
Technical Appendix to

“Asset Prices in a Huggett Economy”

Per Krusell, Toshihiko Mukoyama, and Anthony A. Smith, Jr.

Section A of this Technical Appendix considers assets in positive net supply and

Section B gathers the proofs of all propositions except those of Propositions 10 and

11, whose proofs can be found in the Appendix to the published article.

A Assets in positive net supply

We consider assets in positive supply here. The purpose is to show that such economies,

both in the case with and without aggregate uncertainty, there is an equivalent econ-

omy with assets in zero supply but with appropriately adjusted, looser borrowing con-

straints. We demonstrate this in a slightly differently way than in the paper (where

only the case without aggregate shocks is discussed). In particular, we show that if the

economies with positive asset supplies are amended with the appropriate higher, and

positive, values for the lower bound of assets—the risk-free asset in the first economy

and the contingent claims in the second—then those economies have identical prices

to those studied in the paper.

A.1 No aggregate uncertainty

Suppose that there is an asset, called a “tree,” that generates a constant amount η

every period.18 Let the price of the tree be p and the individual holding of the tree be

x. Then the individual consumer’s problem becomes

Vs(a, x) = max
c,a′,x′

c1−σ

1 − σ
+ β[πshVh(a

′, x′) + (1 − πsh)V`(a
′, x′)]

subject to

c = a + (p + η)x + εs − qa′ − px′.

18A similar argument can be made if there is a constant positive supply of outside, say government,

bonds, with an associated government budget constraint.

1



In equilibrium, the bond and the tree have to generate the same return (no arbitrage),

so (p + η)/p = 1/q. Therefore, p = q(p + η) holds. Using this, the budget constraint

can be rewritten as

c = (a + (p + η)x) + εs − q(a′ + (p + η)x′).

Let â ≡ a + (p + η)x. Then the problem can be rewritten as

V̂s(â) = max
c,â′

c1−σ

1 − σ
+ β[πshV̂h(â

′) + (1 − πsh)V̂`(â
′)]

subject to

c = â + εs − qâ′.

Now, suppose that the borrowing constraint is â ≥ p + η, i.e., we use a borrowing

constraint on total wealth rather than on the holdings of individual assets. Below,

we will show that the equilibrium is that â = p + η for everyone. One allocation

that achieves this is a = 0 and x = 1 for everyone—that is, no one holds bonds and

everyone owns the same amount of the tree. Other asset holding patterns are also

possible—some can hold a < 0 and x > 1 while others can have a > 0 and x < 1. The

only requirements for an equilibrium are that â = p + η for everyone, a sums up to

zero, and x sums up to one.

To show that â = p + η for everyone is the only equilibrium, define ã ≡ â − p − η

and ε̃s ≡ εs + η.19 Then the problem becomes

Ṽs(ã) = max
c,ã′

c1−σ

1 − σ
+ β[πshṼh(ã

′) + (1 − πsh)Ṽ`(ã
′)]

subject to

c = ã + ε̃s − qã′

and

ã ≥ 0,

which is identical to the original problem. Therefore, the equilibrium is autarky: ã = 0

and c = ε̃s. ã = 0 implies â = p + η. As long as the borrowing constraint is set at an

19This is the transformation that we use in the main text of the paper.
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appropriate level, we can transform an economy where there are assets in positive net

supply into an economy with a bond in zero net supply. Thus, the borrowing constraint

here means that agents have to have at least a certain (positive) amount of the asset.

A.2 Aggregate uncertainty

First, we consider a case where there is one “tree” in addition to the two “Arrow

securities.” Let the tree price at state z be pz, the dividend of the tree at state z be

ηz, and the tree holding be x. The problem becomes

V (a, x; s, z) = max
c,a′

g,a′

b
,x′

c1−σ

1 − σ
+β

[

∑

z′=g,b

φzz′ [πsh|zz′V (a′
z′ , x

′; h, z′) + (1 − πsh|zz′)V (a′
z′ , x

′; `, z′)]

]

subject to

c = a + (pz + ηz)x + εs − Qzga
′
g − Qzba

′
b − pzx

′

and borrowing constraints. From arbitrage, pz = Qzg(pg + ηg) + Qzb(pb + ηb) has to

hold. Thus the budget constraint can be rewritten as

c = (a + (pz + ηz)x) + εs − Qzg(a
′
g + (pg + ηg)x

′) − Qzb(a
′
b + (pb + ηb)x

′).

