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1 Assets in positive net supply: introduction

We consider assets in positive supply here. The purpose is to show that such economies,
both in the case with and without aggregate uncertainty, there is an equivalent economy
with assets in zero supply but with appropriately adjusted, looser borrowing constraints.
We demonstrate this in a slightly differently way than in the paper (where only the case
without aggregate shocks is discussed). In particular, we show that if the economies with
positive asset supplies are amended with the appropriate higher, and positive, values for the
lower bound of assets—the risk-free asset in the first economy and the contingent claims in
the second—then those economies have identical prices to those studied in the paper.

2 No aggregate uncertainty

Suppose that there is an asset, called a “tree,” that generates a constant amount η every
period.1 Let the price of the tree be p and the individual holding of the tree be x. Then the
individual consumer’s problem becomes

Vs(a, x) = max
c,a′,x′

c1−σ

1− σ
+ β[πshVh(a

′, x′) + (1− πsh)V`(a
′, x′)]

subject to
c = a + (p + η)x + εs − qa′ − px′.

In equilibrium, the bond and the tree have to generate the same return (no arbitrage), so
(p + η)/p = 1/q. Therefore, p = q(p + η) holds. Using this, the budget constraint can be
rewritten as

c = (a + (p + η)x) + εs − q(a′ + (p + η)x′).

Let â ≡ a + (p + η)x. Then the problem can be rewritten as

V̂s(â) = max
c,â′

c1−σ

1− σ
+ β[πshV̂h(â

′) + (1− πsh)V̂`(â
′)]

subject to
c = â + εs − qâ′.

1A similar argument can be made if there is a constant positive supply of outside, say government, bonds,
with an associated government budget constraint.
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Now, suppose that the borrowing constraint is â ≥ p + η, i.e., we use a borrowing constraint
on total wealth rather than on the holdings of individual assets. Below, we will show that
the equilibrium is that â = p + η for everyone. One allocation that achieves this is a = 0
and x = 1 for everyone—that is, no one holds bonds and everyone owns the same amount
of the tree. Other asset holding patterns are also possible—some can hold a < 0 and x > 1
while others can have a > 0 and x < 1. The only requirements for an equilibrium are that
â = p + η for everyone, a sums up to zero, and x sums up to one.

To show that â = p + η for everyone is the only equilibrium, define ã ≡ â − p − η and
ε̃s ≡ εs + η.2 Then the problem becomes

Ṽs(ã) = max
c,ã′

c1−σ

1− σ
+ β[πshṼh(ã

′) + (1− πsh)Ṽ`(ã
′)]

subject to
c = ã + ε̃s − qã′

and
ã ≥ 0,

which is identical to the original problem. Therefore, the equilibrium is autarky: ã = 0 and
c = ε̃s. ã = 0 implies â = p+ η. As long as the borrowing constraint is set at an appropriate
level, we can transform an economy where there are assets in positive net supply into an
economy with a bond in zero net supply. Thus, the borrowing constraint here means that
agents have to have at least a certain (positive) amount of the asset.

3 Aggregate uncertainty

First, we consider a case where there is one “tree” in addition to the two “Arrow securities.”
Let the tree price at state z be pz, the dividend of the tree at state z be ηz, and the tree
holding be x. The problem becomes

V (a, x; s, z) = max
c,a′

g ,a′
b,x

′

c1−σ

1− σ
+β

[ ∑
z′=g,b

φzz′ [πsh|zz′V (a′
z′ , x′; h, z′) + (1− πsh|zz′)V (a′

z′ , x′; `, z′)]

]

subject to
c = a + (pz + ηz)x + εs −Qzga

′
g −Qzba

′
b − pzx

′

and borrowing constraints. From arbitrage, pz = Qzg(pg + ηg) + Qzb(pb + ηb) has to hold.
Thus the budget constraint can be rewritten as

c = (a + (pz + ηz)x) + εs −Qzg(a
′
g + (pg + ηg)x

′)−Qzb(a
′
b + (pb + ηb)x

′).

Let âz = az + (pz + ηz)x. Then the problem can be rewritten as

V̂ (â; s, z) = max
c,â′

g ,â′
b

c1−σ

1− σ
+ β

[ ∑
z′=g,b

φzz′ [πsh|zz′V̂ (â′
z′ ; h, z′) + (1− πsh|zz′)V̂ (â′

z′ ; `, z′)]

]
2This is the transformation that we use in the main text of the paper.
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subject to
c = â + εs −Qzgâ

′
g −Qzbâ

′
b.

