Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations

Summary

Estimating the Tradeoff Between Risk Protection and Moral Hazard

with a Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Yale University Department of Economics and NBER

October 2012

Motivation: The Tradeoff Estimating the Tradeoff Between Risk Protection and Moral Hazard with a Nonlinear Budget Set Model of Health Insurance

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations

Summary

- Expanding insurance increases welfare gain from risk protection and welfare loss from moral hazard
 - Theoretical work: Arrow (1963), Pauly (1968), Zeckhauser (1970), Ehrlich and Becker (1972)
- Sign and magnitude of tradeoff is an empirical question
 - Empirical work considers both sides of the tradeoff separately
 - Moral hazard: Manning et al. (1987), Newhouse (1993), Eichner (1997,1998), Kowalski (2009)
 - Risk protection: Feldstein (1973), Feldman and Dowd (1991), Feldstein and Gruber (1995), Manning and Marquis (1996) Finkelstein and McKnight (2008), Engelhardt and Gruber (2010)
- I develop and estimate a model to examine both sides of the tradeoff simultaneously

Motivation: Nonlinear Budget Set Estimating the Tradeoff Between Risk Protection and Moral Hazard with a Nonlinear Budget Set Model of Health Insurance

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations

Summary

- Nonlinearities (deductible, coinsurance, stoploss) affect moral hazard and risk protection
 - Nonlinearities important for policy
 - Medicare Part D "Doughnut hole", discounts added by ACA
 - ACA requires health insurance, many individuals will purchase private plans with nonlinearities
 - Health savings accounts encourage private high deductible plans
 - Feldstein (2006): \$1,000 deductible vs. 50% cost sharing to \$2,000?
- My estimates inform tradeoff in existing plans and optimal plan structure
- Model builds on Burtless and Hausman (1981) and Hausman (1985). Adds risk protection, more than one nonconvex kink, and new estimator

Graphical Preview of Model

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Bunching or Dispersion? Actual and Predicted Spending

Outline

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations

Summary

2 **Model Derivation**

Results and Simulations 4

Summary

Two Period Model

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Two Period Model

Calculating the Tradeoff Specification of Functional Form

Estimation

Results and Simulations

Summary

- First period: choice of plan, before shock is realized
 - potential gains from risk protection
 - deadweight loss from moral hazard taken into account-"selection on moral hazard"
- Second period: choice of medical consumption, after shock is realized
 - no gains from risk protection
 - deadweight loss from moral hazard
- Solve the model backwards

First Period: Plan Choice

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Two Period Model

Calculating the Tradeoff Specification of Functional Form

Identification

Estimation

Results and Simulations

Summary

• Choose plan that maximizes expected utility given expect health shock

Second Period: The Agent's Problem

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Two Period Model

Calculating the Tradeoff Specification of Functional Form Identification

Estimation

Results and Simulations

Summary

Maximize utility subject to a nonlinear constraint

$$v(y,p) = \max_{Q:pQ \le y} U(Q,A|Z,\eta_r)$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

- Q total \$ on medical care (individual + insurer)
- A total \$ on all other goods
- v indirect utility
- U direct utility
- y virtual income
- p marginal price per dollar of medical care
- Z vector of individual characteristics
- η_r realized health shock

Calculating the Tradeoff DWL from Moral Hazard

Calculating the Tradeoff DWL from Moral Hazard Using Equivalent Variation

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Two Period Model Calculating the Tradeoff

Specification of Functional Form Identification

Estimation

Results and Simulations

Summary

Second period: Indifference between plan *j* and no insurance for realized shock η_r for each individual *i*

$$U(Q_{ijr}, y_{ijr} - p_{ijr}Q_{ijr} - \omega_{ijr}) = U(Q_{i,noins,r}, Y - Q_{i,noins,r})$$

$$DWL_{ijr} = INS_{ijr} - \omega_{ijr}$$

First period:

$$DWL_{ij} = \int (INS_{ijr} - \omega_{ijr})f(\eta_i)d\eta_i$$

No insurance is a normalization with a simple interpretation. Could also compare each plan *j* to a different standard plan.

Calculating the Tradeoff Risk Protection Premium (RPP) Using Equivalent Variation

Budget Set Model of Health Insurance Amanda E.

Nonlinear

Kowalski Introduction

Model Derivation

Two Period Model Calculating the Tradeoff

Specification of Functional Form Identification

Estimation

Results and Simulations

Summary

First period: Indifference between average utility in plan j and average utility under no insurance

$$\int U(Q_{ijr}, y_{ijr} - p_{ijr}Q_{ijr} - \pi_{ij})f(\eta_i)d\eta_i = \int U(Q_{i,noins,r}, Y - Q_{i,noins,r})f(\eta_i)d\eta_i$$

$$RPP_{ij} = \pi_{ij} - \int (\omega_{ijr}) f(\eta_i) d\eta_i$$
$$DWL_{ij} = \int (INS_{ijr} - \omega_{ijr}) f(\eta_i) d\eta_i$$

$$RPP_{ij} - DWL_{ij} = \pi_{ij} - \int (INS_{ijr})f(\eta_i)d\eta_i$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

This tradeoff will vary across individuals.