Let âz = az + (pz + ηz)x. Then the problem can be rewritten as

V̂ (â; s, z) = max
c,â′

g ,â′

b

c1−σ

1 − σ
+ β

[

∑

z′=g,b

φzz′ [πsh|zz′V̂ (â′
z′ ; h, z′) + (1 − πsh|zz′)V̂ (â′

z′ ; `, z
′)]

]

subject to

c = â + εs − Qzgâ
′
g − Qzbâ

′
b.

Let us impose the borrowing constraints â′
g ≥ pg + ηg and â′

b ≥ pb + ηb. We will show

that in equilibrium â′
g = pg + ηg and â′

b = pb + ηb. One set of asset holdings that

can achieve this equilibrium is a′
g = 0, a′

b = 0, and x′ = 1 for everyone. Again, it is

important that the constraints are on the total amount of asset, rather than individual

assets, and for example a′
g < 0, a′

b < 0 and x′ > 1 for one consumer can be consistent

with an equilibrium, as long as â′
g = pg + ηg and â′

b = pb + ηb are satisfied and the total

asset demand equals the total supply for each asset.
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Let ãz ≡ âz − pz − ηz and ε̃sz ≡ εs + ηz. Then the problem can be rewritten as

Ṽ (ã; s, z) = max
c,ã′

g ,â′

b

c1−σ

1 − σ
+ β

[

∑

z′=g,b

φzz′ [πsh|zz′Ṽ (ã′
z′ ; h, z′) + (1 − πsh|zz′)Ṽ (ã′

z′ ; `, z
′)]

]

subject to

c = ã + ε̃sz − Qzgã
′
g − Qzbã

′
b,

with

ã′
g ≥ 0 and ã′

b ≥ 0.

This is equivalent to our baseline problem, and therefore Qzg and Qzb are the same,

except that εs is adjusted to ε̃sz. The equilibrium is autarky and the individual con-

sumption is equal to ε̃sz. ã′
g = 0 and ã′

b = 0 imply that â′
g = pg + ηg and â′

b = pb + ηb.

A.2.1 A representation with a bond and a stock

In the previous section, the stock (claim for the “tree”) was a redundant asset in the

sense that the two aggregate states are already spanned by the Arrow securities. This

allowed us to price the stock with arbitrage. In this section, we consider an economy

where there are only two assets, a bond and a stock. As in the previous section, the

stock yields ηz every period. One unit of the bond provides one unit of consumption

good regardless of the aggregate state. The total supply of stock is 1 unit and the

bond is in zero net supply. Assume pg + ηg 6= pb + ηb. Denote the stock holding by x

and the bond holding by y. Let pz be the stock price at state z and qz be the bond

price at z.

We first show that we can replicate the payoffs of Arrow securities by combining

the bond and the stock with appropriate proportions. Let us define

x′
g ≡

1

pg + ηg − pb − ηb

and

y′
g ≡ −

pb + ηb

pg + ηg − pb − ηb

.

Then, we can easily see that

y′
g + (pg + ηg)x

′
g = 1
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and

y′
g + (pb + ηb)x

′
g = 0

are satisfied. This means that by holding y′
g units of the bond and x′

g units of the

stock, one can guarantee to receive 1 unit if the next period aggregate state is g and

receive 0 unit if the next period aggregate state is b. Therefore, holding the bundle

(x′
g units of stock, y′

g units of bond) is identical to a g-state Arrow security. Similarly,

the bundle of

x′
b ≡ −

1

pg + ηg − pb − ηb

units of the stock and

y′
b ≡

pg + ηg

pg + ηg − pb − ηb

units of the bond yields an identical payoff to a b-state Arrow security. Let the cost of

acquiring these bundles be Qzg and Qzb. That is,

Qzg ≡
pz

pg + ηg − pb − ηb

−
qz(pb + ηb)

pg + ηg − pb − ηb

and

Qzb ≡ −
pz

pg + ηg − pb − ηb

+
qz(pg + ηg)

pg + ηg − pb − ηb

.

