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Abstract

We develop new estimation methods for estimating causal effects based on the idea that
the amount of selection on the observed explanatory variables in a model provides a guide
to the amount of selection on the unobservables. We discuss two approaches, one of which
involves the use of a factor model as a way to infer properties of unobserved covariates from
the observed covariates. We construct an interval estimator that asymptotically covers the
true value of the causal effect, and we propose related confidence regions that cover the true
value with fixed probability.



1 Introduction

Distinguishing between correlation and causality is the most difficult challenge faced by

empirical researchers in the social sciences. Social scientists are rarely in a position to run

a well controlled experiment. Consequently, they rely on a priori restrictions about the

relationships between the variables that are observed or unobserved. These restrictions are

typically in the form of exclusion restrictions or assumptions about the functional form of the

model, the distribution of the unobserved variables, or dynamic interactions. Occasionally,

the restrictions are derived from a widely accepted theory or are supported by other studies

that had access to a richer set of data. However, in most cases, doubt remains about the

validity of the identifying assumptions and the inferences that are based on them. This

reality has lead a number of researchers to focus on the estimation of bounds under weaker

assumptions than those that are conventionally imposed.

In this paper, we develop estimation strategies that may be helpful when strong prior

information is unavailable regarding the exogeneity of the variable of interest or instruments

for that variable. This is the situation in many applications in economics and the other social

sciences, with examples including the effectiveness of private schools, the effects of education

on crime, the effects of crime on labor market outcomes, or the effects of obesity on health

outcomes.

Our approach uses the degree of selection on observed variables as a guide to the degree

of selection on the unobservables. Researchers often informally argue for the exogeneity of

an explanatory variable or an instrumental variable by examining the relationship between

the instrumental variable and a set of observed characteristics, or by assessing whether point

estimates are sensitive to the inclusion of additional control variables.1 We provide a formal

theoretical analysis confirming the intuition that such evidence can be informative in some

situations. More importantly, we provide ways to quantitatively assess the degree of selection

bias or omitted variables bias and in some situations provide ways to estimate bounds. To

fix ideas, let the Y be a continuous outcome of interest determined by:

1See for example, Currie and Duncan (1995), Engen et al (1996), Poterba et al (1994), Angrist and Evans
(1998), Jacobsen et al. (1999), Bronars and Grogger (1994), Udry (1996),Cameron and Taber (2001), or
Angrist and Krueger (1999). Wooldridge’s (2000) undergraduate textbook contains a computer exercise
(15.14) that instructs students to look for a relationship between an observable (IQ) and an instrumental
variable (closeness to college).
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(1.1) Y = αT +X ′ΓX +W c′Γc

where T is a treatment variable.2 The parameter of interest is α, the causal effect of T on Y.

X is a vector of observed variables with coefficient vector ΓX . X contains routinely measured

characteristics, like basic demographics, that are not at risk of being unmeasured. W c is a

vector of all additional characteristics that are relevant for determining the outcome. Some

elements of W c are observed and some are unobserved. Using the notation W ′Γ to refer to

the vector of observed components of W c′Γc, we can rewrite the model as:

(1.2) Y = αT +X ′ΓX +W ′Γ + ε

with the term ε capturing all the unobservable components of W c′Γc.

The key idea in our paper is to model the relationship between W and W c. Our op-

erational definition of “selection on unobservables is like selection on observables” involves

thinking about the breakdown of exactly which characteristics are in W (and which are un-

observed) as being determined by random chance. In addition, we view both W and W c as

having a large number of elements, none of which dominates in determining Y .3 Dominant

characteristics, like gender or schooling in a wage regression, are assumed always measured

and in X. Finally, although the principal source of endogeneity bias here is that T is corre-

lated with ε, an additional source of bias stems from the correlation between W and ε. In

the context of a model for the determination of W , the correlations between the elements of

W are informative about the nature of the correlation between W and ε.

To illustrate the nature of the restrictions we use, consider the linear projection of T onto

X, W ′Γ and ε :

(1.3) Proj(T |X,W ′Γ, ε) = φ0 +X ′φX + φW ′Γ + φεε.

In the context of this projection, our formalization of the idea that, after controlling for

X, “selection on the unobservables is the same as selection on the remaining observables”

leads to:

2We will also discuss a binary depedent variable model in which the outcome is 1(Y > 0).
3We will utilize approximations that take the number of regressors in W c (and W ) to be large.
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Condition 1.

φε = φ.

One may contrast Condition 1 with the implication of the usual OLS orthogonality con-

ditions:

Condition 2.

φε = 0.

Roughly speaking, Condition 1 says that conditional on X, the part of Y that is related

to the observables and the part related to the unobservables have the same relationship with

T . Condition 2 says that the part of Y related to the unobservables has no relationship

with T. We also present a set of assumptions regarding how W is determined from W c that

imply an intermediate condition between the extremes of Conditions 1 and 2:

Condition 3.

0 ≤ φε ≤ φ if φ ≥ 0
0 ≥ φε ≥ φ if φ < 0.

We propose two alternative estimators that differ in how they model the relationship

between W and ε. We refer to the first estimator as OU, which refers to using properties

of observed ("O") covariates to infer the properties of unobserved ("U") covariates. OU

amounts to estimating equation (1.2) using moment conditions thatX andW are orthogonal

to ε and the restriction φε = φ. This estimates a lower (upper) bound on α if φ is greater (less)

than 0. It requires a high level assumption that implies, roughly speaking, that conditional

on X, the coefficient of the regression of T on (Y − αT ) has the same sign and is at least as

large in absolute value as the coefficient of the regression of the part of T that is orthogonal

to W on the corresponding part of Y − αT . The high level assumption is required because

the estimator does not make direct use of how the observed and unobserved explanatory

variables are interrelated to assess the consequences of omitted variables that affect both

the treatment and the outcome. Essentially, it treats W as exogenous, in common with the

vast IV literature that focusses on endogeneity of T but treats the “controls”as exogenous.

Furthermore, it does not provide a way to account for the fact that randomness in which

elements of W c are observed influences the distribution of the estimator. This estimator

has been applied in Altonji, Elder and Taber (2005a, 2005b; hereafter, AET) to study the
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effectiveness of Catholic schools, as well as in a large number of other studies. We complete

the theoretical analysis of the estimator that is presented in preliminary form in AET (2002).

We also propose a second estimator that we believe is a more satisfactory approach

because it relaxes the assumption that W is essentially exogenous. In this second approach,

we develop a method of moments procedure that uses the bounds on selection embodied in

Condition 3 and also uses a factor structure to model the covariance between the observable

and unobservable covariates. This structure allows us to infer properties of unobserved

covariates based on the observed correlation structure of the observed covariatesW . We show

that this estimator, which we name OU-Factor, consistently identifies a set that contains

α. We also provide a general bootstrap procedure that may be used to construct confidence

regions for the identified set, as well as a less computationally demanding bootstrap procedure

that typically works well in practice.

The paper continues in Section 2, where we provide a formal model of which covariates

are observed and which are unobserved. We provide an explicit set of assumptions under

which Condition 1, Condition 2, and Condition 3 hold, and we elaborate on why Condition

3 is the most plausible of the three. In Section 3 we present the OU estimator. We also

show that in general, Condition 1 is not sufficient to provide point identification of α. As a

practical matter, this is not critical, because we focus on the use of Condition 3 to identify

a range of admissible values for α rather than on point identification of α. We then turn

to the OU-Factor estimator based on specifying a factor structure for W c. In Section 4 we

provide some Monte Carlo evidence on the performance of OU and OU-Factor. We offer

brief conclusions in Section 5.

2 Selection Bias and the Link Between the Observed

and Unobserved Determinants of the Instrument and

Outcome

In this section, we begin with a formal discussion of how the observables W are chosen from

the full set W c. This is the first step in developing a theoretical foundation for using the

relationship between a potentially endogenous variable (or an instrument for that variable)

and the observables to make inferences about the relationship between such a variable and

the unobservables. In doing so, we provide a foundation for quantitatively assessing the

importance of the bias from the unobservables. We then provide a set of conditions under
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which Condition 3 holds, which is central to OU and OU-factor.

2.1 How are Observables Chosen?

We do not know of a formal discussion of how variables are chosen for inclusion in data sets.

Here we make a few general comments that apply to many social science data sets. First, most

large scale data sets such as the National Longitudinal Survey of Youth 1979, the British

Household Panel, the Panel Study of Income Dynamics, and the German Socioeconomic

Panel are collected to address many questions. Data set content is a compromise among

the interests of multiple research, policy making, and funding constituencies. Burden on

the respondents, budget, and access to administrative data sources serve as constraints.

Obviously, content is also shaped by what is known about the factors that really matter

for particular outcomes and by variation in the feasibility of collecting useful information

on particular topics. Major data sets with large samples and extensive questionnaires are

designed to serve multiple purposes rather than to address one relatively specific question.

As a result, explanatory variables that influence a large set of important outcomes (such as

family income, race, education, gender, or geographical information) are more likely to be

collected. Because of limits on the number of the factors that we know matter, that we know

how to collect, and that we can afford to collect, many elements of W c are left out. This is

reflected in the relatively low explanatory power of most social science models of individual

behavior. Furthermore, in many applications, the treatment variable T is correlated with

many of the elements of W c.

These considerations suggest that Condition 2, which underlies single equation methods

in econometrics, will rarely hold in practice. The optimal survey design for estimation of α

would be to assign the highest priority to variables that are important determinants of both

T and Y (it would also be to useful to collect potential instrumental variables that determine

T but not Y ). Condition 2 is based on the extreme assumption that surveys are sufficiently

well designed to ensure that φε = 0.

At the other extreme, one might suspect that the constraints on data collection are

sufficiently severe that it is better to think of the elements of W as a more or less random

subset of the elements of W c, rather than a set that has been systematically chosen to

eliminate bias. Indeed, a natural way to formalize the idea that “selection on the observables

is the same as selection on the unobservables” is to treat observables and unobservables
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symmetrically by assuming that the observables are a random subset of a large number of

underlying variables. More formally, we use the notation Sj to denote whether covariate Wj

is observed in the data set. In this notation, “selection on the observables is the same as

selection on the unobservables” amounts to assuming that Sj is an iid binary random variable

which is equal to one with probability PS for all covariates in W c. Of course, there are other

ways to capture the idea of equality of selection on observables and unobservables. For

example, consider a more general notation PSj = Pr(Sj = 1). This object may vary across

types of variables but have no systematic relationship with the influence of the variables on

Y relative to the influence of the variables on T . Also, in many applications a small set

of exogenous variables may play a critical role in determining Y and T and are likely to

be available in data sets appropriate for the research topic in question. These variables are

represented by X.

To the extent that the data set was designed for the study of the effect of T on Y , one

might expect that φ > φε if φ > 0 in equation (1.3). Furthermore, in many problems Y is a

future outcome and will depend on unobserved factors that are determined after T or Z, a

potential instrument for T , are determined. Consider the case of the effect of Catholic high

schools on 12th grade test scores studied by AET. In this case, ε will reflect variability in test

performance on a particular day, which presumably has nothing to do with the decision to

attend Catholic high school. Furthermore, high school outcomes will be influenced by non-

anticipated shocks that occur after the beginning of high school, but all of the W used in

AET are measured in eighth grade. Given this sequencing, these shocks influence high school

outcomes but cannot affect the probability of starting a Catholic high school. Similarly, in

health applications, ε may reflect health shocks (such as an accident or exposure to a virus)

that occur after the treatment choice T has been made.

