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Abstract 

This paper discusses methods for reducing the bias of consistent estimators that are 
biased in finite samples. These methods are available whenever the bias function, which 
relates the bias of  the parameter estimates to the values of the parameters, can be estimated 
by computer simulation or by some other method. If so, bias can be reduced by one full 
order in the sample size and, in some cases that may not be unrealistic, virtually eliminated. 
Unfortunately, reducing bias may increase the variance, or even the mean squared en'or, of 
an estimator. Whether it does so depends on the shape of the bias function. The results of 
the paper are illustrated by applying them to two problems: estimating the autoregressive 
parameter in an AR(1) model wilh a constant term, and estimating a logil model. ,~ 1998 
Elsevier Science S.A, All rights reserved. 
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1. Introduction 

M a n y  economet r i c  es t imators  are cons i s t en t  but  b iased  in finite samples .  It is 

natural  to try to reduce  this  b ias  by  us ing  c o m p u t e r  s imula t ion ,  and  the idea o f  

do ing  so is p robab ly  very old. For example ,  in an in te rv iew (Phi l l ips ,  1988),  
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James Durbin reports that he worked on this idea in the early 1950s but gave 
up because it was beyond the capabilities of  the computers available at that 
time. In this paper, we discuss some ways in which finite-sample bias can be 
reduced or, in certain cases, even eliminated. The key concept is that of  a 'bias 
function', which relates the bias of  some estimator to the parameter value(s). 
In many cases, this function can be estimated by computer simulation. In some 
cases, approximations to it may be obtained analytically. In the examples we 
study, bias correction generally seems to do a very good job of  reducing bias. 
However, bias correction may either increase or decrease the mean squared error 
of  an estimator. The key result of  the paper is that how well bias correction works 
depends in a simple way on the shape of  the bias function and the variance of  
the parameter estimates. 

As we shall discuss below, our work is related to some of  the extensive liter- 
ature on the bootstrap; see, among others, Hall (1992) and Efron and Tibshirani 
(1993). It is also closely related to the literature on indirect inference, which grew 
out of  the work of  Smith (1993) and was given that name by Gouri6roux et al. 
(1993); see, in particular, Gouri~roux et al. (1997), who discuss bias correction 
in the context o f  indirect inference. 

We begin by considering the case of  a scalar parameter 0 which can be es- 
timated consistently from data y,, t = 1 .. . . .  ,n, by some standard technique such 
as least squares or maximum likelihood. Let (i denote a consistent estimator of  
0 based on a sample of  size n, and let 00 denote its true value. We shall call 0 
the initial estimator. Assuming that E(~i) exists, we can always write 

~} := 00 + b(00, n) + r(00,n), (1) 

where b(00, n ) -  E ( 0 ) - 0 0 ,  and v(00, n) is defined so that (1) holds. Thus b(Oo, n) 
is the bias of  (} and v(00, n) is the random difference between 0 and its mean. 
The function b(Oo, n) will be called the biasj'unction. Except for the parameter 0, 
we are assumed to know the distribution of  the y~. The key feature of  the bias 
function is that, in general, the bias of  (~ depends on 00. It is this dependence 
that makes correcting bias difficult and, sometimes, undesirable to do. 

As an illustration, Fig. 1 plots bias functions for three sample sizes for the 
OLS estimate o f  the parameter p in the possibly nonstationary autoregressive 
model 

yt=/t+py~-I  + ut, ut.~N1D((),o'2). (2) 

We do not assume stationarity here because the stationarity restriction that IOl <1 
makes bias correction complicated, and because we do not want to rule out the in- 
teresting case in which p = 1. The stationary case will be discussed briefly in Sec- 
tion 2. Because we are not assuming stationarity, we have to make an assumption 
about starting values. For the case pvk l, we assume that Y0= 
I((1 p) + uo. This assumption implies that the bias functions for the OLS esti- 
mate of  the parameter p do not depend on ~ and c, 2, so that there is effectively 



J.G. MacKinnon.  .4..4. Smith,  J r . / J o u r n a l  o f  Econometrics  85 (1998)  205 230 207 

Bias 
0.08 

0.04 

0.00 

0.04 - 

-0 .08 - 

0.12 

0.16 

-0 .20 

n 2 5 ~  

- 1 . 2 - 1 . 0 - 0 . 8 - ( I . 6 - 0 . 4 - ( . 2  0.0 02  04 0.6 0.8 1(1 I 2 

Fig. 1. Bias functions, AR(I) coefficient, nonstationaw case. 

only one parameter; see Appendix A of  Andrews (1993). For the case p = 1, we 
assume that IL -  0. This assumption implies that the bias functions do not depend 
on 0 -2. Alternative values of  p, however, would cause the bias functions to be 
different at p = 1. 

The bias functions in Fig. 1 were obtained by computer simulation, using 
800,000 replications tbr n - -25 ,  400,000 replications for n = 50, and 200,000 
replications for n = 100. Using the regression technique proposed by Davidson 
and MacKinnon (1992), the control variate ~-~=:2 uty, i was used to reduce the 
variance of  the estimates and, in order to make the graph as smooth as possible, 
the same seeds were used for all the simulations. In this case, it would prob- 
ably have been possible to obtain these bias functions analytically by using an 
approach like that of  Sawa (1978), but it was easier to use simulation. We 
see from the figure that the bias function for fi in this model is nearly linear 
for -0 .85~<p~0.85 .  tfowever, it is severely nonlinear in the neighborhood of  
Ip i -  1. 

As a first approximation, the bias functions in Fig. l appear to be O(n ~). 
This is not an illusitm. When 0 is root-n consistent and asymptotically normal, 
the bias of  0 will generally be O(n - I ) ,  provided that the second moment of  (} 
is bounded from above. The bias cannot be O ( n  b'2), because, if it were, the 
random variable nL'2(ti - 0 o )  could not have mean zero asymptotically, i Under 
standard regularity conditions which allow the density of  0 to havc an Edgeworth 

/ (Jnder the bounded moment assumption, Theorem 3.4.1 of Amemiya (1985) ensures that the 
asymptotic expectation of () equals tile limil of F((i) as n .... ~_':xc, 
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expansion in powers of  n 1~2 the first term that can contribute to bias is the 
O(n - I  ) term; see Hall (1992). 