We can easily check the following simple relationships between Qzz′ and the stock/bond

prices:

Qzg + Qzb = qz (24)

and

(pg + ηg)Qzg + (pb + ηb)Qzb = pz. (25)

Let a′
z′ be the demand of the z′-state security bundle. Then the corresponding total

demand for stock is

x′ = x′
ga

′
g + x′

ba
′
b =

a′
g − a′

b

pg + ηg − pb − ηb

(26)

and the total demand for bonds is

y′ = y′
ga

′
g + y′

ba
′
b =

a′
b(pg + ηg) − a′

g(pb + ηb)

pg + ηg − pb − ηb

. (27)
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Note that there is one-to-one correspondence between (x′, y′) and (a′
g, a

′
b). That is, by

demanding two sets of bundles, the consumers are indirectly demanding the stock and

the bond. By adjusting the bundle demands a′
g and a′

b, they can adjust the demands

for stocks and bonds as if they were directly choosing x′ and y′. Therefore, if (a′
g, a

′
b)

maximizes the utility given Qzz′ , the corresponding (x′, y′) from (26) and (27) also

maximizes the utility given the prices (pz, qz) that satisfy (24) and (25). The budget

constraint for the original bond-and-stock economy is

c = (pz + ηz)x + y + εs − pzx
′ − qzy

′.

Using (24), (25), (26), and (27), this can be rewritten as

c = az + εs − Qzga
′
g − Qzba

′
b.

Now, let us impose the borrowing constraint a′
g ≥ pg + ηg and a′

b ≥ pb + ηb. Since

a′
z′ = (pz′+ηz′)x

′+y′ from (26) and (27), these are equivalent to (pg+ηg)(x
′−1)+y′ ≥ 0

and (pb + ηb)(x
′ − 1) + y′ ≥ 0.

As in the previous section, consider the transformation

ãz = az − pz − ηz (28)

and

ε̃sz = εs + ηz. (29)

Then the budget constraint and the borrowing constraint can be rewritten as

c = ãz + ε̃sz − Qzgã
′
g − Qzbã

′
b.

and

ã′
g ≥ 0 and ã′

b ≥ 0.

In sum, we have demonstrated the equivalence of the problem

V (x, y; s, z) = max
c,x′,y′

c1−σ

1 − σ
+β

[

∑

z′=g,b

φzz′ [πsh|zz′V (x′, y′; h, z′) + (1 − πsh|zz′)V (x′, y′; `, z′)]

]

(P1)
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subject to

c = (pz + ηz)x + y + εs − pzx
′ − qzy

′

and

(pg + ηg)(x
′ − 1) + y′ ≥ 0 and (pb + ηb)(x

′ − 1) + y′ ≥ 0;

and the problem

Ṽ (ã; s, z) = max
c,ã′

g ,â′

b

c1−σ

1 − σ
+ β

[

∑

z′=g,b

φzz′ [πsh|zz′Ṽ (ã′
z′ ; h, z′) + (1 − πsh|zz′)Ṽ (ã′

z′ ; `, z
′)]

]

(P2)

subject to

c = ã + ε̃sz − Qzgã
′
g − Qzbã

′
b

and

ã′
g ≥ 0 and ã′

b ≥ 0,

where ε̃sz = εs+ηz. The prices are one-to-one linked by (24) and (25), and the quantities

are one-to-one linked by (26), (27), (28), and (29). The second problem (P2) is familiar

to us: the equilibrium is autarky. It means that the borrowing constraints hold with

equality, which in turn implies that the borrowing constraints in the first problem (P1)

also hold with equality. Therefore, x′ = 1 and y′ = 0 hold in equilibrium (there is no

indeterminacy as in the previous section because there is no redundant asset). Qzg

and Qzb are determined in a familiar manner and this can be translated into pz and qz

using (24) and (25).