Specification of Utility or Demand

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation Two Period Model Calculating the Tradeoff

Specification of Functional Form

Identification

Estimation

Results and Simulations

Summary

• Need to specify either demand or utility

Roy's identity relates indirect utility to demand:

$$\frac{\partial v(y_{sj}, p_s)/\partial p_s}{\partial v(y_{sj}, p_s)/\partial y_{sj}} = Q(y_{sj}, p_s)$$

subject to the Slutsky condition, which requires Hicksian demand to be downward sloping

- I specify a functional form for utility
- Existing literature specifies utility *and* demand, and both functional forms might not be mutually consistent

Specification of Utility/Demand

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation Two Period Model Calculating the Tradeoff

Specification of Functional Form Identification

Estimation

Results and Simulations

Summary

On a given segment *s*, given the following specification of the utility function:

$$U(Q_{is}, A_{is}) = \begin{cases} -\exp(-\gamma A_{is}) + \frac{Q_{is}[\ln(Q_{is}/\alpha_i) - 1]}{\ln\beta} & \text{if } (Q_{is} > 0, \alpha_i > 0) \\ -\exp(-\gamma y_{ia}) & \text{otherwise} \end{cases}$$

and the budget set:

als.

$$A_{is} = y_{is} - p_s Q_{is}, \ 0 \leq \underline{Q}_{is} \leq Q_{is} \leq \overline{Q}_{is}$$

Marshallian demand within segment *s* is given by:

$$Q_{is} = \min(\max(\alpha_i \beta^{\lambda_i p_s}, \overline{Q_{is}}) \underline{Q_{is}})$$

•
$$\alpha_i = Z_i \sigma + \eta_i$$

• $\eta_{ir} \sim N(\mu, \sigma^2)$, μ and σ^2 to be estimated

• $\lambda_i = \gamma \exp(-\gamma A_{is})$ marginal utility of spending on A_{is}

Sources of Identification

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

> Two Period Model Calculating the Tradeoff Specification of Functional Form

Identification

Estimation

Results and Simulations

Summary

General framework

- Choice of plan
- Choice of spending conditional on plan
- Variation in the data
 - Marginal price variation within and across budget sets
 - Observed individual heterogeneity in covariates
 - Variation in medical expenditure across individuals
- Functional form
 - Budget set
 - Utility/Demand
 - Distribution of unobserved individual heterogeneity

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

Graphical Depiction of Identification

Linearize nonlinear budget segment for each price. Variation in quantities consumed at two or more linear prices identifies Marshallian demand.

Amanda E. Kowalski

Introduction

Model Derivation Two Period Model Calculating the Tradeoff Specification of Functional Form

Estimation

Results and Simulations

Summary

16/40

NONLINEAR PRICES LINEAR PRICES A (\$ on all other goods) A (\$ on all other goods) $Y-m = y_a$ $Y-m = y_a$ $p_s = -slope = F$ $p_c = -slope = 0$ y_b = -slope = C Y-m -D -slope = 0 $Y-m-S = v_c$ -slope = CD $\{[(S - D)/C] + D/F\}$ $\{[(S - D)/C] + D/F\}$ р P_a=F P_b=C $P_c=0$ $\{[(S - D)/C] + D/F\}$ D DEMAND

Estimation Simulated Minimum Distance Estimator

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Data

Simulated Minimum Distance

Summary Statistics Reduced Form MH and AS

Results and Simulations

Summary

Does not require likelihood

- Minimizes distance between actual and predicted spending
- Second nonconvex kink eliminates ordering of likelihood present in traditional NLBS model, making likelihood much more complicated
- Allows for flexible specification of distribution of individual heterogeneity
 - Uses numerical integration

Simulated Minimum Distance Estimator Estimation Algorithm

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Data

Simulated Minimum Distance

Summary Statistics Reduced Form MH and AS

Results and Simulations

Summary

18/40

Given starting values of θ and the data matrix, which includes actual spending Q_i , the algorithm for the simulated distance estimator is as follows:

For each individual *i* of *N*, for each plan *j* of *J*, for each repetition *r* of *R*, draw η_{ir} ~ N(μ, σ²). For each segment s ∈ {a, b, c}, predict

$$\widehat{Q_{ijrs}} = \arg \max_{Q_s} U_{ijrs}(Q_s, A_s) : p_{sj}Q_{ijrs} \le y_{ijs}, \underline{Q_{sj}} \le Q_{sj} \le \overline{Q_{sj}}$$

and the associated $U_{ijrs}(Q_s, A_s)$. Calculate the segment that yields the maximum utility for each i, j, r combination. Retain as $\widehat{Q_{ijr}}$.

Calculate the plan *j* that yields the maximum expected utility over *r*. Retain as Q_i.

