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Abstract

We analyze a general-equilibrium asset pricing model where a small subset of the

consumers/investors have a short-run ‘‘urge to save’’. That is, their attitude toward

consumption in the long run is a standard one F they do place zero weight on consumption

far enough out in the futureF but their short-run effective rates of discount may be negative.

Our model, which is an elaboration on the framework proposed by Faruk Gul and Wolfgang

Pesendorfer, does not feature time inconsistencies. Thus, we view consumers as fully rational,

but subject to specific ‘‘internal frictions’’ in the form of temptation and self-control problems.

The model nests the Mehra–Prescott model and we use it as a way of interpreting the wealth

and asset pricing data. Some aspects of these data, we argue, can possibly be better understood

using our model than the standard one. r 2002 Published by Elsevier Science B.V.

JEL classification: G12

Keywords: Asset pricing

1. Introduction

Recent psychological, sociological, and experimental evidence suggest that ‘‘time
orientation’’F a term for how people compare the present to the futureF is a very
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important determinant of the intertemporal decisions that people make. In
particular, time orientation is argued to differ a lot among consumers and even to
embody ‘‘inconsistencies’’ as evidenced by so-called preference reversals: consumers
seem to change their minds as time passes. The idea that many consumers, or even
the average consumer, would have such a lack of ‘‘self-control’’ has recently gained
support also in economics.
Self-control problems that take the form of ‘‘short-run urges’’ have recently

received particular attention in the savings literature. In this paper, we consider such
problems, but we focus on the opposite of what has typically been studied: rather
than emphasizing a present-bias F an urge for immediate consumption F we
hypothesize that an agent may have an urge to save. We present no independent
evidence for this hypothesis, but we think it is not an implausible one for a subset of
the population. A focus on wealth accumulation alongside frugal attitudes toward
consumption is if not a typical so at least a not uncommon description of the
behavior of many households. On the one hand, one could simply think of such
behavior as originating from a standard utility function with a low discount rate. On
the other hand, it is conceivable too that such consumers do see themselves
consuming their wealth, but only ‘‘just not yet’’, and that they do not change these
attitudes over time. For example, a hard-to-explain feature of the savings data is the
reluctance of many old-age consumers to dissave in cases where there are no natural
heirs. That is, the interpretation would be that continued wealth accumulation F
perhaps a focus on ‘‘not running down one’s assets’’ F also can be regarded as an
urge, or a temptation.
On a general level, we consider preference heterogeneity among consumers as

rather natural; in fact, although most of the macroeconomic literature works with a
representative agent, we view this practice as more of a modelling short-cut than
motivated by realism. In this paper, we additionally ask the reader to consider the
possibility that at least some consumers have ‘‘urges’’, and that these urges may take
different expressions in different consumers. We also think such a supposition is
quite natural, despite its possibly radical tone (at least in the context of the
macroeconomic literature). Our basic argument on the level of motivation, then,
continues by pointing out that it would tend to follow from these assumptions that
those consumers with a future-bias F an urge to save F will accumulate more
wealth than the average consumer and thus become dominant asset holders in the
economy. That is, those consumers who have a future-bias would turn out to be of
particular interest for studies of the aggregate economy, both in terms of aggregate
savings (and other macroeconomic variables) and in terms of the influence on asset
prices that these agents would have.
The purpose of this paper is to formulate a simple equilibrium model with these

features: we model an urge to save, and we embed consumers with such an urge in
a general-equilibrium asset-pricing model. More precisely, we look at a model where
a small set of consumers have a future-bias and where the remainder of the
population have no future-bias (are standard, unbiased consumers or have a present-
bias). The model allows an alternative interpretation of the puzzles in the asset
pricing and wealth data. For example, we illustrate how a low risk-free rate is not
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surprising in our economy, and we explore the conditions on preferences under
which both the risk-free rate and the equity premium take on realistic values. These
illustrations are carried out in a model parameterized so that most of the wealth is
held by very few investorsF as in the dataF and where the aggregate consumption
movements nevertheless are significantly influenced also by the middle- and low-
wealth households F as in the data.
Although the setup we use is in the spirit of the incomplete-markets models in

Krusell and Smith (1998) and Guvenen (2001), we simplify quite a bit with respect to
the former by assuming two types of agents, and with respect to the latter by
assuming complete markets; we maintain the presence of a borrowing constraint.1

We show that under certain assumptions on parameters, the borrowing constraint
will bind for the poorer agents on the entire equilibrium path. This implies that this
agent’s consumption will be given ‘‘exogenously’’ F consumption will equal labor
income F and that the rich agent can be studied in isolation. Thus, the rich agent
determines the interest rate and all the asset prices.
An important aspect of our approach is our emphasis on ‘‘rationality’’: following

recent work by Gul and Pesendorfer (2000, 2001), we have learned that behavior
with ‘‘urges’’ can be rationalized within the standard economic theory paradigm.
These authors have demonstrated that it is not necessary to interpret ‘‘preference
reversals’’ F as documented in the experimental literature F as expressions of
irrationality or of ‘‘time inconsistency’’. Instead, one can think of a consumer’s
choices as depending not only on what they consume, but also on the set from which
they make their choices. For example, a large set of possibilities may be strictly worse
than a strict subset of the large set because the large set allows temptation F it
contains tempting elements. The result of the temptation may either be that the
consumer succumbs to the temptation or that he exercises self-control, but the
consumer would be better off with the smaller set in either of these cases. Our
contribution in the present paper is unimportant on a formal level; the framework we
use is an uncertainty version of the model in our earlier paper (Krusell et al., 2001)
where we extend and specialize Gul and Pesendorfer’s work. This framework is
attractive because of its ease of interpretation and its tractability. Moreover it is
formally simply a generalization of the standard Lucas (1978) and Mehra and
Prescott (1985) asset pricing model.
Our results are hard to judge quantitatively since we do not have any independent

information regarding the strength or nature of the possible savings urges among
investors. Clearly, if these urges are strong, the equilibrium risk-free rate will be
very low. If we only introduce a savings urge, both the risk-free rate and the
equity return will fall, so an increase in the equity premium cannot be obtained
without other changes in the model. The natural way to obtain a high risk premium
and a low risk-free rate, therefore, is to assume a high risk aversion and a strong
savings urge. We show that this is possible in our model. In addition, our departure
from the representative-agent setup itself can help in matching asset price moments.
With more wealth concentration, the dividend risk is borne by a small group,

1Other limited-participation studies can be found in Basak and Cuoco (1998) and Dai (2001).
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and these investors have substantially more variable income growth than the
average agent. Moreover, their labor income is positively but not perfectly corre-
lated with the dividend risk, and they also receive a more than proportional
share of total labor income. Under these conditions, we show that much less
extreme values of risk aversion may be necessary in order to obtain a substantial
equity premium, and that the variability of the risk-free rate need not be high
at all.
Our focus on discounting is related to the argument in Kocherlakota (1990). He

argues that a negative rate of discount can help solve the risk premium. What we
offer is an interpretation of Kocherlakota’s point: it is possible to accept a negative
rate of discount without having to accept a preference for consumption at any future
date over current consumption (in his paper, utils t periods from now are dt times
more valuable than utils now, and since d > 1 this amount increases without bound).
In other words, our deviation from constant discounting allows a distinction that
Kocherlakota could not make. We make a similar point to the one in this paper in
our Krusell et al. (2000) piece. There, we study a ‘‘Laibson model’’ (see, e.g.,
Laibson, 1997) and extend it to also allow Epstein and Zin (1989) preferences,
allowing to disentangle risk aversion from intertemporal elasticity of substitution.
Luttmer and Mariotti (2000) also studies asset pricing in the Laibson model (in much
more depth than in our earlier paper); they, however, focus exclusively on
consumption urges and on how the stochastic properties of the pricing kernel
changes as a function of this urge. Finally, Gul and Pesendorfer themselves suggest
self-control problems as a possible clue to asset pricing puzzles by suggesting that
investors are ‘‘tempted to take on risk’’ F their temptation is to be risk-lovers
(see Gul and Pesendorfer, 2000).
In Section 2 we illustrate how the basic temptation model works for a single agent

living in a two-period world without uncertainty. That model can then be extended
to more periods, uncertainty, and more agents. Section 3 describes the full model.
Section 4 contains our quantitative results and Section 5 concludes.