In the next section, we consider methods o f  bias correction that would be ap- 
propriate if  the bias function were linear. This case is simple to deal with, may 
often be a good approximation, and yields some intuitively appealing results. 
Then, in Section 3, we consider the more general case of  a nonlinear bias func- 
tion. Subsequently, Section 4 extends many of  the results to the case in which 
there is a vector of  parameters. Finally, in Sections 5 and 6, we present two sets 
of  Monte Carlo results, one for an AR( 1 ) model and one for a logit model. 

2. Bias correction with constant and linear bias functions 

The simplest case is the one in which the bias function is fiat, so that b ( O , n ) -  
b(n)  for all 0. In this case, if  b(n) is not known analytically, we could estimate 
it simply by generating N samples of  size n from the model that is hypothesized 
to have generated the v~, using any value of  0 at all. Although it does not matter 
what value of  0 we use i f  the bias function actually is constant, the obvious one 
is (). Let the average of  the estimates obtained from the N simulated samples be 

L60, 
A / : l  

Then our estimate of  b(n) would be 

/ , -  ;(n)-- 0 ~). (3) 

Since the simulated samples are assumed to be drawn from the same model as 
the data, b will provide an unbiased estimate of  b(n), and as N - ~ . ~  it should, 
under plausible conditions, converge to b(n). 

In this simple situation, then, we can obtain an estimate of  b(n)  that is as good 
as we want (or can afford) it to be. The corresponding estimate of  O, which we 
shall refer to as the consmnt-bias-correctin¢t, or CBC, estimator, will be 

~):~ g-2~)-iT. (4) 

This estimator is widely used in the bootstrap literature; see Efron and Tibshirani 
(1993, Chapter 10). In the bootstrap literature, the simulated samples are often 
obtained by some form of resampling from the data instead of by using the 
parametric model evaluated at O, but the basic idea is the same. In econometrics, 
the C13C estimator has sometimes been used in conjunction with approximations 
to the bias function: see Amemiya (1980) and Kiviet and Phillips (1993, 1994). 

There are many ways to obtain confidence intervals for 0. Indeed, much of  the 
bootstrap literature is concerned with ways to do this; see Hall (1992), Efron and 
Yibshirani (1993, Chapters 12 14), and DiCiccio and Efron (1996). We will not 
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discuss confidence interval estimation in this paper, however. It is an interesting 
and important topic, but it cannot adequately be treated in a small space, and it 
is peripheral to the main point of  the paper. 

It is probably rare for a bias function to be flat. Suppose instead that it is 
linear in O, which may often be a reasonable approximation, at least over some 
range of  parameter values. If the bias function is linear, we can write it as 

b(O) = ~ + b'O, (5) 

where we have suppressed the explicit dependence of  b(.) on n. The notation 
b r emphasizes the /'act that the coefficient of  0 in (5) is the slope of  the bias 
function. By evaluating (5) at two points, we can solve for :~ and b p. This requires 
two sets of  simulations, which will differ only in the point at which the DGP is 
evaluated. Natural choices tbr the two points are 0, the initial estimator, and 0, 
the CBC estimator defined in (4). In order to ensure that the slope of  the bias 
function is estimated accurately, both sets of  simulations should use the same 
sequence of  random numbers. 

Given ¢i, 0, and the estimates ,~ and ]~, it is easy to solve for ~ and h I. The 
solutions are 

~ = b  b b(i  and t;' 
^ 

0 0 0 0 

Under plausible conditions, ~. and /~" will converge to :~ and b' as the number of  
simulations is increased. The bias-correcting estimator (} must be equal to () minus 
the bias function evaluated at (} itself. Thus it is the solution to the equation 

0 O ~. ~;'0. 16) 

Solving (6) yields 

0= 1 +1/~ I(0- z~). 
This is one form of  the l inear-hias-correctinq, or LBC, estimator. Another form 
of  this estimator will be discussed in the next section. 

Simulation is not always needed to compute bias-corrected estimators. A par- 
ticularly simple example of  the LBC estimator is the OLS estimator of  the error 
variance of  a linear regression model with fixed regressors. Consider the biased 
estimator S S R / n .  Its bias function is linear and equal to -(k/n)c~ 2, where k is the 
number of  regressors. Thus ~ = 0 and b ' = - k / n .  Plugging these into (7) yields 
the familiar unbiased estimator S S R / ( n -  k).  ~ 

Even if the bias function is not actually known, an approximation may be 
available. For the example in Fig. 1, it might be reasonable to assume that the 

2 We are grateful to Fallaw Sowell for suggesting this example. 
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Fig. 2. Bias  funct ions ,  AR(  1 ) coeff ic ient ,  s ta t ionary  case  

bias function is linear for values of  IP] <0.85. In ]'act, for the stationary version 
of  the autoregressive model (2), Kendall (1954) and Marriott and Pope (1954) 
derived the approximate bias function 

1 
b(p,n) . . . . . .  ( l + 3 p ) + O ( n  2). (8) 

tl 

This function is linear ira p. Orcutt and Winokur (1969) used (8) to obtain the 
approximately unbiased estimator 

1 
~ ( n / )  + 1 ). 
t7 - -  2) 

The true bias function for the stationary case (computed by simulation) and 
the approximate bias function (8) are plotted in Fig. 2 for n :=25, n - 5 0 ,  and 
n -  100. For most values of  p, with the notable exception o f  values near - 1 ,  (8) 
provides a fairly good approximation. Note that the bias functions in Fig. 2 are 
not the same as the corresponding ones in Fig. 1, even though they apply to the 
same least squares estimator. For Fig. 2, the simulations imposed the stationarity 
constraint by treating y~ as stochastic with mean zero and variance a2/( l ...... p2). 