Solve

$$\widehat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} \left(\min(Q_i, \psi) - \min(\widehat{Q}_i, \psi) \right)^2.$$

Data

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation Simulated Minimum Distance

Summary Statistics Reduced Form MH and AS

Results and Simulations

Summary

2004 Medstat Data

- One firm in the retail trade industry
- 4 offered plans, vary only by deductible and stoploss
- People insured in families of three or fewer
- 101,343 individuals in estimation sample
- Limitations
 - Do not observe income use median income in zip code
 - Do not observe premium calculate as average expenditure plus 25% loading

Plan Characteristics

Ionlinear udget Set Model of Health nsurance manda E.			Fraction before	Deduct		Stoploss
Kowalski			Deduct	(1000s)	Coins	(1000s)
	Plans		F	D	С	S
roduction	Offered	\$350 Deductible	1	0.35	0.2	2.1
odel		\$500 Deductible	1	0.5	0.2	3
rivation		\$750 Deductible	1	0.75	0.2	4.5
timation		\$1,000 Deductible	1	1	0.2	6

Summary Statistics Reduced Form MH and AS

Simulated Minimum Distance Data

D

Results and Simulations

Summary

• Also a family deductible

 Must restrict sample to families of three or fewer because they are not affected by the family deductible

Estimation of Plan Choice Some Plans Completely Dominated as in Handel (2009)

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation Simulated Minimum Distance

Summary Statistics Reduced Form MH and AS

Results and Simulations

Summary

- Predict plan choice with multinomial logit model, using last year's plan (excluded from demand estimation)
- Produce estimated probabilities probin for each individual *i* for each plan *j* to be used in simulated minimum distance estimation
- Only consider class of counterfactual simulations in which all agents are in the same plan

Simulated Minimum Distance Estimator Estimation Algorithm with Multinomial Plan Choice

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation Simulated Minimum Distance

Summary Statistics Reduced Form MH and AS

Results and Simulations

Summary

Given starting values of θ and the data matrix, which includes actual spending Q_i , the algorithm for the simulated distance estimator is as follows:

For each individual *i* of *N*, for each plan *j* of *J*, for each repetition *r* of *R*, draw η_{ir} ~ N(μ, σ²). For each segment s ∈ {a, b, c}, predict

$$\widehat{Q_{ijrs}} = \arg \max_{Q_s} U_{ijrs}(Q_s, A_s) : p_{sj}Q_{ijrs} \le y_{ijs}, \underline{Q_{sj}} \le Q_{sj} \le \overline{Q_{sj}}$$

and the associated $U_{ijrs}(Q_s, A_s)$. Calculate the segment that yields the maximum utility for each i, j, r combination. Retain as $\widehat{Q_{ijr}}$.

2 Solve

$$\widehat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} \left(\min(Q_i, \psi) - \min(\sum_{\substack{r=1\\ i \in \mathcal{P}}} \sum_{j=1}^{R} \widehat{prob}_{ij} \widehat{Q_{ijr}}, \psi) \right)^2$$

Summary Statistics

Budget Set			By Deductible			
Model of	Full Sample	All Plans	\$350	\$500	\$750	\$1,000
Health	Spending/1,000	2.335	2.637	1.779	1.412	1.147
Insurance	Income/1,000	40.824	40.876	40.836	40.545	40.538
Amanda F	Virtual Income/1,000	37.900	37.491	38.764	39.068	39.405
Kowalski	Price	0.650	0.598	0.731	0.815	0.872
i towalola	Male	0.373	0.336	0.443	0.464	0.532
	Salary	0.077	0.072	0.101	0.089	0.087
ntroduction	Census Division 2 - Middle Atlantic	0.032	0.031	0.028	0.033	0.038
4 - 1 - 1	Census Division 3 - East North Central	0.151	0.144	0.176	0.176	0.164
	Census Division 4 - West North Central	0.101	0.089	0.143	0.138	0.128
erivation	Census Division 5 - South Atlantic	0.264	0.281	0.215	0.222	0.215
etimation	Census Division 6 - East South Central	0.139	0.147	0.124	0.117	0.107
Sumation	Census Division 7 - West South Central	0.206	0.206	0.210	0.196	0.202
Simulated Minimum Distance	Census Division 8 - Mountain	0.067	0.062	0.070	0.080	0.093
Data	Census Division 9 - Pacific	0.023	0.023	0.020	0.019	0.033
Summary Statistics	Age	42.187	42.943	41.072	39.327	39.110
Reduced Form MH	Missing 2003	0.475	0.436	0.566	0.598	0.604
and AS	2003 Spending*Nonmissing 2003	0.989	1.187	0.551	0.388	0.297
han all a nad	\$350 Deductible in 2003*Nonmissing 2003	0.427	0.556	0.050	0.079	0.070
tesuits and	\$500 Deductible in 2003*Nonmissing 2003	0.052	0.005	0.374	0.037	0.019
amulations	\$750 Deductible in 2003*Nonmissing 2003	0.014	0.001	0.004	0.276	0.009
ummary	\$1,000 Deductible in 2003*Nonmissing 2003	0.033	0.002	0.006	0.010	0.297
ammary	In Family of 2	0.189	0.170	0.240	0.247	0.244
	In Family of 3	0.085	0.070	0.119	0.130	0.131
	N	101,343	74,933	12,095	4,140	10,175
	Share of N	1.000	0.739	0.119	0.041	0.100