The equivalence of the two problems can also be seen from the Euler equations.

Recall that the Euler equation for (P2) with autarky is

−Qzz′ ε̃
−σ
sz + βφzz′ [πsh|zz′ ε̃

−σ
hz′ + (1 − πsh|zg)ε̃

−σ
`z′ ] + λz′

sz = 0, (30)

for z′ = g, b. By adding this up for z′ = g and z′ = b, we obtain

−qz ε̃
−σ
sz + β

[

∑

z′=g,b

(φzz′ [πsh|zz′ ε̃
−σ
hz′ + (1 − πsh|zg)ε̃

−σ
`z′ ] + λz′

sz)

]

= 0, (31)
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where we used the relationship (24). By multiplying (pz′ + ηz′) on each sides of (30)

and add up for z′ = g and z′ = b, we obtain

−pz ε̃
−σ
sz + β

[

∑

z′=g,b

(pz′ + ηz′)(φzz′ [πsh|zz′ ε̃
−σ
hz′ + (1 − πsh|zg)ε̃

−σ
`z′ ] + λz′

sz)

]

= 0, (32)

where we used the relationship (25). It is straightforward to see that (31) and (32) are

the Euler equations for (P1) with x′ = 1 and y′ = 0. Therefore, if (30) holds (that is,

ã′
g = 0 and ã′

b = 0 are the optimal choices in (P2) given Qzz′), (31) and (32) also hold

and x′ = 1 and y′ = 0 are the optimal choices given qz and pz in (P1).

B Proofs of Propositions

Proof of Proposition 2: From (16) and E[mzz′ ] = qz > 0, E[Re
zz′ ] is positive if and only if

Cov(Re
zz′ ,mzz′) is negative. From the definitions of Re

zz′ , Rzz′ , and mzz′ , Cov(Re
zz′ ,mzz′)

is negative if and only if Cov(Yz′ , πhh|zz′) is positive. 2

Proof of Proposition 3: From the definitions of the risk-free rate and the expected

return on the risky asset, the multiplicative risk premium is

E[Re
zz′ ]

Rf
z

=
(
∑

z′=g,b Qzz′)(
∑

z′=g,b φzz′Yz′)
∑

z′=g,b Qzz′Yz′
.

Denote the Arrow security price in the complete-markets economy by Qc
zz′ and the Ar-

row security price in the incomplete-markets economy as Qi
zz′ . Clearly, for E[Re

zz′ ]/R
f
z

to be the same for both economies (and for any Yz′), there has to exist a number

θz > 0 that is independent of z′ and satisfy Qi
zz′ = θzQ

c
zz′ (and if this is the case, then

θz cancels out and the equivalence holds). Thus, a necessary and sufficient condition

for irrelevance is
Qi

zg

Qi
zb

=
Qc

zg

Qc
zb

(33)

for z = g, b. The Arrow security prices are determined by

Qi
zz′ = βφzz′

[

πhh

(

εhz′

εhz

)−σ

+ πh`

(

ε`z′

εhz

)−σ
]

8



and

Qc
zz′ = βφzz′

(

Cz′

Cz

)−σ

,

where aggregate consumption Cz is

Cz = χhεhz + χ`ε`z =
π`hεhz + (1 − πhh)ε`z

1 − πhh + π`h

,

where the second equality uses (19). Therefore, (33) becomes

πhh

(

εhg

εhz

)−σ

+ πh`

(

ε`g

εhz

)−σ

πhh

(

εhb

εhz

)−σ

+ πh`

(

ε`b

εhz

)−σ =

(

π`hεhg+(1−πhh)ε`g

π`hεhz+(1−πhh)ε`z

)−σ

(

π`hεhb+(1−πhh)ε`b

π`hεhz+(1−πhh)ε`z

)−σ ,

which is equivalent to (20). Note that (20) does not depend on z (all the terms that

depend on z cancel out). 2

Proof of Proposition 4: From (9), for any mzz′ ∈ [β, βω], we can find a πhh|zz′ ∈ [0, 1]

value that generates this value of mzz′ . The upper bound can be made arbitrarily large

by making εh/ε` large. 2

Proof of Proposition 5: The first-order conditions in the case of varying εh and εh

are (denoting z = zt and z′ = zt+1)