With these considerations in mind, we partition W c into two categories of variables. The

first, W ∗, consists of K∗ variables that affect Y and potentially T (and possibly Z) and may

or may not be observed by the econometrician. The subvector W of W ∗ is observed, while

the subvector W u is not. The second category consists of the vector W ∗∗, which represents
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variables that have a zero probability of being observed and used. In this case,

W ′Γ =
K∗∑

j=1

SjWjΓj

ε =
K∗∑

j=1

(1− Sj)WjΓj +W ∗∗′Γ∗∗ = W u′Γu + ξ

where Γu is the subvector of Γc that corresponds to W u, Γ∗∗ is the subvector of Γc that

corresponds to W ∗∗, and ξ = W ∗∗′Γ∗∗. Given that W ∗∗ represents unanticipated covariates,

we assume that ξ is orthogonal to (W ∗, T, Z). This implies Condition 3

0 ≤ φε ≤ φ if φ > 0(2.1)

0 ≥ φε ≥ φ if φ < 0

as the basis for the estimation strategies developed below, which focus on estimation of a

confidence set for α that contains the true value rather than on point estimation.

Often there is a third category of variables, X, consisting of factors that play an essential

role in determining Y and potentially Z and T. These would be included in any serious study

of Y and may be different in nature from the other variables and thus not informative about

how the properties of W u′Γu. In AET’s study of Catholic schools, Catholic religion is such

a variable.

2.2 Implications of Random Selection of Observables

We are now ready to consider the implications of random selection from W ∗. We begin with

the general case. We first derive the probability limit of φε/φ as the number of covariates in

W ∗ becomes large. We then consider several special cases.

For individual i, we define Yi and Zi as outcomes for a sequence of models indexed by

K∗, where K∗ is the number of elements of W ∗.4 A natural part of the thought experiment

in which K∗ varies across models is the idea that the importance of each individual factor

declines with K∗. We take the dimensions of X and W ∗∗ as fixed.

Define GK∗

as the information set consisting of the realizations of the Sj, the Γj, and the

joint distribution of Wij conditional on j = 1, ..., K∗. That is, E(Wij | GK∗

) is the mean for

4The “local to unity” literature in time series econometrics” (e.g., Stock, 1994) and the “weak instruments”
literatures (e.g., Staiger and Stock, 1997) are other examples in econometrics in which the asymptotic
approximation is taken over a sequence of models, which in the case of those literatures, depend on sample
size.
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a given j, where the expectation is only over i, but E(Wij) is an unconditional expectation

over both i and j. It may be helpful to think of this data generation process as operating in

two steps. First the “model” is drawn: for a given K∗, the joint distribution of Wij , Ti, Zi, ξi,

and Sj are drawn. We can think of GK∗

as representing this draw. In the second stage of the

data generating process, individual data is constructed from these underlying distributions.

The two steps combine to generate Yi as is represented in Assumption 1.

Assumption 1.

(2.2) Yi = αTi +X ′
iΓX +

1√
K∗

K∗∑

j=1

WijΓj + ξi

where (Wij ,Γj) is unconditionally stationary (indexed by j), and Xi includes an intercept.

We use slightly non-standard notation in Assumption 1. Rather than explicitly indexing

parameters by K∗, we suppress a K∗ index on (Wij,Γj) and bring a 1√
K∗

out in front of the

sum. This scaling guarantees that no particular covariate will be any more important ex ante

than the others. It embodies the idea that a large number of components determine most

outcomes in the social sciences. Any variables that play an outsized role in Y and Z are

assumed to be observed with probability 1 and are included in the set of special regressors

X. The number of elements of X is fixed. Note that Assumption 1 involves unconditional

stationarity. Conditional on GK∗

, the variance of the Wij and the contribution of the Wij to

the variance of Y will differ across j.

Throughout we will project all variables on X and take residuals to remove X from the

regression. We will use “tildes” to denote the residuals from these projections, so we define

W̃ij ≡ Wij − Proj(Wij | Xi;GK
∗

)

T̃i ≡ Ti − Proj(Ti | Xi;GK
∗

)

Z̃i ≡ Zi − Proj(Zi | Xi;GK
∗

)

Ỹi ≡ Yi − Proj(Yi | Xi;GK
∗

)

where Proj denotes a linear projection.5 Let σK
∗

j,
 = E
(
W̃ijW̃i
 | GK∗

)
. To guarantee that

var(Yi) is bounded as K∗ becomes large, we assume that

5Formally, the linear projection projection of a generic Yi on a generic Xi is defined by X′
iδ where δ

satisfies E[(Yi −X′
iδ)Xi | GK

∗

] = 0. Hereafter, this projection is meant to be the population projection, i.e.,
for a very large N , but with K∗ fixed.
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Assumption 2.

0 < lim
K∗→∞

1

K∗

K∗∑

j=1

K∗∑


=1

E(σK
∗

j,
 ΓjΓ
) <∞

and

lim
K∗→∞

V ar

(
1

K∗

K∗∑

j=1

K∗∑


=1

σK
∗

j,
 ΓjΓ
)

)
→ 0 .

The next two assumptions guarantee that cov(Zi, Yi) is well behaved as K∗ grows.

Assumption 3. For any j = 1, ..., K∗,define µK
∗

j so that

E
(
Z̃iW̃ij|GK

∗

)
=

µK
∗

j√
K∗

.

Then

E(µK
∗

j Γj) <∞

and

lim
K∗→∞

V ar

(
1

K∗

K∗∑

j=1

µK
∗

j Γj

)
→ 0 .

Since Assumptions 2 and 3 are quite abstract, it may be helpful to pause to discuss

examples of models that satisfy Assumption 1-3 before turning to the rest of our assumptions.

The key example is the factor model of the Xi and Wij, which is central to one of our

estimation strategies. To avoid repetition, we defer presentation of the factor model until

Section 5.

Another example is a case in which the Wij are linked across j through an MA model.6

The MA example is the most straightforward when one examines Assumptions 1 and 2

given that those assumptions refer to observables as though they have a sequential ordering.

To simplify the example, we consider a case in which Xi only contains an intercept term

and the Wij are stationary conditional on GK∗

. This means that the Wij will have the

same marginal distribution for all j. This is not realistic for the types of data sets typically

used by economists, and it is not required for Theorem 1,but it simplifies the exposition.7

Specifically, assume that across individuals i, Wij is generated by independent and identically

6The case of a general ARMA structure is conceptually straightforward, but the algebra becomes sub-
stantially more complicated.

7What is important is that Wij is unconditionally stationary. Conditional on GK∗

, the distribution of
Wij is not restricted.
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distributed stationary MA(qw) processes

Wij = ζ ij +

qw∑


=1

µ
ζ ij−1 ,

where ζ ij is i.i.d. with finite variance σ2ζ . The Wij processes are also independent of the Γj

process, and we assume further that Γj is generated from a stationary process with finite

fourth moments. We think of j as being ordered so that variables that measure related

factors appear close to each other in the j sequence.8 Given our assumptions about the Wij

processes and Γj, it is almost immediate that Assumption 1 is satisfied by the MA model.

In the Appendix we show that the model satisfies Assumption 2.

To consider Assumption 3, we need a model for Z. In the Appendix, we prove that

Assumption 3 is satisfied by the MA model if the model for Z takes a form which is similar

to the form of Yi:

Assumption 4.

(2.3) Zi = X ′
iβX +

1√
K∗

K∗∑

j=1

Wijβj + ψi,

where (i) ψi is independent of all of the elements of W
c.(ii) βj is a stationary process with

finite second moments. βj may be correlated with Γj.

It is convenient to rewrite the model for Z as

(2.4) Zi = X ′
iβX +

1√
K∗

K∑

j=1

Wijβj + ui

where ui =
1√
K∗

∑K∗

j=K+1Wijβj + ψi, and all variables are residuals from linear projections

onto the space of Xi. We use the above specification of Zi in much of the analysis below,

but we note that the main results below (Theorem 1 and Corollaries 1-3) do not require

assumptions about Z beyond those given in Assumptions 1-3.

Finally, we provide assumptions about the process under which observables are chosen.

Consider the case discussed above in which variables are chosen at random:

8For example, consider a study of educational attainment in which measures of student behavior (e.g.,
absenteeism, suspensions, getting into fights, acting out in class) are viewed as potentially important control
variables. If these variables appear in sequence, the above model captures the fact that they are dependent
and will have Γj coefficients that are related. Only a subset of the behavioral variables might actually be
observed.
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Assumption 5. For j = 1, ..., K∗, Sj is independent and identically distributed with 0 <

Pr (Sj = 1) ≡ Ps ≤ 1 . Sj is also independent of all other random variables in the model. If

var(ξ) ≡ σ2ξ = 0, then PS < 1.

Assumption 6. ξ is mean zero and uncorrelated with Z and W ∗.

As mentioned above, the assumption that ξ is uncorrelated with Z and W ∗ is not very

restrictive, since for a given value of K∗ one can redefine Γ∗ and ξ so that ξ is uncorrelated

with W ∗.9

First we consider the relationship between φ and φε in the general case and then derive

three key special cases. Finally, we relax Assumption 5 that PSj = PS ∀j and instead assume
that PSj is a positive function of the degree to which omitting Wj will lead to bias in the IV

estimator.

Note that our asymptotic analysis is nonstandard in two respects. First, we are allowing

the number of underlying explanatory variables, K∗, to get large. Second, the random

variable Wij is different from the random variables Γj and Sj in the following way. For each

j we draw one observation on Γj and Sj which is the same for every person in the population;

however, each individual i draws his own Wij .

Theorem 1. Define φ and φε such that

Proj

(
Zi | Xi,

1√
K∗

K∗∑

j=1

SjWijΓj ,
1√
K∗

K∗∑

j=1

(1− Sj)WijΓj + ξ;GK
)

= X ′φX + φ

(
1√
K∗

K∗∑

j=1

SjWijΓj

)
+ φε

(
1√
K∗

K∗∑

j=1

(1− Sj)WijΓj + ξi

)
.

Then under assumptions 1-3 and 5-6, if the probability limit of φ is nonzero, then

φε
φ

p−→
K∗→∞

(1− Ps)A

(1− Ps)A+ σ2ξ

where

A ≡ lim
K∗ →∞

E

(
1

K∗

K∗∑

j=1

σK
∗

j,j (Γj)
2

)
.

If the probability limit of φ is zero, then the probability limit of φε is also zero.

9Assume one can write ξi as ξi =
1√
K∗

∑K∗

j=1WijBwj + ξ̃i where ξ̃i is independent of W
∗ and Z. Replace

Γj with Γj +Bwj and replace ξi with ξ̃i in (2.2). The key assumption would then be that ξ̃i is uncorrelated
with ψi.
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(Proof in Appendix)

Next we consider three separate cases which we present as corollaries. We omit the proofs

of these as they follow immediately from the proof of Theorem 1.

Corollary 1. When σ2ξ = 0,

plim(φ− φε) = 0.

The case in which σ2ξ = 0 is the case in which W c = W ∗, meaning that W is a random

subset of all of elements of W c. Corollary 1 states that the coefficients of the projection of Zi

onto 1√
K∗

∑K∗

j=1 SjWijΓj and
1√
K∗

∑K∗

j=1 (1− Sj)WijΓj approach each other with probability

one as K∗ becomes large.

The other extreme is the case in which all the important control variables that affect

both Z and Y are included in the model, so the variation in the composite error term ε

arises from ξ only:

Corollary 2. When Ps = 1,

plim(φε) = 0.

What about the case in which selection on observables is stronger than selection on

unobservables but there is still some selection on unobservables? This corresponds to the

case in which var(ξ) > 0 and Ps < 1. The next Corollary considers this case:

Corollary 3. When 0 < Ps < 1 and σ2ξ > 0,

either

0 < plim(φε) < plim(φ),

or

plim(φ) < plim(φε) < 0,

or

0 = plim(φε) = plim(φ).