Nonlinear

Ko Introd Mode Deriv Estim Simula Distan Summ Reduc and A Resu Simu Sumr

Moral Hazard and Adverse Selection Reduced Form Evidence

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation Simulated Minimum Distance Data

Summary Statistics Reduced Form MH and AS

Results and Simulations

Summary

Positive correlation test

- Positive correlation between plan generosity and spending
- Following Chiappori and Salanie (2000)
- Evidence of MH and/or AS
- "Unused observables test"
 - Positive correlation between observable characteristic and plan generosity AND
 - Positive correlation between observable characteristic and spending
 - Following Finkelstein and Poterba (2004)
 - Evidence of AS (with or without MH)
- Limitations
 - These tests do not give magnitudes of MH or AS
 - Cannot predict spending in counterfactual nonlinear plans
 - Do not give welfare impact of interventions aimed at reducing MH and/or AS

Model will address these limitations.

・ロト・西ト・モート 山田 うらぐ

Reduced Form Examination of Moral Hazard and Adverse Selection Positive Correlation Test

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation Simulated Minimum Distance Data

Summary Statistics Reduced Form MH

Results and Simulations

and AS

Summary

Positive Correlation Test (Null Hypothesis: No Moral Hazard or Adverse Selection)						
pendent Variable: Spending						
Variable	Estimate		idence			
Deductible	-2.46 ***	-2.73	-2.18			
Regression includes constant (coefficient not reported	d).					
N=101,343 R Squared = 0.0030.						
***p<0.01, **p<0.05,*p<0.1						

- We see positive correlation between deductible and generosity (lower deductible is higher generosity)
- Mean spending in each plan tells the same story

Unused Observables Test

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation Simulated Minimum Distance Data Summary Statistics

Reduced Form MH and AS

Results and Simulations

Summary

Unused Observables Test (Null Hypothesis: No Adverse Selection, With or Without Moral Hazard)
Dependent Variable:
Spending

Dependent vanable.	opending			Deductible			
	Separate	Separate Regressions		Separate Regressions			
Variable	Estimate	95% con	fidence	Estimate	95% con	fidence	
Income/1,000	0.0007	-0.0026	0.0041	-0.0001 **	-0.0002	0.0000	
Male	-1.0535 ***	-1.1702	-0.9369	0.0559 ***	0.0533	0.0585	
Salary	-0.5603 ***	-0.7717	-0.3488	0.0179 ***	0.0132	0.0226	
Census Division 2 - Middle Atlantic	-0.7758 ***	-1.0993	-0.4524	0.0129 ***	0.0057	0.0201	
Census Division 3 - East North Central	0.3405 ***	0.1827	0.4983	0.0132 ***	0.0097	0.0167	
Census Division 4 - West North Central	0.0888	-0.0983	0.2760	0.0340 ***	0.0299	0.0382	
Census Division 5 - South Atlantic	0.1035	-0.0246	0.2317	-0.0247 ***	-0.0276	-0.0219	
Census Division 6 - East South Central	-0.1932 **	-0.3567	-0.0297	-0.0228 ***	-0.0264	-0.0191	
Census Division 7 - West South Central	0.0151	-0.1246	0.1549	-0.0021	-0.0053	0.0010	
Census Division 8 - Mountain	-0.3339 ***	-0.5599	-0.1080	0.0312 ***	0.0262	0.0362	
Census Division 9 - Pacific	0.0325	-0.3432	0.4082	0.0227 ***	0.0143	0.0310	
Age	0.0801 ***	0.0755	0.0846	-0.0017 ***	-0.0018	-0.0016	
Age Squared/100	0.0971 ***	0.0918	0.1025	-0.0021 ***	-0.0022	-0.0020	
Age Cubed/1,000	0.1445 ***	0.1366	0.1524	-0.0032 ***	-0.0034	-0.0030	
Missing 2003	-0.1399 **	-0.2657	-0.0141	0.0376 ***	0.0348	0.0404	
2003 Spending*Nonmissing 2003	0.3058 ***	0.2963	0.3153	-0.0021 ***	-0.0023	-0.0019	
2003 Spending*Nonmissing 2003 Squared/1,000	0.6806 ***	0.6233	0.7379	-0.0019 ***	-0.0032	-0.0007	
2003 Spending*Nonmissing 2003 Cubed/1,000,000	0.6628 ***	0.5055	0.8200	-0.0013	-0.0048	0.0022	
\$500 Deductible in 2003*Nonmissing 2003	-0.4816 ***	-0.6878	-0.2753	0.0754 ***	0.0708	0.0799	
\$750 Deductible in 2003*Nonmissing 2003	-0.8903 ***	-1.2689	-0.5117	0.2898 ***	0.2816	0.2980	
\$1,000 Deductible in 2003*Nonmissing 2003	-1.0796 ***	-1.3325	-0.8267	0.5254 ***	0.5207	0.5300	
In Family of 2	0.3858 ***	0.2414	0.5302	0.0357 ***	0.0325	0.0389	
In Family of 3	-0.5806 ***	-0.7835	-0.3778	0.0566 ***	0.0521	0.0611	

All regressions include constants (coefficients not reported).