2. A 2-period illustration

Our 2-period model is now described. It is designed to illustrate the workings of
the model. We will then briefly mention the effect of adding periods before we
proceed to the infinite-horizon model.
A consumer in the economy values consumption today (c1) and tomorrow (c2). To

express the idea of temptation, however, it is actually necessary to think of
preferences over a different domain than simply pairs of period 1 and period 2
consumption levels: we need to define preferences over sets of feasible intertemporal
consumption bundles. The reason why sets are needed is, loosely speaking, that
temptation has to do with not just what a consumer chooses, but what he could have
chosen. Thus, in a utility function representation of preferences, the agent’s utility
function is defined over sets of those ðc1; c2Þ pairs that the agent has available to him;
in abstract, if A is an arbitrary set of consumption goods from which the consumer
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can make a choice, his utility is given by

wðAÞ ¼ max
ðc1;c2ÞAA

f *uðc1; c2Þ þ *vðc1; c2Þg � max
ð*c1;*c2ÞAA

f*vð*c1; *c2Þg:

That is, the agent’s preferences can be described by two functions whose domain is
pairs of consumption in periods 1 and 2: *u and *v: The former is referred to as the
‘‘commitment utility function’’ and the latter the ‘‘temptation utility function’’. To
see why these terms are used, notice that if the set A is a singleton ð%c1; %c2Þ; we have
wðAÞ ¼ *uð%c1; %c2Þ: if the agent has no choice F has committed to consumptionF his
preferences are given by *u: If, on the other hand, A is not a singleton, then the utility
is influenced by both functions.
The agent’s choice out of the given set is that given by the argument that

maximizes *u þ *v: The solution to the second maximization problem F with *v being
the objective F has no interpretation in terms of observed choice. The second
maximization problem, however serves to emphasize a ‘‘disutility of self-control’’:
*vðc1; c2Þ �maxð*c1;*c2Þ f *vð*c1; *c2Þg has to be nonpositive, and it is negative whenever *v

dictates a different choice than *u:
For a brief (but not self-contained) background, Gul and Pesendorfer consider

axioms over sets designed to (i) include the standard case without temptation but (ii)
allow in addition a narrow set of circumstances that can be described by the idea of
temptation and self-control. For this set of axioms, they provide the utility function
characterization above: an agent satisfying the axioms can be uniquely identified
with a pair of functions *u and *v: From the point of view of applications, the
important point here is that these functions are independent of the particular choice
problem the agent is faced with. Aside from basic axioms such as completeness,
transitivity, and continuity, the additional key axiom is set betweenness: for any two
sets A and B where A is preferred to B; it must also be that A is preferred to the union
of A and B; and that the union of A and B is preferred to B: the union is
‘‘in between’’. When A is strictly preferred to the union, we have a case of a
‘‘preference for commitment’’: you strictly prefer the smaller set. A standard
consumer (i.e., one who does not display a preference for commitment) would in
contrast always be indifferent between A and A,B whenever A is preferred to B:
Moreover, when there is a preference for commitment, the agent ‘‘succumbs’’ to
temptation if he is also indifferent between A,B and B; this is simply because when
B is available, he would choose an element in B: On the other hand, the agent may
not succumb to temptation but rather exercise self-control: he might strictly prefer
A,B over B; because he chooses an element in A when facing the set A,B:

2.1. Our parameterization

We specify the functions *u and *v as follows:

*uðc1; c2Þ ¼ uðc1Þ þ duðc2Þ

and

*vðc1; c2Þ ¼ gðuðc1Þ þ bduðc2ÞÞ;
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where u has the usual properties. For a standard consumer F one without a
preference for commitment in any choice situation F we have that b ¼ 1: When
bo1; the temptation function gives a stronger preference for present consumption.
The parameter g allows us to regulate the strength of the temptation; as it increases
toward infinity, the agent moves closer to succumbing to temptation and let his
actual choice be governed by *v alone. As we shall see below, the use of the same
functional form for *u as for *v is key for solving the model with ease. In addition, it
also allows for a balanced growth equilibrium: when consumption grows at a
constant rate, all contingent-claims prices will be constant.
Fig. 1 illustrates the ‘‘urge to consume’’ for the case where the set from which the

consumer chooses is a standard budget set. Here, the commitment utility function
would indicate that the best point in the budget set is where its indifference curve
intersects the budget line. However, the temptation utility at this point has a slope
greater than the interest rate. The maximization of *u þ *v would therefore lead to
a higher level of consumption in period 1.
Fig. 2 depicts the case we are primarily interested in here: it considers the

possibility that b > 1: Now, the consumer will end up with a choice of consumption
in period 1 below that maximizing *u:
Formally, the utility of a typical consumer in this choice situation, then, is:

max
c1;c2

f *uðc1; c2Þ þ *vðc1; c2Þg �max
*c1;*c2

*vð*c1; *c2Þ;

where both maximizations are subject to the budget constraint.
In this two-period problem, the ‘‘temptation’’ part of the problem (i.e., the second

maximization problem in the objective function) plays no role in determining the
consumer’s actions in period 1. As we describe just below, this is not true when the
horizon is longer than two periods: then, the consumer’s temptation in future periods
will influence the choices in the earlier periods, since the savings decisions earlier on

✲

✻

c1

c2

1

1

ũ

•

ṽ

•
•

ũ + ṽ

� < 1

Fig. 1.
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influence the sizes of the budget sets later on, thus affecting the extent of temptation,
with the associated disutility of self-control, in the later periods.
The consumer’s intertemporal first-order condition is:

1þ g
ð1þ bgÞd

u0ðc1Þ
u0ðc2Þ

¼ 1þ r;

where r is the interest rate. It is straightforward to see that the intertemporal
consumption allocation (which, in effect, maximizes *u þ *v) represents a compromise
between maximizing *u ¼ uðc1Þ þ duðc2Þ and maximizing *v ¼ uðc1Þ þ bduðc2Þ: In the
former case, the first-order condition is:

1

d
u0ðc1Þ
u0ðc2Þ

¼ 1þ r;

whereas in the latter case, the first-order condition is:

1

bd
u0ðc1Þ
u0ðc2Þ

¼ 1þ r:

Since

1

bd
p

1þ g
ð1þ bgÞd

p
1

d

in the case we are interested in, the consumer’s consumption allocation is tilted
towards the future relative to maximizing uðc1Þ þ duðc2Þ and is tilted towards the
present relative to maximizing the temptation function uðc1Þ þ bduðc2Þ:
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Fig. 2.
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2.1.1. Equilibrium

Equilibrium prices in a deterministic, representative-agent 2-period model are
obtained simply by setting consumption equal to endowment: the interest rate, or
one over the price of a bond, will then satisfy

1þ r ¼
1

q
¼

1þ g
ð1þ bgÞd

u0ðy1Þ
u0ðy2Þ

;

where yt is total endowment in period t: We see that, in the 2-period model, the
equilibrium prices are proportional to the effective discount rate, ð1þ gÞ=ðð1þ bgÞdÞ:
With a higher b (and, given a b > 1; a higher g) interest rates fall. This is the main
mechanism leading to a lower risk-free rate also in the stochastic, multi-period
model, although the situation is more complicated there. Observe also that b and d
are observationally equivalent in the 2-period model (for a lower risk-free rate, an
alternative to a higher b is of course a higher d).

2.1.2. Uncertainty

Uncertainty in the 2-period model is easy to analyze, too. First, however, one
needs to be clear on what constitutes temptation in this case. We will simply
generalize from the deterministic case, which means that we assume that the attitudes
toward risk are not fundamentally different: the temptation function *v embodies the
same curvature assumptions as the commitment function *u: Here, Gul and
Pesendorfer (2000) make a different choice F they consider *v to be convex and
thereby consider a temptation function that embodies risk-loving.
With uncertainty in period 2, and a contingent claim for every state of the world in

period 2, we arrive at simple expressions for the prices of these claims:

qi ¼ pi

1þ bg
1þ g

d
u0ðy2iÞ
u0ðy1Þ

:

The risk-free rate, similarly, is given by 1=
P

i qi; so that

1

1þ r
¼
1þ bg
1þ g

d
X

i

pi

u0ðy2iÞ
u0ðy1Þ

:

The price of a tree with dividend di in state i is thus

p ¼
1þ bg
1þ g

d
X

i

pi

u0ðy2iÞ
u0ðy1Þ

di:

The ratio of the expected gross return on equity,
P

i pidi=p; to the gross risk-free rate,
is thereforeX

i

pidi

P
i piu

0ðy2iÞP
i piu0ðy2iÞdi

:

We see that the (gross) equity premium F expressed in this proportional form F
does not depend on the discount rates; the key determinant of the equity premium is
how the dividend correlates with the marginal utility of consumption. This can be
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seen by rewriting the expression as

E½d

EðMUÞ

Eðd �MUÞ
¼

EðMUÞ
EðMU � d=E½d
Þ

¼
1

CovðMU=E½MU
; d=E½d
Þ þ 1
:

As in the standard model, the equity premium is positive provided that marginal
utility covaries negatively with the dividend.
The main insight, then, of this 2-period model with uncertainty is that urges to

save or consume (as captured by the parameter b) affect the risk-free rate but not the
equity premium. This insight carries over, in large measure, to the infinite-horizon
model that we describe in Section 3. Although b does have small effects on the equity
premium in this model, the main effect of changes in b is to change the levels of the
rates of return but not their spread.

