five statistics

in a given row of Table 1), then a small rational consumer gains very little, in terms of increased

consumption, by switching to the optimal decision rule: at most 0.063% of per period consumption
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for the statistics associated with the household survey data. Assuming annual consumption expen-

ditures of $30,000, this increase amounts to less than $5 per quarter. If the number of statistics

matched increases to eight (i.e., if the decision rules used by measure one of consumers reproduce

all eight statistics in a given row of Table 1), then the gains realized by the small rational con-

sumer increase by as much as a factor of six. Nonetheless, the welfare increases, measured in terms

of increased consumption, remain small: less than (in most cases considerably less than) $30 per

quarter (once again assuming annual consumption expenditures of $30,000).

These results show that, although the twelve pairs of decision rules tabulated in Appendix A

are suboptimal, an individual consumer nonetheless gains very little by attempting to exploit the

suboptimal behavior of all other consumers in the economy. Thus the economies in which aggregate

dynamics are driven by consumers using one of the twelve pairs of decision rules in Appendix A can

be viewed as “near-rational” equilibria in the sense of Akerlof and Yellen (1985): “An equilibrium

. . . is termed near rational if no nonmaximizer stands to gain a significant amount by becoming a

maximizer” (p. 708). To quote Akerlof and Yellen (1985) quoting Lucas: “there are no $500 bills

on the sidewalk[s]” (p. 708) of these economies.

Table 2 also reveals that, in most cases, the extent to which a nonmaximizer can gain by

becoming a maximizer increases as the number of statistics matched increases from five to eight.

This finding suggests a more general result: as the set of statistics reproduced by nonmaximizers’

decision rules becomes larger, the welfare gain realized by maximizers increases. Further research

is needed to explore this conjecture more deeply.

In any case, the findings in this paper do show the following: if one allows for the possibility of

near-rational behavior, then a set of five, or even eight, key time series statistics is not large enough

to allow an investigator to discriminate between a baseline RBC model and several competing

extensions. Moreover, one can find near-rational alternatives to a baseline RBC model which

reproduce the values of these statistics in observed aggregate time series.

5 Conclusion

This paper shows, by means of specific quantitative examples, that a baseline RBC model makes

few predictions concerning a set of key time series statistics that are robust to small departures

from rationality. In particular, near-rational alternatives to the baseline model make the same

predictions for these statistics as do several competing extensions to the baseline model. This lack

of robustness suggests that it is difficult, on the basis of the models’ implications for a limited set

of aggregate time series moments, to identify the “true” model underlying observed aggregate time

series. Finally, this paper contains numerical results which suggest that one way to address this

problem of identification is to examine larger sets of second moments when evaluating the empirical

performance of RBC models.

A key item for future research is to investigate the effect of heterogeneity and incomplete markets
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on these results. The baseline RBC model considered in this paper assumes that consumers face

only aggregate risk: in effect, there exist complete markets which allow individual consumers to

insure against idiosyncratic risk. In the presence of large, uninsurable risk, the welfare costs of

suboptimal decision rules such as those in Appendix A could rise dramatically. Krusell and Smith

(1993b) begin to address some of these issues.

12



References

Akerlof, G.A. and J.L. Yellen (1985), “Can Small Deviations from Rationality Make Significant
Differences to Economic Equilibria?”, American Economic Review 75, 823-838.

Benhabib, Jess, Richard Rogerson, and Randall Wright (1991), “Homework in Macroeconomics:
Household Production and Aggregate Fluctuations”, Journal of Political Economy 99, 1166-1187.

Christiano, Larry J. (1990), “Linear-Quadratic Approximation and Value Function Iteration”, Jour-
nal of Business and Economic Statistics 8, 99–113.

Christiano, Larry J. and Martin Eichenbaum (1992), “Current Real-Business-Cycle Theories and
Aggregate Labor Market Fluctuations”, American Economic Review 82, 430–450.

Cochrane, J.H. (1989), “The Sensitivity of Tests of the Intertemporal Allocation of Consumption
to Near-Rational Alternatives”, American Economic Review 79, 319–337.

Hansen, Gary D. (1985), “Indivisible Labor and the Business Cycle”, Journal of Monetary Eco-
nomics 16, 309–327.

Hansen, Gary D. and Thomas J. Sargent (1988), “Straight Time and Overtime in Equilibrium”,
manuscript (University of California at Los Angeles).

Hansen, Gary D. and Randall Wright (1992), “The Labor Market in Real Business Cycle Theory”,
Quarterly Review , Spring 1992, 2–12 (Federal Reserve Bank of Minneapolis).