N=101,343 for all regressions. R squared =0.0444 in spending single regression. R squared=0.3217 in deductible single regression. ***p<0.01, **p<0.05,*p<0.1

Doductible

Estimated Coefficients

Nonlinear Budget Set Model of Health Insurance Amanda E.

Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations

Estimated Coefficients Elasticities Goodness of Fit Statistics Simulation Results Implications for

Optimal Linear Insurance

Summary

27/40

	Officiated W		Stance
Parameter	Estimate	95% con	fidence
mu	-1.0005 ***	-1.2174	-0.7836
delta1	-0.5568 ***	-0.6088	-0.5048
delta2	-0.1129 ***	-0.1819	-0.0438
delta3	-0.1290 **	-0.2575	-0.0004
delta4	0.4612 ***	0.3576	0.5648
delta5	0.2246 ***	0.1184	0.3308
delta6	0.2912 ***	0.2019	0.3806
delta7	0.2277 ***	0.1327	0.3227
delta8	0.2511 ***	0.1616	0.3405
delta9	0.0389 **	0.0068	0.0710
delta10	-0.0456	-0.1018	0.0107
delta11	0.1049 ***	0.0943	0.1155
delta12	-0.2102 ***	-0.2350	-0.1854
delta13	0.2066 ***	0.1781	0.2351
delta14	0.7034 ***	0.6422	0.7645
delta15	0.3661 ***	0.3436	0.3886
delta16	-3.0281 ***	-3.6727	-2.3835
delta17	1.4863	-1.1997	4.1722
delta18	0.0873 **	0.0145	0.1602
delta19	-0.0551 **	-0.0991	-0.0110
sigma	0.0371 **	0.0080	0.0662
gamma	0.0769 **	0.0157	0.1380
beta	0.3319 ***	0.1431	0.5207
	101,343		
	5		
	0.001		
	Parameter mu delta1 delta2 delta3 delta4 delta6 delta7 delta9 delta10 delta10 delta12 delta13 delta14 delta15 delta14 delta15 delta17 delta14 delta17 delta17 delta17 delta18 delta17 delta18 delta19 sigma gamma beta	Parameter Estimate mu -1.0005 delta1 -0.5568 delta2 -0.1129 delta3 -0.1290 delta4 0.4612 delta5 0.2246 delta6 0.2912 delta7 0.2277 delta8 0.2511 delta9 0.0389 delta10 -0.0456 delta11 0.1049 delta12 -0.2102 delta13 0.2066 delta14 0.7034 delta16 -3.0281 delta17 1.4863 delta19 -0.0551 gamma 0.0769 beta 0.3319 101.343 5 5 0.001	Parameter Estimate 95% con mu -1.0005 *** -1.2174 delta1 -0.5568 *** -0.6088 delta2 -0.1129 *** -0.1819 delta3 -0.1290 *** -0.2575 delta4 0.4612 *** 0.1184 delta5 0.2246 *** 0.1184 delta6 0.2912 *** 0.2019 delta7 0.2277 *** 0.1327 delta8 0.2511 *** 0.1616 delta9 0.0389 ** 0.0068 delta10 -0.4456 *** 0.1184 delta11 0.1049 *** 0.0943 delta12 -0.2102 *** -0.3350 delta13 0.2066 *** 0.1781 delta14 0.7034 *** 0.6422 delta15 0.3661 *** 0.3436 delta16 -3.0281 *** -3.6727 delta17 1.4863 -1.1997 delta19 -0.0551 ** -0.0991 sigma 0.0371 ** 0.0083 gamma

Cimulated Minimum Distance

***p<0.01, **p<0.05,*p<0.1

 $\mbox{Confidence intervals obtained by subsampling. See text for details $\Box \mapsto \langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \land \land \langle \Xi \land \land \langle \Xi \land \land \langle \Xi \land \langle \Xi \land \langle \Xi \land \langle \Xi \land \land \langle \Xi \land \langle \Xi \land \land$

Estimated Elasticities

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations Estimated

Coefficients Elasticities

Goodness of Fit Statistics Simulation Results Implications for Optimal Linear Insurance

Summary

• Price Elasticity of Expenditure

$$arc = \frac{Q_I - Q_{II}}{Q_I + Q_{II}} \div \frac{p_I - p_{II}}{p_I + p_{II}}$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

- -0.0015 from .25 to .95
 - Compare to Rand -.22
- -0.0021 from .20 to 1
 - Compare to Kowalski (2009)

Will also show plan-specific measures of moral hazard.