2.2. More than 2 periods

With more than two periods, we first need to specify what an agent is tempted by.
We will assume that temptation only involves the immediate present. That is, we will
assume that *u and *v agree on any future variables: holding current consumption
constant, these functions are identical. Formally, this means that if A and B are sets
of intertemporal consumption bundles and if A and B have identical possibilities for
current consumption, then either A,B is indifferent to A or it is indifferent to B:
These assumptions allow us to solve the problem backwards. One first analyzes the

last two periods, T � 1 and T ; in a manner parallel to that in the previous
subsection. In the context of budget sets again, this gives rise to a utility over sets
wT�1ðoT�1Þ; where oT�1 is incoming wealth in period T � 1: The third period from
the last, the utility of any oT�2 can then be expressed using the indirect utility from
the previous step. Our assumption will now be that the commitment utility attaches a
weight of d on wT�1ðoT�1Þ; whereas the temptation utility attaches a weight bd: This
is the natural generalization of the two-period case, and the formulation we have
adopted in our earlier work (Krusell et al., 2001). Our earlier paper also shows that
this formulation F a ‘‘quasi-geometric’’ temptation F turns out to work as a
generalization of sorts of the Laibson model.
To look in some more detail at the multi-period model, consider the three-period

case: in period 2, the consumer will be given some initial wealth that was determined
in period 1 and chooses over consumption levels in periods 2 and 3 as in the above
subsection. However, how is the choice in period 1 determined? Here, since we are
considering a choice of period-2 budget sets, the agent in period 1 must consider not
only the consumption outcomes in periods 2 and 3 but also the possible disutility of
temptation in period 2. (Period 3, of course, does not admit such a disutility, since
the choice set in period 3 is a singleton.) It is straightforward to show that the first-
order condition for savings in period 1 now becomes

u0ðc1Þ ¼ d
1þ bg
1þ g

ð1þ rÞ½u0ðc2Þ þ gðu0ðc2Þ � u0ð*c2ÞÞ
;
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where *c2 as before refers to temptation consumption in period 2. This expression
looks like a standard Euler equation except in two places: (i) the discount factor is
different; and (ii) there is an added term gðu0

tþ1 � *u0
tþ1Þ: The discount factor, which is

the same as in the 2-period model, is greater than d: The term gðu0
2 � *u0

2Þ is the
derivative of the disutility/cost of self-control, gðu2 � *u2Þ; with respect to wealth. This
term is negative, since temptation consumption is lower than actual consumption
when b > 1 and the utility function is strictly concave. The interpretation of these
equations is that the marginal benefit from wealth tomorrow falls short of u0

2;
because the self-control cost gets larger as wealth increases in this model!
Similarly, there will be an Euler equation for the maximization of temptation

utility in period 1:

u0ð*c1Þ ¼ bdð1þ rÞ½u0ð*c2Þ þ gðu0ð*c2Þ � u0ð**c2ÞÞ
;

where *c2 is period 1 temptation consumption, *c2 is period 2 actual consumption if
you succumb in period 1, and **c2 is period 2 temptation consumption if you succumb
in period 1.
Equilibrium here is significantly harder to solve for. Not only does temptation

influence actual decisions, but one also cannot easily find out what equilibrium
temptation consumption is, even in a deterministic endowment economy F
equilibrium actual consumption equals endowments but temptation consumption
has the nature of a ‘‘deviation’’ from equilibrium. With uncertainty, the risk
premium will now involve the covariance between dividends and ð1þ gÞMU� ggMUMU;
so the stochastic process for temptation consumption becomes relevant. In general,
there will also not be observational equivalence with the standard model. We will
now move on to the infinite-horizon case, where uncertainty will indeed play
a central role, as will borrowing constraints.

3. The infinite-horizon asset pricing model

3.1. Primitives

Consider now an infinite-horizon setup with two agents: the big guy (B) and the
little guy (L). The agents have clones: there is a measure y of big guys and a measure
1� y of little guys.
As in the Lucas asset pricing model, there is no physical capital accumulation nor

production: total consumption will equal total endowments. The aggregate
endowment process has two parts: there is a ‘‘dividend from a tree’’, d; as well as
‘‘labor income’’, l: As in Mehra and Prescott (1985), there is dividend growth, and
labor income will grow too. Total income, y; grows stochastically at one of two
possible rates. The dividend is specified as a fraction Z of total output: d ¼ Zy; with
an implied l ¼ ð1� ZÞy: The dividend share of output is also stochastic but has a
four-state support. Therefore, our stochastic process for endowments has four
possible states. We denote these by 1 through 4; states 1 and 3 have low and states 2
and 4 high output growth, and the dividend/output ratio is increasing from state 1
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through state 4. Associated to each state i are four transition probabilities pij for
j ¼ 1; 2; 3; 4:
We will use an asset structure with contingent claims which will each be zero in net

supply (see the next section); therefore, the endowment process for each agent can be
described by how much of the dividend and how much of the labor income he
receives. We will assume that the little guy gets no dividend income and that, in
aggregate, a fraction c of labor income goes to the big guys and a fraction 1� c to
the little guys. In order to express the idea that the big guy’s income (and
consumption) varies more like the dividend process itself we will make c stochastic.
More specifically, it will take on one of four possible values: one for each of the
above states j: Each little guy will therefore consume his endowment yL ¼ l ð1�
cÞ=ð1� yÞ in equilibrium and each big guy will consume yB ¼ d=yþ lc=y: Our
calibration below will make c much larger than y (to match income inequality) and
positively correlated with Z:
We also should describe the preferences here; essentially, they can be thought of as

the extension of the finite-period case to an infinite horizon. However, we postpone
this task since it is much easier to describe the preferences in the context of a specific
choice problem, which requires a description of the asset structure.

3.2. Assets and asset prices

The asset structure is one with contingent claims: there are four such claims for
each date and state, each delivering one unit of consumption in each of the
consecutive four states. The price of a claim in state i delivering 1 unit of
consumption in state j next period is denoted qij : The contingent claims allows us to
easily compute the prices of stocks and bonds. The stock prices, pi for states i ¼
1; 2; 3; 4; will be given by the solution the four equations

pi ¼ qi1ðd1 þ p1Þ þ qi2ðd2 þ p2Þ þ qi3ðd3 þ p3Þ þ qi4ðd4 þ p4Þ

for i ¼ 1; 2; 3; 4: Clearly, the contingent-claims prices will typically uniquely define
the stock prices. Similarly, the bond prices, qi; are given by

qi ¼ qi1 þ qi2 þ qi3 þ qi4

for i ¼ 1; 2; 3; 4:
The agents have no endowments of assets; the market-clearing level of each

contingent claim is zero. The agents’ endowments simply consist of the dividend and
labor income processes. We assume that the big guy’s endowment equals the
dividend plus the labor income, and that the little guy’s endowment is the labor
income only.2

2We could have chosen another endowment pattern. However, what is important for our quantitative

results is how much of total income we let the little guy consume. How much he is allowed to consume is a

function both of his endowment and of the borrowing constraint he is faced with: for any assumption on

the endowment level, there is a set of borrowing constraints that let us vary his consumption level, and vice

versa.
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3.3. Borrowing constraints

We assume that agents face borrowing constraints. The brutal honest truth about
these constraints is that we impose them in order to facilitate the solution of the
model. With our approach, as we have already indicated, one of the two kinds of
agents will be de facto more impatient than the other, and with a borrowing
constraint the more impatient of the two F the little guy F will end up always
consuming his labor endowment. This modelling approach really is a shortcut for
something which we believe is more reasonableF to have an incomplete set of asset
markets. Krusell and Smith (1997, 1998) specify such a model; there, no agent faces a
binding constraint eternally, since discount factors are assumed to be stochastic, and
solution of that model is therefore much more involved. However, the paper shows
that small differences in discount factors lead to large differences in wealth holdings
and savings behavior, and our present approach can merely be viewed as a simple
way to mimic these results.
The implementation of borrowing constraints with contingent claims requires

a specification of several constraints. The simplest way to do this is to require that
all holdings of contingent claims be nonnegative; this is also what we do.3 In the
formulation of the big guy’s problem below, we will for simplicity omit the
borrowing constraints; however, once a solution is found one has to show that
the solution to the agent’s problem indeed is interior.