In writing (7), we ignored the experimental error which arises from the fact 
that N is finite. Since experimental error can be made arbitrarily small by making 
N sufficiently large, there is little reason to worry about it. Even when N is only 
1000, the standard error or" the simulation-based estimate of  h((}) will be only 
about 0.032 times the standard error of  (). Often, it will be feasible either to use 
much larger values of  N or to reduce simulation errors further by using control 
or antithetic variates; see Davidson and MacKinnon (1992). Henceforth, when 
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we discuss the properties of  estimators that may be based on simulation, we 
implicitly assume that N is infinite. 

In the remainder of  this section, we examine the bias and variance of  the LBC 
and CBC estimators under the assumption that the bias function is given by (5) 
with coefficients ~ and b / that are O(n 1). The results are quite simple and, as 
we shall see in the next section, they generalize easily to the nonlinear case. 

The bias of  the CBC estimator 0 is 

b ( O o ) - E ( b ( O  ) - 7  + b'00 ~ - b'E(/} I 00) 

= b'Oo ...... h'(Oo + :~ + b'00) 

....... h ' (x  -+- h'Oo ). (9) 

Thus the bias of  0 is just ---b' times the bias of  0. The CBC estimator will be 
unbiased only when the bias function is flat, that is, when b ' =  0. Provided that 
I b/] < 1, t} will be less biased than the initial estimator. It will be biased in the 
same direction when br< 0 and biased in the opposite direction when b~> 0. The 
bias of  the CBC estimator will evidently be O(n 2), since it is the product of  
two factors, each of  which is O(n -~ ). 

In contrast, the LBC estimator () will be unbiased whenever the bias function 
is linear. To see this, observe that 

E(0) = E((~ - b((~)) (10) 
= 0o + b(00 ) - b(0 o ) = 0o. 

The key to this result is that E(b(f)))= b(Oo), which will be true, in general, only 
when b(O) is linear. 

Since 0 = (~-  e -  b'O, the variance of  the CBC estimator is 

U((t)= (l - b')2 V((}). (11) 

Similarly, it is easy to see from (7) that the variance of  the LBC estimator is 

V(0) 1 V(0). (12) 
(1 -t- b '  ) 2 

Thus, for both bias-correcting estimators, whether their variance will be greater 
than or less than that o f  0 will depend on whether b r is less than or greater than 

3 z e r o .  

It is interesting to compare (11) with (12). If b'¢=O and Ib'1<¢2, then 
(1 -br)2< 1/(1 + b~) 2. This implies that the CBC estimator will have smaller 
variance than the LBC estimator in almost all cases of  interest. It is quite pos- 
sible that this smaller variance will more than offset the bias of  (), causing it to 

s Smith et al. (1997) make a similar poinl. 
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have smaller mean squared error (MSE)  than ~). The condition for MSE(O) to 
be smaller than MSE(O) is 

1 V((i) > ( 1 - b' )2 V(()) + (b')Z(~ __ b'O0)2. 
(1 + b I)2 

(13) 

When b' <0 ,  the unbiased LBC estimator 0 may well have greater M S E  than 
the initial estimator fi. If the bias function is linear, this will happen whenever 

1 I"(~7) > ( ~  + b'0(>) 2 + VU}). 
(1 +b~) 2 

(14) 

If  the variance of  0 is small enough or b ' > 0 ,  condition (14) will never be 
satisfied. Thus bias correction can be expected to work well whenever the bias 
function slopes upward, or when the variance of  () is small relative to the bias. 
When the bias function slopes downward, bias correction will only work well if 
V(O) is small. 

The results (12 ) - (14 )  do not make sense if b ' = - l .  It seems plausible to 
assume that b ' > - - 1 ,  since otherwise the derivative of  E(0) with respect to 00 
would actually be negative, and it does not seem a very strong requirement for 
an estimator that its expectation should be positively related to the true parameter 
value. However, in very small samples, this assumption could sometimes be false. 

The above results suggest that the CBC and LBC estimators may well have 
larger M S E  than the initial estimator, and that CBC may have smaller M S E  
than LBC even though it is biased and LBC is not. We shall encounter an 
example which displays both these properties in Section 5. Thus it is clear that 
bias correction is not always a good thing to do. Although bias correction leads 
to smaller bias in a wide variety of  circumstances, it increases mean squared 
error if the bias function slopes downward and the variance of  () is sufficiently 
large relative to its bias. 

3. Bias correction with a nonlinear bias function 

As Figs. 1 and 2 make clear, bias functions are not always approximately 
linear. In this section, we first propose an estimator that can deal with arbitrary 
nonlinear bias functions. We then discuss how the CBC and LBC estimators 
are related to the new estimator when the bias function is nonlinear. We obtain 
several interesting results. In particular, we show that the LBC estimator can be 
thought of  as an approximation to the new estimator, and that all three estimators 
are biased only at O(n '~) .  

The key to determining 0 in the last section was Eq. (6), in which 0 was set 
equal to 0 minus an estimate of  the bias evaluated at 0. In the nonlinear case, 
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the analogue of  (6) is 

0 = O - b(0). (15) 

If  we can solve (15), we can find the nonlinear-bias-correcting, or NBC, es- 
timator 0. Any technique for finding the roots o f  an equation in one variable 
could potentially be used. One ad hoc technique that seems to work well is the 
following. First, find b as in (3). Then compute the sequence o f  estimates 

O ( J~ = ( 1 - -,,)0 ~ J l! + ;,( O - b (g~/ -  '~ ) ), ( 16 ) 

where t'J(°)= (} and 0 <7  ~<1, and stop when [{i (/) (j(1 1)[ is sufficiently small. It 
is easy to see that, if' this sequence converges, it will converge to a value 0 that 
satisfies (15). Whether or not it converges will depend on the shape of  the bias 
function and on the value of  7. Larger values of  7 are likely to result in a lower 
probability that the sequence will converge, but faster convergence if it does so. 
In practice, it may be desirable to try ; .... 1 first and then try lower values of  7 if 
the procedure does not seem to be converging. A key advantage of  this technique 
is that it does not require the calculation of  any derivatives of  the bias function. 
However, it will require a number of  evaluations of  that function. 