Let us impose the borrowing constraints â′
g ≥ pg + ηg and â′

b ≥ pb + ηb. We will show that
in equilibrium â′

g = pg + ηg and â′
b = pb + ηb. One set of asset holdings that can achieve

this equilibrium is a′
g = 0, a′

b = 0, and x′ = 1 for everyone. Again, it is important that the
constraints are on the total amount of asset, rather than individual assets, and for example
a′

g < 0, a′
b < 0 and x′ > 1 for one consumer can be consistent with an equilibrium, as long

as â′
g = pg + ηg and â′

b = pb + ηb are satisfied and the total asset demand equals the total
supply for each asset.

Let ãz ≡ âz − pz − ηz and ε̃sz ≡ εs + ηz. Then the problem can be rewritten as

Ṽ (ã; s, z) = max
c,ã′

g ,â′
b

c1−σ

1− σ
+ β

[ ∑
z′=g,b

φzz′ [πsh|zz′Ṽ (ã′
z′ ; h, z′) + (1− πsh|zz′)Ṽ (ã′

z′ ; `, z′)]

]

subject to
c = ã + ε̃sz −Qzgã

′
g −Qzbã

′
b,

with
ã′

g ≥ 0 and ã′
b ≥ 0.

This is equivalent to our baseline problem, and therefore Qzg and Qzb are the same, except
that εs is adjusted to ε̃sz. The equilibrium is autarky and the individual consumption is
equal to ε̃sz. ã′

g = 0 and ã′
b = 0 imply that â′

g = pg + ηg and â′
b = pb + ηb.

3.1 A representation with a bond and a stock

In the previous section, the stock (claim for the “tree”) was a redundant asset in the sense
that the two aggregate states are already spanned by the Arrow securities. This allowed
us to price the stock with arbitrage. In this section, we consider an economy where there
are only two assets, a bond and a stock. As in the previous section, the stock yields ηz

every period. One unit of the bond provides one unit of consumption good regardless of
the aggregate state. The total supply of stock is 1 unit and the bond is in zero net supply.
Assume pg + ηg 6= pb + ηb. Denote the stock holding by x and the bond holding by y. Let pz

be the stock price at state z and qz be the bond price at z.
We first show that we can replicate the payoffs of Arrow securities by combining the bond

and the stock with appropriate proportions. Let us define

x′
g ≡

1

pg + ηg − pb − ηb

and

y′
g ≡ −

pb + ηb

pg + ηg − pb − ηb

.

Then, we can easily see that
y′

g + (pg + ηg)x
′
g = 1
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and
y′

g + (pb + ηb)x
′
g = 0

are satisfied. This means that by holding y′
g units of the bond and x′

g units of the stock, one
can guarantee to receive 1 unit if the next period aggregate state is g and receive 0 unit if the
next period aggregate state is b. Therefore, holding the bundle (x′

g units of stock, y′
g units of bond)

is identical to a g-state Arrow security. Similarly, the bundle of

x′
b ≡ −

1

pg + ηg − pb − ηb

units of the stock and

y′
b ≡

pg + ηg

pg + ηg − pb − ηb

units of the bond yields an identical payoff to a b-state Arrow security. Let the cost of
acquiring these bundles be Qzg and Qzb. That is,

Qzg ≡
pz

pg + ηg − pb − ηb

− qz(pb + ηb)

pg + ηg − pb − ηb

and

Qzb ≡ −
pz

pg + ηg − pb − ηb

+
qz(pg + ηg)

pg + ηg − pb − ηb

.

We can easily check the following simple relationships between Qzz′ and the stock/bond
prices:

Qzg + Qzb = qz (1)

and
(pg + ηg)Qzg + (pb + ηb)Qzb = pz. (2)

Let a′
z′ be the demand of the z′-state security bundle. Then the corresponding total

demand for stock is

x′ = x′
ga

′
g + x′

ba
′
b =

a′
g − a′

b

pg + ηg − pb − ηb

(3)

and the total demand for bonds is

y′ = y′
ga

′
g + y′

ba
′
b =

a′
b(pg + ηg)− a′

g(pb + ηb)

pg + ηg − pb − ηb

. (4)

Note that there is one-to-one correspondence between (x′, y′) and (a′
g, a

′
b). That is, by de-

manding two sets of bundles, the consumers are indirectly demanding the stock and the bond.
By adjusting the bundle demands a′

g and a′
b, they can adjust the demands for stocks and

bonds as if they were directly choosing x′ and y′. Therefore, if (a′
g, a

′
b) maximizes the utility

given Qzz′ , the corresponding (x′, y′) from (3) and (4) also maximizes the utility given the
prices (pz, qz) that satisfy (1) and (2). The budget constraint for the original bond-and-stock
economy is

c = (pz + ηz)x + y + εs − pzx
′ − qzy

′.
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Using (1), (2), (3), and (4), this can be rewritten as

c = az + εs −Qzga
′
g −Qzba

′
b.