3.4. The big guy’s problem

We now specify the big guy’s problem. We use recursive methods to get at the limit
of the finite-horizon problems discussed above.4 It is given by the following recursive
functional equation:

Wiðo; yÞ

¼ ð1þ gÞ max
fs0

j
g4j¼1

u o�
X4
j¼1

qijs
0
j

 !
þ d

1þ bg
1þ g

� �X4
j¼1

pijWjðo0
j ; y

0
jÞ

( )

� g max
f*s0jg

4
j¼1

u o�
X4
j¼1

qij *s
0
j

 !
þ bd

X4
j¼1

pijWjð *o0
j ; y

0
jÞ

( )
; ð1Þ

where

o0
j ¼ s0j þ y0

j ;

*o0
j ¼ *s0j þ y0

j ;

y0
j ¼ gijy;

3There are alternatives as well, including constraints on total wealth, margin constraints, and so on.
4Axiomatization leading to the recursive version of the Gul–Pesendorfer preferences with quasi-

geometric temptation that we consider here is not fully established. See Krusell et al. (2001) for details.
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and gij is the growth rate of the big guy’s endowment, given that the economy is in
state i today and in state j tomorrow. (To simplify notation, we are using y to denote
yB; the big guy’s endowment.) This problem delivers decision rules for actual
behavior, fs0ijðo; yÞg

4
j¼1; and temptation behavior, f*s

0
ijðo; yÞg

4
j¼1:

3.5. Finding an equilibrium

Algorithmically, it is clear how to find an equilibrium for our economy. We first
solve the problem of the big guy in isolation to obtain market-clearing prices and
behavior that is optimal given these prices. We then verify that, given these prices, it
is indeed optimal for the little guy to have a binding borrowing constraint; this is
established using the appropriate Euler inequalities for all four states.
To find the market-clearing prices in this economy is significantly more

complicated, unfortunately, than in the Mehra and Prescott economy. In the latter,
contingent claims prices can be obtained immediately from the first-order conditions
for each contingent claim, since consumption has to equal endowments. In the
present economy too, actual consumption has to equal endowment, but it is also
necessary to find the temptation consumption levels, since these appear in the first-
order conditions. Finding the temptation consumption levels is what is hard. To see
this, let us study the first-order conditions in some detail.

3.5.1. The Euler equations

There are first-order conditions both for actual decision rules and for the
temptation decision rules, as we saw in the deterministic case above. In the case of
uncertainty, the conditions read as follows:

qiju
0 o�

X4
l¼1

qils
0
ilðo; yÞ

 !
¼ d

1þ gb
1þ g

pij �

ð1þ gÞu0 s0ijðo; yÞ þ y0
j �
X4
l¼1

qjls
0
jlðo

0
j ; y

0
jÞ

 !"

�gu0 s0ijðo; yÞ þ y0
j �
X4
l¼1

qjl *s
0
jlðo

0
j ; y

0
jÞ

 !#
for actual behavior and

qiju
0 o�

X4
l¼1

qil *s
0
ilðo; yÞ

 !
¼ dbpij �

ð1þ gÞu0 *s0ijðo; yÞ þ y0
j �
X4
l¼1

qjls
0
jlð *o

0
j ; y

0
jÞ

 !"

�gu0 *s0ijðo; yÞ þ y0
j �
X4
l¼1

qjl *s
0
jlð *o

0
j ; y

0
jÞ

 !#
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for temptation behavior, where

o0
j ¼ s0ijðo; yÞ þ y0

j

and

*o0
j ¼ *s0ijðo; yÞ þ y0

j :

Each of these equations must hold for all o; i; and j:
These equations look complicated because they are expressed as functional

equations in the decision rules s0 and *s0: these decision rules are evaluated explicitly at
the relevant values. For a full understanding of the conditions describing fully
rational behavior, the reader is invited to carefully distinguish how these two
functions appear in the equations.
On a conceptual level, what is important about the first-order equations is that

they have to hold for all o and not just for equilibrium wealth (yB). In the temptation
behavior, the consumer is choosing to save a different amount than that actually
saved. A consequence of such savings would be that next period’s wealth would be
different than next period’s actual wealth and, as a result, all subsequent periods
would produce non-equilibrium wealth levels. To verify optimality of temptation
behavior, therefore, it is necessary to know what consumption levels result from each
possible wealth level: it is necessary to solve for entire (actual and temptation)
decision rules. This is what makes the determination of asset prices in this economy a
level more difficult than in the Mehra and Prescott economy.

3.5.2. Guessing at a specific solution

Fortunately, under the assumption that u is an isoelastic function, we can use
a guess-and-verify approach to find the solution to the big guy’s problem.
In particular, our guess will be not only that all decision rules are linear in wealth,
but also that the allocation of risk is not affected by the temptation: the ratio of
consumption levels in different states tomorrow are the same under actual as under
temptation behavior.
Normally, the guess-and-verify approach would only require using the Euler

equation: insert the guess for the decision rule into the Euler equation and show that
it is possible to find decision rule coefficients that make the Euler equation hold for
all values of the state variables. In this problem, however, it is helpful to study the
functional equation itself. To this end, we now return to the functional equation and
at the end, we will revisit the Euler equations.
We explain our solution to the functional equation in a series of steps. At the end

of this section, we also discuss the solution to the little guy’s problem. In the next
section, we outline our computational algorithm, the details of which are relegated to
the appendix. A reader who is not interesting in the details of how we compute
equilibrium can safely skip to Section 4, where we discuss our quantitative findings.

Step 1. Conjecture functional forms.

As a first step, we display the conjectured functional forms for the value function
and decision rules. To show the generality of our approach, let there be N exogenous

P. Krusell et al. / Journal of Monetary Economics 49 (2002) 107–135120



states and N2 state-contingent assets (in our problem, N ¼ 4). Specifically, given a
set of prices qij ; i ¼ 1;y;N; j ¼ 1;y;N; we show below that the value function and
decision rules have the following functional forms when uðcÞ ¼ ca=a:

Wiðo; yÞ ¼ AiðDiy þ oÞa; i ¼ 1;y;N;

s0ijðo; yÞ ¼ aijy þ bijo; i ¼ 1;y;N; j ¼ 1;y;N;

*s0ijðo; yÞ ¼ *aijy þ *bijo i ¼ 1;y;N; j ¼ 1;y;N;

where the Ai’s, Di’s, aij’s, bij’s, *aij’s, and *bij ’s are unknown coefficients for which
we must solve. In total, there are 2N þ 4N2 of these coefficients. In the rest of
this section, we describe a set of 2N þ 4N2 equations that these coefficients must
satisfy.

Step 2. Normalize by income and state the functional equation.

Next, we eliminate y from the functional equation that defines the big guy’s
problem. In particular, given the functional forms above, the common term ya can be
cancelled from both sides of the functional equation. Defining #o ¼ o=y; #s0ij ¼ s0ij=y;
and #*s

0
ij ¼ *s0ij=y; the functional equation can then be written:

AiðDi þ #oÞa ¼ ð1þ gÞ� ð2Þ

max
f#s0ijg

4
j¼1

a�1 #w �
XN

j¼1

qij #s
0
ij

 !a

þd
1þ bg
1þ g

� �XN

j¼1

AjpijðDj þ #w0
jÞ
aga

ij

( )

� g max
f#*s

0
ijg

4
j¼1

a�1 #w �
XN

j¼1

qij
#*s
0
ij

 !a

þbd
XN

j¼1

AjpijðDj þ #*w
0
jÞ
aga

ij

( )
;

where

#wj ¼ #s0ij=gij þ 1

and

#*w
0
j ¼ #*s

0
ij=gij þ 1:

Note that, given the conjectured functional forms above, #s0ij and
#*s
0
ij are each affine

functions of #w:
Given the guess for #s0ijð #oÞ; actual consumption (divided by y) in state i can be

written:

#cið #oÞ ¼ #o�
XN

j¼1

qij #s
0
ijð #oÞ ¼ 1�

XN

j¼1

qijbij

 !
�
PN

j¼1 qijaij

1�
PN

j¼1 qijbij

þ #o

 !
: ð3Þ
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Similarly, given the guess for #*s
0
ijð #oÞ; temptation consumption (divided by y) in state i

can be written:

#*cið #oÞ ¼ #o�
XN

j¼1

qij
#*s
0
ijð #oÞ ¼ 1�

XN

j¼1

qij
*bij

 !
�
PN

j¼1 qij *aij

1�
PN

j¼1 qij
*bij

þ #o

 !
: ð4Þ

We use these expressions extensively below.