Qt+1(z
t+1)

βφzz′
−

λh,t+1(z
t+1)

βφzz′εht(zt)−σ
= πt+1(h|h, zt+1)

(

εh,t+1(z
t+1)

εht(zt)

)−σ

+(1−πt+1(h|h, zt+1))

(

ε`,t+1(z
t+1)

εht(zt)

)−σ

(34)

and

Qt+1(z
t+1)

βφzz′
−

λ`,t+1(z
t+1)

βφzz′ε`t(zt)−σ
= πt+1(h|`, z

t+1)

(

εh,t+1(z
t+1)

ε`t(zt)

)−σ

+(1−πt+1(h|`, z
t+1))

(

ε`,t+1(z
t+1)

ε`t(zt)

)−σ

,

(35)

where Qt+1(z
t+1) is the Arrow-security price and λst,t+1(z

t+1) is the Lagrange multi-

plier.

In the following, we will construct πt+1(st+1|st, z
t+1), εht(z

t), and ε`t(z
t) that deliver

a given mt+1(z
t+1). Consider the individual income levels

ε`t(z
t) = 2ζCt(z

t) (36)
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and

εht(z
t) = 2(1 − ζ)Ct(z

t), (37)

where ζ ∈ (0, 1). Later we will impose ζ < 1/2 so that εht(z
t) > ε`t(z

t).

Suppose that the initial population of the consumers who have the initial endow-

ment is 1/2 for both ` and h. Further suppose that the idiosyncratic probabilities are

such that the population of each endowment consumers remain as 1/2 forever. (We

will explicitly spell out this condition later.)

First, note that the individual endowment (36) and (37) are consistent with the

definition of the aggregate endowment:

Ct(z
t) ≡

ε`t
(zt)

2
+

εht(z
t)

2
= ζCt(z

t) + (1 − ζ)Ct(z
t).

We will select πt+1(h|`, z
t+1) so that the each endowment population is constant

over time. This implies that

1

2
(1 − πt+1(h|h, zt+1)) =

1

2
πt+1(h|`, z

t+1).

Therefore,

πt+1(h|`, z
t+1) = 1 − πt+1(h|h, zt+1).

Thus, we automatically obtain πt+1(h|`, z
t+1) from this equation once πt+1(h|h, zt+1)

is assigned. Note that πt+1(h|`, z
t+1) ∈ [0, 1] is ensured if πt+1(h|h, zt+1) ∈ [0, 1] is

satisfied.

Inserting the income levels (36) and (37) into (34) and (35), we obtain

(

Qt+1(z
t+1)

βφzz′
−

λh,t+1(z
t+1)

βφzz′εht(zt)−σ

)(

Ct+1(z
t+1)

Ct(zt)

)σ

= πt+1(h|h, zt+1)+(1−πt+1(h|h, zt+1))

(

ζ

1 − ζ

)−σ

and

(

Qt+1(z
t+1)

βφzz′
−

λ`,t+1(z
t+1)

βφzz′ε`t(zt)−σ

)(

Ct+1(z
t+1)

Ct(zt)

)σ

= πt+1(h|`, z
t+1)

(

1 − ζ

ζ

)−σ

+(1−πt+1(h|`, z
t+1)).

Therefore, λ`,t+1(z
t+1) > 0 holds, and the low-endowment consumers are always bor-

rowing constrained. This means that the high-endowment consumers’ marginal rates
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of substitution determine the pricing kernel. The pricing kernel mt+1(z
t+1) is

mt+1(z
t+1) = β

(

Ct+1(z
t+1)

Ct(zt)

)−σ
[

πt+1(h|h, zt+1) + (1 − πt+1(h|h, zt+1))

(

ζ

1 − ζ

)−σ
]

.