This procedure has recently been used by Smith et al. (1997) to obtain almost 
unbiased estimates of  the order o f  integration in a fractionally integrated time- 
series model. In that application, where the bias function was very flat, it worked 
well. It also seems to work well for the examples dealt with in Sections 5 and 6. 
A similar procedure has been used by Gouridroux et al. (1997). 

It is easy to see that, when b(0) is nonlinear, t~ is, in general, biased. When 
we take expectations of  both sides of  (15), as we did in (10), the nonlinearity 
of  b(O) implies that E(b(O))¢b(O~)). If we take a second-order Taylor series 
expansion of  (15) around 0o, we obtain 

. . . .  I I t "  ' "  (J ~ 0 bo - b~l({i 0o)-- ~bo(O- 0o) 2, (17) 

where ' ~ '  denotes asymptotic equality, which means, in this case, that the prob- 
ability limil of  the difference between the two sides is zero. In (17), b0 denotes 
b(00), and b<!~ and b[~ denote the first and second derivatives of  b(O), evaluated 
at 0o. The remainder of  the Taylor expansion in (17) can be shown to be of  
lower order than the last term. Thus, provided the remainder has a bounded sec- 
ond moment, we can take expectations of  both sides of  (17), divide through by 
1 + h[~, and rearrange to find that 

b i t "  1 + )  _ )2. 
E ( i i ) - 0 0 ~  ~1  ) / E ( O  00 ( ] 8 )  

" " 0 

This suggests, but does not guarantee, that the bias will be small if the second 
derivative of  b(O) is small near 0~). It also suggests that the sign of  the bias will 
be opposite to that of  b~'(. 
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There is some similarity between the NBC estimator and an estimator that 
Andrews (1993) recently proposed for a class of  autoregressive models. Another 
way to write (15) is 0 = h l ( ( } ) ,  where h ( O ) - O + b ( O ) .  What we are doing is 
inverting the 'mean function' h(O), in much the same way that Andrews inverted 
the 'median function'. Because the median of  f ( x )  is equal to f (m~ . )  for any 
monotonic function f ( . ) ,  where mx is the median of x, Andrews was able to 
obtain median-unbiased estimators. It is because this is not true for expectations 
that the NBC estimator is, in general, biased. Of  course, our technique could 
easily be used to obtain a median-unbiased estimator. We would simply have to 
replace the bias fhnction b([i) in (15) by the difference between the median of  
0 and 00. 

As we remarked in the previous section, there is more than one way to define 
the LBC estimator. Instead of  obtaining a linear approximation to the bias func- 
tion by computing the value of  b(O) at (} and 0, we could just as well evaluate 
the bias function and its slope at 0 and use a first-order Taylor expansion. This 
Taylor expansion is 

b(O) ~ ; + P(O - O ) -  b - b'O + ; '0,  

where, of  course, b ' =  bl(()). Thus b - DI(~ plays the role of  ~ and 1)' plays the 
role of  b ~. Substituting these quantities into expression (7) yields 

~)= ~ ;1(~)- ;+/ ;0)- -0  ; 1 + - l + b ~ "  ( 1 9 )  

If the bias function is linear, the LBC estimator defined in (19) will be identical 
to the LBC estimator defined in (7). The new definition (19) is more convenient 
analytically than the earlier one, and it may sometimes be more convenient in 
practice. 

It is now easy to show that the LBC and NBC estimators are equal through 
On(n-L). If we perform a first-order Taylor expansion of  the right-hand expression 

in (19) around 0o, replace t} by 00 + b0 + co, and explicitly retain only terms that 
are at least Op(n 1), we find that 

1 
= Oo + 1 -t ~ -  b~ v° + Or'(n-2 )' (20) 

Now recall from Eq. (1) lhat 0 = 0 0  + bo + vo, where vo =- v(Oo) is a random 
variable that is Op(n ~2). Substituting for (} in (17), we obtain 

! ] , ¢ l z [ i  ( 1 + b~o )ii ~ ( l + b o )Oo + ro -- )-Oi) t c Oo )°. 

Since the last term here is Op(n-2),  we can ignore it and solve for O to obtain 

1 
0 =  0o + = - - - ~  [!o + Op(n-2)- (21) 

1 4 h o 
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The right-hand side of  this expression is identical to the right-hand side of  (20). 
Thus the LBC and NBC estimators are identical through Op(n -1 ). This result 
suggests that LBC and NBC should perform very similarly in practice, something 
that we do indeed find to be the case in the Monte Carlo experiments that will 
be reported in Sections 5 and 6. 

Subtracting 0o from both sides of  (21) and squaring yields 

] v 
( 0 -  0 0 ) : -  (1 b~) 2 ':~ + op(n ~). 

Under the assumption that the remainder term here has a bounded second moment,  
taking expectations yields the variance of  the NBC estimator, 

V(/J)= 1 V(0)~  o(n 2). (22) ! ") 
(1 + b o ) -  

The first term in (22) is equal to (12), the variance of  the LBC estimator when 
the bias function is linear. Thus everything that was said in the previous section 
about how the variance of the LBC estimator depends on the slope of  the bias 
function must be true, as an approximation, for the NBC estimator as well. 

The result that the LBC and NBC estimators are the same through ()p(n J) 
does not imply that they have the same bias to highest order, because their bias 
is O(n-2) ,  a result that we have not yet shown. In a previous version of this 
paper (MacKinnon and Smilh, 1996), we demonstrated that the biases of  these 
two estimators differ only at O(n ~) and derived an expression for their bias at 
0(,7 : ). Because the derivation is tedious, we omit it. The bias of  both estimators 
can be shown to be 

1 I'I~ E(~}- 0 o )  2 + O(n ~). (23) 
2 1 + b ~  

This expression is, of  course, very similar to (18). It implies that both the LBC 
and NBC estimators will be unbiased through O(n 2) if the second derivative of  
the bias function is zero at the point 00. It also implies that, at this order, the 
sign of  the bias will be opposite to the sign of bi~. 