Now, let us impose the borrowing constraint a′
g ≥ pg + ηg and a′

b ≥ pb + ηb. Since a′
z′ =

(pz′ + ηz′)x′ + y′ from (3) and (4), these are equivalent to (pg + ηg)(x
′ − 1) + y′ ≥ 0 and

(pb + ηb)(x
′ − 1) + y′ ≥ 0.

As in the previous section, consider the transformation

ãz = az − pz − ηz (5)

and
ε̃sz = εs + ηz. (6)

Then the budget constraint and the borrowing constraint can be rewritten as

c = ãz + ε̃sz −Qzgã
′
g −Qzbã

′
b.

and
ã′

g ≥ 0 and ã′
b ≥ 0.

In sum, we have demonstrated the equivalence of the problem

V (x, y; s, z) = max
c,x′,y′

c1−σ

1− σ
+ β

[ ∑
z′=g,b

φzz′ [πsh|zz′V (x′, y′; h, z′) + (1− πsh|zz′)V (x′, y′; `, z′)]

]
(P1)

subject to
c = (pz + ηz)x + y + εs − pzx

′ − qzy
′

and
(pg + ηg)(x

′ − 1) + y′ ≥ 0 and (pb + ηb)(x
′ − 1) + y′ ≥ 0;

and the problem

Ṽ (ã; s, z) = max
c,ã′

g ,â′
b

c1−σ

1− σ
+ β

[ ∑
z′=g,b

φzz′ [πsh|zz′Ṽ (ã′
z′ ; h, z′) + (1− πsh|zz′)Ṽ (ã′

z′ ; `, z′)]

]
(P2)

subject to
c = ã + ε̃sz −Qzgã

′
g −Qzbã

′
b

and
ã′

g ≥ 0 and ã′
b ≥ 0,

where ε̃sz = εs + ηz. The prices are one-to-one linked by (1) and (2), and the quantities
are one-to-one linked by (3), (4), (5), and (6). The second problem (P2) is familiar to
us: the equilibrium is autarky. It means that the borrowing constraints hold with equality,
which in turn implies that the borrowing constraints in the first problem (P1) also hold with
equality. Therefore, x′ = 1 and y′ = 0 hold in equilibrium (there is no indeterminacy as in
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the previous section because there is no redundant asset). Qzg and Qzb are determined in a
familiar manner and this can be translated into pz and qz using (1) and (2).

The equivalence of the two problems can also be seen from the Euler equations. Recall
that the Euler equation for (P2) with autarky is

−Qzz′ ε̃−σ
sz + βφzz′ [πsh|zz′ ε̃−σ

hz′ + (1− πsh|zg)ε̃
−σ
`z′ ] + λz′

sz = 0, (7)

for z′ = g, b. By adding this up for z′ = g and z′ = b, we obtain

−qz ε̃
−σ
sz + β

[ ∑
z′=g,b

(φzz′ [πsh|zz′ ε̃−σ
hz′ + (1− πsh|zg)ε̃

−σ
`z′ ] + λz′

sz)

]
= 0, (8)

where we used the relationship (1). By multiplying (pz′ + ηz′) on each sides of (7) and add
up for z′ = g and z′ = b, we obtain

−pz ε̃
−σ
sz + β

[ ∑
z′=g,b

(pz′ + ηz′)(φzz′ [πsh|zz′ ε̃−σ
hz′ + (1− πsh|zg)ε̃

−σ
`z′ ] + λz′

sz)

]
= 0, (9)

where we used the relationship (2). It is straightforward to see that (8) and (9) are the Euler
equations for (P1) with x′ = 1 and y′ = 0. Therefore, if (7) holds (that is, ã′

g = 0 and ã′
b = 0

are the optimal choices in (P2) given Qzz′), (8) and (9) also hold and x′ = 1 and y′ = 0 are
the optimal choices given qz and pz in (P1).
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