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Abstract
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1. Introduction

Are some of the striking features of asset prices—in particular, the high premium for risk
in asset markets and the low return on risk-free assets—a result of market incompleteness and,
in particular, of missing markets for consumers’ idiosyncratic risks? This possibility was raised
in the concluding remarks of the seminal paper by Mehra and Prescott [22], and it was subse-
quently investigated by many researchers, among them Mankiw [20], Heaton and Lucas [9,10],
Huggett [11], Telmer [27], Lucas [18], den Haan [7], Constantinides and Duffie [6], Krusell and
Smith [13], Marcet and Singleton [21], Storesletten, Telmer, and Yaron [25]. Some of these anal-
yses suggest that the effects of market incompleteness can be quantitatively important—e.g., the
work by Constantinides and Duffie and by Storesletten, Telmer, and Yaron—but the “average
view” in this literature is probably closer to concluding that no major aspects of asset prices are
overturned if market incompleteness is taken into account. In fact, a recent study by Krueger and
Lustig [12] demonstrates that in a range of interesting cases, risk premia will not be affected at
all by market incompleteness, even though the risk-free rate might be.

Though it had a different substantive question in focus, the early work of Bewley [3,4] con-
tains the key ingredients that have since become central elements used in studies of asset pricing
with incomplete markets. Bewley assumed that consumers face less than fully uninsurable shocks
but that there are a large number of consumers of each type across whom these shocks are inde-
pendent, so that these shocks have no direct aggregate consequences. Thus, each consumer can
be studied in a stationary environment. Literatures then developed around this setting, examining
not only asset pricing but also a range of other issues. A general challenge here has been that
multiperiod equilibrium models are hard to analyze, even with the aid of numerical methods,
especially when there is aggregate uncertainty. In the present paper, we show how some sim-
plifying assumptions allow us to study asset pricing with analytical precision. In particular, we
study the setting in Huggett [11], which lays out a canonical incomplete-markets asset-pricing
model. This setting can be viewed as an extension of the seminal work of Lucas [19] to the case
where insurance markets against idiosyncratic risks are missing.

A central element of Huggett’s setting is that consumers can borrow as a partial way of in-
suring. There is a borrowing constraint, and Huggett’s numerical results show how the tightness
of this constraint affects the degree of de-facto insurance and, thus, the risk-free rate. Our main
contribution is to study a special case of the Huggett economy both without and with aggregate
risk; Huggett studied the only former and, in addition, looked only at the risk-free rate. The spe-
cial case is that where the borrowing constraints are “maximally tight,” i.e., so tight that they
induce autarky. For this case, we obtain closed-form solutions for asset prices. The case is of par-
ticular interest, because the tighter is the borrowing constraint, the more “bite” will the market
incompleteness have in terms of producing asset prices that are different from those obtaining
in the standard representative-agent, Lucas-style model. One could thus view our present set-
ting as one that allows us to examine the potential of incomplete-markets settings for explaining
asset prices. We demonstrate how the different primitives of the model—the discount rate, the
preference curvature, and the endowment process—influence prices. In particular, we show that
the model allows a very rich set of asset-price predictions, including large equity premia, a low
risk-free rate, and a yield curve that is qualitatively different than in the standard model.

The Huggett economy is the simplest form of endowment economy. In Huggett’s [11] pa-
per, only a riskless asset is available to agents, who are thus using this asset for precautionary
saving against endowment shocks. There is no aggregate risk: the aggregate endowment is con-
stant over time. Huggett shows, using numerical analysis, that with high curvature in utility and
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a tight enough borrowing constraint, the risk-free rate can be significantly below the discount
rate: agents value the riskless asset not only for its direct return but for its value as an insur-
ance instrument. Our analytical power comes from the insight that if the borrowing constraint is
maximally tight, implying that no borrowing at all is possible, the equilibrium has to be autarky.
In autarky, the bond price will have to be equal to that of the agent in the population who val-
ues the bond the most: all other consumers would like to hold a negative amount of bonds (but
cannot), and the bond-pricing consumer is just indifferent at zero bond holdings. In very simple
settings with a two-state endowment process, which we spend most of the paper analyzing, it is
obvious who values the bond the most—it is the consumer with the high endowment—but for
general endowment processes it is not obvious.

Moreover, in a Huggett economy with aggregate risk (like that studied by den Haan), we can
similarly look at the case with maximally tight borrowing constraints by assuming that for every
asset contingent on the aggregate state, no negative holding is allowed, again implying that equi-
librium is autarky and that each state-contingent asset is priced by the agent in the population
who values it the most. Thus, overall, asset prices in our Huggett economy are determined in the
same manner as are those in Lucas’s [19] exchange economy—so that all markets for contingent
claims clear at zero—although here only one type of consumer has an interior asset demand for
each asset, whereas in Lucas’s setting all agents (i.e., the representative agent) have interior so-
lutions for all assets. We thus derive explicit, easy-to-interpret formulas for all claims contingent
on aggregate shocks, and thus any assets with payoffs contingent on aggregate shocks can be
priced. As an illustration, we show how to derive predictions for the term structure of interest
rates; as in Lucas’s work, these are easily priced using the contingent-claims prices. Few existing
studies in this literature manage to look at a very rich set of assets, since the numerical analysis
of portfolio choice of models with incomplete markets with aggregate risk is quite challenging.
A case of special interest is that where the long-term bonds are not fully liquid; for illustration
we analyze the case where the secondary markets are absent. For this economy we show that,
even in the absence of aggregate risk, there is a nontrivial yield curve, and this yield curve is
upward-sloping under a reasonable calibration.

Other studies before ours manage to characterize equilibria analytically in specific incomplete-
markets settings. Krueger and Lustig are able to characterize risk premia by assuming a form of
independence between idiosyncratic and aggregate shocks; Constantinides and Duffie, on the
other hand, use a setting with literally permanent shocks and are able to characterize prices that
way (since autarky is an equilibrium in that case as well). Krueger and Lustig’s results apply in
a special case of our setting, if we make the appropriate independence assumptions. Constan-
tinides and Duffie’s results are different than ours in a couple of ways. First, in their setting,
all agents have interior solutions whereas in our case a subset of the agents price the assets.
Second, we model endowment shocks using stationary Markov chains. We emphasize stationary
processes not only because some argue that this is more realistic, but because it allows us to
show explicitly how the degree of persistence in individual endowments influences asset prices.
Using a judicious choice of the process for idiosyncratic risk we can then reproduce any pricing
kernel, provided it satisfies the same restriction as in Constantinides and Duffie’s work. Finally,
our work is also related to Alvarez and Jermann [1,2], who study asset pricing with endoge-
nous solvency constraints. For some settings of parameter values, they find that the equilibrium
allocation features less-than-full, or even no, risk sharing.

Our model allows very general preference and endowment settings; we discuss extensions in
the final section of our paper. We begin the analysis in the paper in Section 2 with the simplest
case: the revisiting of Huggett’s analysis without aggregate uncertainty, obtaining an analytical
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solution for the price of the riskless bond. We then look at aggregate uncertainty in Section 3 and
explore the quantitative implications of our model, including how they relate to the literature.
For simplicity, throughout both of these sections we restrict attention to the case with only two
possible states for individual risk. In Section 4 we look at more than two states, which is a case
of interest because it is then less clear who prices each asset. Section 5 concludes.

2. The economy without aggregate uncertainty

In this section, we analyze the model of Huggett [11]. Consider an exchange economy where
each consumer receives a random nondurable endowment every period. There is a continuum
of consumers with total population of one. In this section, we focus on a steady state where
the aggregate variables are constant and the distribution of the individual states is stationary.
In this and the following section, we assume that the endowment follows a two-point process.
In Section 4, we extend our analysis to a setting where there are more than two possible values
of the endowment.

2.1. Model

The consumers cannot write contracts that depends on individual idiosyncratic states. Instead,
they are allowed to borrow and lend through selling and buying bonds. The bond holding is
denoted by a and the price of a bond that delivers one unit of consumption good next period is
denoted by q .

A consumer maximizes the expected present-value of utility:

E

[ ∞∑
t=0

βtu(ct )

]
,

where u(·) is the momentary utility function, ct is the consumption at period t , and β ∈ (0,1).
Following Huggett [11], we consider the specification

u(c) = c1−σ

1 − σ
,

where σ > 1.
Using recursive notation (a “ ′ ” denotes next period’s value),

c + qa′ = a + ε,

where ε is the random endowment. We let ε take on two values, ε� and εh, where ε� < εh.
It follows a Markov process with transition probability Pr[ε′ = εs′ |ε = εs] = πss′ . We impose a
borrowing constraint

a′ � a,

where a � 0 is a given constant.
The consumer’s Bellman equation is

Vs(a) = max
c,a′

c1−σ

1 − σ
+ β

[
πshVh

(
a′) + (1 − πsh)V�

(
a′)]

subject to
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c = a + εs − qa′

and

a′ � a.

Here, Vs(a) is the value function of a consumer with the endowment εs and the bond holding a.
Let the decision rule of the consumer be a′ = ψ(a; s).

The stationary equilibrium is defined by the consumer’s optimization and the value of q ,
where ∑

s=�,h

∫
ψ(a; s)Γs(da) = 0, (1)

and where Γs(a) is the stationary distribution of asset holdings for the consumers with endow-
ment εs .

In the following, we consider the special case of a = 0. The implication of this assumption is
that, since nobody can borrow and (1) has to hold, nobody can save in equilibrium: ψ(0; s) = 0
for all s. One does not need to characterize ψ(a; s) for other values of a, since the stationary
distribution over a has all its mass on 0 in this special case. Thus, in equilibrium, for each s,
consumption equals εs for all agents in state s. Thus, a = 0 is maximally tight in that it is the
highest value such that an equilibrium exists or, alternatively, so tight that autarky is induced.

2.2. Determination of the equilibrium bond price

In this section, we characterize the equilibrium bond price. Let λs � 0 be the Lagrange mul-
tiplier for the borrowing constraint when ε = εs .

The first-order conditions for the consumers are

−qc−σ
s + β

[
πshV

′
h

(
a′) + (1 − πsh)V

′
�

(
a′)] + λs = 0, (2)

for s = h, �. Here, cs is the optimal c when ε = εs . V ′
s (a) is the derivative of Vs(a) with respect

to a. The envelope condition is

V ′
s (a) = c−σ

s .