This Corollary plays a key role in the estimator below.
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2.3 Systematic Variation in Psj

In this subsection we extend Theorem 1 to the case in which Psj is positively related to the

impact of including Wij on the bias in IV estimation of α.

Without loss of generality, assume the correlation between Zi and W ′
iΓ is positive as

one could multiply Zi by -1 to change the sign. In general, the impact of including a

particular Wj is a complicated function of Γj, µj, the Γ
 and µ
 of the variables that remain

excluded, and the covariances among both the included and excluded variables. Thus, it is

not straightforward to characterize the relative impact of the exclusion of particular variables

on the bias. Consequently, we do not attempt to formulate a general result, but instead

consider a special case in which it is easy to assess the relationship between φε and φ. It

is intuitive that exclusion of Wij variables with a strong positive association with both Zj

and Y will lead to bigger bias, everything else equal. Consequently, we assume that Sj is

positively related to E(ZjWjΓj). More specifically, we assume

Assumption 7.

E
(
µjΓj | Sj = 1

)
> E

(
µjΓj | Sj = 0

)
> 0.

We make additional assumptions that make it very easy to establish the result. First, we

assume that Sj is independent of WijΓj :

Assumption 8. Sj is independent of WjΓj.

This is neither an attractive assumption nor a necessary condition, but it implies that

the variation in PSj will not affect the second moments of

{
1√
K∗

K∗∑

j=1

SjWijΓj ,

(
1√
K∗

K∗∑

j=1

(1− Sj)WijΓj + ξi

)}

as K∗ gets large.10 With these assumptions in hand, in the Appendix we establish the

following result.

Theorem 2. Define φ and φε as in Theorem 1. Then under assumptions 1-3 and 5-8, as

K∗ gets large,

0 < φε < φ.

10If we impose (2.4), we might instead assume Sj is positively correlated with E(βjΓj) but unrelated to
the marginal distributions of Γj , βj , and cov(Wj ,W�) for all j and �.
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(Proof in Appendix)

A key, but perhaps subtle, implication of this theorem is that we get the inequality φε < φ

even when σ2ξ = 0. This model thus gives another explanation for this inequality.

3 Estimators of α

We now discuss ways to estimate α. In Section 4.1 We set the stage by reviewing the OU

estimator introduced in AET (2002, 2005). Then we present OU-Factor, beginning with the

factor model of W ∗ that it requires.

3.1 The OU Estimator

The OU Estimator is simple. If were were to estimate the standard treatment effect model

embodied in (1.2) by instrumental variables, we can think of this as GMM with the standard

moment conditions E((X,W )ε) = 0 and the IV moment equation E(Zε) = 0. The basic idea

of the OU estimator is to simply replace the moment equation E(Zε) = 0 with condition 3.

The problem, however, is that Condition 3 is not operational unless E(ε | W ) = 0 because Γ

is not identified. Mean independence of ε and (X,W ) is maintained in virtually all studies

of selection problems, because without it, α is not identified even if one has a valid exclusion

restriction.11 Our discussion of how the observables are arrived at makes clear that this is

hard to justify in most settings. If the observables are correlated with one another, as in

most applications, then the observed and unobserved determinants of Y are also likely to be

correlated.

Most applications to date have involved either T = 1(Z > 0) or T = Z, so we focus on

this case (in which we suppress the norming of individual elements of W by
√
K∗):

T = Z = X ′βx +W ′β + u

AET address the problem as follows. Assume that E(ε | X,W ) is linear, and define G and

e to be the slope vector and error term of the “reduced forms”:

E
(
Ỹ − αT̃ | W̃

)
≡ W̃ ′G(3.1)

Ỹ −E
(
Ỹ − αT̃ | W̃

)
≡ e.(3.2)

11The exception is when the instrument is uncorrelated with W (and X) as well as ξ, as when the
instrument is randomly assigned in an experimental setting.

14



Let φW ′G and φe be the coefficients of the projection of T on W ′G and e (in a regression

model that includes X). Sufficient conditions for 0 ≤ φe ≤ φW ′G when φW ′G > 0 are the

assumptions of Theorem 1 and the following condition:

Assumption 9.

(3.3)

∑∞

=−∞E

(
W̃jW̃j−


)
E
(
βjΓj−


)

∑∞

=−∞E

(
W̃jW̃j−


)
E (ΓjΓj−
)

=

∑∞

=−∞E

(
˜̃
W j
˜̃
W j−


)
E
(
βjΓj−


)

∑∞

=−∞E

(
˜̃
W j
˜̃
W j−


)
E (ΓjΓj−
)

,

for the set of variables Wj in j = 1, ..., K∗,

where
˜̃
W j is the component of W̃j that is orthogonal to the observed variables (X,W ), for

all elements of W ∗. Roughly speaking (3.3) says that the regression of T on
(
Ỹ − αT̃ − ξ

)

is equal to the regression of the part of T̃ that is orthogonal to W̃ on the corresponding part

of
(
Ỹ − αT̃ − ξ

)
. One can show that this condition holds under the standard assumption

E(ε | W ) = 0, in which case G and e equal Γ and ε, respectively. However, E(ε | W ) = 0 is

not necessary for (3.3).12

Theorem 3. Define φW ′G and φe such that

Proj

(
Z̃i |

1√
K∗

K∗∑

j=1

SjW̃ijGj ,
1√
K∗

K∗∑

j=1

(1− Sj) W̃ijΓj + ξ;GK
)

= φW ′G

(
1√
K∗

K∗∑

j=1

SjWijΓj

)
+ φe

(
1√
K∗

K∗∑

j=1

(1− Sj)WijΓj + ξi

)
.

Then under assumptions 1-6 and 9, as K∗ gets large, if the probability limit of φ is nonzero,

then

φe
φW ′G

p→
∑∞


=−∞E
(
W̃jW̃j−


)
E (ΓjΓj−
)

∑∞

=−∞E

(
W̃jW̃j−


)
E (ΓjΓj−
) + σ2ξ

.

If the probability limit of φW ′G is zero then the probability limit of φe is also zero.

(Proof in Appendix)

12For example, one can show that (3.3) will also hold if E
(
βjΓj−�

)
is proportional to E (ΓjΓj−�) regardless

of the correlations among the Wj .
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Based on the argument that selection on unobservables is likely to be weaker than selec-

tion on observables, one might impose Condition 3 rather than Condition 1. The upshot is

that one can work with the system

Y = αT +W ′G+ e.

T = W ′β + u

0 ≤
∣∣∣∣
cov(u, e)

var(e)

∣∣∣∣ ≤
∣∣∣∣
Cov(W ′β,W ′G)

V ar(W ′G)

∣∣∣∣ ,

and estimate the set of α values that satisfy the above inequality restrictions. In practice,

AET find that the lower bound is obtained when the equality of selection condition cov(u,e)
var(e)

=
Cov(W ′β,W ′G)
V ar(W ′G)

is imposed and the upper bound corresponds to the case in which T is treated

as exogenous, with cov(u,e)
var(e)

= 0.

One can perform statistical inference accounting for variation over i conditional on which

W are observed in the usual way. We do not develop this idea here; however, there is no

obvious way to account for random variation due to the draws of Sj.

3.1.1 Is Equality of Selection on Observables and Unobservables Enough to
Identify α?

We favor using Condition 3 to estimate bounds for α based on a range of the degree of

selection on unobservables, but it is interesting to ask whether Condition 1 is sufficient for

point identification of α. Perhaps surprisingly, in general the answer is no. To demonstrate

this, we assume that Y is determined by Y = αT+W ′Γ+ε as above and consider the special

case in which E(ε |W ) = 0, which implies that G = Γ and e = ε.

Define π and β̃ so that

Proj (Z |W ) = W ′β̃,(3.1)

Proj (T | W,Z) = W ′π + λZ,(3.2)

and define v and u to be the residual components of Z and T , so that

v ≡ Z −W ′β̃(3.3)

u ≡ T −W ′π − λZ.(3.4)
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Theorem 4. Suppose that ε is independent of W. Under Condition 1, the true value of α is

a root of a cubic polynomial. Thus the identified set contains one, two or three values.

(Proof in Appendix)

This theorem implies that even if Cov(ε,W ′Γ) = 0, there are typically either three

solutions (i.e., three values of α, which we label α∗, that satisfy the moment conditions) or

there is a unique solution that equals α.

Theorem 5. If we impose the same model as above but use T as an instrument for itself,

the true value of α is a root of a quadratic polynomial with two roots:

α∗ = α

α∗ = α +
var(ε)

cov(u, ε)
.

(Proof in Appendix)

Although there are two roots, this result is useful. When an applied researcher is worried

about the bias in an IV estimator, including the case when Z = T , he or she often has a strong

prior about the sign of the bias, which is the sign of cov(u, ε). Imposing an assumption about

the sign of cov(u, ε) on the data delivers point identification; if one imposes that cov(u, ε)

is positive (negative), then the smaller (larger) of the two solutions is the true value. One

should not make too much of this result, because in most applications variables represented

by W ∗∗ will be present, so that var(ξ) will be positive and equality of selection will not hold.

Consequently, we focus on the construction of bounds rather than on point estimation.

3.2 OU-Factor: A Bounds Estimator Based on a Factor Model of
W̃ij

3.2.1 A Factor Model of W̃ij

We now present a factor model of W̃ij, which is central to the estimator proposed below.

The factor model is a convenient way to model the relationship among the covariates. We

assume that W̃ij has a factor structure

(3.5) W̃ij =
1√
K∗

F̃ ′
iΛj + vij, j = 1, ...,K∗,
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where Fi is an r dimensional vector. We treat r as finite, so while the dimension of Wij

grows, the number of factors remains constant. Keep in mind that W̃ij is the component

of Wij that is orthogonal to Xi. It may seem arbitrary to assume that (3.5) applies to W̃ij

rather than Wij. To motivate this assumption, suppose that both Wij and Xi are defined by

a factor model:

Wij = αj+
1√
K∗

F ′
iΛj + νij

Xi =

[
1

ΛxFi + ωi

]
,

where Fi is the factor, αj is the mean ofWij , the dimension ofXi isKx×1, Λx is a (Kx − 1)×r

matrix and ωi is a (Kx − 1)× 1 vector. Then

W̃ij =Wij − Proj(Wij | Xi)

=
1√
K∗

F ′
iΛj + vij −

1√
K∗

Proj(Fi | Xi)
′Λj

≡ 1√
K∗

F̃ ′
iΛj + vij ,

where we have defined F̃i = Fi − proj(Fi | Xi). In the rest of this section we abstract from

Xi and focus on W̃ij.

We normalize the variance/covariance matrix of F̃i be to the identity matrix. Define

σ2j ≡ E(v2ij | j), j = 1, ...,K∗. When we refer to the “factor model”, we will often mean the

model defined by (3.5), the model (2.2) for Y , and the model (2.3) for Z. We continue to

assume that ξi and ψi are independent of all of the Wij and of each other. They may also

have factor structures, but the factors are uncorrelated with F̃i. The stochastic structure of

the model is that Λj, Γj, βj and σ2j differ across j, but are identical for all individuals in the

population, i = 1, ..., N.

We model Zi according to assumption (2.4), and we define an analogous structure for Ti:

Ti = X ′
iδX +

1√
K∗

K∑

j=1

Wijδj + ωi.

We redefine GK∗

to refer to aspects of the model of Wi, Ti, Yi, and Zi, that do not vary across

individuals:

GK∗

=
{
(Γj, βj, δj,Λj, σ

2
j , Sj) for j = 1, ..., K∗} .