Model Fit Regression of Actual on Predicted Spending

Nonlinear Budget Set Model of Health	Regression of Actual Spending on Mean Predicted Spending Over All Draws Variable Estimate 95% confidence						
Insurance	Mean predicted spending	0.99	0.98	1.01			
Amanda E. Kowalski	Constant	0.02	-0.03	0.06			
Introduction	N R Squared	101,343					
Model Derivation		0.09					
Estimation							
Results and Simulations Estimated							
Coefficients Elasticities							
Goodness of Fit Statistics							
Simulation Results Implications for Optimal Linear Insurance							
Summary							
29/40			< □	 < □ < □ 	► < E > 2	EI= 940	

Model Fit Predicted Shares of Each Segment (Not Matched by Model)

1 tornin roun
Budget Set
Model of
Health
Insurance
Amanda E. Kowalski

Nonlinear

Introduction

Model Derivation

Estimation

Results and Simulations Estimated Coefficients

Elasticities Goodness of Fit Statistics

Simulation Results Implications for Optimal Linear Insurance

Summary

30/40

Percent of Sampl	e by Actual and Predicted	Budget Segment in	n Actual Plan
Actual			

Mean Predicted		By Deductible			
One Draw Predicted	All	\$350	\$500	\$750	\$1,000
Zero Spending	30.88	27.39	35.92	41.30	46.37
	0.21	0.20	0.19	0.17	0.30
	0.30	0.29	0.30	0.19	0.48
Before Deductible	26.73	24.01	31.17	35.87	37.78
	6.29	2.69	6.99	15.89	28.06
	6.25	2.65	6.82	15.97	28.12
At Deductible	0.01	0.01	0.01	0.00	0.00
	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00
Between Deductible and Stoplos	36.99	41.90	30.18	21.69	15.15
	92.80	96.17	92.76	83.94	71.64
	92.75	96.13	92.82	83.84	71.40
At Stoploss	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00
After Stoploss	5.39	6.70	2.72	1.14	0.71
	0.70	0.94	0.06	0.00	0.00
	0.70	0.93	0.07	0.00	0.00
N	101,343	74,933	12,095	4,140	10,175

Bunching or Dispersion? Actual and Predicted Spending

Counterfactual Simulation

Nonlinear
Budget Set
Model of
Health
Insurance
Amanda E.
Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations Estimated Coefficients Elasticities Goodness of Fit

Statistics Simulation Results

Implications for Optimal Linear Insurance

Summary

32/40

Place all agents in single existing or counterfactual plan

		before Deductible	Deductible	Coinsurance	Stoploss
Plans		F	D	C	S
Offered	\$350 Deductible	1	350	0.2	2,100
	\$500 Deductible	1	500	0.2	3,000
	\$750 Deductible	1	750	0.2	4,500
	\$1,000 Deductible	1	1,000	0.2	6,000
Hypothetical	50% Frac to \$2,000 Deduct	0.5	2,000	0.2	6,000
	0% Frac (Full Insurance)	0	NA	NA	NA
	20% Frac	0.2	NA	NA	NA
	40% Frac	0.4	NA	NA	NA
	50% Frac	0.5	NA	NA	NA
	60% Frac	0.6	NA	NA	NA
	80% Frac	0.8	NA	NA	NA
	100% Frac (No Insurance)	1	NA	NA	NA
	\$1,000 Deductible/Stoploss	1	1,000	NA	1,000
	\$5,000 Deductible/Stoploss	1	5,000	NA	5,000
	\$10,000 Deductible/Stoploss	1	10,000	NA	10,000
	\$20,000 Deductible/Stoploss	1	20,000	NA	20,000

Calculate DWL and RPP

Counterfactual: Place All Agents in Single Plan Effects on Spending

Nonlinear Budget Set Model of Health Insurance	Counterfacto	ual Without Model*	Agent + Insurer Q _{ij} Mean	Insurer INS _{ij} Mean	Agent INS _{ij} -Q _{ij} Mean
	Offered	\$350 Deductible	1,963.20	1,383.19	580.01
Amanda E.		\$500 Deductible	1,963.20	1,259.05	704.16
Kowalski		\$750 Deductible	1,963.20	1,106.00	857.21
		\$1,000 Deductible	1,963.20	998.54	964.66
troduction	Hypothetical	50% Frac to \$2,000 Deduct	1,963.20	854.10	1,109.10
	· ·	0% Frac (Full Insurance)	1,963.20	1,963.20	0.00
odel		50% Frac	1,963.20	981.60	981.60
erivation		100% Frac (No Insurance)	1,963.20	0.00	1,963.20
		\$1,000 Deductible/Stoploss	1,963.20	1,536.89	426.31
stimation		\$5,000 Deductible/Stoploss	1,963.20	836.90	1,126.30
		\$10,000 Deductible/Stoploss	1,963.20	451.37	1,511.83
esults and	Counterfact	ual Using Model			
mulations	Offered	\$350 Deductible	1,956.20	1,291.80	664.40
stimated		\$500 Deductible	1,956.00	1,174.10	781.90
pericients	Hypothetical	50% Frac to \$2,000 Deduct	1,954.50	1,105.90	848.60
asticities		0% Frac (Full Insurance)	1,958.70	1,958.70	0.00
atistics		50% Frac	1,951.80	975.90	975.90
mulation Results		100% Frac (No Insurance)	1,943.10	0.00	1,943.10
plications for		\$1,000 Deductible/Stoploss	1,957.90	1,030.00	927.90
ptimal Linear		\$5,000 Deductible/Stoploss	1,946.00	84.20	1,861.80
surance		\$10,000 Deductible/Stoploss	1,944.10	9.90	1,934.20
ummary	Values in dol	ars.			

*Agent+Insurer censored above \$27,500 for each agent for comparison to model. Censoring affects 1,311 agents (approximately 1.3% of sample).