Noting that cs = εs in equilibrium, (2) can be rewritten as

q

β
− λh

βε−σ
h

= πhh + (1 − πhh)

(
ε�

εh

)−σ

, (3)

and

q

β
− λ�

βε−σ
�

= π�h

(
εh

ε�

)−σ

+ 1 − π�h. (4)

Since the right-hand side of (3) is larger than one and the right-hand side of (4) is less than one,

λh

βε−σ
h

<
λ�

βε−σ
�

follows. Therefore, λ� > 0 and the borrowing constraint is always binding for the consumers
with s = �. Thus, it is sufficient for an equilibrium that λh � 0 is satisfied. From (3), we can
characterize the equilibrium level of the bond price q as follows.
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Fig. 1. Excess demand functions for a = 0, a = −1, and a = −2; and the equilibrium prices q(0), q(−1), and q(−2).
q(0) is any q � q∗.

Proposition 1. The equilibrium bond price q satisfies

q � q∗ ≡ β

[
πhh + (1 − πhh)

(
εh

ε�

)σ ]
. (5)

Any bond price q that satisfies (5) is consistent with the consumers’ optimization and the
bond-market equilibrium (1), and thus constitutes an equilibrium. Note that the right-hand side
of (5) is always strictly larger than β , so the risk-free rate is always strictly less than 1/β − 1.

The lower bound of the equilibrium bond price, denoted as q∗ in (5), is of particular interest
since it is the limit of the equilibrium bond prices when a approaches zero from below. We for-
malize this claim in Proposition 11 in Appendix A. The proof of the proposition also makes clear
that q∗ can be thought of as a global upper bound on the equilibrium bond price in this class
of economies. Fig. 1 illustrates: it draws the excess demand for the bond under a = 0, a = −1,
and a = −2 as functions of the bond price q . The parameter values are identical to the ones used
by Huggett [11].1 The figure also depicts the equilibrium price (that is, the point where excess
demand equals zero) for each value of the borrowing constraint. The excess demand function
shifts upwards as a increases. The equilibrium price increases monotonically as a increases, and
converges to q∗ as a → 0 from below. When a = 0, any price that is larger than q∗ is consistent
with the bond market equilibrium. In what follows, we assume that the equilibrium value of q is
equal to q∗, and characterize q∗.

2.3. Comparative statics

Eq. (5) shows that q∗ can be characterized by the marginal utility of the high-endowment
consumers. It also shows the role of various parameters in determining the equilibrium bond
price. q∗ is increasing in β , σ , and εh/ε�. It is decreasing in πhh: when the high-endowment
state is permanent, there is less of a precautionary-saving motive and q∗ becomes small.

1 That is, β = 0.99322, σ = 1.5, εh = 1.0, ε� = 0.1, πhh = 0.925, and π�h = 0.5.
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Fig. 2. Bond prices for various values of σ .

In the context of Huggett [11], this expression clarifies the role of σ in determining the
precautionary-saving motive. This mechanism helps solve the risk-free rate puzzle by Weil [28];
here, a high σ is consistent with a low risk-free rate. To see this, suppose that the endowment
grows over time: let the endowment be (1 + g)t ε, where ε has the same properties as before.
Then, the equilibrium price of the bond becomes (1 + g)−σ q∗, where q∗ corresponds to the
price in the absence of growth. In the complete-markets model, q∗ would equal β , and therefore
a positive g and a large value of σ imply a very low bond price. Thus, since the risk-free rate
is the inverse of the bond price, when we consider a growing economy, the complete-markets
risk-free rate would be very large, contradicting observation (this is the risk-free rate puzzle).
In the current model, however, the precautionary-saving motive increases the bond price, and
this can offset the effect of growth. In the incomplete-markets case, q∗ is increasing in σ . Thus,
with growth, the bond price can either be increasing or decreasing in σ in the incomplete-markets
model. Fig. 2 plots the equilibrium bond prices for various values of σ , when β = 0.98, g = 0.01,
πhh = 0.9, and εh/ε� = 1.08, illustrating that the riskfree rate is increasing in σ for low σ and
decreasing in σ for higher σ .

2.4. A note on transactions costs in “secondary” markets

With this model, one can also price other kinds of assets. When there is no aggregate risk,
another kind of asset that might be priced is a long-term riskless bond, i.e., a bond that pays one
unit of consumption for sure in a future period n. Consider n = 2 for simplicity: what is the issue
price of a two-period riskless bond? To the extent it is traded in the intermediate period, it must be
(q∗)2, from the usual arbitrage arguments. However, suppose that there are transactions costs, so
that the two-period bond cannot be re-traded in the intermediate period: the “secondary” market
is not operative. Suppose, moreover, that the two-period bond has the same kind of maximally
tight borrowing constraint as does the one-period bond: it cannot be issued by individuals (they
cannot use it to borrow), but it can be held in positive amounts. Given a zero net supply, no one
will hold the two-period bond in equilibrium, however, and equilibrium is still autarky, allowing
us to price the assets as easily as before. The one-period riskless bond will, as before, be priced
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by the rich agent, so it will command the price q∗. The two-period bond will also be priced by
the rich agent, who is the only agent with the chance of a consumption drop between now and
two periods from now. Thus, it will have a price q(2) satisfying

q(2) = β2
[
π

(2)
hh + (

1 − π
(2)
hh

)(εh

ε�

)σ ]
,

where π
(2)
hh ≡ π2

hh + (1 − πhh)π�h is the probability of transiting from h to h in two periods.
Longer-period bonds subject to no re-trading can be priced similarly.

What will the term structure of interest rates look like in our incomplete-markets economy
without secondary markets for bonds? We see that q(2) < (q∗)2, so that the longer-period bond
gives a higher return (the yield curve is upward-sloping), if and only if

π
(2)
hh + (

1 − π
(2)
hh

)(εh

ε�

)σ

<

[
πhh + (1 − πhh)

(
εh

ε�

)σ ]2

.

Thus, we obtain a nontrivial yield curve. Inspecting the expression, if the endowment process
has positive serial correlation (which is reasonable to assume), implying πhh � π

(2)
hh , then for

any given value of (
εh

ε�
)σ > 1, the yield curve is upward-sloping if the process is not mean-

reverting too quickly. Also note that for an iid process, we always obtain a positive slope of the
yield curve.

2.5. Assets in positive net supply

Note that above, as in Huggett [11], we assume that assets are in zero net supply. Many
interesting cases, however, involve assets in positive net supply, e.g., government bonds, a “Lucas
tree,” physical capital, or money. In this section we show how cases with positive asset supply
can be analyzed using the framework above. In particular, one can map a case with positive
asset supply into one with a zero asset supply but with a looser borrowing constraint. Thus, if an
outside asset is introduced in a context where previously the borrowing constraint was maximally
tight, the equilibrium real interest rate would need to rise.

For concreteness, consider a case where η, a part of the aggregate endowment, is capitalized,
i.e., traded in the market as an asset. Thus, we can think of this asset as a Lucas tree with divi-
dend η each period. We let the individual’s remaining non-tradable endowment be such that the
aggregate endowment is what it was before: ε̃s ≡ εs − η for each idiosyncratic state s. Using p

to denote the price of the tree, we can write the consumer’s budget constraint as

c = a + (η + p)x + ε̃s − qa′ − px′,

where x denotes the consumer’s share of the tree. In equilibrium, thus, the sum of asset holdings
across all consumers has to equal 1 (and, as before, the sum of borrowing and lending has to
equal 0).

In equilibrium since both assets are riskless, they have to deliver equal returns if they are both
held by unconstrained consumers: p = q(p + η). Now define â ≡ a + (η + p)(x − 1). Using the
rate-of-return equalization and some simple algebra, we can rewrite the budget as

c = â + ε − qâ′.

In equilibrium, the sum of â across all consumers has to equal 0. Thus, the budget constraint and
the equilibrium condition look identical to those in the previous sections. However, the borrowing
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constraint is not the same. Considering a � 0, as before, to be the lower bound for lending, and
using a similar lower bound for tree holdings, x � 0, the borrowing constraint for â′ would read

â′ � â ≡ a + (η + p)(x − 1) < 0.

Thus, because â < 0, this transformed consumer problem allows strictly positive borrowing even
if a = 0. Given the results from the previous sections, we conclude that the lowest possible
interest rate will not be obtained whenever there is a positive net supply of assets.

Several remarks are in order. First, the transformed model here is not identical to that in the
previous sections, where the lower bound on borrowing was exogenous; here, the lower bound is
a function of p. The main purpose of the transformation, however, was simply to show that the
lower bound on saving is strictly negative (so long as η > 0 or p > 0).2 Second, in the following
section, an economy with aggregate uncertainty will be studied, also using a setting with assets
in zero net supply, and there as well one can map economies with positive asset supplies into the
zero-supply setting by appropriate transformation of the borrowing constraints, which become
looser.3 Third, some cases of positive asset supplies are not identical to the one just studied.
One is the case where the outside asset is physical capital explicitly used in production—the
present model is a model with exogenous output. However, in any steady state of such a model,
the consumer’s problem can be transformed as it was in the case of the tree above, and there
would be a corresponding equilibrium condition of zero net assets (with a transformed borrowing
constraint); thus, the equilibrium real-return implications of such an economy would not differ
conceptually from those here.

A final case of interest is the Bewley [3,4] model of money: consumers have precautionary-
savings needs due to uninsurable income shocks, and money obtains value as a storage vehicle
used for buffer-stock saving. The Bewley version of the present economy can be thought of
as another case with an outside asset: one where money is a tree with zero dividend (η = 0) and
where the stationary return on the asset is given exogenously by central-bank policy. To the extent
that there is active policy either in the form of paying interest on money or in the form of changes
in the total stock of money, there is also a tax/transfer appearing in the consumer’s budget; for
example, if the central bank pays interest on money, it needs to tax consumers to obtain the
resources to do so. Thus, the consumer’s budget reads c = a+pm+pμ+εs −qa′ −p(1+μ)m′,
where m is the consumer’s holdings as a fraction of the tree/total stock of money and μ (possibly
negative) is the net stock of money growth/inflation rate. Thus, assuming that money has value
here, it would have to be that q adjusts to equal 1+μ. With the transformation â ≡ a +p(m−1)

and â = a − p, it is easy to verify that this reproduces the transformed problem above. Bewley’s
main interest was to characterize optimal monetary policy, possibly involving paying interest
on currency (or deflation). Here, however, the focus is on asset returns, which are exogenous in
the steady state of Bewley’s model. Bewley’s model, instead, makes the value of the asset, p,
endogenous: it may or may not be strictly positive, and it will typically increase in a (allowing
private borrowing drives down the value of money).