For estimation, we make the following additional assumptions.
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Assumption 10. (i)
(
Γj , βj, δj ,Λj, σ

2
j

)
is i.i.d with fourth moments; (ii) the components

ξi and ψi of Yi and Zi respectively are independent of W ∗
i and of each other; (iii) ξi is

independent of Xi.

Assumption 10 (ii) implies that there is a component of Zi that is independent of the

observed and unobserved determinants of Y . Without this there is no hope of identifying α

using Z or a component of Z as a source of exogenous variation in T, because there is no

exogenous variation. In the Appendix we verify that the factor model of W in conjunction

with the model (2.2) for Y and (2.3) for Z satisfies Assumptions 1, 2, and 3 of Theorem 1.

3.2.2 An Estimator of an Admissible Set for α

In contrast to the OU estimator, here we use the factor model to directly address the problem

posed by the fact that basic introspection suggests that the elements of Wi (as well as Ti,

Xi, and Zi) are likely correlated with the error term. We study identification under the

following assumptions. First, we assume that the econometrician can observe the sequence

of models indexed by K∗ = 1, ...,∞ and that for each model she observes K,the number of

observed covariates in W (but not the number of unobserved covariates), as well as the joint

distribution of Yi, Zi, Ti, Xi and {Wij : Sij = 1} . Second, we assume that K/K∗ → Ps0.

Third, we assume that N becomes large faster than K∗, with K∗

N
→ 0, so that we can take

sequential limits. This seems like a good approximation in problems where K and K∗ are

large, but not for problems in which the number of variables that determine Yi is small.

In general the model is not point identified, so we provide an estimator of a set that

contains the true values. The key subset of the parameter vector of our model is θ =

{α, φ, Ps, σ
2
ξ), where we abstract from parameters that are point identified given θ. The true

value of θ is θ0 = {α0, φ0, Ps0, σ
2
ξ0) which lies in the compact set Θ̄. Our approach is to

estimate a set Θ̂ that asymptotically will contain the true value θ0. The key restrictions on

the parameter set are that

0 <Ps0 ≤ 1, and(3.6)

σ2ξ0 ≥0.(3.7)

The case in which Ps0 = 1 corresponds to the standard IV case represented by Condition

2, while σ2ξ0 = 0 corresponds to the “unobservables like observables” case represented by

Condition 1. We construct an estimate of the set of values of α by estimating the set of
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θ that satisfy all of the conditions and then projecting onto the α dimension. We then go

on to discuss construction of confidence intervals. While the upper and lower bound of the

estimated set does not have to correspond to the cases in which Ps0 = 1 and σ2ξ0 = 0, in

practice we find that it does.

It will be useful to make use of matrix notation. We assume without loss of generality

that the variables are ordered so that j = 1, ..,K corresponds to the K observed covariates

in W c. Unless indicated otherwise,

• For a generic variable Bi, i = 1, ..., N , B will represent the N × 1 vector.

• For a generic variable Bj, j = 1, ..., K
∗, B will represent the K× 1 vector of observable

characteristics and B∗ will represent the full K∗ × 1 vector.

• For a generic variable Bij , i = 1, .., N, j = 1, ..., K∗, B will represent the N ×K matrix

of observable characteristics, B∗the full N ×K∗matrix of covariates, and Bi represents

the K × 1 vector of Bij for a given i.

• We also employ the convention of using capital letters for matrices so, for example, the

matrix version of vij will be written as V.

Given the large amount of notation we concentrate on the 1 factor case (r = 1), so F̃i

and Λj are scalars. We fully expect that the results generalize to the multiple factor case.

We now present the estimator, which has two stages.

Stage 1

In the first stage we estimate the Λ1, ..,ΛK and σ21, ..., σ
2
K. The moment conditions are the

K equations

(3.8) E
(
W̃ij1W̃ij2

)
=

1

K∗Λ
2
j1
+ σ2j1; j1 = 1, ..., K, j1 = j2 ,

and the K · (K − 1)/2 equations

(3.9) E
(
W̃ij1W̃ij2

)
=

1

K∗Λ
2
j1
; j1, j2 = 1, ..., K, j1 �= j2 .
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This is a standard GMM problem. As N grows we will obtain
√
N consistent estimates

of 1√
K∗
Λj for each j and for σ̂2j by using the sample analogues to (3.8) and (3.9). Note that

K∗ is not known since it depends on the number of unobserved variables. However, the

econometrician knows K = PS0K
∗. To simplify the exposition we define λ̂j to be the GMM

estimate of the parameter
√
K × 1√

K∗
Λj =

√
PS0Λj and λ to be the corresponding vector.

In practice we just replace the left side of the equations by 1
N

∑N

i=1

(
W̃i1W̃ij2

)
and choose λ̂j

and σ̂2j as the values that minimize the appropriately weighted difference between the values

of 1
N

∑N

i=1

(
W̃i1W̃ij2

)
and the predictions summarized in the moment conditions above.

Stage 2

We estimate the rest of the parameters in a second stage. If we knew α0 we could estimate

Γ conditional on α0 by taking advantage of the moment condition

√
K∗E

[
W̃ij

(
Ỹi − α0T̃i)

)]
=
√
K∗E

[(
1√
K∗

F̃iΛj + vij

)(
1√
K∗

K∗∑


=1

1√
K∗

F̃iΛ
Γ
 +
1√
K∗

K∗∑


=1

vijΓ


)]

= Λj

(
1

K∗

K∗∑


=1

Λ
Γ


)
+ σ2vjΓj

p→ Λ′jE(Λ
Γ
) + σ2vjΓj.

We work with the sample analog of the above expression,

[ √
K∗ 1

N
W̃ ′
(
Ỹ − α0T̃

) ]
=
[

1
K

1
Ps0

λ̂λ̂
′
Γ + ΣΓ

]
,

where Σ is the diagonal matrix composed of the σ2j terms. Thus, for the parameter θ we

can construct the estimator

(3.10) Γ̂ (θ) ≈
[
1

PsK
λ̂λ̂

′
+ Σ̂

]−1
1

N
W̃ ′
(
Ỹ − αT̃

)
,

where we define Σ̂ is the diagonal matrix composed of σ̂2j which is estimated in the first

stage.

One may show that

φ0 =

[
E(ΓjΛj)E(βjΛj) + E(Γjβjσ

2
j)
] [

Ps0 (1− Ps0)E(Γ
2
jσ
2
j) + Ps0σ

2
ξ0

]

σ2ξ0
[
P 2
s0E(ΓjΛj)

2 + Ps0E(Γ2jσ
2
j)
]
+
[
E(ΓjΛj)2 + E(Γ2jσ

2
j)
]
(1− Ps0)Ps0E(Γ2jσ

2
j)

.
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Using this fact, we define our estimator based on the following system of equations.

q1N,K∗ (θ) =
1

N

N∑

i=1

W̃ ′
i Γ̂ (θ)×(3.11)

[
Z̃i − φW̃ ′

i Γ̂ (θ)− φ
(1− Ps)Γ̂ (θ)

′ Σ̂Γ̂ (θ)

(1− Ps)Γ̂ (θ) Σ̂Γ̂ (θ) + Psσ2ξ

(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)]

q2N,K∗(θ) =
1

N

N∑

i=1

((
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
))
×(3.12)

[
Z̃i − φW̃ ′

i Γ̂ (θ)− φ
(1− Ps)Γ̂ (θ)

′ Σ̂Γ̂ (θ)

(1− Ps)Γ̂ (θ)
′ Σ̂Γ̂ (θ) + Psσ2ξ

(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)]

q3N,K∗ (θ) =
1

N

N∑

i=1

(
Ỹi − αT̃i

)2
−
(
Γ̂ (θ)′ λ̂

Ps

)2
− Γ̂ (θ)

′ Σ̂Γ̂ (θ)

Ps

− σ2ξ(3.13)

subject to θ ∈ Θ̄. We will show that when evaluated at θ0 these equations converge to zero

as N and K∗ grow.

To understand the first two equations, note that when σ2ξ = 0 they reduce to

q1N,K∗ (θ) =
1

N

N∑

i=1

(
W̃ ′

i Γ̂ (θ)
[
Z̃i − φW̃ ′

i Γ̂ (θ)− φ
(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)])

q2N,K∗ (θ) =
1

N

N∑

i=1

((
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
) [

Z̃i − φW̃ ′
i Γ̂ (θ)− φ

(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)])

.

These are the classic moment conditions of a linear regression of Z̃i on (W̃
′
i Γ̂ (θ)) and

(Ỹi−αT̃i−W̃ ′
i Γ̂ (θ)) when the two regression coefficients are restricted to be the same. They

are the empirical analogue of Corollary 1 of Theorem 1. In the general case, the equations

are more complicated because the presence of ξ leads to attenuation bias on the regression

coefficient on
(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)
.

When PS = 1, the second equation reduces to

q2N,K∗(θ) =
1

N

N∑

i=1

((
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
) [

Z̃i − φW̃ ′
i Γ̂ (θ)

])
.

In this case Γ̂ (θ) could be estimated as the coefficient vector from a linear regression of(
Ỹi − αT̃i

)
on W̃i. (Our estimator is asymptotically equivalent to this with K∗ fixed and N

getting large.) In that case, W̃ ′
i Γ̂ (θ) would have to be orthogonal to the error term, so this
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equation would reduce further to

q2N(α, θ) =
1

N

N∑

i=1

(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)
× Zi,

which is the standard IV moment equation.

Turning to (3.13), q3N.K∗ (θ) is the difference between the sample value of var
(
Ỹi − αT̃i

)

for the hypothesized value of α and the variance implied by the model estimate.

We define the estimator Θ̂ as the set of values of θ that minimize the criterion function

QN,K∗(θ) = qN,K∗(θ)′ΩqN,K∗(θ),

where

qN,K∗(θ) =
[
q1N,K∗ (θ) q2N,K∗ (θ) q3N,K∗ (θ)

]′

and Ω is some predetermined positive definite weighting matrix.

3.3 Consistency of the Estimator

In this section we prove consistently using the standard methods from Chernozhukov, Hong,

and Tamer (2007). Define Q0(θ) as the probability limit of QN,K∗(θ) as N and K∗ get large.

Specifically we use sequential limits assuming that N grows faster than K∗. The identified

set, ΘI , is defined as the set of values that minimize Q0(θ). We verify the conditions in

Chernozhukov, Hong, and Tamer (2007) to show that the Hausdorff distance between Θ̂ and

ΘI converges in probability to zero and that θ0 ∈ Θi. Thus as the sample gets large our

estimate of Θ̂ will contain the true value with probability approaching 1.

Assumption 11. Fi, ξi, and ψi are all mean 0 and i.i.d. across individuals and are in-

dependent of each other with finite second moments. ωi is i.i.d. across individuals with

finite second moments, is independent of Fi, but may be correlated with ξi and/or ψi. vij

is mean zero and i.i.d. across individuals and covariates with finite variance. The vector

(Γj,Λj, βj, σ
2
j) is i.i.d. across covariates with finite second moments.

Assumption 12. Θ̄ is compact with the support of Ps bounded below by p
s > 0.

Assumption 13. The dimension of Fi is 1

Define dh(·, ·)to be Hausdorff distance as defined in Chernozhukov, Hong, and Tamer

(2007).
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Theorem 6. Under Assumptions 11-13, dh(Θ̂,ΘI) converges in probability to zero and θ0 ∈
ΘI .

(Proof in Appendix)

One can form a set estimator for α0 just by taking the projection of Θ̂ onto α. That is,

we can define this set as

Â ≡
{
α : there exists some value of (φ, Ps, σ

2
ξ) such that {α, φ, Ps, σ

2
ξ} ∈ Θ̂

}

3.4 Constructing Confidence Intervals

In this section we discuss confidence interval construction. We start with the ideal procedure

one would use given unlimited computing resources. We then discuss a more practical

approach, which is the parametric bootstrap we use in the Monte Carlos below.