(38)

Thus, any

mt+1(z
t+1) ∈

[

β

(

Ct+1(z
t+1)

Ct(zt)

)−σ

, β

(

Ct+1(z
t+1)

Ct(zt)

)−σ (

ζ

1 − ζ

)−σ
]

can be chosen by picking πt+1(h|h, zt+1) ∈ [0, 1] appropriately, for a given ζ. Note that

we do not have any restriction on ζ at this point, other than 0 < ζ < 1/2.

Pick ζ small enough so that
(

ζ

1 − ζ

)−σ

≥ sup
t,zt,zt+1

mt+1(z
t+1)

β
(

Ct+1(zt+1)
Ct(zt)

)−σ

is satisfied. Then, all mt+1(z
t+1) ≥ β

(

Ct+1(zt+1)
Ct(zt)

)−σ

at each zt+1 can be achieved by

selecting πt+1(h|h, zt+1) ∈ [0, 1] for each zt+1 to satisfy (38) for this ζ. 2

Proof of Proposition 7: Mi can be rewritten as Mi = −β
∑N

j=1 πij(−u′(εj)/u
′(εi)).

Clearly, (−u′(εj)/u
′(εi)) is increasing in j. From the definition of first-order stochas-

tic dominance (see, for example, Mas-Colell, Whinston, and Green (1995, Definition

6.D.1)),
N

∑

j=1

π̂ij

(

−
u′(εj)

u′(εi)

)

>

N
∑

j=1

πij

(

−
u′(εj)

u′(εi)

)

holds. Therefore, Mi is smaller for each i = 2, ..., N under π̂ than under π. Since Mi

is smaller for each i = 2, ..., N , maxi=2,...,N Mi is also smaller.2

Proof of Proposition 8: From the definition of Mi, it is sufficient to show that Hi(σ) ≡
∑N

j=1 πij(εi/εj)
σ is increasing in σ when Hi(σ) ≥ 1 (since HN(σ) ≥ 1, it is always the

case that maxi=2,...,N Hi(σ) ≥ 1). Note that σ ≥ 0 and Hi(0) = 1. Let εi/εj = kij.

Differentiating,

H ′
i(σ) =

N
∑

j=1

πij log(kij)(kij)
σ
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and

H ′′
i (σ) =

N
∑

j=1

πij(log(kij))
2(kij)

σ.

Since H ′′
i (σ) ≥ 0 and Hi(0) = 1, Hi(σ) is always increasing for σ ≥ 0 when Hi(σ) ≥ 1.

2

Proof of Proposition 9: Equation (22) implies that for any i = 2, ..., N − 1,

N
∑

j=1

πNj

u′(εj)

u′(εN)
≥

i−1
∑

j=1

πij

u′(εj)

u′(εN)
+

N
∑

j=i

πij. (39)

To see why this holds, note that the left-hand side can be rewritten as
∫ 1

0
F (x)dx,

where

F (x) ≡



















u′(ε1)

u′(εN)
when 0 ≤ x ≤ πN1,

u′(εj)

u′(εN)
when

j−1
∑

k=1

πNk < x ≤

j
∑

k=1

πNk, where 2 ≤ j ≤ N .

The right-hand side can be rewritten as
∫ 1

0
G(x)dx, where

G(x) ≡







































u′(ε1)

u′(εN)
when 0 ≤ x ≤ πi1,

u′(εj)

u′(εN)
when

j−1
∑

k=1

πik < x ≤

j
∑

k=1

πik, where 2 ≤ j ≤ i − 1,

1 when

j−1
∑

k=1

πik < x ≤

j
∑

k=1

πik, where i ≤ j ≤ N .

Equation (22) ensures that F (x) ≥ G(x) for all x.

The following can be verified by comparing term by term:

i−1
∑

j=1

πij

u′(εj)

u′(εN)
+

N
∑

j=i

πij ≥

N
∑

j=1

πij

u′(εj)

u′(εi)
.

From this and (39), we obtain

N
∑

j=1

πNj

u′(εj)

u′(εN)
≥

N
∑

j=1

πij

u′(εj)

u′(εi)

for any i, which is the desired inequality. 2
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