2 The presence of a price (here, p) in the borrowing constraint does not introduce additional complications in numerical
computation of an equilibrium in the transformed economy relative to the case of literally zero asset supply. One simply
guesses on p, obtains the implied return 1/q , solves the consumer’s problem—which depends on q and p—given these
values, simulates and then varies p in order to obtain zero asset holdings on average in the simulation.

3 In a separate Technical Appendix to the present paper, Krusell, Mukoyama, and Smith [15], we go through all the
necessary transformations. In that document we also explicitly make the point that if the borrowing constraint is turned
into a sufficiently high minimum-savings constraint—for the case above, x = 1—it will literally reproduce the maximally
tight borrowing constraint in the zero-net-asset economy and deliver an identical interest rate.
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3. The economy with aggregate uncertainty

In this section, we extend the basic model by incorporating aggregate uncertainty. Suppose
that there are two aggregate states, Z ∈ {g,b}. We assume that there are two Arrow securities:
a state-z′ security, purchased at the price Qzz′ when the current aggregate state is z, delivers
one unit of consumption good next period when the next period’s aggregate state is z′. Note
that the aggregate states are spanned by these securities, but that the market is still incomplete:
idiosyncratic risks cannot be insured away.4

The introduction of Arrow securities has two virtues. First, any asset whose returns depend
only on the aggregate state can be priced uniquely by the prices of these securities. Second, we
can introduce the borrowing constraint in a natural manner, since the holdings of these securities
is directly linked to the total asset balance in the following period.5 Finally, as in the case without
aggregate uncertainty, we focus on the case with zero net supply of each of the Arrow securities.6

3.1. Model

The consumer’s problem is now to maximize

E

[ ∞∑
t=0

βt c1−σ
t

1 − σ

]

subject to the (recursively stated) constraints

c + QZga
′
g + QZba

′
b = aZ + ε

and

a′
g � 0, a′

b � 0.

Here, az′ is the amount of state-z′ security held by the consumer. Asset-market equilibrium re-
quires the sum of net demands for a′

z′ to be zero for z′ = g,b. As in the previous section, in
equilibrium nobody can borrow, so nobody can save, and therefore the equilibrium is autarky.
In what follows we presume, though do not prove (as we did in the economy without aggregate

4 Any two independent securities can replicate the Arrow securities here. For example, suppose that there is infinitely-
lived “equity” which delivers ez in state z and a one-period bond which delivers 1 unit in both future states. Denoting x

as the equity demand, pz as the equity price, and y as the bond demand,

a′
g = (pg + eg)x′ + y′

and

a′
b = (pb + eb)x′ + y′

hold. From these equations, it can be seen that a g-state Arrow security can be replicated by combining 1/(pg + eg −
pb − eb) units of equity and (−pb − eb)/(pg + eg − pb − eb) units of bond, and a b-state Arrow security can be
replicated by combining 1/(pb + eb − pg − eg) units of equity and (−pg − eg)/(pb + eb − pg − eg) units of bond.

5 Following Alvarez and Jermann [1,2], it would perhaps be more appropriate to refer to these constraints as “solvency
constraints” because the assets are contingent claims. For consistency with the rest of the paper, we use instead the term
borrowing constraints.

6 As discussed in Section 2.5 above, assets in net positive supply can be thought of as loosening the borrowing con-
straints in the zero-net-supply economy.
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uncertainty), that the prices we derive are the limit prices for economies with increasingly tight
constraints on the Arrow securities.7

We assume, as before, that the endowment can only have two values: ε ∈ {εh, ε�} where
εh > ε�. Let Pr[Z′ = z′|Z = z] = φzz′ and Pr[ε = εs′ |ε = εs, Z = z, Z′ = z′] = πss′|zz′ . Then
the consumer’s Bellman equation is

V (a; s, z) = max
c,a′

g,a′
b

c1−σ

1 − σ

+ β

[ ∑
z′=g,b

φzz′
[
πsh|zz′V

(
a′
z′ ;h, z′) + (1 − πsh|zz′)V

(
a′
z′ ;�, z′)]]

subject to

c = a + εs − Qzga
′
g − Qzba

′
b

and

a′
g � 0, a′

b � 0.

Let λz′
sz be the Lagrange multiplier for the borrowing constraint for the state-z′ security when

the current state is s and z. The first-order condition is

−Qzz′c−σ
sz + βφzz′

[
πsh|zz′V ′(a′

z′ ;h, z′) + (1 − πsh|zg)V ′(a′
z′ ;�, z′z′

sz

)] + λz′
sz = 0, (6)

where csz is consumption of the consumer whose individual state is s when the aggregate state
is z.

The envelope conditions are

V ′(a; s, z) = c−σ
sz .

3.2. The prices of contingent claims

Recall that csz = εs in equilibrium. To determine Qzz′ , let us look at (6). For each (z, z′), there
are two first-order conditions (for s = h and s = �). They can be rewritten as

Qzz′

βφzz′
− λz′

hz

βφzz′ε−σ
h

= πhh|zz′ + (1 − πhh|zz′)

(
ε�

εh

)−σ

(7)

and

Qzz′

βφzz′
− λz′

�z

βφzz′ε−σ
�

= π�h|zz′
(

εh

ε�

)−σ

+ (1 − π�h|zz′). (8)

Using the logic employed in the previous section, we conclude that

λz′
hz

βφzz′ε−σ
h

<
λz′

�z

βφzz′ε−σ
�

7 It is very difficult to characterize how the law of motion for the wealth distribution, a mapping from the set of
distributions (and the aggregate state) into itself, varies with parameters. This makes it extremely challenging to even
demonstrate existence, let alone examine comparative statics.
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holds. Therefore, λz′
�z > 0 and the borrowing constraint is binding for the consumers with s = �.8

To satisfy λz′
hz � 0, Qzz′ has to satisfy

Qzz′ � Q∗
zz′ ≡ βφzz′

[
πhh|zz′ + (1 − πhh|zz′)

(
εh

ε�

)σ ]
.

Again, we focus on the case where the asset prices are determined by the lower bound:
Qzz′ = Q∗

zz′ . Then, Qzz′ is increasing in β , φzz′ , σ , and εh/ε�. It is decreasing in πhh|zz′ . In the
following, we denote ω ≡ (εh/ε�)

σ . Note that ω > 1 and it is increasing in σ and εh/ε�. Also
define

mzz′ ≡ β
[
πhh|zz′ + (1 − πhh|zz′)ω

]
. (9)

3.2.1. The bond price
Now we investigate the properties of bonds and stock in this economy. The bond price at state

z is

qz =
∑

z′=g,b

Qzz′ =
∑

z′=g,b

φzz′mzz′ = E[mzz′ ]. (10)

In this section, all the expectations E[·], variances Var[·], and covariances Cov(·,·) are with re-
spect to z′, conditional on z. The (gross) return from the bond (that is, risk-free rate) is R

f
z = q−1

z .
Thus,

1 = E
[
R

f
z mzz′

]
. (11)

Note that from the definition of mzz′ ,

qz = β
(
ω − (ω − 1)E[πhh|zz′ ]). (12)

This expression clarifies that, similarly to the previous section, the (average) level of πhh|zz′ is an
important determinant of the bond price.

As a general proposition, in our environment, prices are not a function of the process for ag-
gregate consumption, in contrast to representative-agent models. For example, in our model, the
cyclicality of the bond price qz depends on how E[πhh|zz′ ] behaves. In contrast, in a complete-
markets environment, where we can identify a “representative agent,” qz is always pro-cyclical:
denoting the total endowment as Cz in state z, we would obtain qz = β

∑
z′=b,g φzz′(Cz′/Cz)

−σ .
In our model, on the other hand, qz is pro-cyclical if and only if E[πhh|gz′ ] < E[πhh|bz′ ], i.e.,
if the future endowment prospects of a rich consumer are better in bad aggregate times than
in good aggregate times. More broadly, q’s properties depend on the individual endowment
process in a particular way, picking out a marginal rate of substitution of a specific individ-
ual at each point in time, and this individual is also not necessarily the same person over time.
In the simple environment discussed in the present section, it is always the richest agent; in
more complex environments (see Section 4), it may be an agent with an intermediate endowment
level.

8 This is not the case if we extend the model to allow the values of ε� and εh to vary across aggregate states. In such a
case, it is possible that high-endowment consumers are constrained when the aggregate state switches.
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3.2.2. The term structure of interest rates
Any asset that depends only on the aggregate state can be priced by Qzz′ . Here we consider

a long-term riskless bond, in order to examine the implications for the term structure of interest
rates. We assume, in contrast to the approach discussed in Section 2.4, that the secondary markets
for long-term bonds are perfect. Let q

(n)
z be the price of n-period bond when the aggregate state

is z. Recall that the price of a one-period bond is

q(1)
z = Qzg + Qzb. (13)

We can construct the price of an n-period bond by combining the Arrow-securities and lower-
horizon bonds from

q(n)
z = Qzgq

(n−1)
g + Qzbq

(n−1)
b (14)

recursively, with the known expression for q(1) above as starting condition.
To analyze the term structure, and focusing on the relation between a one- and a two-period

bond, note that the net, per-period returns of these bonds are

r(n)
z ≡

(
1

q
(n)
z

) 1
n − 1,

for n = 1,2. Therefore, we will have r
(1)
z < r

(2)
z and an upward-sloping yield curve if and only if

q
(2)
z < (q

(1)
z )2, that is, if and only if

q
(2)
z

q
(1)
z

< q(1)
z ,

or, using (14) for n = 2 on the left-hand side as well as (13) on the right-hand side, if and only if

Qzgq
(1)
g + Qzbq

(1)
b

q
(1)
z

< Qzg + Qzb.

Applying this expression for z = g and z = b separately, the yield curve is upward-sloping in
state z = g if and only if

q(1)
g > q

(1)
b ,

whereas it is upward-sloping in state z = b if and only if

q(1)
g < q

(1)
b .

Thus, if q
(1)
g > q

(1)
b , so that the short-term bond price is pro-cyclical (the short-term interest

rate is counter-cyclical), the yield curve is upward-sloping in booms and downward-sloping in
recessions. Alternatively, if q

(1)
g < q

(1)
b (the short-term interest rate is pro-cyclical), the yield

curve must be downward-sloping in booms and upward-sloping in recessions. Note that this
result follows from simple manipulation of the prices of contingent claims, and thus it follows
whether or not there are incomplete markets for idiosyncratic risks (as long as there are complete
markets for aggregate risk).