Bud Mo Insu Ama Ko Introd Model Deriva Estim Resul Simul Estimat Coeffici Elasticit Goodne Statisti Simulat Implicat Optima Insuran Summ

Counterfactual: All Agents in Single Plan Effects on DWL and RPP Across Distribution

Nonlinear		Quantiles								
Model of Health	DWL ij	<i>DWL _{ij} Plan j</i>		25 Median		75	Max	Mean	Mean as % of MAS	
Insulance	Offered	\$350 Deductible	0.00	1.04	2.81	6.08	600.82	5.52	0.284	
Amanda E.		\$500 Deductible	0.00	0.98	2.79	6.06	476.15	5.36	0.276	
Kowalski		\$750 Deductible	0.00	0.80	2.71	5.99	474.55	5.23	0.269	
		\$1,000 Deductible	0.00	0.38	2.48	5.87	472.95	5.04	0.259	
Introduction	Hypothetical	50% Frac to \$2,000 Deduct	0.00	0.50	1.46	4.33	474.55	4.35	0.224	
		0% Frac (Full Insurance)	0.00	1.61	4.23	9.04	600.82	7.82	0.403	
Model		50% Frac	0.00	0.44	1.19	2.60	248.31	2.41	0.124	
Derivation		100% Frac (No Insurance)	0.00	0.00	0.00	0.00	0.00	0.00	0.000	
Estimation		\$1,000 Deductible/Stoploss	0.00	0.58	3.78	8.88	600.82	7.39	0.380	
Loumation		\$5,000 Deductible/Stoploss	0.00	0.00	0.00	0.00	600.82	1.44	0.074	
Results and		\$10,000 Deductible/Stoploss	0.00	0.00	0.00	0.00	600.82	0.49	0.025	
Simulations		\$20,000 Deductible/Stoploss	0.00	0.00	0.00	0.00	0.00	0.00	0.000	
Estimated Coefficients	RPP _{ij}									
Elasticities	Offered	\$350 Deductible	0.00	0.02	0.03	0.05	0.27	0.04	0.002	
Goodness of Fit		\$500 Deductible	0.00	0.02	0.03	0.05	0.27	0.04	0.002	
Statistics		\$750 Deductible	0.00	0.01	0.03	0.05	0.27	0.04	0.002	
Simulation Results		\$1,000 Deductible	0.00	0.01	0.03	0.05	0.27	0.03	0.002	
Implications for Optimal Linear	Hypothetical	50% Frac to \$2,000 Deduct	0.00	0.02	0.03	0.05	0.29	0.03	0.002	
Optimal Linear Insurance		0% Frac (Full Insurance)	0.00	0.02	0.03	0.06	0.39	0.04	0.002	
Summany		50% Frac	0.00	0.02	0.03	0.04	0.29	0.03	0.002	
Summary		100% Frac (No Insurance)	0.00	0.00	0.00	0.00	0.00	0.00	0.000	
		\$1,000 Deductible/Stoploss	0.00	0.01	0.03	0.05	0.29	0.03	0.002	
		\$5,000 Deductible/Stoploss	0.00	0.00	0.00	0.00	0.22	0.00	0.000	
34/40		\$10,000 Deductible/Stoploss	0.00	0.00	0.00	0.00	0.28	< 0.00	0.000	

Counterfactual: All Agents in Single Plan Effects on DWL and RPP By Covariates

	Plan j \$350 Deductible	Mean By Gender			Mean By Type		Mear	Mean By Age				
DWLij		Mean	Male	Female 6.68	Salary 4.08	Hourly 5.64	1 (Low)	2	3 4 (High)		Age< med	Age: me
Offered		5.52	3.58				12.43	5.70	2.96	0.80	3.32	7.8
	\$500 Deductible	5.36	3.42	6.52	3.96	5.48	12.07	5.54	2.88	0.78	3.23	7.6
	\$750 Deductible	5.23	3.21	6.44	3.80	5.36	11.78	5.41	2.81	0.76	3.07	7.5
	\$1,000 Deductible	5.04	2.90	6.32	3.53	5.17	11.34	5.22	2.70	0.74	2.75	7.4
Hypothetical	50% Frac to \$2,000 Deduct	4.35	2.40	5.51	2.81	4.48	9.77	4.51	2.34	0.63	2.03	6.8
	0% Frac (Full Insurance)	7.82	5.16	9.41	5.95	7.98	17.64	8.05	4.18	1.14	4.93	10.8
	50% Frac	2.41	1.55	2.92	1.76	2.46	5.40	2.49	1.30	0.35	1.43	3.4
	100% Frac (No Insurance)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	\$1,000 Deductible/Stoploss	7.39	4.26	9.26	5.26	7.57	16.66	7.63	3.95	1.08	4.13	10.8
	\$5,000 Deductible/Stoploss	1.44	0.91	1.76	0.79	1.50	3.18	1.54	0.78	0.21	0.48	2.4
	\$10,000 Deductible/Stoploss	0.49	0.36	0.57	0.17	0.51	1.07	0.53	0.27	0.07	0.11	0.8
RPP _{ij}												
Offered	\$350 Deductible	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.0
	\$500 Deductible	0.04	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.0
Hypothetical	50% Frac to \$2,000 Deduct	0.03	0.03	0.04	0.03	0.04	0.03	0.03	0.04	0.04	0.03	0.0
	0% Frac (Full Insurance)	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.0
	50% Frac	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.0
	100% Frac (No Insurance)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	\$1,000 Deductible/Stoploss	0.03	0.02	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.0
	\$5,000 Deductible/Stoploss	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	\$10.000 Deductible/Stoploss	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0

Median age is 43. Income first guartile: \$30,208: median: \$37,222: third guartile: \$49,113.