Step 3. Verify the functional form of the value function.

Examining the right-hand side of the functional equation (2), one can see that
there are 2ðN þ 1Þ terms involving #o (N þ 1 terms in the ‘‘actual’’ part of the
functional equation and N þ 1 analogous terms in the ‘‘temptation’’ part of the
functional equation). Two of these terms are the ones above for actual and
temptation consumption (raised to the power of a). The remaining 2N of these terms
either take the form

ðDj þ 1þ #s0ij=gijÞ
a ¼ ðbij=gijÞ

a Dj þ 1þ aij=gij

bij=gij

þ #w

� �a

; j ¼ 1;y;N;

or the form

ðDj þ 1þ #*s
0
ij=gijÞ

a ¼ ð *bij=gijÞ
a Dj þ 1þ *aij=gij

*bij=gij

þ #w

 !a

; j ¼ 1;y;N:

Finally, the left-hand side of the functional equation also contains a term involving
o: ðDi þ #oÞa:
If the conjectured functional forms are correct, then they must solve the functional

equation for all values of #o: In other words, the terms involving #o must cancel from
both sides of the functional equation. This can only happen if all the affine
expressions involving #o (that are all raised to a power a) have the same relation
between slope and intercept. This produces the following restrictions, for each
i ¼ 1;y;N:

�
PN

j¼1 qijaij

1�
PN

j¼1 qijbij

¼
Dj þ 1þ aij=gij

bij=gij

; j ¼ 1;y;N; ð5Þ

and

�
PN

j¼1 qij *aij

1�
PN

j¼1 qij
*bij

¼
Dj þ 1þ *aij=gij

*bij=gij

; j ¼ 1;y;N: ð6Þ

Finally, for each i ¼ 1;y;N; we also require that

Di ¼
�
PN

j¼1 qijaij

1�
PN

j¼1 qijbij

¼
�
PN

j¼1 qij *aij

1�
PN

j¼1 qij
*bij

: ð7Þ
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The set of Eqs. (5), (6), and (7) defines 2N þ 2N2 restrictions that the unknown
coefficients must satisfy. We now turn to the first-order conditions, which define
another set of restrictions that the unknown coefficients must satisfy.

Step 4. Verify the functional forms of the decision rules.

The first-order conditions governing optimal (actual and temptation) asset choices
deliver an additional 2N2 restrictions on the coefficients. Given the guess for the
value function, the first-order conditions for actual behavior take the following form
for i ¼ 1;y;N and j ¼ 1;y;N:

qij #w �
XN

j¼1

qij #s
0
ijð #oÞ

 !a�1

¼
1þ bg
1þ g

� �
pijdaAjðDj þ 1þ #s0ijð #oÞ=gijÞ

a�1ga�1
ij :

Substituting the guess for #s0ijð #oÞ and using Eq. (5), the terms involving #o cancel,
thereby verifying that the conjectured functional form for the actual decision rules is
correct.

Step 5: Collect all the restrictions on unknown coefficients.

After eliminating #o; the N2 first-order conditions for actual behavior become:

qij 1�
XN

j¼1

qijbij

 !a�1

¼
1þ bg
1þ g

� �
pijdaAjb

a�1
ij : ð8Þ

Similarly, the N2 first-order conditions for temptation behavior reduce to:

qij 1�
XN

j¼1

qij
*bij

 !a�1

¼ pijbdaAj
*b
a�1
ij : ð9Þ

From before, we have restrictions in the form of Eqs. (5)–(7). The final N

restrictions that the unknown coefficients must satisfy come directly from the
functional equation. After cancelling terms involving #o; thanks to Eqs. (5)–(7), the
functional equation, for each i ¼ 1;y;N ; can be written:

Ai ¼ ð1þ gÞ a�1 1�
XN

j¼1

qijbij

 !a

þ
1þ bg
1þ g

� �
d
XN

j¼1

pijAjb
a
ij

( )

� g a�1 1�
XN

j¼1

qij
*bij

 !a

þbd
XN

j¼1

pijAj
*b
a
ij

( )
: ð10Þ

In sum, the unknown coefficients in the value function and in the actual and
temptation decision rules must satisfy the 3N þ 4N2 (independent) equations
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contained in (5)–(10). But recall that there are only 2N þ 4N2 coefficients in the
value function and decision rules! In the next step, we show that N of the restrictions
described above are actually redundant.

Step 6: Show that N of the restrictions are redundant.

It turns out that N of the equations in (5)–(7) are redundant. To see this, note that,
for each i; Eq. (5) implies that:

qijgijðDj þ 1Þ ¼ qijbij

�
PN

j¼1 qijaij

1�
PN

j¼1 qijbij

 !
� qijaij ; j ¼ 1;y;N:

Summing these equations over j and simplifying the right-hand side, one obtains:XN

j¼1

qijgijðDj þ 1Þ ¼
�
PN

j¼1 qijaij

1�
P

j¼1 qijbij

:

By Eq. (7), for the given i;XN

j¼1

qijgijðDj þ 1Þ ¼
�
PN

j¼1 qij *aij

1�
P

j¼1 qij
*bij

:

Clearly, if this equation and the first N � 1 of the equations in (6) hold (for the given
i), then the last equation in (6) also holds. Thus, for each i ¼ 1;y;N ; there is one
redundant equation.
Finally, for the little guy the first-order conditions (Euler equations) must hold as

inequalities: the left-hand side has to exceed the right-hand side when evaluated at
s0 ¼ 0: We assume that the little guy has no urge to save (that his b is less than or
equal to one) so that *s0 is less than or equal to s0: thus, if the borrowing constraint
binds for actual behavior, it will for temptation behavior.5

3.5.3. Outline of the computational algorithm

Because equilibrium wealth #o ¼ 1;market-clearing in each of the N2 asset markets
requires that

aij þ bij ¼ 0; i ¼ 1;y;N; j ¼ 1;y;N: ð11Þ

A direct approach to computing equilibrium would be to use a nonlinear equation
solver to find the solution to Eqs. (5)–(10) and (11). In total, this set of equations has
2N þ 5N2 unknowns (N2 prices in addition to 2N þ 4N2 coefficients in the value
function and decision rules). For our problem, in which N ¼ 4; there are, therefore,
88 nonlinear equations in 88 unknowns. Because this system is large, we use instead a
less direct but more manageable algorithm described below.

5This point was made by Gul and Pesendorfer in their ð2000Þ paper: when faced with a binding

borrowing constraint, an agent with an urge to consume does not suffer from a disutility of self-control,

and can thus be viewed as observationally equivalent to one without an urge to consume.
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The basic idea of the algorithm is to fix a set of prices, solve the big guy’s problem,
and then check whether markets clear. If they do not, update the prices using a
nonlinear equation solver and continue iterating until convergence. Thus, the ‘‘outer
loop’’ of our computational algorithm requires the solution of 16 equations, i.e., the
ones given in Eq. (11), in the 16 prices.
The ‘‘inner loop’’ of our computational algorithm solves the big guy’s problem

given a set of prices. Here, we exploit some additional structure in the problem to
reduce the computational burden. In particular, dividing Eq. (8) by Eq. (9) for a
given i and j yields a useful relationship between the slope coefficients in the actual
and temptation decision rules:

1�
PN

j¼1 qijbij

1�
PN

j¼1 qij
*bij

¼
1þ bg
ð1þ gÞb

� �1=ða�1Þ
bij

*bij

:

Note that the left-hand side of this equation is simply the ratio of actual
consumption to temptation consumption in state i; which one can see by dividing
the right-hand side of Eq. (3) by the right-hand side of Eq. (4) and using Eq. (7) to
eliminate the terms involving #o: Moreover, because the ratio bij= *bij depends only on
i; this equation implies that

cið #oÞ
*cið #oÞ

¼
1�

PN
j¼1 qijbij

1�
PN

j¼1 qij
*bij

¼
1þ bg
ð1þ gÞb

� �1=ða�1ÞPN
j¼1 qijbijPN
j¼1 qij

*bij

: ð12Þ

Evidently, this consumption ratio depends only on i and not on #o; this fact is useful
for computation. As discussed below, we exploit this equation to simplify the
computation of the decision rule coefficients.
Our computational algorithm uses only the first-order conditions associated with

the big guy’s problem, obviating the need to compute the 2N coefficients in the value
function. Because N ¼ 4 in our problem, we must therefore compute 2N2 ¼ 32
coefficients in the actual decision rules, as well as 32 coefficients in the temptation
decision rules, given a set of prices. A typical first-order condition for actual
behavior associated with the problem defined by Eq. (2) can be written as

qijc
a�1 ¼ d

1þ bg
1þ g

� �
pijg

a�1
ij ðð1þ gÞðc0jÞ

a�1 � gð*c0jÞ
a�1Þ;

where c is actual consumption in the current period, c0j is actual consumption in the
next period given that the economy is in state j; and *cj is temptation consumption in
the next period given that the economy is in state j: This first-order condition can be
rearranged into a more useful form:

c ¼
dð1þ bgÞ
1þ g

� �1=ða�1Þ pij

qij

� �1=ða�1Þ

gijc
0
j 1þ g� g

*c0j

c0j

 !a�1
0@ 1A1=ða�1Þ

: ð13Þ

This equation is central to our computational algorithm. Because temptation
consumption enters this equation only in the form of a ratio to actual consumption,
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and because Eq. (12) shows how to compute this ratio given only the slope
coefficients in the actual decision rules, we do not need to consider separately the
first-order conditions for temptation consumption. In other words, thanks to
Eq. (12), we need to solve only for the 32 coefficients in the actual decision rules,
given a set of prices. The appendix explains in detail how we use Eq. (13) to compute
the actual decision rule coefficients given a set of prices, and how we update the
prices to achieve market-clearing.

4. Quantitative results

Although a key purpose of our model is to examine the role of the different
parameters for asset pricesF comparative-statics exercisesF some parameters will
be calibrated and remain unchanged throughout the analysis. We therefore first
describe this calibration. Thereafter we show our main results.

4.1. Calibration

We took the dividend/labor income process from Heaton and Lucas (1996): they
consider a four-state Markov process, which was matched to U.S. data.6 The
transition probability matrix we thus use (it is derived from Table 1 in Heaton and
Lucas’s paper) is

0:5297 0:3024 0:1068 0:0611

0:4101 0:4675 0:0572 0:0652

0:0652 0:0572 0:4675 0:4101

0:0611 0:1068 0:3024 0:5297

0BBB@
1CCCA:

The ði; jÞ element in this matrix is the probability of moving from state i to
state j: The four states are ð0:9904; 0:1402Þ; ð1:047; 0:1437Þ; ð0:9904; 0:1561Þ; and
ð1:047; 0:1599Þ; where the first number in each ordered pair is the growth rate of total
income (labor income plus dividends) and the second number in each ordered pair is
the share of dividends in total income.7

6 In particular, Heaton and Lucas (1996) obtain measures of annual aggregate labor income and

dividends from the NIPA for the years 1947–1992. They weight the aggregate series by the total U.S.

population and by the CPI in each year in order to obtain real per capita labor income and dividends.

They fit a first-order vector autoregression to the growth rate of total income (labor income plus

dividends) and the share of dividends in total income and then use the technique described in Tauchen and

Hussey (1991) to approximate this vector autoregression using a four-state Markov chain. In the NIPA,

the average share of dividends in total income is only 3.9%, a number that clearly understates the share of

income from tradable assets. In order to account for this additional asset income, Heaton and Lucas adjust

the parameters of the Markov chain so that the average share of dividends is 15%; specifically, they

multiply the dividend share by a constant.
7Letting l denote the growth rate of total income and Z denote the share of dividends in total income,

this process implies that EðlÞ ¼ 1:019; EðZÞ ¼ 0:15; s:d:ðlÞ ¼ 0:028; s:d:ðZÞ ¼ 0:008; corrðl; ZÞ ¼ 0:29;
corrðl; l�1Þ ¼ 0:18; and corrðZ; Z�1Þ ¼ 0:69:
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As for the remaining parameters, we vary them away from a baseline
configuration: d ¼ 0:99; y ¼ 1 (so that there is no little guy F the representative-
agent version of the model), b ¼ 1 and/or g ¼ 0 (the standard model), and a ¼ 0 (the
coefficient of relative risk aversion being 1� a).
In Sections 4:2:1; 4:2:2; and 4:2:3; we examine how changes in risk aversion ðaÞ;

wealth concentration ðyÞ; and the ‘‘urge to save’’ ðbÞ affect equilibrium asset prices.
In a reasonable calibration of the model, however, we should set wealth
concentration, as well as income concentration, to match measures of concentration
in the data. We do this toward the end of our parameter variations F in Section
4.2.4F where we fix y and choose a and b so as to match the observed risk-free rate
and equity premium. The Gini coefficient for wealth in our model turns out to equal
1� y: The Gini coefficient for total income in state i is cið1� ZiÞ þ Zi � y: Ignoring
the (negligible) nonlinearity in this equation, the average Gini coefficient for income
is cð1� ZÞ þ Z� y; where c and Z are, respectively, the average share of labor
income that goes to the big guys and the average dividend/output share. As reported
in D!ıaz-Gim!enez et al. (1997), the wealth Gini in U.S. data is 0.78 and the income
Gini in U.S. data is 0.57, which implies that we should set y equal to 0.22 and c to
0:75: In the experiments reported below, whenever we vary y in order to show the
effects of changes in wealth concentration, we simultaneously vary income concen-
tration (by varying c) so that the income Gini is equal to a constant fraction of the
wealth Gini, with this fraction being the one observed in the data, i.e., 0:57=0:78:
Having pinned down the average value of the ci’s (so as to match the income

Gini), we need to select its stochastic properties. Recall that the purpose of this is to
allow the big guy’s income process to be more variable and correlated with
dividends. This is a priori reasonable and will allow us to affect asset prices in the
direction of delivering a higher equity premium. Ideally one would use time series
properties of the income Gini to calibrate the properties of the c process, but we
do not know of time series evidence for the Gini. Instead, we use a very simple,
one-dimensional method: we tie the variations in c to y: We assume, according
to a specific formula, that a decrease in y F more wealth concentration F will be
associated with a c that has a higher covariance with Z: Specifically, we assume that
the growth in the big guy’s endowment process is equal to aggregate income growth
times ðZ0 þ yð1� Z0ÞÞ=ðZþ yð1� ZÞÞ: When y ¼ 1; this expression is 1 and the big
guy’s endowment growth equals aggregate income growth, so it varies relatively little
and covaries little with dividend growth. When y is 0, on the other hand, his
endowment growth equals aggregate income growth times growth in the labor share.
The labor share covaries positively with dividend growth, so this delivers what we
seek: more variation, and a higher covariation with the asset returns, of the big guy’s
growth process.
We should also show, for comparison, what the data says about our variables of

interest. Our source here is Cecchetti et al. (2000). Let re be the annual (net) return on
equity (expressed as a percentage), let rf be the annual (net) return on the risk-free
asset (expressed as a percentage), and let rd ¼ re � rf be the difference between these
two returns. Let mi; i ¼ e; f ;d; and si; i ¼ e; f ; d; denote the means and standard
deviations, respectively, of these three variables. Using annual data for 1889–1985,
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Cechetti, Lam, and Mark report the following estimates: md ¼ 5:75; mf ¼ 2:66; sd ¼
19:02; sf ¼ 5:13; and corrðrd; rf Þ ¼ �0:24: From these estimates, one can deduce that
me ¼ 8:42; se ¼ 18:47; and sf ¼ 5:13: Moreover, the market price of risk (md=sdÞ
is 0.30.