However, when there is no idiosyncratic risk (or when this risk is fully insured), so that there
is a representative agent, we also know that q

(1)
g > q

(1)
b must hold given any mean-reverting

process, so in a complete-markets model the yield curve must be upward-sloping in booms and
downward-sloping in recessions. In this model, in contrast, we can obtain the reverse result, since
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Fig. 3. Yield curves in booms: r
(n)
g .

q
(1)
g < q

(1)
b is possible: as the last section showed, it is the expected growth in consumption of

the rich agent that matters for bond pricing, and not expected aggregate consumption growth.
Thus, if rich agents have higher expected consumption growth in booms than in recessions, the
short-term interest rate will be pro-cyclical in this model, and the yield curve will slope upward
in recessions and downward in booms.

It is also possible to examine the magnitude of the slope: it depends on the relative magnitudes
of Qzg and Qzb . These, in turn, depend on any possible (a)symmetry in the cycle, in the case
without idiosyncratic risks, and on details of the consumption process of the rich, in the case of
incomplete markets studied here. Figs. 3 and 4 depict yield curves, assuming that Qgg = Qbb =
0.6, with horizons up to 10 periods. Three curves are drawn for different combinations of Qgb

and Qbg , thus allowing both the cases of pro-cyclical and counter-cyclical short-term rates.
Fig. 5 depicts the yield curves for symmetric (Qgg = Qbb = 0.6, Qgb = 0.38, and

Qbg = 0.35) and asymmetric (Qgg = 0.6, Qbb = 0.3, Qgb = 0.38, and Qbg = 0.65) business
cycles. Here, we keep Qgg and Qgb the same and change Qbb and Qbg holding Qbg + Qbb

constant.
We also note that there are individual endowment processes for which the yield curve is non-

monotonic. Fig. 6 illustrates with an example.

3.2.3. The equity risk premium
If there is an asset that provides Yg when the next-period aggregate state is good and Yb when

the next-period aggregate state is bad, then its price is

Pz =
∑

z′=g,b

Yz′Qzz′ = β
∑

z′=g,b

Yz′φzz′mzz′ = E[Yz′mzz′ ].

The ex-post (gross) return is Rzz′ ≡ Yz′/Pz. Therefore,

1 = E[Rzz′mzz′ ] (15)

holds. This implies that mzz′ is the pricing kernel in this economy.
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Fig. 4. Yield curves in recessions: r
(n)
b

.

Fig. 5. r
(n)
g and r

(n)
b

for symmetric and asymmetric business cycles.

Define the risk premium as Re
zz′ ≡ Rzz′ − R

f
z . In the following, we analyze the risk premium

in this economy using a method similar to that used in Krusell and Smith [13], thus exploiting
the two-state nature of the endowment process for simple analytics.
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Fig. 6. r
(n)
g and r

(n)
b

for Qgg = 0.1, Qbb = 0.15, Qgb = 0.8, and Qbg = 0.7.

From (11) and (15),

E
[
Re

zz′mzz′
] = 0.

Since

E
[
Re

zz′mzz′
] = E

[
Re

zz′
]
E[mzz′ ] + Cov

(
Re

zz′ ,mzz′
)
,

the following holds:

E
[
Re

zz′
]
E[mzz′ ] = −Cov

(
Re

zz′ ,mzz′
)
. (16)

Now we are able to state and prove the following proposition.

Proposition 2. Suppose that Yg > Yb . The expected value of risk premium, E[Re
zz′ ], is positive if

and only if πhh|zg − πhh|zb > 0.

Proof. See the Technical Appendix. �
Again, the persistence of the endowment process for the rich consumer, πhh|zz′ , plays a key

role. Now, let us investigate how our model can be helpful in addressing the equity premium
puzzle. Suppose that πhh|zg − πhh|zb > 0. Following Krusell and Smith [13], now we show that
the Sharpe ratio for an asset with Yg > Yb is exactly equal to the market price of risk. From (16),

E
[
Re

zz′
]
E[mzz′ ] = −ρ

(
Re

zz′ ,mzz′
)
σ
[
Re

zz′
]
σ [mzz′ ].

Here, ρ(A,B) denotes the correlation coefficient between random variables A and B and σ [A]
denotes the standard deviation of A (both conditional on z). Since

ρ
(
Re

zz′ ,mzz′
) = −ρ(Yz′ ,πhh|zz′) = −1,
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we find

E[Re
zz′ ]

σ [Re
zz′ ] = σ [mzz′ ]

E[mzz′ ] .

The left-hand side is the Sharpe ratio, and the right-hand side is the market price of risk.
From the definition of mzz′ , the market price of risk can be calculated as

σ [mzz′ ]
E[mzz′ ] = (ω − 1)(πhh|zg − πhh|zb)

√
φzg(1 − φzg)

ω − (ω − 1)E[πhh|zz′ ] . (17)

Note that From (9),

mzb − mzg = β(ω − 1)(πhh|zg − πhh|zb)

holds. Using this and (12), (17) can also be expressed as

σ [mzz′ ]
E[mzz′ ] = (mzb − mzg)

√
φzg(1 − φzg)

qz

.

3.3. Can incomplete markets explain asset prices?

The main purpose of this section is to obtain a quantitative assessment of the prices that can
be achieved with the incomplete-markets model when the borrowing constraints are maximally
tight. In Section 3.3.2, we show that by judicious choice of the process for idiosyncratic risk,
our model with tight (binding) borrowing constraints can, in fact, reproduce any pricing kernel
and, hence, any set of asset prices. This result requires that the pricing kernel satisfy a restriction
identical to the one in Constantinides and Duffie [6], who obtain an analogous result in a dif-
ferent environment (one in which idiosyncratic shocks to income are permanent). The required
process for idiosyncratic risk, however, need not be quantitatively reasonable. We begin, there-
fore, in Section 3.3.1 with a quantitative model in the spirit of Mehra and Prescott [22] in which
we calibrate the process for idiosyncratic risk to match observed data. For this quantitatively rea-
sonable model, we show that our model with tight borrowing constraints can in fact come close
to matching the first and second moments of returns on riskfree bonds and on equity in US data.

3.3.1. A quantitative investigation
In this section, we examine the extent to which our model with tight borrowing constraints

can reproduce first- and second-moment features of US asset prices when the process for idiosyn-
cratic shocks is calibrated in a quantitatively reasonable way. As in the Lucas asset pricing model,
total consumption equals total endowments (there is neither production nor physical investment).
Following Mehra and Prescott [22], we extend the model with aggregate uncertainty developed
in Section 3.1 to allow the aggregate endowment to grow stochastically. In particular, letting yt

be the aggregate endowment in period t , we assume that yt = γtyt−1, where γt ∈ [γ g, γ b] is the
growth rate of the aggregate endowment. The growth rate γt depends on the aggregate state zt :
γt = γ zt .

In this section, we model individual idiosyncratic shocks as stochastically fluctuating shares of
the aggregate endowment. In particular, in any period fraction χ of consumers receives a “high”
multiple, εh, of the aggregate endowment and fraction 1 − χ of consumers receives a “low”
multiple, ε� < εh, of the aggregate endowment, where we impose the adding-up restriction that
χεh + (1 − χ)ε� = 1. Note that the interpretation of ε in this section differs slightly from its
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interpretation in Section 3.1; here, it is a multiple of the aggregate endowment, whereas there it
is the individual endowment itself. We impose a set of constraints on the transition probabilities
πss′|zz′ to ensure that the fraction of consumers receiving the shock εh in any period is indeed
equal to χ : in particular, for all pairs (z, z′), we require χπhh|zz′ + (1 − χ)π�h|zz′ = χ .

Adapting the arguments from Section 3.2, it is straightforward to show that with tight borrow-
ing constraints the high-endowment consumer prices the contingent claims, in which case the
pricing kernel is:

mzz′ = β
(
γ z′)−σ

[
πhh|zz′ + (1 − πhh|zz′)

(
εh

ε�

)σ ]
.

In the absence of growth (γ g = γ b = 1), this expression is identical to the corresponding expres-
sion in Section 3.2 for the pricing kernel.9 The pricing kernel can be used exactly as in Mehra
and Prescott [22] to price any assets whose payoffs depend on realizations of the aggregate state.

We assume that a period corresponds to one year. For purposes of comparison, we calibrate
the aggregate growth rate process exactly as in Mehra and Prescott [22]. Specifically, this process
is chosen to match the mean, standard deviation, and first-order autocorrelation of the growth rate
of US per capita consumption over the time period 1889–1978, yielding γ g = 1.054, γ b = 0.982,
and φgg = φbb = 0.43.

Asset pricing in our economy involves only a subset of the population at any point in time.
Thus, if one allows significant heterogeneity the data might only place very weak constraints
on asset prices. To discipline our analysis, we interpret individual data as coming from a single
process like the one above, to which all consumers are subjected. Thus, we set χ , the fraction of
consumers receiving the high labor endowment, equal to one-half, implying that πhh|zz′ = π��|zz′
for all (z, z′): that is, the probability of remaining in the current idiosyncratic state is the same for
both high and low idiosyncratic states. We choose the remaining parameters of the idiosyncratic
shock process (the ratio of εh/ε� and the four transition probabilities πhh|zz′ ) to match features of
the dynamics of household-level labor income in the Panel Study of Income Dynamics (PSID),
as documented by Storesletten, Telmer, and Yaron [24], subject to the restrictions imposed by
requiring χ to be time-invariant and equal to one-half.10 Specifically, Storesletten et al. [24] find
that (log) labor income is highly persistent, with autocorrelation coefficient equal to 0.963, and
that the conditional variance of (log) labor income varies countercyclically with the state of the
aggregate economy: in “good” times it is 8.8% and in “bad” times it is 16.3%, almost twice as
large. As we describe below, we choose the labor-income process in our model to replicate these
numbers.11

We assume that the probability of remaining in the high idiosyncratic state depends on tomor-
row’s aggregate state, but not on today’s, leaving three parameters—εh/ε�, πhh|zg , and πhh|zb—to
match the three observed facts about household labor income. Over the long run, the economy
is in the good aggregate state half of the time and in the bad aggregate state half the time, so we
set 0.5πhh|zg + 0.5πhh|zb equal to 0.963, that is, averaging across aggregate states the first-order

9 See, in particular, Eq. (9).
10 We ignore asset income when calibrating the idiosyncratic shock process, but this will not matter if labor’s share of
income is relatively stable over the business cycle, as it is in US aggregate data.
11 Heaton and Lucas [10] find that aggregate shocks are not very important in explaining the conditional mean of
household-level labor income in the PSID data, so we ignore this dependence in our calibration, though we do allow the
conditional variance of idiosyncratic shocks to depend on the aggregate state, for which Storesletten et al. [24] do find
compelling evidence.
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Table 1

Data Baseline model Complete markets Homoskedastic

Mean risk-free rate 0.80% 0.80% 0.80% 0.80%
Mean equity premium 6.18% 2.93% 0.72% 0.72%
Std. dev. risk-free rate 5.67% 5.25% 2.08% 2.08%
Std. dev. equity premium 16.67% 7.94% 4.95% 4.95%
Sharpe ratio 0.37 0.37 0.15 0.15
β 0.59 1.06 0.61
σ 4.20 4.20 4.20

autocorrelation of the idiosyncratic shock is 0.963. In addition, we require that the coefficient
of variation of tomorrow’s idiosyncratic shock, conditional on today’s idiosyncratic state and
on tomorrow’s aggregate state, is equal to 8.8% if tomorrow’s aggregate state is good equal to
16.3% if tomorrow’s aggregate state is bad.12 The calibrated parameters, then, are εh/ε� = 2.06,
πhh|zg = 0.984, and πhh|zb = 0.942.