3.4.1 A General Procedure

Before discussing inference it is useful to step back and consider our basic approach. In

terms of identification we have four parameters (α0, φ0, P
0
S , σ

0
ξ) but only 3 equations: the

population and limit of the sequence of models for (q1N , q2N , q3N) .
13 However, we also have

limits on the parameter space. In particular 0 < PS ≤ 1 and σ0ξ ≥ 0. In principle, while we

cannot get a point estimator for (α0, φ0, P
0
S , σ

0
ξ), we construct the set estimator Θ̂ for this

four dimensional parameter. Our set estimate for α0 is just the set of α that lie within this

identified set.

We can construct a confidence region in the analogous manner. That is, we could first

construct a confidence set for (α0, φ0, P
0
S , σ

0
ξ) and then let our confidence set for α be the

values of α that lie within this set. The most natural way to construct the larger confidence

set would be to “invert a test statistic.” That is, we would first construct a test statistic T (θ)

which has a known distribution under the null hypothesis: θ = θ0.
14 For each potential θ,

we would construct an acceptance region of the test. When T (θ) lies within this acceptance

region, θ would belong to this confidence set, otherwise it would not. Given the confidence

set for the full parameter space, we take the confidence set to be the set of α that lie within

13In the definition of the estimator, we have not explicitly defined Λ,Γ,β, or Σ as parameters but the
estimates of these objects as functions of the data and θ. The main reason is that the dimension of these
objects grows with K∗so in terms of consistency and inference it is easier to focus on the elements of θ.

14A natural choice for a test statistic would be the objective function QN,K∗(θ).
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this set. More formally let TN,K∗(θ) be the estimated value of the test statistic and let T c(θ)

the critical value. Assuming we reject when the test statistic is larger than the critical value,

the confidence set is defined as

ĈN,K∗ =
{
θ ∈ Θ | T̂ (θ) ≤ T c(θ)

}
,

and our estimated confidence region for α can be written as

Ĉα =
{
α ∈ R | (α,Θ) ∩ ĈN �= ∅

}
.

There are many test statistics one could use and many ways to calculate the critical value.

We consider the following algorithm based on the bootstrap. Consider testing the null

hypothesis θ = θ0.The most natural test statistic is the normalized criteria function, so that

TN,K∗(θ) = KQN,K∗(θ).

Such a test statistic would be computed as follows:

1. Estimate parameters to be used in generating data for the bootstrap. This involves

using the data generation process for Xi as well. That is, from the joint distribution

of (Xi,Wi),

(a) Estimate (Λ,ΛX), Σ, and the data generating processes for Fi and vij.

(b) Estimate

Γ̂(θ)√
K∗

≡
[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1

N
W̃ ′
(
Ỹ − αT̃

)

β̂(θ)√
K∗

≡
[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1 1
N

W̃ ′Z̃

(c) Given knowledge of PS, estimate the distribution of (ξi, ψi, ωi).

2. Generate NB bootstrap samples. Where for each sample:

(a) DrawK observable covariates from the actual set of covariates (with replacement)

with appropriate
(
Γ̂j, β̂j , λ̂j, Σ̂jj

)

(b) Draw (K∗ − K) unobservable covariates from the actual set of covariates (with

replacement) with appropriate
(
Γ̂j , β̂j, λ̂j , Σ̂jj

)
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(c) Now for i = 1, N generate all of the (Xi,W
∗
i ) using the DGP for fi and vij .

(d) Using the DGP for ψi and ξi generate Zi and (Yi − α0Ti) (Note that we do not

need to generate data on Yii and Ti themselves because only
(
Ỹi − α0T̃i

)
enters

the moment conditions that define the test statistic.)

(e) Given generated bootstrap data construct the test statistic QN,K∗(θ). (This in-

volves the intermediate steps of estimating Σ, λ and Γas well.)

3. From the bootstrap sample we can estimate the distribution of the test statistic and

calculate the critical value given the size of the test.

For this critical value to be correct, we need that the bootstrap distribution of TN,K∗(θ0)

provides a consistent estimate of the actual distribution of TN,K∗(θ0).

It will prove useful to define

χj =
[
ΛjΓj Λjβj Γjσ

2
jΓj Γjσ

2
jβj Sj

Λ2j
σ2j

SjΓjΛj SjΓjΛjσ
2
j SjβjΛj SjβjΛjσ

2
j SjΓ

2
jσ
2
j Sj

]′

and

χ0 = E
(
χj
)
.

Our next goal to show that the limit of qN,K∗(θ0) as N gets large is a known function of

only θ and the mean of χj . This property will the asymptotic distribution straight forward

to figure out. The proof is still in progress, so we write it as a congjecture.

Conjecture 7. Under Assumptions 11-13, the bootstrap distribution of the test statistic is

consistent.

(Proof in progress)

In the appendix we present the algorithm one would use to implement this approach in

practice.

3.4.2 A Parametric Bootstrap Procedure

In practice, implementing the procedure above in impractical because testing the null over

a four dimensional grid is computationally difficult. Additionally, one often has a strong

prior about the sign of the selection bias. We can obtain tighter bounds by imposing this

prior (formally defined as "monotone selection" in Manski and Pepper, 2000). While our
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estimation interval can potentially be much more complicated, for the simulations we have

run, we consistently find a compact region with one end of the region occurring at the

instrumental variable estimate (PS = 1) and the other occurring at the “observables like

unobservables”assumption (σξ = 0). Without loss of generality we will assume positive

selection bias so that the upper bound occurs under the constraint PS = 1. We will also

assume that the minimum value occurs at σξ. We propose a parametric bootstrap procedure

to construct one-sided confidence interval estimators for the lower and upper bounds of this

set, denoted αmin and αmax, respectively. We construct these intervals such that the estimator

α̂.10,min has 10% nominal probability of being below αmin. The estimator α̂.10,max has a 10%

nominal probability of exceeding αmax.

3.4.3 Construction of α̂.10,min

The procedure for estimating α̂.10,min involves the following steps.

1. Estimate the parameters under the model under the assumption that σξ = 0. We do

this by solving the system of equations

0 = q1N (α̂min, φ̂, P̂S, 0) = q2N (α̂min, φ̂, P̂S, 0) = q3N (α̂min, φ̂, P̂S, 0)

for α̂, ϕ̂, and P̂S. In doing this we also obtain estimates of Λ,Σ, and γ for the observable

covariates.

2. Next we need to estimate some additional parameters that will be used for generating

the bootstrap sample.

(a) Obtain estimates of the distributions for Fi, vij given the estimates of [Σ̂, Λ̂j ].

This can be done in a number of different ways. One could specify a parametric

distribution and estimate the distribution parameters. Alternatively, one could

do this completely nonparametrically. A third possibility is to take advantage of

the fact that our estimator involves up to second moments of the variables, so

only up to 4rth moments of the distributions of these variables matter for the

sampling distribution of α̂min. Instead of specifying parametric distributions, one

could use a method of moments procedure to estimate up to the fourth moments

from sample estimates of E(W̃ r
ijW̃

s
ij′) and σ̂v, Λ̂j, j = 1...,K for various values

of r and s. One could then pick convenient parametric distributions for θi and
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vij, j = 1, ...,K and choose parameters of the distributions to match the relevant

moments.15 Call the estimates of the additional parameters of the θi distribution

B̂θ and the additional parameters of the vij distribution B̂vj .
16

(b) Next we need to estimate the distribution of (ξi, ψi, ωi). We can use the same

three approaches as in the previous case. To use the third we need estimates of

fourth moments. To obtain them, one can use the fourth moments of Ỹi− α̂T̃i, Z̃i

and T̃i. Consider

E(ξ4i ) = E(Ỹi − αT̃i)
4 −E(

1√
K∗

K∗∑

j=1

W̃ijΓj)
4 −E(

1√
K∗

K∗∑

j=1

W̃ijΓj)
2σ2ξ .

We have the estimate of α̂min, so E(Ỹi − αT̃i)
4 can be replaced with the corre-

sponding sample moment. We also have estimates of E( 1√
K∗

∑K∗

j=1 W̃ijΓj)
2 and

σ2ξ. One can use a similar procedure to estimate E(ψ4i ). The relevant moment

condition is

E(ψ4i ) = E(Z̃i)
4 − E(

1√
K∗

K∗∑

j=1

W̃ijβj)
4 −E(

1√
K∗

K∗∑

j=1

W̃ijβj)
2σ2ψ .

Note that this requires an estimate of β̂ and σ2ψ, but estimating these is completely

analogous to estimating γ̂ and σ2ξ where the dependent variable is now Z̃i rather

than Ỹi − αT̃i. Estimation of δ, σ2ω and E(ω4i ) is analogous. We would then

pick convenient parametric distributions for this joint distribution, and estimate

parameters Bξ,ψ,ω. The joint distribution should not constrain the second and

fourth moments unless one wishes to impose additional a priori information (such

as normality) on it. We leave implicit the fact that B̂ξ,ψ,ω depends on α̂min.

3. Construct the Bootstrap sample. This involves a few different steps.

15Sticking with the one factor case and taking Wij to be mean zero, using independence of θi and the vij ,
and using the fact that var(θi) = 1, the moments are E(W

4
ij) = Λ

4
jE(θ

4
i ) +E(v4ij) + 4Λ

21σ2vij and

E(W 2ijW 2
ij′) = Λ

2
jΛ

2
j′E(θ

6
i ) + σ2vjσ

2
vj′ for all j, j

′ �= j pairs. The idea generalizes to the multiple factor
case.

16An alternative is to use the K observed Wj , impose the estimates Λ̂j and the estimates of σ̂vj , choose
parametric distributions for θi v1i, ..., vKi, and fit the parameters of those distributions. The chosen distri-
butions should not impose constraints on the second and fourth moments. In principle, one could work with
nonparametric distributions with the variance constrained to match the σ2vj . A nonparametric approach is
unattractive from a computational point of view — given that our estimators only involve second moments,
it does offer any clear advantages.
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(a) Using the estimates [β̂j, Γ̂j , σ̂v, Λ̂j, B̂j ], j = 1, ..., K, and the estimates P̂S, draw K̂∗

values of [β̂j , Γ̂j, σ̂vj, Λ̂j, B̂j] by sampling with replacement from the K estimated

values. Let the first K correspond to the “observed” W ′s for purposes of the

bootstrap replication.

(b) Using (σ̂vj, Λ̂j, B̂j) and B̂θ, generate (fi)
(b), (vij)

(b) and then W (b)
ij , i = 1...N.,

j = 1, ..., K̂∗ where (b) denotes the bth bootstrap replication, (b) = 1, ..., Nboot.

(c) Using the K̂∗ values of β̂j, the associated K∗ vectors W
(b)
ij , α̂min, and the draws of

ψ
(b)
i , use B̂ξ,ψ,ω to generate N values of (Z

(b)
i , T

(b)
i , Y

(b)
i ).

4. For each bootstrap sample compute α̂
(b)
min by solving

0 = q1
N(b)(α̂

(b)
min, ϕ̂, P̂S, 0) = q2

N(b)(α̂
(b)
min, ϕ̂, P̂S, 0) = q3

N(b)(α̂
(b)
min, ϕ̂, P̂S, 0)

on the bootstrap samples.

5. Calculate the 90th quantile of the bootstrap sample of α̂min and subtract the different

between that and our point estimate from our point estimate of α̂min to obtain the

lower bound of our confidence set.