4.2. Findings

4.2.1. The effects of risk aversion with one vs. with two agents

We first set d ¼ 0:99; y ¼ 1; and b ¼ 1 to obtain a set of results regarding the effect
of risk aversion in the ‘‘standard model’’:

Note here that the equity premium increases and then decreases as risk aversion
increases, eventually becoming negative for large enough values of risk aversion.
This is a result of the properties of the particular driving process.8

Moving to our two-agent model, we notice that the nonmonotonic relationship
between the equity premium and risk aversion goes away when we lower y
(the fraction of big guys). In particular, when we set y ¼ 0:3; we obtain the results
in Table 2. (For the experiments in Table 2, the wealth Gini equals 0.7, or roughly
90% of the observed wealth Gini. As discussed in Section 4:1; we therefore set
the income Gini equal to 90% of its observed value, or 0.51. In this case, the ci’s
increase from 0.77 to 0.79 across the four states, with c; the average of the ci’s,
being 0.78.)

Table 1

a me mf md se sf md=sd

0 2.90 2.82 0.076 2.87 0.59 0.027

�2 6.48 6.32 0.156 2.81 1.81 0.073

�4 9.77 9.63 0.138 3.81 3.11 0.063

�6 12.75 12.73 0.025 5.29 4.45 0.009

�8 15.41 15.59 �0.180 6.92 5.82 �0.048
�10 17.74 18.21 �0.469 8.61 7.21 �0.098

Table 2

a me mf md se sf md=sd

0 2.91 2.81 0.105 3.31 0.17 0.032

�2 6.49 6.18 0.312 3.40 0.51 0.093

�4 9.73 9.22 0.510 3.61 0.87 0.146

�6 12.60 11.90 0.699 3.92 1.24 0.188

�8 15.08 14.20 0.882 4.31 1.60 0.221

�10 17.18 16.11 1.066 4.77 1.97 0.246

8The wealth Gini equals 0 when y equals 1, so, as discussed in Section 4, we also set the income Gini to 0
by setting each of the ci ’s equal to 1.
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These results are dramatically different. First, decreasing y increases the risk
premium significantly for a given level of risk aversion: the return on equity does not
change much, but the return on bonds goes down. Secondly, the variability of the
bond return falls quite dramatically. Third, and in conclusion, we see that the effect
of increased risk aversion on the price of risk is now monotone (increasing) and
strong: it is thus the labor income process and low variability that makes the risk
premium decreasing.

4.2.2. The effects of wealth concentration

Motivated by the findings above, let us display the effects of changing y when
d ¼ 0:99; a ¼ �2; and b ¼ 1 (i.e., still the standard model except for the
heterogeneity):

(In the tables, Gw is the wealth Gini and Gi is the income Gini.) We see that y ¼ 0:01
delivers a risk premium of about one-and-a-half percent and a market price of risk of
about 0.15.9

We now set a ¼ �4 (keeping d ¼ 0:99 and b ¼ 1) and display the effects of varying
wealth concentration:

With increased risk aversion, we see that y ¼ 0:01 delivers a risk premium of nearly
4% and a market price of risk of about 0.24!

Table 3

y me mf md se sf md=sd Gw Gi

1 6.48 6.32 0.156 2.81 1.81 0.073 0 0

0.3 6.49 6.18 0.312 3.40 0.51 0.093 0.70 0.51

0.1 6.64 5.90 0.739 6.77 1.94 0.114 0.90 0.66

0.01 7.00 5.44 1.556 11.32 4.18 0.148 0.99 0.72

Table 4

y me mf md se sf md=sd Gw Gi

1 9.77 9.63 0.138 3.81 3.11 0.063 0 0

0.3 9.73 9.22 0.510 3.61 0.87 0.146 0.70 0.51

0.1 10.01 8.43 1.585 9.47 3.35 0.179 0.90 0.66

0.01 10.81 7.14 3.674 17.27 7.21 0.235 0.99 0.72

9 In Tables 3 and 4, the ci’s range from 0.64 to 0.74 (with an average of 0.69) when y ¼ 0:01; they range
from 0.69 to 0.75 (with an average of 0.71) when y ¼ 0:1; and they range from 0.77 to 0.79 (with an

average of 0.78) when y ¼ 0:3: When y ¼ 1; the ci ’s are all equal to one.
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4.2.3. The urge to save

We now set d ¼ 0:99; y ¼ 1; g ¼ 3; and a ¼ �4 and vary b (recall that a higher b
increases the urge to save) Table 5:

Naturally, an increase in b decreases the returns. In particular, in this table, we are
keeping the degree of risk aversion constant, and we see a sharp fall in the return on
stock as well. The equity premium and the market price of risk both fall as well. This
effect is very similar to that obtained from a decrease in the discount rate in the
standard model. See Kocherlakota (1990) for details.

4.2.4. Matching the moments

The preceding sections show how risk aversion (a), the ‘‘urge to save’’ (b), and
wealth concentration (y) affect the first and second moments of equilibrium asset
prices. In this section, we fix y at three different values (0.3, 0.22, 0.1, and 0.01) and
choose a and b so as to match (approximately) the risk-free rate and the equity
premium observed in U.S. data.10 As discussed in Section 4:1; the Gini coefficient of
the wealth distribution in the model is 1� y; which suggests that y ¼ 0:22 is a
reasonable choice for y (since the Gini coefficient of the U.S. wealth distribution is
0.78).11 The results are as follows (d ¼ 0:99 and g ¼ 3 in this table) Table 6:

Table 5

b me mf md se sf md=sd

0.5 13.92 13.76 0.157 3.84 3.29 0.080

1.0 9.77 9.63 0.138 3.81 3.11 0.063

2.0 6.30 6.18 0.123 3.86 2.95 0.050

4.0 4.20 4.08 0.115 3.92 2.86 0.043

6.0 3.45 3.34 0.112 3.95 2.82 0.041

8.0 3.07 2.96 0.111 3.97 2.81 0.040

10.0 2.84 2.73 0.110 3.98 2.80 0.039

Table 6

y a b me mf md se sf md=sd Gw Gi

0.30 �33:0 3.0 8.53 2.79 5.75 14.39 6.15 0.44 0.70 0.51

0.22 �21:4 3.8 8.50 2.71 5.79 14.08 5.88 0.45 0.78 0.57

0.10 �10:5 3.3 8.40 2.51 5.89 17.42 7.18 0.37 0.90 0.66

0.01 �5:4 2.3 8.42 2.80 5.62 20.94 8.58 0.30 0.99 0.72

Data 8.42 2.66 5.75 18.47 5.13 0.30 0.78 0.57

10 It seems clear that, for each of the four values of y that we consider, we would be able to match exactly

the risk-free rate and the equity premium by varying a and b appropriately.
11When y ¼ 0:22; the ci ’s vary from 0.74 to 0.77, with an average value of 0.75.
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In addition to matching (by design) the first moments of the asset prices, the four
parameterizations of the model economy reported in this table do a reasonable job of
matching the three (unconditional) second moments of the asset prices.

5. Conclusions and final remarks

We have solved a Gul–Pesendorfer asset-pricing model where the temptation is
one of savings urges among some investors. This model allows us to depict the world
of consumers/investors in a not altogether unrealistic fashion: there is a small group
of investors who are very rich and a large group of consumers who are poor and, as
we model it here in order to simplify, borrowing-constrained. The rich investors are
rich precisely because of their attitudes toward savings: with a single-minded focus
on wealth accumulation, they end up dominating the economy in asset holdings. As
such, they bear more risk, and their intertemporal preferences will be those
determining asset prices, and not those of the ‘‘average consumer’’. The average
consumer, in contrast, will feature ‘‘hand-to-mouth’’ behavior. One implication that
our setup has is that the risk-free rate becomes naturally lower. Secondly, with a
reasonably high degree of risk aversion and concentrated risk, the equity premium
can also be made much larger than in the standard model. Thirdly, we show that our
parameterization also delivers low volatility of the risk-free rate.
Is our preference parameterization a sensible one? Clearly, the idea that investors

have an urge to save is a very controversial one. But how strong an urge do we
need in our ‘‘successful’’ parameterizations, i.e., in those that do a decent job of
matching the asset price moments? We investigated the following comparison:
suppose the agent (the stock investor, in this case) could choose between operating in
the equilibrium we calculated, where he is subject to temptation and self-control
costs, and one where he had no choices, but simply consumed the equilibrium
allocation scaled down by a common factor at all dates and states. This factor would
thus have to be less than one, because the equilibrium we compute involves self-
control costs. What value of this factor would make the investor indifferent between
the two environments? It turns out that the value is quite close to 1 for the
parameterization above that gives the best match to the data: it is 0.997, thus
indicating a self-control cost of less than a half a percent of consumption. With lower
risk aversion, the cost goes up, however, and with logarithmic utility (keeping the
other parameter values fixed) the cost is 7%. We also know that if g; the parameter
regulating the strength of temptation, were taken to infinity, the model would reduce
to the Laibson model. For this limiting case, we proved in Krusell et al. (2001) that
the disutility of self-control has to go to zero (independently of the value of risk
aversion).
Another way of evaluating the importance of the urges to save can be given by