We now use the model to price assets, in particular, a riskless bond in zero net supply that pays
one unit of consumption in all aggregate states in the next period and “equity,” which we define
to be a claim to the entire future stream of aggregate endowments (itself in zero net supply). The
first column (labeled “Data”) of Table 1 reports unconditional moments of asset prices in US
data, as calculated in Mehra and Prescott [22] using annual data for 1889–1978.13 The second
column (labeled “Baseline model”) reports the asset prices for our calibrated economy with tight
borrowing constraints when the discount factor β = 0.59 and the coefficient of relative risk aver-
sion σ = 4.2. We choose these two preference parameters to match the average risk-free rate and
the Sharpe ratio (i.e., the expected equity risk premium divided by its standard deviation) in the
data. A success of our quantitative model is that it can reproduce the observed Sharpe ratio with a
relatively low coefficient of relative risk aversion, though the discount factor is smaller than con-
ventional values (see the next paragraph for additional discussion of the low discount factor).14

The average equity premium (the average difference between the return on equity and the
risk-free rate) in our quantitative model is roughly 3%, about half of the observed value but over
two full percentage points larger than in the complete-markets model of Mehra and Prescott [22],
as reported in the third column (labeled “Complete markets”) of Table 1. In this column, for pur-
poses of comparison, we again choose the discount factor to match the risk-free rate, holding
fixed the coefficient of relative risk aversion at its value in the second column. The required
discount factor is larger than one, reflecting the well-known “risk-free rate puzzle” that the
risk-free rate in observed data appears to be “too low.”15 Another success of our quantitative

12 We target the coefficient of variation because the idiosyncratic shock is in levels, not logs, in our setup; the coefficient
of variation is approximately equal to the standard deviation of the log of the idiosyncratic shock. It turns out that this
(conditional) coefficient of variation depends on today’s idiosyncratic state, so we compute an average across the two
idiosyncratic states, which occur equally frequently over the long run.
13 In Mehra and Prescott [22], nominal returns are adjusted for inflation using ex post realizations of inflation rather
than expected inflation; this adjustment accounts for part of the reported volatility of returns.
14 Despite these successes, it is important to note that although the process for idiosyncratic labor income risk is cali-
brated to observed data, the resulting process for consumption displays too much variability: income equals consumption
in our model, but in observed data, by contrast, consumption is typically less variable than income, both across time for
a single household and in a cross-section of households at a point in time.
15 The main effect of changing the discount factor is to change the risk-free rate; its effects on risk prices are small and
would be zero in a continuous-time version of our model.
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model, then, is that it can “solve” the risk-free rate puzzle with a discount factor smaller than
one. The required discount factor is, in fact, smaller than values typically used in calibrated dy-
namic general-equilibrium macroeconomic models, but is in the same range as the “short-run”
discount rates often used in quantitative consumption-savings models with hyperbolic (or quasi-
geometric) discounting. Finally, relative to the Mehra–Prescott model, our quantitative model
with reasonably calibrated idiosyncratic risk generates substantial increases in the volatility of
both the risk-free rate and the equity premium—though the volatility of the latter remains much
smaller (by a factor of two) than in the data—and in the Sharpe ratio.

The fourth and last column (labeled “Homoskedastic”) of Table 1 reports asset prices when
πhh|zg = πhh|zb = 0.963 (in which case the conditional variance of income shocks does not vary
with the aggregate state of the economy), where we again adjust the discount factor (by a small
amount as it turns out) to keep the risk-free rate equal to its value in the observed data. Here
we see that risk prices are exactly the same as they are when markets for idiosyncratic risk are
complete. The intuition for this result goes back to Proposition 2, where we showed in a slightly
different setting—one in which the idiosyncratic shock does not depend on the aggregate state—
that the risk premium is zero when the probability of remaining in the high idiosyncratic state
does not depend on tomorrow’s aggregate state. Here, instead, the idiosyncratic risk is defined
to be a share of a fluctuating aggregate endowment, so that there is a risk premium even when
markets are complete. But, here as in Proposition 2, the introduction of idiosyncratic risk does
not increase the risk premium unless the transition probabilities for idiosyncratic risk depend on
the aggregate state in such a way that bad idiosyncratic shocks are more likely to occur when the
economy transits to a bad rather than to a good aggregate state.

In terms of relations to the quantitative literature, Lettau [17] computes “bounds” on Sharpe
ratios with a similar approach to the one adopted here. He uses individual income data, inter-
preting it as consumption, and shows how one can obtain higher Sharpe ratios if one introduces
a correlation between idiosyncratic risk and the aggregate shock. He does not obtain substantial
differences compared to the representative-agent results. An important difference between our
approach and his is that our theory leads us to look at the agent who, at any date and state, “likes
the asset the most” in pricing risk, as opposed to just taking the individual consumption process
and using it directly to obtain a kernel. Thus, in our equilibrium, different agents price risk at
different moments in time.

3.3.2. Connections to some known results in the literature
Recently, Krueger and Lustig [12] demonstrated that, in certain contexts, the equity premium

in an incomplete-markets model is identical to that in the complete-markets model. This find-
ing seems to be at odds with our earlier results—that market incompleteness can have a large
effect on the risk premium. However, the main result in Krueger and Lustig, whose analysis is
more general than ours in the sense that they do not just study autarky equilibria, applies in our
economy as well, provided we make assumptions in line with the assumptions they make, and
below, we demonstrate their irrelevance result in the context of our model. We have to somewhat
modify our model to allow the Krueger–Lustig special case. We derive closed-form solutions
for asset prices in our modified model, and we also slightly relax one of their assumptions. The
assumptions needed for the irrelevance result, even in their slightly relaxed form, are, however,
rather restrictive.

A different kind of result is obtained in Constantinides and Duffie [6]. They show that given
an aggregate consumption process and given specific preference parameters, it is (under a mild
condition) possible to find an individual endowment process that is consistent with the aggre-
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gate endowment process and that matches any asset-pricing facts. Thus, in contrast to Krueger
and Lustig’s argument that incomplete-markets settings are incapable (under some conditions)
of explaining asset prices, Constantinides and Duffie instead point to the model’s capability of
matching any asset prices. We comment on Constantinides and Duffie’s results by providing a re-
sult to the same effect: the incomplete-markets model is quite capable in principle of reproducing
many asset-price characteristics.

Krueger and Lustig [12]: In order to accommodate Krueger and Lustig’s assumptions, we will
modify our model first by allowing for the values of εh and ε� to vary across the aggregate
states. With a slight abuse of notation, let us denote the value of εs when the aggregate state
is z by εsz. The first assumption by Krueger and Lustig is that the individual endowment varies
proportionally with the aggregate states:

εhg

εhb

= ε�g

ε�b

. (18)

We let this ratio be denoted ξ > 1. This implies that εhg/ε�g = εhb/ε�b. To be consistent with the
previous notation, we let (εhg/ε�g)

σ = (εhb/ε�b)
σ = ω.

The second important assumption employed by Krueger and Lustig is that πss′|zz′ is inde-
pendent of z and z′ (notice, already at this point, that the key requirement in our quantitative
section, i.e., a large positive value of πhh|zg −πhh|zb , is ruled out). We denote this aggregate-state-
independent probability πss′ . This assumption implies that there exists a stationary distribution
over individual states. The first assumption, in turn, then implies that z only affects the aggre-
gate endowment: all endowments are scaled up and down as the economy experiences a boom
and a recession. We normalize the aggregate endowment in z = b to 1, so that the aggregate
endowment when z = g is ξ . Below we consider such a stationary situation.

The consumer’s first-order conditions for this economy implies

Qzz′

βφzz′
− λz′

sz

βφzz′ε−σ
sz

= πsh

(
εsz

εhz′

)σ

+ (1 − πs�)

(
εsz

ε�z′

)σ

.

As for our baseline model, it is straightforward to show that the borrowing constraint is bind-
ing for s = � consumers and that Qzz′ is determined by the first-order condition of the s = h

consumers.
With our assumptions on the endowment, the Arrow-security prices therefore become

Qgg = βφgg

[
πhh + (1 − πhh)ω

]
, Qbb = βφbb

[
πhh + (1 − πhh)ω

]
,

Qgb = βφgbξ
σ
[
πhh + (1 − πhh)ω

]
,

and

Qbg = βφbgξ
−σ

[
πhh + (1 − πhh)ω

]
.

From here on, define θ ≡ [πhh + (1 − πhh)ω].
Suppose that the current state is z = g. The (gross) bond return is

R
f
g = 1∑

z′=g,b Qgz′
= 1

βθ(φgg + φgbξσ )

and the (gross) expected return of a risky asset which provides Yg when z′ = g and Yb when
z′ = b is
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E
[
Re

gz′
] =

∑
z′=g,b

φgz′
Yz′

Pg

=
∑

z′=g,b φgz′Yz′∑
z′=g,b Qgz′Yz′

=
∑

z′=g,b φgz′Yz′

βθ(φggYg + φgbξσ Yb)
,

where Pz is the price of this asset when the aggregate state is z. From these, the multiplicative
risk premium (equity premium) can be calculated as

E[Re
gz′ ]

R
f
g

= (φgg + φgbξ
σ )

∑
z′=g,b φgz′Yz′

(φggYg + φgbξσ Yb)
.

An important fact here is that θ cancels out. All the parameters that appear on the right-hand side
are parameters determining aggregates.