We now turn our attention to the properties of  the CBC estimator t) for the 
case of  a nonlinear bias {'unction. Its bias is evidently b ( O o ) -  E{b((})), because 
we construct the estimator by subtracting the estimated bias b((]) instead of the 
tree bias b ( O o )  from (}. Replacing b(0) by a Taylor expansion around 0o,  we 
obtain 

E(0) 00 /,,, (~,0+<,E(fi 00)+~<;E(0 00)~)+o(,, :) 
- -  - b; ,ho  - ½/~,[[E(O .... 0o) 2 -+ o(n 2). (24) 

The first two terms in (24) are both clearly O(n-- ' ) .  The first term is the bias 
of  the CBC estimator when the bias fimction is linear but not fiat; recall (9). 
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The second term will almost always have the same sign as (23), but it may be 
either larger or smaller in absolute value, depending on whether b~ is positive 
or negative. Thus it is clearly possible for (24) to be either larger or smaller 
than (23). Therefore, the NBC and LBC estimators may be either less or more 
biased, through terms of  order n -2, than the CBC estimator. 

Using the fact that 0 ~ () - b0 - b~)(() - 00), it can easily be shown that the 

variance of  0 is 

V(O) - (l - b~) 2 V(~)) + o(n 4 ). (25) 

The leading-order term here is essentially the same as expression (11) tbr the 
variance o f  the CBC estimator in the case of  a linear bias function. 

The explicit expressions (23) and (24) for the biases o f  the LBC/NBC and 
CBC estimators through O(n 2) could, in principle, be used to calculate esti- 
mators that are unbiased to even higher order. It would simply be necessary 
to estimate the quantities that appear in these expressions and then subtract the 
resulting estimates of  bias. This would provide an alternative, and potentially 
much cheaper, technique than the iterated bootstrap (Beran, 1987) to implement 
higher-order bias correction. This approach will be explored in another paper. The 
Monte Carlo results that we present below suggest that the first-order bias cor- 
rection procedures we investigate in this paper may often do an extremely good 
job of  eliminating bias in practice. Higher-order methods are therefore likely to 
be unnecessary in many cases. 

4. The vector case  

in the preceding two sections, we have discussed three different bias-correcting 
estimators, two of  which are equivalent to highest order. These were all based 
on the assumption that 0 is a scalar. This is not quite as restrictive as it might 
seem, since our analysis will still be valid when there are other parameters in 
the model, provided that the bias o f  0 does not depend on their values. In this 
section, however, we relax this assumption by considering the case in which 0 
is a k × 1 vector. 

First o f  all, the CBC estimator 0 can be calculated exactly as before. We 
generate N samples of  size n from the DGP with parameter vector ¢J and define 
0 as the mean of  the estimates obtained from these samples. Then 0 :~ 20 - 0 .  
The covariance matrix of  0 is simply the matrix analogue of  expression (25). 
Since 0 ~ 0 - b0 - B 0 ( 0  - 00), it is 

V ( 0 ) = ( I  - B~)V({~)(I - - B ~ ) ' +  o(n 2). (26) 

When the bias function is flat, 0 will be unbiased, and it will have the same 
variance as the initial estimator 0. Now let us consider what happens when the 
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bias function is nonlinear. Let b0 denote the bias function, which is a k-vector, 
evaluated at 00, B0 denote the k × k matrix of  first derivatives of  b(O), evaluated 
at 00, and b~ denote the vector of  second derivatives of  b(O) with respect to the 
parameters 0i and OJ, evaluated at 00. Then the bias of  the CBC estimator is 

E(O)-Oo=-Bono ~ E ( ( 0 - 0 0 ) ( 0 - 0 0 , , , , 0  + ° ( n - 2 ) "  (27) 

Expression (27) is the vector analogue of  expression (24). The tirst term is the 
bias of  0 when the bias ['unction is linear. 

The LBC estimator is also fairly easy to obtain. We simply have to evaluate 
the k-vector / ~ - b ( 0 )  and its k × k  matrix of  derivatives /~-B((}) .  This will 
generally require either k-t- 1 or 2k + 1 evaluations of  the bias function, depending 
on whether one-sided or two-sided derivatives are used. The LBC estimator is 
then 

0--0 ( I+/} ' )  L/~; (28) 

compare (19). The covariance matrix of  0 is the matrix analogue of  (22): 

V(O) (I+B[))~V(O)((I+BD) ') ~ o(,7-2). (29) 

This covariance matrix can be estimated in more than one way, as can (26). 
We simply have to replace V(0) by a suitable estimate, such as the inverse of  
the information matrix evaluated at 0, and replace B0 by B(O). 

It should be clear from (26) and (29) that either form of  bias correction may 
either increase or decrease the variance of  the parameter estimates. It is quite 
possible that the variance may increase for some parameters and decrease for 
others. In the special case in which the matrix B0 is diagonal, the results given 
in Section 2 tbr the scalar case will still apply. When we apply these results to 
the jth parameter, the jth diagonal element of  B0 will play the role of  h'. Notice 
that it is easy to estimate (26) and (29). We simply have to replace V(~})by 
any valid estimate of  the covariance matrix of  0 and replace Bo by //. 

The NBC estimator 0 can be computed by solving 

0 --- 0 - b(0), (30) 

which is the vector version of  (15). There are at least two ways to do this. One 
is to modify the iterative procedure (16) as follows: 

0 ~j}=(l - y ) * 0  ~/ i)+.~,,(0 .... b(O{j i))), (31) 

where ' , '  denotes direct product and ~, is now a k-vector, each element of  which 
is between 0 and 1. In practice, of  course, it may be easier to make all elements 
of  ), the same. As before, this procedure is not guaranteed to converge. 
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Another approach is to use Newton's  Method. A typical Newton step would be 

it~+ l) = O(/! ( / +  B'(O(. / ))y~(b(O(i))  + O (;) - 0). (32) 

The matrix of  derivatives B(0 (j)) would have to be evaluated numerically, which 
could be expensive. For the first Newton step, 0 (°) would equal t~, and this step 
would yield the LBC estimator; compare (28). Notice that, when the iterative 
procedure (31) works well, it may often require fewer than k + 1 evaluations 
of  the bias function. In such cases, the NBC estimator will be less expensive to 
compute than the LBC estimator. 