comparing equilibrium utility to that given by another no-choice allocation, but not
the equilibrium allocation scaled down as in the previous comparison. Instead,
consider the best feasible allocation for the consumer F in the sense of being inside
the budget F from the point of view of commitment utility (as given by *U). This
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allocation is also available in equilibrium, but because of temptation it is not
selected. However, if it were forced upon the agent, it would make him better off by
definition. Our measure here of how costly the urges are is thus by how much this
alternative, no-choice path would have to be scaled down in order to deliver
equilibrium utility. We find, again for our best parameterization, that the cost is now
up to about 4%.12 This measure, finally, is increasing in g: as the temptation grows
stronger, the disutility of self-control goes to zero, but the overall cost of urges
of course goes up.
A comparison with Kocherlakota’s 1990 paper is also useful: is our framework with

self-control costs from savings urges more reasonable than the one he proposes, where
there are no self-control costs but the discount rate is above one? One could consider
how the agents of the two kinds would compare consumption today and consumption
in the distant future under various assumptions on the growth rate of consumption.
If the growth rate of consumption is two percent, the intertemporal elasticity of
substitution is 1=2; and the discount rate in a Kocherlakota economy is such that an
agent would choose the growing consumption path at a 1% rate of interest, then this
agent would be willing, at the margin, to pay 0.37 units of consumption today for 1
additional unit in 100 yearsF this is 1:01�100; as it should be. Our agent, in contrast,
would only be willing to pay 0.007 units today, under our kind of calibration
(with a ‘‘short-run’’ discount rate larger than one and a ‘‘long-run’’ rate below one).
Here, we are assuming that the comparison is between the two ‘‘no-choice’’ paths
fc; 1:02c; 1:022c;y; 1:02100c þ e; 1:02101c;yg and fc � xe; 1:02c; 1:022c;y; 1:02100c;
1:02101c;yg; where x thus defines the current marginal willingness to pay for 1 unit in
100 years (we assume that e is small). That is, our agent would be much more
impatient in this comparison, but perhaps not unreasonably so. In contrast, suppose
we considered, for the same preference parameter values, a zero consumption growth
rate. Then our agent would pay 0.37 units today for one unit in 100 years, whereas the
Kocherlakota agent would now be willing to pay 19.4 units! Thus, depending on the
context, the two setups look more or less reasonable; perhaps ours is more robust in
the sense of never producing crazy numbers.
Obviously, as a general point one needs to learn more about the actual behavior of

the large investors. We know of no empirical study that is helpful in this regard.
Our approach here can perhaps best be characterized as overly bold theorizing,
but we do believe that moving in the direction of understanding the ‘‘psychology’’
of large investors is very important both for understanding asset pricing and
macroeconomics.

Appendix

This appendix explains how we compute the 32 coefficients in the actual decision
rules, given a set of 16 asset prices. This appendix also explains how we determine the
16 market-clearing prices.

12Here as well, the cost is decreasing in risk aversion; for logarithmic utility, it would be 41%.
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The basic idea of the algorithm for computing the decision rules coefficients
is to take as given an initial set of coefficients, use Eq. (13) to update this set of
coefficients, and then continue iterating until convergence. Let a0

ij and b0
ij ; i ¼ 1;y; 4

and j ¼ 1;y; 4; denote the initial set of coefficients; these coefficients are used to
determine tomorrow’s (actual) asset decisions (hence the ‘‘primes’’ on the
coefficients). We now describe how we use Eq. (13) to compute the coefficients
that determine today’s (actual) asset decisions, taking as given the a0

ij ’s
and b0

ij ’s.
First, note that Eq. (12) can be used to solve for the ratio of temptation

consumption to actual consumption in the next period, assuming that next period’s
(actual) decisions are determined by the a0

ij’s and b0
ij’s. Because this is the only way in

which temptation decisions enter Eq. (13), we do not need to consider separately the
first-order condition for temptation behavior. In particular, it is straightforward to
show that

*c0j

c0j
¼ 1�

X4
l¼1

qjlb
0
jl

 !
1�

1þ bg
ð1þ gÞb

� �1=ða�1Þ
 !�1

0@ 1A:

Next, define

Kij ¼
dð1þ bgÞ
1þ g

� �1=ða�1Þ pij

qij

� �1=ða�1Þ

gij 1þ g� g
*c0j

c0j

 !a�1
0@ 1A1=ða�1Þ

:

Kij will be treated as a constant (which depends on the b0
ij ’s) when solving for today’s

(actual) decision rule coefficients.
The Euler equation (13) can now be written:

c � Kij c0j ¼ 0;

where

c ¼ #o�
X4
l¼1

qil #s
0
ilð #oÞ

¼ �
X4
l¼1

qilail þ 1�
X4
l¼1

qilbil

 !
#o

and

c0j ¼ #o0
j �
X4
l¼1

qjl #s
0
jlð #o

0
jÞ

¼ aij=gij þ ðbij=gijÞ #oþ 1�
X4
l¼1

qjlða0
jl þ b0

jlðaij=gij þ ðbij=gijÞ #oþ 1ÞÞ:
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Inserting these expressions into the Euler equation and combining terms yields:

� Kij 1�
X4
l¼1

qjlða0
jl þ b0

jlÞ

 !
�
X4
l¼1

qilail � ðKij=gijÞ 1�
X4
l¼1

qjlb
0
jl

 !
aij

þ 1�
X4
l¼1

qilbil � ðKij=gijÞ 1�
X4
l¼1

qjlb
0
jl

 !
bij

 !
#o ¼ 0:

In other words, the Euler equation is an affine function of #o: Since the Euler
equation must hold for all values of #o; both the intercept and the slope in this
equation must equal zero. These conditions determine the aij ’s and the bij’s. In
particular, for each i ¼ 1;y; 4; the set of coefficients faijg

4
j¼1 must solve the

following linear system of equations for j ¼ 1;y; 4:

�Kij 1�
X4
l¼1

qjlða0
jl þ b0

jlÞ

 !
�
X4
l¼1

qilail � ðKij=gijÞ 1�
X4
l¼1

qjlb
0
jl

 !
aij ¼ 0:

In addition, for each i ¼ 1;y; 4; the set of coefficients fbijg
4
j¼1 must solve the

following linear system of equations for j ¼ 1;y; 4:

1�
X4
l¼1

qilbil � ðKij=gijÞ 1�
X4
l¼1

qjlb
0
jl

 !
bij ¼ 0:

The 32 actual decision rule coefficients, given the a0
ij ’s and b0

ij ’s, can therefore be
computed by solving 8 separate sets of linear equations, each of which involves 4 of
the coefficients.
Having computed the aij ’s and bij’s that set the Euler equation to zero for all

values of #o; we then check whether these coefficients are sufficiently close to the ones
taken as given (i.e., the a0

ij ’s and b0
ij ’s). If not, then we replace the a0

ij ’s and b0
ij ’s with

the new coefficients and continue iterating until our convergence criterion is satisfied.
In particular, we require that

max max
i;j

jaij � a0
ij j;max

i;j
jbij � b0

ij j
� �

be less than 10�8: This algorithm is fairly robust to different choices for the initial
a0

ij ’s and b0
ij ’s, including zero. In the interest of speed, however, it is generally a good

idea to use an initial guess that comes from a parameterization of the model that is
‘‘close’’ to the one under consideration.
To find the market-clearing prices, we use Newton’s algorithm. We use numerical

derivatives to compute the Jacobian of the mapping from the qij’s to excess demands
in each of the markets (i.e., aij � bij for each i and j). During the first few iterations of
Newton’s algorithm, we find that it is necessary (unless the initial guess for the prices
happens to be very close to the market-clearing prices) to take smaller steps than
those dictated by Newton’s algorithm. We do so by letting the prices for the next
iteration be a weighted average of the old prices and the new prices that would be
selected if we used a full step. When b ¼ 1; it is straightforward to show that the
equilibrium prices qij ¼ dpijg

a�1
ij : These prices serve as a good initial guess for the
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prices that obtain when we perturb b away from 1. The converged prices for such a
perturbation serve, in turn, as a good initial guess for the next perturbation of b:
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