When markets are complete in this economy, the representative agent consumes 1 when z = b

and ξ when z = g. The Lucas asset pricing formula implies that

Qgg = βφgg, Qbb = βφbb, Qgb = βφgbξ
σ ,

and

Qbg = βφbbξ
−σ .

Note that these differ from the incomplete-markets security prices only by the constant factor θ .
Considering z = g, the gross bond return is:

R
f
g = 1∑

z′=g,b Qgz′
= 1

β(φgg + φgbξσ )
.

The gross return on the risky asset is

E
[
Re

gz′
] =

∑
z′=g,b

φgz′
Yz′

Pg

=
∑

z′=g,b φgz′Yz′∑
z′=g,b Qgz′Yz′

=
∑

z′=g,b φgz′Yz′

β(φggYg + φgbξσ Yb)
.

Therefore, the multiplicative risk premium is

E[Re
gz′ ]

R
f
g

= (φgg + φgbξ
σ )

∑
z′=g,b φgz′Yz′

(φggYg + φgbξσ Yb)
,

which is the same as in the incomplete-markets case. Therefore, we established that the risk
premium is not affected by the market incompleteness, although the level of the risk-free rate is
affected. The case of z = b can be established similarly.

What is important in this derivation is that θ cancels out when we calculate the risk premium.
For this to occur, the value πhh + (1 − πhh)ω has to be common across different values of z′.
Incomplete markets matter for the risk premium in the Krueger–Lustig version of the model
when, for example, πhh|zg is different from πhh|zb . This observation is closely related to our
Proposition 2: πhh|zz′ is a key parameter for asset pricing in the incomplete-markets model.16

In the following, we relax the above assumptions. First, we relax the condition (18). When
the πss′ ’s are independent of z and z′, we can derive a necessary and sufficient condition for
the multiplicative equity premium to be the same across the complete-markets model and our
incomplete-markets model. To be precise, first note that when the πss′ ’s are independent of z,

16 In Proposition 2, the risk premium is zero when πhh|zg = πhh|zb . Here, the risk premium can still be positive when
πhh|zg = πhh|zb , since the εs ’s are different across different z′’s.
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there is a stationary distribution over the individual states. In fact, assuming that the total popu-
lation is one, the fraction of the consumers with state s (denoted χs ) is completely pinned down
by the πss′ ’s. For example, χh is

χh = π�h

1 − πhh + π�h

. (19)

For a stationary state, the following result is attained.

Proposition 3. Suppose that πss′|zz′ is independent of z and z′. Then, the multiplicative risk
premium for any asset whose return depends only on the aggregate state in the stationary equi-
librium is the same across the complete-markets model and our incomplete-markets model if and
only if the condition

πhhε
−σ
hg + (1 − πhh)ε

−σ
�g

πhhε
−σ
hb + (1 − πhh)ε

−σ
�b

= (π�hεhg + (1 − πhh)ε�g)
−σ

(π�hεhb + (1 − πhh)ε�b)−σ
(20)

holds.

Proof. See the Technical Appendix. �
Clearly, when the condition (18) is satisfied, (20) is automatically satisfied. The condition

(20) highlights the possibility that the irrelevance result would hold outside Krueger and Lustig’s
assumption: even when (18) is not satisfied, if the πss′ ’s satisfy the condition (20), the irrelevance
result still holds.

Second, we relax the independence assumptions on the transition probabilities. When the
πss′ ’s are not independent of z and z′, in general the distribution of the idiosyncratic states moves
around over time. In this case, an irrelevance result is difficult to come by, since aggregate con-
sumption is affected not only by the πss′ ’s and εs ’s but also by the fractions χs , which move over
time (note that the prices in the incomplete-markets model are not affected by the χs ’s). For χs

to be constant (or just a function of z), we need some restrictions on the transition probabilities
πss′|zz′ ’s. In particular, letting χsz denote the fraction of type-s consumers in state z,

χhzπhh|zz′ + (1 − χhz)π�h|zz′ = χhz′

has to be satisfied for any z and z′.17 When this condition is satisfied, a necessary and sufficient
condition for the irrelevance becomes (by the same logic as above)

πhh|zgε−σ
hg + (1 − πhh|zg)ε−σ

�g

πhh|zbε−σ
hb + (1 − πhh|zb)ε−σ

�b

= (χhgεhg + (1 − χhg)ε�g)
−σ

(χhbεhb + (1 − χhb)ε�b)−σ

for z = g,b. A notable feature of this condition is that it is possible to break the irrelevance result
even when εsg = εsb (when εsg = εsb, (20) is automatically satisfied).

Constantinides and Duffie [6]: Constantinides and Duffie [6] proposed a model where, sim-
ilarly to ours, the equilibrium outcome is autarky. They show that (with given preference pa-
rameters and aggregate endowment process), under some conditions, one can find an individual

17 This type of condition is used by Krusell and Smith [14] to make the unemployment rate a function only of the current
aggregate state.
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endowment process for a given process of strictly positive pricing kernels. Intuitively, autarky in
the Constantinides and Duffie model obtains since the individual shocks are permanent: when
individual shocks do not mean-revert, they cannot be insured against with assets that are contin-
gent only on aggregate states. Our framework yields the following result, which is similar in its
conclusion, though very different in its construction, since it relies on binding borrowing con-
straints and is valid for shocks that mean-revert (in fact recurring permanent shocks cannot be
accommodated with the simple finite-state Markov chain we consider).

Proposition 4. In the model with aggregate uncertainty developed in Section 3.1, for any pref-
erence parameters and any given set of values for mzz′ � β , all z and z′, we can find a set of
parameters for the individual income process given by the parameters πss′|zz′ , all s, s′, z and z′,
εh, and ε�, that generates these mzz′ values as an equilibrium outcome.

Proof. See the Technical Appendix. �
This result is different from Constantinides and Duffie’s in some respects. Since we do not

allow the individual endowment level to depend on the aggregate endowment level, our model
cannot condition mzz′ on the aggregate endowment level. That is, the aggregate endowment pro-
cess in Proposition 4 may not behave in a realistic manner. This feature can be alleviated if we
allow εs to depend on the aggregate endowment level. Such an assumption would (in principle)
make the analysis more complex, since it would no longer be the case that the high-endowment
consumer always prices the asset. Another difference is that our lower bound for mzz′ is β , while
their lower bound for the pricing kernel is β(Ct+1/Ct )

−σ (in our notation), where Ct is the
aggregate endowment at time t .

In the following proposition, we allow εh and ε� to vary, and we find a result that is closer to
Constantinides and Duffie’s. Here, we slightly change the notations to express the dependence
on the time and the history clearer.

Proposition 5. Denote the history of the aggregate state zt as zt ≡ {z0, z1, . . . , zt }. Let the pref-
erence parameters and the aggregate consumption process, Ct(z

t ), be given. Suppose that we
are given the values of the pricing kernel at each point in history, mt+1(z

t+1). Assume that
mt+1(z

t+1) satisfies mt+1(z
t+1) � β(Ct+1(z

t+1)/Ct (z
t ))−σ for all zt+1 and zt ⊂ zt+1, and

mt+1(z
t+1)

β(Ct+1(z
t+1)/Ct (zt ))−σ is bounded above. Then, for these given values of mt+1(z

t+1), we can find an

individual income process given by the idiosyncratic transition probabilities πt+1(st+1|st , zt+1)

(the probability that the endowment st+1 ∈ {h, �} realizes at time t + 1 given st and zt+1), high
endowment value εht (z

t ), low endowment value ε�t (z
t ), and an initial population of the con-

sumers across the endowment values that generates these mt+1(z
t+1) values as an equilibrium

outcome.

Proof. See the Technical Appendix. �
This means that, in terms of generality, our model with variable εss can perform as well as

Constantinides and Duffie’s [6] model in terms of matching asset-pricing facts, when we are
given the preference parameters, the aggregate consumption data, and the asset-price data.

Alvarez and Jermann [1,2]: Alvarez and Jermann analyze a setting with complete markets
against idiosyncratic risk but lack of commitment, endogenously generating solvency constraints
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reminiscent of our borrowing constraints. They show that, under certain conditions, an autarky
outcome is possible where asset prices are determined by a subset of consumers—those who
value the asset the most. In their setting with two types, the resulting asset prices parallel those
we derive, but with more types their prices can be shown to be quite different and, in fact, for
identical endowment processes to those we study here, deliver even higher bond prices than
we obtain. Intuitively, the difference derives from their borrowing being specific with regard to
individual states—which is possible since there are markets against idiosyncratic risks—whereas
our borrowing is unconditional.

4. More than two individual endowment states

In this section, we extend the model to incorporate the possibility of more than two possible
values of the individual endowment. Most of the results in the two-state case extend to this new
environment. The main difference is that now asset prices are not necessarily determined by the
richest (highest-endowment) consumers.

4.1. The economy without aggregate uncertainty

The next proposition generalizes Proposition 1 to the case where ε takes on N different values
{ε1, ε2, . . . , εN }, with ε1 < ε2 < · · · < εN , and where the utility function is more general.

Proposition 6. When ε takes on N different values {ε1, ε2, . . . , εN } and the consumer has an
increasing and strictly concave utility function u(c), the equilibrium bond price can be charac-
terized by:

q � q∗ ≡ max
i=2,...,N

Mi, (21)

where

Mi ≡ β

N∑
j=1

πij

u′(εj )

u′(εi)
.

The proof is omitted, since its steps are very similar to Proposition 1. Note that the smallest-
endowment consumers (ε = ε1) are excluded from the max in (21), since, as in the previous
case, they are always strictly borrowing-constrained. In this case, it may not be the case that the
highest-endowment consumers’ marginal rates of substitution determine q∗. If Mj is larger with
a j 	= N , a consumer with the endowment level j is a “pricer” of the bond.

4.1.1. Comparative statics
As is shown in the previous analysis, when the endowment takes on only two values, q∗ is

decreasing in πhh. This result can be generalized to the following proposition.

Proposition 7. Consider πij as well as π̂ij , where, for each i = 2, . . . ,N , π̂ij first-order stochas-
tically dominates πij . Then q∗ is smaller under π̂ij than under πij .

Proof. See the Technical Appendix. �
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Clearly, the comparative statics with respect to β are similar to those of the two-value en-
dowment case. The comparative statics with respect to σ , when u(c) = c1−σ /(1 − σ), are not
as straightforward (it is indeed straightforward if arg maxi=1,...,N Mi = N ). However, it turns out
nevertheless that q∗ is always increasing in σ .