It is obvious that the LBC and NBC estimators are equivalent in the vector case 
just as they are in the scalar case. Theretbre, the right-hand side of  expression 
(29) gives the covariance matrix of  the NBC estimator through O(n 2). The bias 
of  both estimators can be found by Taylor expanding b((J) around 00, substituting 
the Taylor expansion into (30), taking expectations, and then solving. The result is 

-~-(#+g~) ~'>E_;Z~:((O 0o)(0-00)')#){/+o(,, 3). 
s I i :  I 

This is the analogue of  expression (23) tbr the scalar case. 

5. Monte Carlo results for an AR(1) model 

The three bias-correcting estimators proposed in Sections 2 and 3 were applied 
to the estimation of  p in the nonstationary AR(1) regression model (2). Because 
the bias function had already been computed numerically for various sample 
sizes (see Fig. 1), it was not necessary to do any simulation to obtain it. This 
made it feasible to use quite a large number o f  replications in the Monte Carlo 
experiments. There were 400,000 replications ~br each of  three sample sizes (25, 
50, and 100) and each of  the following 83 different values of  p: 

t> = -- 1.20, 1.18 . . . . .  1.06, -1.05,  1.04 . . . . .  -0 .90,  -0 .85,  

. . . .  0.90, 0.91 . . . . .  1.05, 1.06, 1.08 . . . . .  1.20. 

Different seeds were used tbr each experiment, and no control variates were 
employed. 

Figs. 3 and 5 show the biases of  the OLS estimator fi, the CBC estimator ~, 
the LBC estimator ~), and the NBC estimator f.; as a function of  p for n-=25 
and n -  100, respectively. We also obtained results for n := 50, but these are not 
shown. The biases of  t~ are essentially the same as those in Fig 1. In contrast, 
for most values of  p, /} exhibits only a tittle bias, and the other two estimators 
exhibit almost no bias. There is a fair amount o f  bias only for values of  p near 
±1,  which is where the bias functions are severely nonlinear. Except for values 
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o f  p very near :1:1, the magni tude  of  the bias for the bias-correcting estimators 
appears to be roughly O(n - z ) ,  as predicted by the theoretical results o f  Section 3. 

In Section 2, we showed that, for a l inear bias function, the CBC estimator 
will be less biased than ~ whenever  ]b' I < I. This condit ion is not satisfied for 
some values of  p greater than I. We see from the figures that, tbr values of  p 
in this region, the bias of  fi is opposite in sign and only somewhat  smaller  in 
magni tude  than the bias of  f?. As the results of  Section 3 suggest, the curves 



220 ,1. G. MacKinmm, A.A. Smith, Jr./Journal qf  Econometrics 85 (1998)205 230 

[.lbLs 
0.02 

0.01 

0.00 

-0.01 

-0.02 

-0.03 

- 0 . 0 4  

-0.05 

- 0.06 
' ' ' ' ' ' i - 1 . 2 - 1 . 0 - 0 . 8 - 0 . 6 - 0 , 4 - 0 . 2  O0 02 

.............. /~ (CBC) 
- -  f~ (LB(:)  

.................... fi (NBC) 

o14 o16 o18 11o 

l:ig. 5. Bias, n :100. 

R M S E  
0.12 

P 
1.2 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

/ - -  ,b (LBC) 
j ........................ ~ (Nut )  ~V 

I I I I I I I I I I I t) 
1.2 1.0 - 0 . 8  - 0 . 6  0.4 - 0 . 2  0.0 0.2 0.4 0.6 0.8 1.0 [ 2  

l:ig. 6. Root mean squared error, n ~ 100. 

for the LBC est imator  ¢? and the N B C  est imator  f5 are almost  indistinguishable,  

a l though the latter does seem to have a bit less bias in the worst  cases when p 
is very close to 1. 

Figs. 4 and 6 show the root mean squared errors ( R M S E )  of  the four est imators  

as a function o f  p for n = 25 and n = 100, respect ively.  Despite  the success o f  
the bias-correct ing est imators in reducing or e l iminat ing bias, the OLS est imator  

has lower  R M S E  than any o f  the BC est imators  for p between about - 0 . 9  and 

0.5. Only  for values o f  p greater than about 0.8 do the BC est imators produce 
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a marked reduction in RMSE.  The CBC estimator, which performs least well at 
removing bias, has lower R M S E  than the other bias-correcting estimators except 
for Ipl >0,8.  

The reason why the bias-correcting estimators have larger R M S E  than the OLS 
estimator for most values o f  p is easy to find. According to Eq. (22), the variance 
of  both fi and ~ should be equal to (1 + b())-2 times the variance of/5. Similarly, 
Eq. (25) implies that the variance of /5  should be equal to (1 - b~) 2 times the 
variance of  /5. Since h' is negative, except for values of  p near or less than 
- I  and near or greater than +1, this implies that the variance of  all the BC 
estimators will generally exceed the variance of  the OLS estimator. Only for 
relatively large values of  p, where the bias of /5  is large, does the reduced bias 
of  the BC estimators outweigh their increased variance. 

Of  course, these results apply only to the model (2). The results of  Kiviet 
and Phillips (1993) suggest that, in more complicated models with additional 
regressors, the CBC estimator (in their case, based on an approximation to the 
bias function) performs well over a wider range of  values o f  p. Their approximate 
bias function could also be used to obtain approximate LBC or NBC estimators. 