Hansen, Lars P. and Thomas J. Sargent (1980), “Formulating and Estimating Dynamic Linear
Rational Expectations Models”, Journal of Economic Dynamics and Control 2, 7–46.

Krusell, Per and A.A. Smith, Jr. (1993a), “Costly Implementation and Equilibrium Decision Rule
Selection in the Stochastic Growth Model”, manuscript (University of Pennsylvania and Carnegie
Mellon University).

Krusell, Per and A.A. Smith, Jr. (1993b), “The Stochastic Growth Model with Heterogeneous
Agents, Uninsurable Risk, Aggregate Uncertainty, and Fixed Costs of Flexible Behavior”, manu-
script (University of Pennsylvania and Carnegie Mellon University).

Kydland, Finn E. and Edward C. Prescott (1982), “Time-to-Build and Aggregate Fluctuations”,
Econometrica 50, 1345–1370.

McGrattan, Ellen R. (1990), “Solving the Stochastic Growth Model by Linear-Quadratic Approx-
imation”, Journal of Business and Economic Statistics 8, 41–44.

Sargent, Thomas J. (1987), Dynamic Macroeconomic Theory , Harvard University Press (Cam-
bridge, MA).

13



Smith, A.A., Jr. (1992), “Near-Rational Behavior and the Real Business Cycle”, manuscript
(Carnegie Mellon University).

Smith, A.A., Jr. (1993), “Estimating Nonlinear Time Series Models Using Simulated Vector Au-
toregressions”, Journal of Applied Econometrics (forthcoming).

14



Appendix A

This appendix tabulates the decision rule coefficients which reproduce a given s × 1 vector of

statistics S̄ associated with a given row of Table 1. For each row, two sets of statistics are considered:

the first set consists of the first five statistics (this case is labelled s = 5 below) and the second

set consists of all eight statistics (this case is labelled s = 8 below). For purposes of comparison,

this appendix also gives the decision rule coefficients for a log-linear approximation to the optimal

decision rules f and g associated with Problem (1).

• Log-linear decision rules for the baseline model:

log Kt+1 = 0.118 + 0.954 log Kt + 0.113 zt

log Ht = −0.481− 0.243 log Kt + 0.707 zt

• Match statistics for establishment survey data

s = 5: log Kt+1 = 0.517 + 0.796 log Kt + 0.118 zt

log Ht = 8.535− 3.937 log Kt + 1.366 zt − 0.330 log Ht−1

s = 8: log Kt+1 = 0.252 + 0.832 log Kt + 0.142 zt + 0.069 log Kt−1 + 0.001 log Ht−1

log Ht = 6.234− 3.513 log Kt + 1.263 zt + 0.721 log Kt−1 + 0.222 log Ht−1

• Match statistics for household survey data

s = 5: log Kt+1 = 0.750 + 0.705 log Kt + 0.157 zt

log Ht = 11.441− 4.939 log Kt + 2.024 zt + 0.002 log Ht−1

s = 8: log Kt+1 = 0.163 + 0.747 log Kt + 0.120 zt + 0.189 log Kt−1 + 0.001 log Ht−1

log Ht = 6.221− 3.594 log Kt + 0.908 zt + 0.675 log Kt−1 − 0.083 log Ht−1

• Match statistics for nonseparable leisure model

s = 5: log Kt+1 = 0.163 + 0.936 log Kt + 0.136 zt

log Ht = 0.401− 0.587 log Kt + 1.086 zt + 0.009 log Ht−1

s = 8: log Kt+1 = 0.162 + 0.937 log Kt + 0.136 zt − 0.0003 log Kt−1 − 0.00002 log Ht−1

log Ht = 0.401− 0.587 log Kt + 1.086 zt − 0.0001 log Kt−1 + 0.008 log Ht−1

• Match statistics for indivisible labor model

s = 5: log Kt+1 = 0.148 + 0.942 log Kt + 0.155 zt

log Ht = 0.111− 0.477 log Kt + 1.471 zt

s = 8: Same as for the case s = 5

(Note: These decision rules are log-linear approximations to the optimal decision rules for the

indivisible labor model.)
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• Match statistics for home production model

s = 5: log Kt+1 = 0.451 + 0.822 log Kt + 0.131 zt

log Ht = 3.928− 1.909 log Kt + 1.261 zt + 0.165 log Ht−1

s = 8: log Kt+1 = 0.206 + 0.704 log Kt + 0.136 zt + 0.215 log Kt−1 + 0.001 log Ht−1