Proposition 8. q∗ is increasing in σ .

Proof. See the Technical Appendix. �
The intuition is that, if a consumer with endowment i prices the bond, there are high weights

(either because π is large or (εi/εj ) is large) on the states where this consumer experiences large
consumption drops, and an increase in σ further increases the weights on these events.

4.1.2. Who prices the bond?
As is stated above, it is not necessarily the case that the highest-endowment consumer deter-

mines the bond price. A sufficient condition for this to be guaranteed can, however, be stated.

Proposition 9. Suppose that for all i = 2, . . . ,N − 1 and n = 1, . . . , i − 1,
n∑

j=1

πNj �
n∑

j=1

πij (22)

holds. Then, N ∈ arg maxi=2,...,N Mi .

Proof. See the Technical Appendix. �
The intuition behind (22) is that the highest-endowment consumers face the “largest risk”

of an endowment loss in the near future, thus giving them the strongest incentive to save for
precautionary reasons. A special case is where (22) holds for all n = 1, . . . ,N . That is, this would
mean that in terms of the distribution over the next-period state s′, {πis′ } first-order stochastically
dominates {πNs′ }.

Another special case is a type of “downward-rigid” wages. Let the state s = 1 be the unem-
ployment state and the other states as the employment states with different level of wages εs

(ε1 can be interpreted as unemployment income, home production, or the utility from leisure).
Suppose that from any employed state s = 2, . . . ,N , there is an equal probability of becoming
unemployed: π21 = π31 = · · · = πN1. Also suppose that the wage is “downward-rigid” except at
the very top: πij = 0 for i = 2, . . . ,N − 1 and j = 2, . . . , i − 1. It can easily be checked that this
Markov transition matrix satisfies (22). Thus, in such an economy too the highest-endowment
consumer’s marginal rates of substitution determine the bond price.

When (22) is not satisfied, the bond price may be determined by the consumers other than
the highest-endowment consumers. Consider the following example. Let N = 3 and the utility
functions be given by u(c) = c1−σ /(1 − σ). Now M2 and M3 are, by definition, given by

M2 = β

[
π21

(
ε2

ε1

)σ

+ π22 + π23

(
ε2

ε3

)σ ]
and

M3 = β

[
π31

(
ε3

ε1

)σ

+ π32

(
ε3

ε2

)σ

+ π33

]
.
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Here, there would be cases where M2 > M3. For example, when π33 is close to 1 and π21 is
close to 1, M3 is close to 1 and M2 is close to (ε2/ε1)

σ > 1; thus, the consumer with the middle
endowment level would determine the bond price, since this consumer faces a “larger risk” than
does the rich consumer. Moreover, M2 is increasing in ε2 and decreasing in ε3, while M3 is
decreasing in ε2 and increasing in ε3, and thus the comparative statics with respect to ε2 and ε3
would depend crucially on whether M2 is larger or smaller than M3.

4.1.3. Examples
This section illustrates two calibrated examples.

Example 1. Consider a wage process given by Castañeda, Díaz-Giménez, and Ríos-Rull [5].
To match the earnings and wealth distribution in the United States, they introduce four employ-
ment states with different productivity levels, expressed as the effective unit of labor. They also
introduce retirement and life cycle effect, but we ignore them here. Their productivity levels are
not exactly the same as the income because of the endogenous labor supply and the existence
of taxes. We abstract from these factors as well, and we use their calibrated productivity level
as the endowment level in our framework. There are four levels of the productivity: ε1 = 1.0,
ε2 = 3.15, ε3 = 9.78, and ε4 = 1061.00. The transition probabilities are (after adjusting for the
retirement probability):

⎛
⎜⎜⎝

π11 π12 π13 π14
π21 π22 π23 π24
π31 π32 π33 π34
π41 π42 π43 π44

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0.98429 0.00117 0.00399 0.00006

0.03140 0.96482 0.00378 0.00000

0.01534 0.00440 0.98006 0.00020

0.10903 0.00501 0.06249 0.82346

⎞
⎟⎟⎟⎠ .

We use σ = 1.5 and β = 0.924, following Castañeda, Díaz-Giménez, and Ríos-Rull [5]. Then,
when there is no borrowing/saving, Mi can be calculated by

Mi = β

(
πi1

(
ε1

εj

)−σ

+ πi2

(
ε2

εj

)−σ

+ πi3

(
ε3

εj

)−σ

+ πi4

(
ε4

εj

)−σ )
. (23)

From the above calibration, (M1,M2,M3,M4) = (0.91,1.05,1.36,3576.38). Therefore, the
highest-endowment consumer prices the bond in this example.

Example 2. Floden and Lindé [8] estimate the following AR(1) wage process (after controlling
for the observable characteristics and measurement errors) from

log(εt+1) = a + ρ log(εt ) + ηt+1, η ∼ (0, σ 2).

Floden and Lindé estimate that ρ = 0.9136 and σ = 0.2064. We use this process as the wage
process and approximate this by 4-state Markov process using Tauchen’s [26] method. We set
the maximum and minimum of log(ε) as plus and minus four (unconditional) standard deviation
of log(ε). This leads to ε1 = 1.0, ε2 = 3.87, ε3 = 14.99, and ε4 = 58.02 and

⎛
⎜⎜⎝

π11 π12 π13 π14
π21 π22 π23 π24
π31 π32 π33 π34
π41 π42 π43 π44

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0.99243 0.00757 0.00000 0.00000

0.00018 0.99844 0.00137 0.00000

0.00000 0.00137 0.99844 0.00018

0.00000 0.00000 0.00757 0.99243

⎞
⎟⎟⎟⎠ .
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We maintain the assumption of σ = 1.5 and β = 0.924. From (23), (M1,M2,M3,M4) = (0.92,

0.92,0.93,0.97). Again, the highest-endowment consumer prices the bond. Now the bond
price is at a reasonable value. This is because the highest-endowment consumer’s probability
of “falling” is very small. The equilibrium price changes if, for example, we use finer grid
points. If we approximate by six-point process with ε1 = 1.0, ε2 = 2.25, ε3 = 5.08, ε4 = 11.43,
ε5 = 25.76, and ε6 = 58.02, the resulting M’s are (M1,M2,M3,M4,M5,M6) = (0.83,0.89,

0.94,0.99,1.08,1.21).

4.2. The economy with aggregate uncertainty

Similarly to Proposition 6, it is possible to extend the model with aggregate uncertainty to
allow for N different values of ε ∈ {ε1, ε2, . . . , εN }, where ε1 < ε2 < · · · < εN . Again, the utility
function can also be generalized to any increasing and strictly concave function u(c). In this case,
the security price Qzz′ is, assuming again that it is determined by the lower bound, given by

Qzz′ = φzz′ max
i=2,...,N

Mi|zz′ ,

where

Mi|zz′ ≡ β

N∑
j=1

πij |zz′
u′(εj )

u′(εi)
.

Note that it is possible that Qzz′ can be based on the marginal rates of substitution of different
consumers for different aggregate states (z, z′). Therefore, it is possible, for example, that qz =∑

z′ Qzz′ is stable across different zs even though the individual values for
∑

z′ φzz′Mi|zz′ are
volatile.

To illustrate this point in more detail, let us consider the following example:

[πij |zz′ ] =
⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ for z = g and z′ = g,b,

[πij |zz′ ] =
⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ for z = b and z′ = g,b.

Here, when z = g, ε1 and ε2 switch with each other, and when z = b, ε2 and ε3 switch with each
other. It can readily be verified that

(M2|gz′ ,M3|gz′) =
(

β
u′(ε1)

u′(ε2)
, β

)
,

and that

(M2|bz′ ,M3|bz′) =
(

β
u′(ε3)

u′(ε2)
, β

u′(ε2)

u′(ε3)

)
.

Assume that u′(ε2)/u
′(ε3) = u′(ε1)/u

′(ε2) = κ(> 1). Then, the bond price would satisfy qz =
βκ and it is independent of z, while at the individual level(∑

z′
φzz′M2|gz′ ,

∑
z′

φzz′M3|gz′
)

=
(

β
u′(ε1)

u′(ε2)
, β

)



Author's personal copy

840 P. Krusell et al. / Journal of Economic Theory 146 (2011) 812–844

and (∑
z′

φzz′M2|bz′ ,
∑
z′

φzz′M3|bz′
)

=
(

β
u′(ε3)

u′(ε2)
, β

u′(ε2)

u′(ε3)

)

are different across z = g,b. In this example, the individuals with ε1 are always borrowing-
constrained, ε2 individuals are constrained only when z = b, and ε3 individuals are constrained
only when z = g. Here, all individuals are strictly borrowing-constrained at some point in time,
while the risk-free rate is stable over time.

5. Conclusion

In this paper, we analyzed a variant of the Huggett [11] model in order to illustrate how
asset pricing may depend on asset-market incompleteness: it focuses on the case when direct
insurance against idiosyncratic risks is completely unavailable but insurance against aggregate
risk is fully available (so that there is, at each point in time, one asset for each aggregate state
next period). In so doing, we also extend the basic Huggett model to one with many idiosyncratic
states, aggregate uncertainty, and a general utility function. The limitation of our setting is clear—
we require the borrowing constraint to be maximally strict, implying an autarkic equilibrium—
but this limitation is also a strength in that it allows closed-form solutions. Because we adopt
an extreme borrowing constraint, we can compute analytical expressions for asset prices in the
Huggett model that apply as limits when the borrowing constraint approaches its maximally
strict value. Our closed-form solutions allow us to conduct comparative statics straightforwardly.
For example, we gain an understanding of how asset prices are influenced by the dependence
of individual transition probabilities (and hence idiosyncratic risk) on the aggregate state. Here,
we draw a connection to the work by Krueger and Lustig [12] by deriving their main result
(under slightly more general assumptions) as a special case. We also derive a result similar to
the one in Constantinides and Duffie [6], of the sort “give me any asset prices and I will find
an endowment process in this economy generating those prices,” though, unlike them, we do
not need to assume that idiosyncratic shocks are permanent. Such a result, of course, has to be
subjected to quantitative scrutiny, and we argue that our model with tight borrowing constraints
can indeed generate realistic-looking asset prices in many (though not all) respects when the
process for idiosyncratic risk is calibrated in a quantitatively reasonable way.