Eqs. (22) and (25) do a remarkably good job of  explaining the pertbrmance 
of  the bias-correcting estimators. Panels A and B of  Fig. 7 plot the observed 
standard errors of  ~ and [i as a function of  p for n = 50, along with the predicted 
standard errors according to Eqs. (25) and (22), respectively. The predicted stan- 
dard errors were computed from the observed standard errors of/5 and the slope 
of  the bias function. Only for values of  p between about 0.8 and 1.1 are there 
substantial discrepancies between what we observe and what the theory predicts. 
Even for values of  p near - I, where the bias function is decidedly nonlinear, the 
predicted standard errors are reasonably close to the true ones. This suggests that, 
when deciding whether to use a BC estimator, and which one, it may often be 
reasonable to rely on Eqs. (22)  and (25) or their matrix analogues (29) and (26). 

Another interesting feature of  the experiments is that the iterative procedure 
based on (16) worked extremely well. For most values of  p, the procedure con- 
verged in 8 or fewer iterations (using a tolerance of  10 5), with 7 -  1. Only for 
values of  tJ around I was it ever necessary to use values of  7 less than 1. 

6. Monte Carlo results for a Iogit model 

Bias correction may be particularly attractive in the case of  binary response 
models such as the logit model. The logit model may be written as 

E(yt)=Pt(Xt18)=- (1 + exp(-Xr18)) I (33) 

where y~ is either 0 or 1, Xr is a 1 ×k  vector o f  regressors, and 18 is a k × l  
vector o f  unknown parameters. Although maximum likelihood estimation of  this 
model is usually quite straightforward, the ML estimates tend to be biased away 
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Fig. 7. Observed and predicted standard errors, n = 50. 

from zero; see Amemiya (1980). This bias is similar to the bias of  the ML 
estimate of  ~2 in least squares estimation, which arises because the residuals 
tend to underestimate the error terms. In a logit model, larger absolute values of  
,6 correspond to a model that fits better, so the tendency of  the ML estimates to 
overfit the data results in their being biased away from zero. 
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Amemiya (1980) developed an approximation to the bias of  the ML logit 
estimator that is valid to order 1in. For the logit model (33), this approximation 
can be written as 

b~' ( / ) )  - ½(x'~x) 'X'd, ( 3 4 )  

where g2 is an n z n diagonal matrix which has typical diagonal element Pt( 1 Pt) 
and d is an n x 1 vector which has typical element 

d, ~(2PI - l ) [ g 2 t 2 X ( X ' g 2 X ) - t X ' ~ l ' 2 ] H -  (35) 

Here [ .]u denotes the tth diagonal element of  the matrix within the brackets. 
Because only the diagonal elements of  the n x n matrix in (35) need to be cal- 
culated, the approximation (34) is quite easy to compute. The notation b~(/~) 
emphasizes the fact that bias depends on the value of  B through the Pt. 

It is much more attractive to obtain bias-corrected estimates by using the ap- 
proximate bias function b~'(]/) defined in (34) and (35) than by using a bias 
function obtained by simulation. This is true for several reasons. Firstly, simula- 
tion would be very much more computationally expensive than evaluating b~'(/}). 
Secondly, when simulation is used, the estimated bias function will not be a 
smooth, or even a monotonic, function of  ,6. The problem is that a small change 
in ,8 may not change the values of  the Yt in the simulated samples at all. When 
this happens, the estimates will not change, and the slope of  the estimated bias 
function will be precisely 1. This will not seriously affect the CBC estinaator, 
but experience has shown that it does cause serious problems for the other two 
estimators. 

A third reason not to use simulation to obtain the bias thnction is that ML 
estimation of  logit models has a fundamental difficulty which may be encountered 
during the simulation. The problem is that ML estimates do not exist when every, 
value of  y~, in the sample can be predicted correctly. This is especially likely to 
happen when the sample size is small and the model fits well. Even though 
this problem is rarely encountered with real data, it might well be encountered 
during the many ML estimations needed to simulate the bias function. Indeed, 
it is because we encountered this problem quite often when doing experiments 
with samples of  size 25 and 50 that we used n -- 100 in the experiments reported 
here. 

Most of  our experiments dealt with a two-parameter logit model with X,]J = 
[~o +[~)xt, where the regressor .v~ is distributed as N(0, 1). Bias functions were 
obtained by simulation using 100,000 pairs of  antithetic variates for 61 values 
of  [:tl ranging from ...... 3.00 to 3.00 by increments of  0.1. Using antithetic variates 
yielded somewhat more accurate estimates of  bias than simply doing 200,000 
independent replications, except for values of  [h close to zero when [ b - 0 ,  
where the efficiency gain was enormous. No smoothing was done, and difl'erent 
random numbers were used for each replication. 
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During the course o f  our experiments, there were a few cases in which the ML 
estimates failed to exist, always for values of  [t0 and/or [h that were relatively 
large in absolute value. For the experiments that were used to graph the bias 
functions in Fig. 8, there were 8 failures in 12.2 million replications when [h~ = 0 
and 196 fifilures in 12.2 million replications when [t0 = 2. Replications for which 
ML estimates could nol be obtained were discarded and replaced. ]'his seems 
to be the appropriate thing to do, since bias correction will only be used if the 
original ML estimates exist. 

Fig. 8 shows the actual and approximate bias of  the ML estimate D~ of  the 
slope coefficient as a function of  [41. This figure has several interesting features. 
The bias function for DI slopes upward, the absolute value of  the bias of  fil 
increases with the absolute value of  [J0 (the curve for [ t0= 2 is not shown 
because it is indistinguishable from the curve tbr [~o =2) ,  and the approximate 
bias is always smaller ill absolute value than the true bias. Moreover. only a 
modest amount of  nonlinearity is evident in the figure. 