Goodness of Fit Simulation Results

Nonlinear Budget Se Model of Health Insurance Amanda E Kowalski Introduction Model Derivation Estimation Results and Simulations Estimated Coefficients Flasticities

Implications for Optimal Linear Insurance

Statistics

Summary

A D > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0</p>

Optimal Insurance Partial Linear Insurance Not Necessarily Optimal

Implications of Estimates for Optimal Linear Insurance

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations

Coefficients

Elasticities

Goodness of Fit Statistics

Simulation Results

Implications for Optimal Linear Insurance

Summary

Figure: Estimates of Optimal Insurance with Varying Linear Price

ショック 単則 スポットポット 白マ

Implications of Estimates for Optimal Deductible-Only Insurance

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations Estimated Coefficients

Elasticities

Goodness of Fit Statistics

Simulation Results

Implications for Optimal Linear Insurance

Summary

Figure: Estimates of Optimal Insurance with Varying Deductible

Summary of Findings

Tradeoff Between Moral Hazard and Risk Protection in NLBS model

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations

Summary Conclusion

- On average, DWL» RPP in existing plans
- Substantial variation across agents
 - Top 1% of agents have welfare *gain* 100x smaller than loss at mean
 - Bottom 1% of agents have net loss from insurance 10x larger than loss at mean
 - Considerable variation across observable characteristics
- Implications for optimal linear insurance
 - Partial linear insurance not necessarily optimal
 - As generosity increases, DWL always increases faster than RPP
 - Considering DWL and RPP only, no insurance is optimal
 - If society considers other factors, results can inform magnitude of nonzero optimal linear insurance
 - Specific application: counterfactual Feldstein plan yields higher welfare than similar high deductible plan

Discussion of Findings

Tradeoff Between Moral Hazard and Risk Protection in NLBS model

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Introduction

Model Derivation

Estimation

Results and Simulations

Summary Conclusion

- On average, DWL» RPP in existing plans
 - Entire sample is insured
 - Sample not subject to large expenditure shocks
- Implications for optimal linear insurance
 - Optimal linear insurance might not be relevant for policy
- Specific application: counterfactual Feldstein plan yields higher welfare than similar high deductible plan
 - Potentially more relevant for policy
 - Cannot get to this finding without a model

Strengths and Limitations of NLBS Model As Applied to Health Insurance

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Scope of Model Empirical Budget Set

Comparison to

Kowalski (2009)

by Plan Slutsky Condition Strengths

- Directly models several aspects of decision problem
 - Joint choice of price, quantity, and income
 - Decision to consume zero care
- Estimates tied closely to model
- Allows for counterfactual simulations
 - Expenditure/welfare response to nonlinear price change
- Advances NLBS Methodology
 - Adds risk protection
 - Extends NLBS model to case with more than one nonconvex kink
 - New estimator
 - Application to health insurance has advantages over labor application

Strengths and Limitations of NLBS Model As Applied to Health Insurance

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Scope of Model

Empirical Budget Set by Plan Slutsky Condition NLBS from Labor Comparison to Kowalski (2009)

Limitations

- Does not include some aspects of decision problem
 - No dynamics within or across years
 - Does not distinguish between doctor and insurer decisions
 - Abstracts away from supply side considerations
- Requires nonlinear plan structure and detailed data

Empirical Budget Set by Plan

Depicts 98.7% of observations with Q<27.5 and A>-8.

Intuition for Slutsky Condition

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Scope of Model Empirical Budget Set by Plan Slutsky Condition NLBS from Labor

Comparison to Kowalski (2009)

- If and only if the indifference curve is convex, the second derivative with respect to *Q_{sj}* will be positive.
- This condition is satisfied when the Slutksy condition holds.
- Alternative intuition: from the Slutsky equation, the Slutsky condition must hold for Hicksian demand to be downward sloping.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

Nonlinear Budget Set from Labor

Comparison to Kowalski (2009)

Nonlinear Budget Set Model of Health Insurance

Amanda E. Kowalski

Scope of Model Empirical Budget Set by Plan Slutsky Condition NLBS from Labor

Comparison to Kowalski (2009)

- Quick recap of Kowalski (2009):
 - CQIV estimates of the price elasticity of expenditure on medical care
 - -2.3 estimated price elasticity of expenditure, which is constant across the upper quantiles of the distribution
 - Relies on IV strategy using family interactions in cost-sharing and injuries
- Kowalski (2009) vs. this paper
 - Data from same firm
 - Different population
 - Family size >=4 vs. Family size <=3
 - People with family injuries vs. entire population