log Ht = 2.971− 1.665 log Kt + 1.050 zt + 0.155 log Kt−1 + 0.216 log Ht−1

• Match statistics for government spending model

s = 5: log Kt+1 = 0.585 + 0.769 log Kt + 0.120 zt

log Ht = 3.494− 1.695 log Kt + 0.667 zt + 0.264 log Ht−1

s = 8: log Kt+1 = 0.192 + 0.514 log Kt + 0.131 zt + 0.411 log Kt−1 + 0.001 log Ht−1

log Ht = 2.555− 1.551 log Kt + 0.536 zt + 0.206 log Kt−1 + 0.217 log Ht−1

Appendix B

This section tabulates the decision rules chosen by a small rational consumer when all other con-

sumers in the economy use one of the pairs of decision rules tabulated in Appendix A. For example,

the first pair of decision rules tabulated below characterizes the optimal behavior of a small ratio-

nal consumer when the rest of the economy’s consumers use the pair of decision rules tabulated in

Appendix A for the case: establishment survey data, s = 5. (Note: K̃t ≡ log Kt, where Kt is the

aggregate capital stock, and H̃t ≡ log Ht, where Ht is aggregate hours worked.)

• Match statistics for establishment survey data

s = 5: log kt+1 = −0.371 + 0.999 log kt + 0.131 zt + 0.153 K̃t + 0.015 H̃t−1

log ht = −7.820− 0.103 log kt + 0.712 zt + 2.854 K̃t + 0.240 H̃t−1

s = 8: log kt+1 = 0.037 + 0.999 log kt − 0.109 zt + 0.026 K̃t − 0.045 K̃t−1 − 0.010 H̃t−1

log ht = 6.234− 0.103 log kt − 1.690 zt + 1.458 K̃t − 0.645 K̃t−1 − 0.159 H̃t−1

• Match statistics for household survey data

s = 5: log kt+1 = −0.502 + 0.999 log kt + 0.109 zt + 0.198 K̃t − 0.0001 H̃t−1

log ht = −9.915− 0.103 log kt + 0.314 zt + 3.575 K̃t − 0.001 H̃t−1

s = 8: log kt+1 = 0.201 + 0.999 log kt − 0.145 zt − 0.004 K̃t − 0.074 K̃t−1 + 0.004 H̃t−1

log ht = −1.407− 0.103 log kt − 1.965 zt + 1.173 K̃t − 0.924 K̃t−1 + 0.058 H̃t−1

• Match statistics for nonseparable leisure model

s = 5: log kt+1 = 0.067 + 0.999 log kt + 0.092 zt − 0.026 K̃t − 0.0004 H̃t−1

log ht = −1.232− 0.103 log kt + 0.391 zt + 0.153 K̃t − 0.006 H̃t−1

s = 8: log kt+1 = 0.068 + 0.999 log kt + 0.090 zt − 0.027 K̃t + 0.00003 K̃t−1 − 0.0004 H̃t−1

log ht = −1.214− 0.103 log kt + 0.376 zt + 0.146 K̃t + 0.0004 K̃t−1 − 0.006 H̃t−1
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• Match statistics for indivisible labor model

s = 5: log kt+1 = 0.083 + 0.999 log kt + 0.068 zt − 0.033 K̃t

log ht = −0.985− 0.103 log kt + 0.042 zt + 0.058 K̃t

s = 8: Same as for the case s = 5

• Match statistics for home production model

s = 5: log kt+1 = −0.155 + 0.999 log kt + 0.167 zt + 0.058 K̃t − 0.007 H̃t−1

log ht = −4.412− 0.103 log kt + 1.109 zt + 1.358 K̃t − 0.116 H̃t−1

s = 8: log kt+1 = 0.134 + 0.999 log kt + 0.007 zt − 0.018 K̃t − 0.039 K̃t−1 − 0.010 H̃t−1

log ht = −1.229− 0.103 log kt − 0.456 zt + 0.520 K̃t − 0.432 K̃t−1 − 0.154 H̃t−1

• Match statistics for government spending model

s = 5: log kt+1 = −0.180 + 0.999 log kt + 0.200 zt + 0.066 K̃t − 0.011 H̃t−1

log ht = −4.547− 0.103 log kt + 1.596 zt + 1.382 K̃t − 0.185 H̃t−1

s = 8: log kt+1 = 0.213 + 0.999 log kt + 0.004 zt − 0.020 K̃t − 0.068 K̃t−1 − 0.010 H̃t−1

log ht = −0.320− 0.103 log kt − 0.357 zt + 0.475 K̃t − 0.746 K̃t−1 − 0.154 H̃t−1
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