Fig. 9 shows actual and approximate bias functions for the ML estimate of  the 
constant term ~0 as a function of  D'I in the same two-parameter logit model. The 
bias functions for [1o as a function of  itself are not graphed because they look 
very similar to the ones in Fig. 8. From Fig. 9, we see that the bias of  [~0 has 
the same sign as [/i and increases in absolute value as the absolute value of  [:~1 
increases. Once again, the approximate bias is always smaller in absolute value 
than the true bias, but it does seem to provide a fairly good approximation. Note 
that, when [~0 = O, the bias function for [1 o as a function of  [:~I is essentially flat 
at zero; this function was not graphed to awfid cluttering the tigure. 
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The bias functions in Figs. 8 and 9 suggest that bias correction should work 
very well for this logit model. This is in fact the case, as can be seen from 
Figs. 10-13, which are based on 200,000 independent replications for each value 
of/41. The first two figures show the bias and R M S E  of/~ 1, [:/L, and/~1 as a func- 

tion of  fll for the case in which [~0 ..... 2. The LBC estimator ~ here is calculated 
by taking one Newton step from ~l, and since it is visually indistinguishable 
from the NBC estimator /il, only the latter is shown. The last two figures show 
the bias and R M S E  of  [l(j, /~0, and /i 0` again fbr [~0 = 2 as a fimction of/~l. The 
principal impression we obtain from these figures is that bias correction works 
extremely well, in terms of  both bias and R M S E .  

The bias functions in Figs. 8 and 9, and thus the results in Figs. 10-13, depend 
on the distribution of  the regressor as well as on the parameters. The theoretical 
results of  Chesher and Peters ( t994)  and Chesher (1995) suggest that, when 
regressors are symmetrically distributed, bias functions may have rather special 
properties. We therefore ran some additional experiments in which the regressor 
was distributed as 5(2(5) and then recentered and rescaled to have mean () and 
variance 1. Results are shown in Figs. 14 and 15, which are otherwise similar 
to Figs. 10 and l l. The shape of  the bias function for /~l is considerably more 
complicated than it was previously, but it still slopes upward and it is still not 
severely nonlinear. Once again, it appears that bias correction works extremely 
well, in terms of  both bias and R M S E .  

One aspect of  these tigures may at first seem a little strange. It is that the 
mean squared error of  the (;[3(', estimator // is consistently less than the mean 
squared errors of  the LBC and NBC estimators, which, as the theory of  Section 3 
predicts, are practically identical. There are two reasons for this. The principal 
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reason  is that,  as can be seen f rom Eqs. (1 1) and  (12)  for  the scalar  case,  the  

var iance  o f  the C B C  es t imator  is a lways  less than  the va r i ance  o f  the  o ther  two 

es t imators  when  the b ias  func t ion  is l inear  and  not flat. This  expla ins  mos t  o f  

the difference.  

A second,  but  quant i ta t ive ly  less impor tant ,  r eason  tbr  the smal le r  R M S E  

o f  the C B C  es t ima to r  is that  b ias  cor rec t ion  here  is based  on the  app rox ima te  

bias func t ion  ba(/~), not  on  the t rue b ias  func t ion  b( / / ) .  As a result ,  the L B C  

and  N B C  es t imators  exhibi t  s o m e w h a t  more  b ias  than the C B C  one. We  saw 



J.G. MacKinnon. A.A. Smith, Jr. /Journal o/Econometrics 85 ['1998) 205 230 227 

Bias 

0.15- 

0.09- 

0.06- ~o 

0.03- [~o and l~u ......... 

" " ' " . . , - , , . - ' - . . .  . . . . . . . . .  . . . . . . .  . . . . . . . . .  . . . . . . . . . . . .  , , . . . ,  . . . . . . . . . . . . . . . .  , . . . " ' , - ,  ' . . . . . .  , . . . . . .  

0 . 0 0 - ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

' ' ' i : -3.0 2.0 l.O (t.(I 1 0 2 0 3.(I 

Fig. 12. Bias of Iogit constant lerm, n 100, flo 2. 

RMSE 
06 

0.5 

0.,~ 

0.3 So - -  
6o - -  

3o and ~o ......... 

0.2 ~ ~ 
-3.0 -2.0 -1.0 0'.0 110 2'.0 3.0 

Fig. 13. R M S E  of Iogit constant term. n = 100, [40 ::2. 

in Figs. 8 and 9 that ba(~)  always underest imates the absolute bias. At the same 

time, because the bias function slopes upward for both parameters  as functions o f  

themselves ,  the result (9)  suggests that the CBC est imator  will  tend to subtract 

an overes t imate  o f  the true absolute bias. In the case o f  the C B C  estimator,  these 

two sources o f  error largely offset each other. In contrast, the LBC and NBC 

est imators work  ahnost  exact ly as they should if the true bias function were 

b~(,B). The slight bias they exhibit  is a result o f  the discrepancy between ba(fl) 
and b(,6). 
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These results suggest that using Amemiya's approximate bias function (34) in 
conjunction with the CBC estimator, which is precisely what Amemiya (1980) 
suggested doing, works very well indeed for the logit model. We are not aware 
of  a similar approximate bias function for the probit model, and so simulation 
would presumably have to be used if we wished to obtain bias-corrected probit 
estimates. 
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7. Conclusions 

Using methods based on evaluating the bias function to reduce bias is feasible 
and can be effective. However, reducing bias may increase the variance, or even 
the mean squared error, of an estimator. Whether such methods will be useful 
in practice depends on the shape of the bias function and on the variance of 
the initial estimator. Attempting to correct for bias mechanically, without know- 
ing anything about the shape of the bias function, is clearly not a good idea. 
It may not always be feasible to investigate the shape of this function in de- 
tail, but it should always be possible to estimate the variance, or the cowmance 
matrix, of the bias-corrected estimates, by making use of whichever of expres- 
sions (25), (26), (22), or (29) is appropriate. 

If the bias function is approximately flat, bias correction is easy to do and 
should generally work well. If it is approximately linear, bias correction is still 
fairly easy to do, but it may not work well. In particular, if the bias function 
slopes downward, the bias-correcting estimators will have larger variances than 
the initial estimator, and they may therelbre have larger mean squared errors. On 
the other hand, if the bias timction slopes upward, the bias-correcting estimators 
will have smaller variances than the initial estimators. If the bias function is 
nonlinear, the three methods discussed in this paper can still be used, but they all 
yield estimates that are biased at O(n 2). Since the biases of all the estimators in 
the nonlinear case depend on the variance of the initial estimator, bias correction 
is likely to be most effective when the bias is large relative to the variance of 
that estimator. 
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