3.4.4 Construction of α̂.90,max

To obtain α̂.90,max, we assume that the largest value of α̂ that satisfies the restrictions of the

model is obtained when one imposes the assumption that P̂S = 1 and ignores the possibility

that unobserved W̃j that induce positive correlation between T̃i and Ỹi. If one sets P̂S to 1

in the matrix
[

1
P̂S ·K

λ̂
′
λ̂+ Σ̂

]
and replaces the matrix with W̃ ′W̃ in equation 3.10) for Γ(θ̂),

then the solution for α̂ is IV. Under the null, all of the Wj are observed. Thus we do not

need to impose a model of how the Wj are related to each other to account for the effects

of missing Wj. One can construct the one sided confidence interval estimate using the

appropriate robust standard error estimator given assumptions about serial correlation and

heteroskedasticity in ξi. Alternatively, one can use a conventional bootstrap procedure.

While the simplicity of the above approach is attractive, it has an important shortcoming.

We have not been able to prove that OLS is the upper bound when PS is less than 1

Cov(W, ε) �= 0. This is because bias in Γ̂ may lead to a partially offsetting bias in α̂.
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4 Monte Carlo Evidence (very preliminary)

In this section we present Monte Carlo evidence on the performance of α̂min, which we

estimate based on α̂OU−Factor, and α̂max, which we estimate based on α̂OLS because in our

context α̂max turns out to be essentially the same as the OLS estimator. We also present

evidence on the performance of α̂OU .
17

In discussing the design, we first restate the equations of the model of Yi, Ti, and Wij:

Yi = α0Ti +
1√
K∗

K∗∑

j=1

WijΓj + ξi

= α0Ti +
1√
K∗

Ko∑

j=1

WijΓj +
1√
K

K∗∑

j=Ko+1

WijΓj + ξi

Wij =
1√
K∗

θ′iΛj + vij

Ti = Zi =
1√
K∗

K∗∑

j=1

WK
ij βj + ψi

We focus on the case in which θ is a scalar (r = 1). We vary assumptions about

PS = K/K∗, the fraction of the Wij variables that are included in the model.

4.1 W parameters

The distributions of the variables that determine Wij are

θi ∼ N(0, 1)

vij ∼ N(0, σ2vj); σvj ∼ U(1.0, 2.0)

Λj = Λ̄ + Λ̃j

Λ̃j ∼ U(−Λ̃max, Λ̃max)

For this specification,

17The OLS estimator is essentially the same as the estimate of α based on our moment equations with PS
set to 1. The two differ because we use the moments implied by the estimated factor structure rather than
the actual variance covariance matrix of W in the moment condition for Γ̂. In the designs we consider we
found that the maximum value of α̂ consistent with σ2ξ > 0 occured at PS = 1, although we have not proved
that this has to be the case for any model with a factor structure.
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E[Cov(Wj,Wj′)|j �= j′] =
1

K∗E(ΛjΛj′) =
1

K∗ Λ̄
2 and

E[V ar(Wj)] =
1

K∗ Λ̄
2 +

1

3K∗ [Λ̃max]
2 + E(σ2vj),

where the expectations are defined over j and j′. We report
E[Cov(Wj ,Wj′ )]

E[V ar(Wj)]
in the tables

below.

4.2 Parameters of the Yj and Tj Equations

Γj and βj have expected values µΓ and µβ , respectively, and depend on a common component

εj and the components εΓj and εβj that are specific to Γj and βj. They are determined by

Γj = µΓ +
gε

[g2ε + (1− gε)2].5
εj +

(1− gε)

[g2ε + (1− gε)2].5
εΓj

βj = µβ +
bε

[b2ε + (1− bε)2].5
εj +

(1− bε)

[b2ε + (1− bε)2].5
εβj,

where εj, εΓj , and εβj are uniform random variables with mean 0 and variance 1. They are

mutually independent and independent across j.

The parameters gε and bε determine relative weights on εj and the idiosyncratic terms

εΓj , εβj , thereby determining the covariance between Γj and βj. We have normalized the

weights so that var(Γj) = var(βj) = 1 regardless of the choice of gε and bε. g2ε and b2ε are

the shares of the variances accounted for by the common component εj, respectively. For

the above design,

E(Γj · βj′) = µΓµβ +
gε · bε

[g2ε + (1− gε)2].5 · [b2ε + (1− bε)2].5
, j = j′

= µΓµβ , j �= j′

cov(Γj, βj′) = corr(Γj , βj′) =
gε · bε

[[g2ε + (1− gε)2].5 · [b2ε + (1− bε)2].5].
, j = j′

= 0, j �= j′.

E(Γj · Γj′) = µΓµΓ + 1, j = j′

= µΓµΓ, j �= j′

E(βj · βj′) = µβµβ + 1, j = j′

= µβµβ, j �= j′
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Below we consider the effects of varying gε and bε, and we also consider a case in which

βj = 0 for all j.

4.3 Additional Parameter Values

We also examine the sensitivity of the estimates to the importance of ψ and ξ, the idiosyn-

cractic components of T and Y , respectively. To do this, we vary σ2ξ so as to vary the

expected fraction of the variance of the unobservable component of Y that is due to ξ. That

is, we choose σ2ξ to manipulate

R2
ξ ≡ E

[
σ2ξ/(

1

K∗V ar(
∑K∗

j=K0+1
WjΓj|Γ) + σ2ξ)

]
,

where the expectation is defined over the joint distribution of Γ, β, and W . Similarly, we

set σ2ξ to control

R2
ψ ≡ E

[
σ2ψ/(

1

K∗V ar(
∑K∗

j=1
Wjβj|β) + σ2ψ)

]
.

We report R2
ψ and R2

ξ in the tables below. Note that for a given value of R2
ξ , the value of

σ2ξ will depend on the choice of PS, but φ and φε will not. We view this as an attractive

parameterization because we are primarily concerned with ensuring that φ and φε do not

depend on PS.
18 The expected values of φ and φε at the true α are complicated functions

of the parameters of the data generation process, so we simply compute the average values

in each design as well as the average estimate of φ̂ at α̂min.

For all experiments, we set N = 2000 and report results based on 1000 Monte Carlo

replications. The bootstrap estimates of the .10 one sided confidence interval estimate is

based on 1000 bootstrap replications for each Monte Carlo replication. We set K∗ to 100,

R2
ψ to 0.5, and α0 to 1.0 in all the experiments reported, and we vary PS, R

2
ξ , Λ̄, Λ̃max, µB,

µΓ, gε, and bε across experiments. Specifically, we set PS of 0.2, 0.4, and 0.8 and we set R
2
ξ to

18If we fix V ar(ξi) at a nonzero value, the ratio φε/φ approaches 0 (the case in which OLS is unbiased)
as PS approaches 1. In assessing how variation in PS matters, we wish to hold constant the degree to which
selection on observables is similar to selection on unobservables. For each Monte Carlo experiment we set
σ2ψ and σ2ξ to the fixed values

σ2ξ = E

[
R2ξ

1−R2ξ

1

K∗V ar(
∑K∗

j=K0+1
WjΓj |Γ)

]

σ2ψ = E

[
R2ψ

1−R2ψ

1

K∗V ar(
∑K∗

j=K0+1
Wjβj |β)

]

given the values of the other parameters of the experiment.
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0, 0.2, and 0.4. We vary µB, µΓ, gε, and bε such that E(βjΓj) = 0.09, 0.3, and 0.6. Finally,

we vary Λ̄ and Λ̃max. In one case, we set Λ̄ = 0, which means that E[Corr(Wij ,Wij′)] = 0 if

j �= j′. In the other case, E[Corr(Wij ,Wij′)] = 0.2 if j �= j′.

4.4 Monte Carlo Results

We first consider a baseline case in which Ti is randomly assigned. Table MC1 reports results

for a design in which βj = 0 for all j (µβ = 0, var(εβj) = 0, and bε = 0), which means that T

does not depend on the Wj . For these designs, α̂OLS is unbiased because E(φ) = E(φε) = 0.

We use the median as our measure of central tendency but also report the 10th and 90th

percentile values. We use the 90th-10th differential as a measure of dispersion. The median

values of φ, φε, and φ̂ across replications are shown in the three rows of the table.

The estimates of α̂OLS are tightly distributed around 1.0 in all three cases. The dispersion

declines with PS, reflecting a smaller variance of the unobserved components of Y as PS

increases. The values of α̂OU and of α̂min are also tightly distributed around 1.0, although

they are estimated less precisely than the OLS coefficients. When PS = 0.2, the 90th-10th

differential of α̂min is roughly double that of the 90th-10th differential for α̂OLS, but when

PS = 0.8, the three estimators have similar dispersion. The results are not very sensitive to

the value of Ps.

We turn next to designs in which OLS estimates of α0 are biased. In Table MC2a, we

set µβ = µΓ = 0.3, which leads to bias OLS estimates for the specification we consider. To

see this, note that even if bε = ge = 0, so that the elements of βj and Γj are uncorrelated,

OLS will be biased if PS < 1 because E(βjΓj) = 0.09. In the top panel of the table, Λ̄ = 0,

so that E[Corr(Wij,Wij′)] = 0 ∀ j �= j′. We consider the bε = ge = 0 case in the first three

columns of the table. In the first column, with PS = 0.2, φ and φε are small. (The median

of φ = 0.043 and the median of φε = 0.041. For this design φ = φε and both are positive,

so the difference reflects sampling error.) The bias in OLS in this case is small regardless

of the value of PS. The precision of the OLS estimator is also essentially invariant to the

value of PS.
19 In contrast, the performance of the α̂OU and α̂min estimators improves as

PS increases. α̂OU exhibits some downward bias when PS = 0.2, but α̂min is approximately

unbiased in all cases. α̂min and α̂OU are noisier than OLS but not dramatically so when

PS = 0.8.

19It is surprising that the bias in OLS is not monotone decreasing in PS. Sampling error may be the
reason, but phenomen shows up in several places in the tables.
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In the next three columns of the table, we chose bε and gε so that E(Γjβj) = 0.3. Not

surprisingly, the upward bias in OLS is higher than the corresponding cases in the first three

columns of the table, with the median of âOLS rising to 1.256 when PS = 0.2 and 1.101

when PS = 0.8. Again, α̂min is essentially unbiased in all three cases, with the dispersion

declining with PS. The last three columns increase bε and gε so that E(Γjβj) to 0.6 and

Corr(Γj , βj) = .51. For each value of PS, the bias in OLS increases relative to the cases in

which E(Γjβj) = 0.3. Interestingly, the α̂OU and α̂min estimators are less noisy as E(Γjβj)

increases. When E(Γjβj) = 0.6 and PS = 0.8 (column 6) shown in the last column, the

α̂OU and α̂min estimators have no more sampling error than the OLS estimator.

Table MC2b repeats the calculations found in Table MC2a but introduces a factor struc-

ture such that E[Corr(Wij ,Wij′)] = 0.2 if j �= j′. We impose this correlation by setting Λ̄ to

3.4. In order to keep E[V ar(Wij)] constant relative to the Λ̄ = 0 case, we reduce Λ̃max from

6.2 to 2.0. The bias in OLS tends to be lower for this design, perhaps because the regressors

that are included do a better job of controlling for the omitted Wj when the correlation

among the Wj is higher. Intuitively, as E[Corr(Wij,Wij′)] → 1, it does not matter which

regressors are actually observed and which are not. The increase in the correlation across

Wj that comes from θ is associated with an improvement in the performance of α̂min relative

to α̂AET . In particular, α̂OU is substantially downward biased unless E(Γjβj) = 0.6 or PS

= 0.8. This may be due to fact that the α̂OU estimator is based on the assumption that the

restriction φ = φε based on the true Γj carries over to the coefficient vector Γ
P of the projec-

tion of Yi − αiT on the observables Wi. The positive correlation between the observed and

unobserved covariates that is present in these designs results in positive omitted variables

bias on the observed Γ̂j. The bias arises because the unobserved covariates are positively

correlated with Y . Since the observed covariates are also positively correlated with T in

these designs, the positive bias on the estimates of Γj may lead the projection of T on WiΓ
P

to overstate the amount of selection bias, inducing a negative bias in the AET estimates of

α0. This negative bias also affects the OLS estimator, partially counteracting the positive

bias caused by correlation of T with the unobserved elements of W . This is why the positive

bias on the OLS estimates is smaller in Table MC2b than in Table MC2a.