Most of our results are derived in a very simple setting: there are only two states for idiosyn-
cratic risk, subject to a stationary Markov chain, and these states are the same independently of
the aggregate state. We also consider simple extensions of this case, the case of having N shock
values being particularly interesting, but do not attempt a broad generalization. Generalizations
are possible, however, and should be straightforward. We could also consider the case where in-
dividual shocks are permanent (as in Constantinides and Duffie’s work) and where the support of
the shocks is more complex and aggregate-state dependent. Since our equilibrium construction—
indeed the main “trick” of the paper—is to set the borrowing constraints on all assets so tightly
as to (just) induce autarky as an equilibrium, it is a much more ambitious extension to consider
production and, in particular, a means of physically saving/investing. In the latter case, how-
ever, similar equilibrium constructions are sometimes possible, as in Krusell and Smith [13] and
Leduc [16], where a model with only capital is first solved—in a nontrivial manner, involving
numerically computed solutions—and where other assets, such as bonds, with maximally strict
borrowing constraints are then priced along the same lines as in this paper. Finally, it should be
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mentioned that all of our main results are derived in the case where assets are in zero net sup-
ply. As Section 2.5 shows, if assets are in net positive supply, one is in some sense further from
the asset prices we derive in this paper based on maximally tight borrowing constraints, since a
positive supply can equivalently be thought of as a looser borrowing constraint.

Appendix A

This appendix gives the proof of Proposition 11, which builds on Lemmas 1 and 2 and Propo-
sition 10.

Lemma 1. When the borrowing constraint a = 0 and the bond price is q̃ < q∗, the bond demand
a′ is strictly positive for a consumer with s = h and a = 0.

Proof. Consider the first-order condition for a consumer with s = h and a = 0:

q
(
εh − qa′)−σ = β

(
πhhV

′
h

(
a′;q) + (1 − πhh)V

′
�

(
a′;q)) + λh.

This is satisfied with equality with a′ = 0 and λh = 0 when q = q∗. Here, the value functions are
explicitly indexed with q to clarify the dependence on q . Thus, for q̃ < q∗,

q̃(εh)
−σ < q∗(εh)

−σ

= β
(
πhhV

′
h

(
0;q∗) + (1 − πhh)V

′
�

(
0;q∗))

= β
(
πhh(εh)

−σ + (1 − πhh)(ε�)
−σ

)
� β

(
πhh

(
εh − q̃a′

h(0; q̃)
)−σ + (1 − πhh)

(
ε� − q̃a′

�(0; q̃)
)−σ )

= β
(
πhhV

′
h(0; q̃) + (1 − πhh)V

′
�(0; q̃)

)
� β

(
πhhV

′
h(0; q̃) + (1 − πhh)V

′
�(0; q̃)

) + λh

for any λh � 0. Here, a′
s(0; q̃) is the decision rule for a′ when the current income state is s,

the current asset holding is 0, and the bond price is q̃ . The first line follows from q̃ < q∗. The
second and the third lines are from the definition of q∗. The fourth line comes from the fact that
a′
s(0; q̃) � 0 given the borrowing constraint. The fifth line is from the envelope condition at a = 0

under the bond price q̃ . The final line follows from λh � 0. Therefore, the first-order condition
for this consumer is not satisfied with a′ = 0 when q̃ < q∗. Moreover, since the utility function
and the value function are both strictly concave in a (strict concavity of the value function can
be shown in a standard manner), the bond demand a′ has to be strictly positive to satisfy the
first-order condition. �
Lemma 2. When the borrowing constraint a = 0 and bond price is q̃ > q∗, the borrowing con-
straint is strictly binding (the Lagrange multiplier on the borrowing constraint is strictly positive)
for a consumer with a = 0.

Proof. Consider a sequence of functions Vs(a;q : i) where i = 0,1,2, . . .:

Vs(a; q̃ : i + 1) = max
a′

(a + εs − q̃a′)1−σ

1 − σ
+ β

[
πshVh

(
a′; q̃ : i) + (1 − πsh)V�

(
a′; q̃ : i)]

subject to

a′ � 0.
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Let Vs(a; q̃ : 0) = 0. The mapping from Vs(a; q̃ : i) to Vs(a; q̃ : i + 1) is a contraction mapping.
For i = 0, clearly the borrowing constraint is strictly binding for a = 0. It is also straightforward
to check that it is the case for i = 1 when q̃ > q∗. Now suppose that the borrowing constraint is
(weakly) binding for the optimization problem for some i = k � 1. Below we will show that it is
also strictly binding for the optimization problem for i = k + 1.

Consider the first-order condition for a consumer with a = 0:

q
(
εs − q̃a′)−σ = β

(
πshV

′
h

(
a′; q̃ : k) + (1 − πsh)V

′
�

(
a′; q̃ : k)) + λs.

Suppose, by contradiction, that this holds with λs = 0 and some a′ = ā′ � 0 when q = q̃ . Then,

q̃
(
εs − q̃ā′)−σ = β

(
πshV

′
h

(
ā′; q̃ : k) + (1 − πsh)V

′
�

(
ā′; q̃ : k))

� β
(
πshV

′
h(0; q̃ : k) + (1 − πsh)V

′
�(0; q̃ : k)

)
= β

(
πsh(εh)

−σ + (1 − πsh)(ε�)
−σ

)
� q∗(εs)

−σ

and this is a contradiction since q∗(εs)
−σ < q̃(εs − q̃ā′)−σ . The first line is from the supposition.

The second line comes from the concavity of the value function. The third line follows from the
envelope condition and the optimal decision rule of i = k. The fourth line is from the definition
of q∗. From the contraction mapping theorem, the policy function converges pointwise, and
therefore at the unique fixed point of Vs the borrowing constraint is weakly binding for a = 0
consumers. Running through the above argument again with this fixed point establishes that the
borrowing constraint is in fact strictly binding. �
Proposition 10. Suppose that πhh > π�h. Consider a sequence of economies with different values
of a < 0. Suppose that an equilibrium bond price exists for each a, and denote it q(a). If q(a)

converges to a limit as a → 0 from below, the limit of q(a) is q∗.

Proof. Label the limit q̃ . We show that q̃ = q∗ by ruling out q̃ < q∗ and q̃ > q∗. Suppose first
that q̃ < q∗. Let w be the optimal amount of steady-state saving a′ for a consumer with s = h

and a = 0 in an economy where q = q̃ and a = 0. Lemma 1 shows that w > 0. Since the decision
rule is continuous in q and a, in the neighborhood of a = 0, the optimal saving of a consumer
with s = h and a = a is strictly positive. Denote a′

h(a;q(a), a) the steady-state bond demand
for a consumer with s = h and asset a when the bond price is q(a) and the borrowing constraint
is a. With this notation, a′

h(0;q(0),0) = w. Since a′
h(a;q(a), a) is continuous in all three terms,

we can choose a value â < 0 so that

a′
h

(
a;q(a), a

)
>

w

2
for all a ∈ [â,0].

Then, for an economy with the borrowing constraint a ∈ [â,0], the total bond demand by the
consumers with s = h is larger than S ≡ wχh/2 (where χh is the total mass of the consumers
with s = h), since the bond demand is increasing in a. For s = �, the total bond demand can be
negative but it is bounded below by aχ� (where χ� is the total mass of consumers with s = �).
Since S + aχ� > 0 for a close enough to zero, the bond market cannot be in equilibrium.

Second, suppose that q̃ > q∗. Lemma 2 shows that a consumer with a = 0 is strictly borrow-
ing constrained (the Lagrange multiplier on the borrowing constraint is strictly positive) when
q = q̃ and a = 0. From the continuity of the optimal decision in q and a (and since q(a) is
convergent), a consumer with a = 0 is still borrowing-constrained under a < 0 and q(a) if a is
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sufficiently close to zero. Pick such an a and call it ā. From the monotonicity of the decision
rules of a′ in a, all the consumers with a � 0 are borrowing constrained when a = ā. Huggett
[11] (Theorem 2) shows that when q > β and πhh > π�h, the stationary distribution of the in-
dividual states is unique. Here, with a = ā, everyone having a = ā is a stationary distribution,
and from the uniqueness (q̃ > β holds since q∗ > β), this is the only candidate for the stationary
equilibrium. But this cannot be compatible with the bond market equilibrium condition when
a = ā < 0, since the bond demand has to sum up to zero in equilibrium. �

The following proposition establishes the existence and the convergence of q(a) with an ad-
ditional assumption.

Proposition 11. Suppose that πhh > π�h and σ > 1. Then the equilibrium bond price q(a) exists
for a < 0 sufficiently close to zero, and a sequence of equilibrium prices q(a) converges to q∗ as
a → 0 from below.

Proof. To show existence, we can appeal to Miao [23] (Theorem 4.1). It is straightforward to
check that the assumptions required are satisfied given the above assumptions when a is suffi-
ciently close to zero. Note that the equilibrium price is not necessarily unique. However, from
Miao [23] (Theorem 3.6), the ergodic measure of the bond holding is unique for a given (q, a).
Moreover, Miao [23] (Theorem 3.9) shows that the aggregate excess demand of the bond gen-
erated from this ergodic measure is continuous in (q, a) and increasing in a. Denote by e(q, a)

the excess demand for a given (q, a). We also know that e(q, a) → a as q → ∞ (note that one
can find a large enough q for any given a to make a′ = a the optimal choice and then use a
similar logic as in the second part of Proposition 10) and e(q, a) → ∞ as q → β (Miao [23]
(Theorem 3.7)). Therefore, the set of equilibrium prices (that is, {q|e(q, a) = 0}) is a compact
set for a given a. Denote it Q(a).

Let q̄(a) ≡ max{q | q ∈ Q(a)} and q(a) ≡ min{q | q ∈ Q(a)}. From the above argument, at
q = q̄(a) and q = q(a), e(q, a) is decreasing in q . Since e(q, a) is increasing in a for a given q ,
it follows that both q̄(a) and q(a) are increasing in a.

Since q̄(a) is monotonically increasing in a, in order to show that q̄(a) is convergent, it is
sufficient to show that q̄(a) does not diverge to infinity as a → 0. Suppose, by contradiction, that
q̄(a) → ∞ as a → 0. This implies that there exists an A < 0 such that q̄(a) > q∗ for all a � A.
However, with the same logic as in the second part of Proposition 10, for a sufficiently close to
zero, such a q̄(a) cannot satisfy the bond-market equilibrium condition. The same logic can be
applied to show the convergence of q(a).

Thus far we have shown that q̄(a) and q(a) are both convergent. Using q̄(a) and q(a) as the
sequences of prices in Proposition 10, it follows that q̄(a) → q∗ and q(a) → q∗ as a → 0 from
below. Thus, any equilibrium price sequence q(a) converges to q∗ as a → 0 from below. �
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