Most importantly, α̂min performs very well in the presence of a factor structure. It had a

median close to 1 in all cases and a 90th-10th differential that is similar to OLS in the cases

in which E(Γjβj) = 0.3 or 0.6. This superior performance of α̂min relative to α̂OU is due
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to the fact that explicitly accounting for the factor structure eliminates the positive bias on

the estimates of Γj, which in turn eliminates the negative bias in the estimate of α0.

In Table MC3a, we relax the assumption that the observables are a random set of all the

unobservables by setting R2
ξ = 0.2. In the top panel, Λ̄ = 0 and Λ̃max = 6.2, as in Table

MC2a. Not surprisingly, allowing a positive variance for ξ has no effect on the median of

OLS. However, the lower bound estimators α̂OU and α̂min are now both downward biased for

α because the assumption that φ = φε no longer holds. This is easiest to see in the three

cases in which PS equals 0.8; in all three cases φε is approximately equal to 0.8φ; in other

words, selection on unobservables is now only 80 percent as large as selection on observables.

When E(Γjβj) = 0.3, the median of α̂OU varies from 0.907 to 0.975 depending on PS, and

the corresponding median values of α̂min are 0.976, 0.956, and 0.979. However, the sampling

variance of the α̂AET and α̂min estimators is quite wide when PS is small. When we increase

bε and gε so that E(Γjβj) = 0.6, the positive bias in OLS increases, as in table MC2a, while

there is no systematic change for the other estimators. The sampling variances of α̂OU

and α̂min are wider in this case than in the analogous cases in Table MC2a (in which the

assumption φ = φε holds.). We do not fully understand this pattern, but in spite of it, the

lower bound estimators usefully complement OLS.

Table MC3b again allows for correlation among the elements of Wj by setting Λ̄ and Λ̃max

so that E[Corr(Wij,Wij′)] = 0.2. Relative to the iid case, the performance of α̂min improves

substantially, with median values that are close to 1.0 for all cases. The sampling distribution

narrows substantially, perhaps reflecting the fact that when the Wj are correlated, it is easier

to “fill in” for the effects of missing covariates using our moment conditions, so that it matters

less which elements of W ∗ are actually observed. Relative to the values in Table MC3a,

the negative bias of the α̂OU estimator increases and the positive bias of the α̂OLS declines,

again reflecting positive correlation between the observed and unobserved elements of W ∗.

Finally, Tables MC4a and MC4b are analogous to tables MC3a and MC3b, except now we

set R2
ξ = 0.4, thereby lowering φε relative to φ. The median of OLS is essentially unchanged

relative to the cases in which R2
ξ is 0 or 0.2, which is not surprising. The performance of α̂OU

is poor in all three cases in which PS = 0.2, with large sampling errors and negative bias. The

medians of α̂min range between 0.786 and 0.982, but this estimator is noisy relative to OLS

except when PS = 0.8 and E(Γjβj) = 0.6. As we saw earlier in a comparison of Tables MC3a

and MC3b, the performance of α̂min improves substantially when E[Corr(Wij,Wij′)] = 0.2.
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There appears to be negative bias in all cases, but this bias is typically small relative to the

positive bias in α̂OLS. The negative bias in α̂OU is substantial in most cases, reflecting the

fact that φ > φε as well as the positive correlation between the observed and unobserved

elements of W .

The Monte Carlo results may be summarized as follows. First, the median of α̂min and

α̂OU are similar when there is no factor structure, although α̂min is less dispersed, particu-

larly when PS = .2. α̂min performs much better than α̂OU when there a factor structure,

although in some unreported experiments we have found that the estimators perform sim-

ilarly. Second, both α̂min and α̂OU are biased down when φ > φε. This is to be expected,

because both estimators are based on the assumption that φ = φε and are to be interpreted

as lower bound estimators if φ > φε > 0 ( in the case φ > 0). Third, the downward bias in

α̂min when φ > φε is reduced considerably when there is a factor structure, at least in the

cases we consider. Fourth, precision is worse than with OLS. The loss of precision depends

on the design and is negligible in the case in which T is randomly assigned (Table MC1).

However, α̂min is sufficiently precise to provide useful information about α in all of the cases

that we consider.

5 Conclusion

In many situations, exclusion restrictions, functional form restrictions, or parameter restric-

tions are not sufficiently well grounded in theory or sufficiently powerful to provide a reliable

source of identification. What can one do?

As we noted in the introduction, it is standard procedure to look for patterns in the

relationship between an explanatory variable or an instrumental variable and the observed

variables in the model when considering exogeneity. We provide a theoretical foundation for

thinking about the degree of selection on observed variables relative to unobserved variables,

and we propose two estimators that make explicit use of the pattern of selection in the

observables to bound the treatment effect. We contrast the standard IV or OLS assumption

that the researcher has chosen the control variables so that the instrument (or the treatment

itself) are not related to the unobservables with the assumption that the control variables

are randomly chosen from the full set variables that influence the outcome, and argue that

the truth is likely to lie somewhere in between.

Our estimators build on Theorem 1, which concerns the coefficients of the projection of
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an outcome on the regression indices of the observables and the unobservables. A number of

assumptions are required, but roughly speaking, the theorem says that when the number of

observed and unobserved variables that influence the outcome are large, the coefficient on the

index of unobservables will lie between 0 and the coefficient on the index of observables. Both

OU and the OU −Factor estimators identify bounds by imposing the inequality restriction

on the econometric model for the outcome. However, in the likely case that the observed

and unobserved variables are related, the coefficients on the control variables will to suffer

from omitted variables bias, invalidating the restriction and the case for bounds. The OU

estimator combines Theorem 1 with a high level assumption about the link among the

observed and unobserved variables. The OU −Factor estimator adds the assumption that

the observed and unobserved explanatory variables have a factor structure, which provides

additional moment restrictions that permit one to account for the effects of omitted variables.

We show that the estimator identifies a set that asymptotially contains the true value of the

treatment parameter. We derive the asymptotic distribution of the OU −Factor estimator

and present a parametric bootstrap approach to statistical inference. Our Monte Carlo

simulations are generally encouraging, particularly for OU − Factor.

There is a very long research agenda. More Monte Carlo evidence is needed in the context

of real world applications and data sets. Thus far we have not applied the OU − Factor

estimator, and we have not performed Monte Carlo studies for designs with multiple factors.

The OU estimator has the advantage of simplicity and has already been used in a number

of applications. However, a way to account for randomness in which explanatory variables

are included in W when constructing confidence intervals is needed. Ultimately, we believe

that incorporating a formal model of the relationships among the observed and unobserved

variables in W c is the more promising long-run research path. The linear factor model that

we employ in developing the OU − Factor estimator is a natural way to do this, but it is

also restrictive. Other models of the joint distribution of the covariates should be explored.

We only touch upon the case of heterogeneous treatment effects and so far we have only

considered models in which the index that determines the outcome is an additively separable

function.

More generally, we think of OU and OU − Factor as a start for an investigation into a

broader class of estimators based on the idea that if one has some prior information about

how the observed variables were arrived at, then the joint distribution of the outcome, the
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treatment variable, the instrument, and the observed explanatory variables are informative

about the distribution of the unobservables.

In closing, we caution against the potential for misuse of the idea of using observables

to draw inferences about selection bias, whether through an informal comparison of means

or through the estimators we propose. The conditions required for Theorem 1 imply that it

is dangerous to infer too much about selection on the unobservables from selection on the

observables if the observables are small in number and explanatory power, or if they are

unlikely to be representative of the full range of factors that determine an outcome.
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PS=0.2 PS=0.4 PS=0.8

Median of φ 0.004 -0.003 -0.002

Median of φε 0.001 -0.001 0.001

Median of estimated φ at αmin 0.002 -0.002 -0.002

αmax

  10th percentile 0.943 0.986 0.988

                         

  Median 1.005 1.002 1.000

                         

  90th percentile 1.049 1.017 1.014

                         

αOU

  10th percentile 0.911 0.981 0.985

                         

  Median 1.000 1.006 1.000

                         

  90th percentile 1.092 1.021 1.013

αmin

  10th percentile 0.909 0.981 0.984

                         

  Median 1.001 0.994 1.000

                         

  90th percentile 1.117 1.010 1.014

Factor structure such that E((Cov(Wj,Wj'))=0

Table MC1

Design: Z Randomly Assigned (all β terms=0)

Notes: In all specifications, the true value of α=1, E(Γ)=0, all β terms=0, N=2000, and K*=100.



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of φ 0.043 0.058 -0.016 0.432 0.453 0.453 0.848 0.820 0.823

Median of φε 0.041 0.081 -0.019 0.456 0.446 0.452 0.815 0.831 0.817

Median of estimated φ at αmin 0.067 0.049 -0.014 0.415 0.465 0.451 0.786 0.816 0.815

αmax

  10th percentile 0.959 0.959 0.950 1.167 1.102 1.038 1.376 1.264 1.119

                                                                         

  Median 1.040 1.036 1.012 1.256 1.180 1.101 1.477 1.351 1.181

                                                                         

  90th percentile 1.128 1.114 1.077 1.345 1.256 1.170 1.550 1.421 1.249

                                                                 

αOU

  10th percentile 0.089 0.694 0.905 0.307 0.749 0.920 0.621 0.797 0.947

                                                                         

  Median 0.822 0.986 1.001 0.940 1.007 1.004 0.987 0.997 1.004

                                                                         

  90th percentile 1.232 1.248 1.094 1.422 1.269 1.086 1.382 1.156 1.057

Table MC2a

A: Factor structure such that E((Corr(Wj,Wj'))=0

E(β*Γ)=0.09 E(β*Γ)=0.3 E(β*Γ)=0.6

  90th percentile 1.232 1.248 1.094 1.422 1.269 1.086 1.382 1.156 1.057

αmin

  10th percentile 0.624 0.783 0.888 0.624 0.810 0.907 0.739 0.837 0.941

                                                                        

  Median 1.017 1.032 0.999 0.993 0.998 1.006 1.001 1.002 1.004

                                                                        

  90th percentile 1.384 1.276 1.101 1.371 1.202 1.096 1.195 1.107 1.061

Notes: In all specifications, the true value of α=1, E(Γ)=E(β)=0.3, N=2000, K*=100, R
2
ψ=0.5, and R

2
ξ=0.



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of φ 0.606 0.587 0.594 0.735 0.772 0.782 0.924 0.929 0.928

Median of φε 0.629 0.575 0.605 0.767 0.727 0.752 0.920 0.932 0.914

Median of estimated φ at αmin 0.649 0.620 0.639 0.750 0.785 0.803 0.923 0.943 0.941

αmax

  10th percentile 0.956 0.965 0.922 1.084 1.029 0.955 1.224 1.192 1.060

                                                                             

  Median 1.038 1.039 1.011 1.137 1.116 1.042 1.294 1.293 1.137

                                                                             

  90th percentile 1.102 1.119 1.109 1.228 1.202 1.158 1.448 1.425 1.262

                                                                             

αOU

  10th percentile 0.554 0.539 0.732 0.639 0.616 0.777 0.864 0.872 0.880

                                                                             

  Median 0.761 0.771 0.915 0.795 0.866 0.938 0.966 0.979 0.991

                                                                             

Table MC2b

E(β*Γ)=0.09 E(β*Γ)=0.3 E(β*Γ)=0.6

B: Factor structure such that E((Corr(Wj,Wj'))=0.2

                                                                             

  90th percentile 0.886 0.948 1.057 0.914 1.057 1.121 1.067 1.066 1.078

αmin

  10th percentile 0.851 0.877 0.930 0.864 0.889 0.933 0.911 0.923 0.959

                                                                        

  Median 0.998 1.003 1.004 0.989 0.993 1.002 0.983 0.999 1.005

                                                                        

  90th percentile 1.156 1.144 1.077 1.105 1.088 1.049 1.068 1.058 1.041

Notes: In all specifications, the true value of α=1, E(Γ)=E(β)=0.3, N=2000, K*=100, R
2
ψ=0.5, and R

2
ξ=0.



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of φ 0.041 0.074 0.064 0.438 0.444 0.454 0.850 0.816 0.832

Median of φε 0.084 0.059 0.081 0.353 0.347 0.337 0.632 0.640 0.631

Median of estimated φ at αmin 0.026 0.078 0.054 0.412 0.495 0.474 0.670 0.718 0.791

αmax

  10th percentile 0.958 0.948 0.949 1.165 1.138 1.039 1.378 1.334 1.120

                                                                        

  Median 1.045 1.041 1.019 1.257 1.224 1.101 1.476 1.407 1.181

                                                                        

  90th percentile 1.137 1.127 1.089 1.345 1.314 1.171 1.551 1.479 1.248

                                                                        

αOU

  10th percentile 0.030 0.626 0.890 0.213 0.258 0.884 0.033 0.439 0.889

                                                                        

  Median 0.844 0.971 0.996 0.868 0.784 0.975 0.783 0.806 0.953

                                                                        

  90th percentile 1.347 1.270 1.101 1.388 1.276 1.067 1.346 1.121 1.013

αmin

  10th percentile 0.591 0.626 0.881 0.227 0.576 0.865 0.275 0.493 0.882

                                                                         

  Median 0.987 0.987 0.997 0.879 0.878 0.979 0.738 0.812 0.952

                                                                         

  90th percentile 1.430 1.419 1.112 1.516 1.215 1.077 1.063 0.950 1.017

Table MC3a

A: Factor structure such that E((Corr(Wj,Wj'))=0

Notes: In all specifications, the true value of α=1, E(Γ)=E(β)=0.3, N=2000, K*=100, R
2
ψ=0.5, and R

2
ξ=0.2.

E(β*Γ)=0.09 E(β*Γ)=0.3 E(β*Γ)=0.6



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of φ 0.767 0.675 0.615 0.909 0.899 0.806 1.097 1.077 0.956

Median of φε 0.464 0.430 0.446 0.564 0.533 0.580 0.689 0.670 0.697

Median of estimated φ at αmin 0.625 0.654 0.639 0.678 0.712 0.802 0.755 0.823 0.915

αmax

  10th percentile 1.017 0.938 0.965 1.112 1.091 1.026 1.208 1.202 1.087

                                                                          

  Median 1.072 1.036 1.021 1.188 1.157 1.068 1.300 1.284 1.130

                                                                          

  90th percentile 1.142 1.136 1.089 1.280 1.231 1.134 1.397 1.379 1.217

                                                                                  

αOU

  10th percentile 0.145 0.452 0.753 0.333 0.505 0.725 0.379 0.556 0.852

                                                                       

  Median 0.577 0.697 0.910 0.649 0.752 0.922 0.713 0.812 0.948

                                                                       

  90th percentile 0.737 0.832 0.958 0.834 0.877 0.970 0.863 0.901 0.982

              

αmin               

  10th percentile 0.437 0.738 0.898 0.447 0.690 0.904 0.380 0.641 0.907

                                                                       

  Median 0.813 0.929 0.975 0.788 0.871 0.969 0.732 0.840 0.963

                                                                         

  90th percentile 1.204 1.198 1.036 1.026 2.202 1.014 0.903 0.922 0.994

E(β*Γ)=0.09 E(β*Γ)=0.3 E(β*Γ)=0.6

Table MC3b

B: Factor structure such that E((Corr(Wj,Wj'))=0.2

Notes: In all specifications, the true value of α=1, E(Γ)=E(β)=0.3, N=2000, K*=100, R
2
ψ=0.5, and R

2
ξ=0.2.



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of φ 0.060 0.044 0.041 0.440 0.442 0.455 0.841 0.812 0.827

Median of φε 0.047 0.050 0.025 0.259 0.252 0.249 0.461 0.465 0.467

Median of estimated φ at αmin 0.031 0.082 0.057 0.402 0.487 0.504 0.512 0.585 0.744

αmax

  10th percentile 0.949 0.954 0.947 1.188 1.149 1.028 1.364 1.313 1.125

                                                                           

  Median 1.044 1.045 1.014 1.270 1.228 1.093 1.466 1.392 1.165

                                                                           

  90th percentile 1.147 1.136 1.078 1.355 1.328 1.166 1.565 1.507 1.250

                                                                          

αOU

  10th percentile 0.002 0.304 0.793 -0.449 -0.280 0.750 -0.656 -0.185 0.712

                                                                          

  Median 0.863 0.876 0.989 0.705 0.551 0.887 0.446 0.437 0.825

                                                                          

  90th percentile 1.314 1.260 1.141 1.418 1.232 1.028 1.486 0.977 0.911

αmin

  10th percentile 0.492 0.608 0.798 -0.505 -0.010 0.762 -0.628 -0.225 0.703

                                                                         

  Median 0.979 0.982 0.984 0.657 0.655 0.890 0.288 0.418 0.832

                                                                         

  90th percentile 1.378 1.213 1.139 1.702 1.582 1.021 1.080 0.699 0.920

E(β*Γ)=0.3 E(β*Γ)=0.6

Table MC4a

A: Factor structure such that E((Corr(Wj,Wj'))=0

Notes: In all specifications, the true value of α=1, E(Γ)=E(β)=0.3, N=2000, K*=100, R
2
ψ=0.5, and R

2
ξ=0.4.

E(β*Γ)=0.09



PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8 PS=0.2 PS=0.4 PS=0.8

Median of φ 0.878 0.770 0.649 1.076 0.988 0.831 1.311 1.204 0.993

Median of φε 0.323 0.295 0.315 0.385 0.395 0.412 0.489 0.466 0.493

Median of estimated φ at αmin 0.500 0.339 0.643 0.537 0.622 0.785 0.565 0.673 0.865

αmax

  10th percentile 1.020 0.983 0.965 1.130 1.117 1.023 1.219 1.204 1.084

                                                                        

  Median 1.077 1.043 1.016 1.198 1.164 1.084 1.284 1.281 1.140

                                                                        

  90th percentile 1.168 1.124 1.075 1.270 1.243 1.134 1.390 1.372 1.186

                                                                        

αOU

  10th percentile 0.455 0.031 0.782 -0.317 0.016 0.789 -0.353 0.034 0.786

                                                                        

  Median 0.248 0.482 0.870 0.294 0.513 0.876 0.267 0.537 0.891

                                                                        

  90th percentile 0.533 0.697 0.918 0.595 0.720 0.927 0.610 0.736 0.943

αmin

  10th percentile -0.156 0.248 0.838 -0.299 0.175 0.817 -0.555 0.041 0.796

                                                                        

  Median 0.516 0.672 0.933 0.377 0.590 0.914 0.297 0.553 0.901

                                                                        

  90th percentile 1.643 2.447 1.001 0.932 0.789 0.966 0.662 0.739 0.954

Notes: In all specifications, the true value of α=1, E(Γ)=E(β)=0.3, N=2000, K*=100, R
2
ψ=0.5, and R

2
ξ=0.4.

E(β*Γ)=0.09 E(β*Γ)=0.3 E(β*Γ)=0.6

B: Factor structure such that E((Corr(Wj,Wj'))=0.2

Table MC4b



Appendix

Proof of Theorem 1:

To simplify the notation, define
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By definition of the projection,

φ =
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Z1 M
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12
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12
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Thus, if MK∗

22 MK∗
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12 MK∗

12 is nonzero,

φε
φ
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Notice first that
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Assumptions 1 and 2 guarantee that
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and that A and B are finite.
Applying the same steps to MK∗

11 ,

MK∗

11 = E





 1√

K∗

K∗∑

j=1

SjW̃ijΓj



2

;GK∗




= E


 1

K∗

K∗∑

j=1

K∗∑

�=1

SjS�W̃ijW̃i�ΓjΓ�;GK
∗




=
1

K∗

K∗∑

j=1

K∗∑

�=1

SjS�σ
K∗

j� ΓjΓ�

=
1

K∗

K∗∑

j=1

Sjσ
K∗

jj ΓjΓj +
1

K∗

K∗−1∑

j=1

K∗∑

�=1
��=j

SjS�σ
K∗

j� ΓjΓ�

p→ E
(
Sjσ

K∗

jj ΓjΓj
)
+

∞∑

j=1

∞∑

�=j+1

E
(
SjS�σ

K∗

j� ΓjΓ�
)
= PSA+ P 2SB

Similarly,

MK∗

22 =
1

K∗

K∗∑

j=1

(1− Sj)σ
K∗

jj ΓjΓj +
1

K∗

K∗−1∑

j=1

K∗∑

�=1
��=j

(1− Sj) (1− S�)σ
K∗

j� ΓjΓ� + σ2ξ

p→ (1− PS)A+ (1− PS)
2B + σ2ξ

MK∗

12 =
1

K∗

K∗−1∑

j=1

K∗∑

�+1=1

(1− Sj)S�σ
K∗

j� ΓjΓ�

p→ (1− PS)PSB

Using Assumption 3, now notice that

MK∗

Z1 = E


Z


 1√

K∗

K∗∑

j=1

SjW̃ijΓj


 ;GK∗




=
1

K∗

K∗∑

j=1

Sjµ
K∗

j Γj

p→ PSE
(
µK

∗

j Γj
)

MK∗

Z2 = E


Z


 1√

K∗

K∗∑

j=1

(1− Sj) W̃ijΓj


 ;GK∗




=
1

K

K∑

j=1

(1− Sj)µ
K∗

j Γj

p→ (1− PS)E
(
µK

∗

j Γj
)

2



Notice that the probability limit of the denominator of equation (1) is

plim MK∗

Z1 M
K∗

22 −MK∗

Z2 M
K∗

12
p→ PSE

(
µK

∗

j Γj
)
[(1− PS)A+ (1− PS)

2
B + σ2ξ ]−

(1− PS)E
(
µK

∗

j Γj
)
(1− PS)PSB

= E
(
µK

∗

j Γj
) [

Ps (1− PS)A+ σ2ξ
]

Given that A > 0, and since it cannot be the case that Ps = 1 and σ2ξ = 0, this expression can only equal

zero if E
(
µK

∗

j Γj
)
= 0. In that case, φε also converges to zero, proving the second part of the theorem (if

plim φ = 0, then φε = 0).
Now assume that φ does not converge to zero. Consider the numerator of equation (1):

MK∗

Z2 M
K∗

11 −MK∗

Z1 M
K∗

12
p→(1− PS)E

(
µK

∗

j Γj
)
(PSA+ P 2SB)−

PSE
(
µK

∗

j Γj
)
(1− PS)PSB)

= E
(
µK

∗

j Γj
)
Ps (1− PS)A

Thus,
φε
φ

p→ (1− PS)A

(1− PS)A+ σ2ξ
.

Verification That MA Model Satisfies Assumptions 2 and 3

To see that Assumption 2 is satisfied first note that

σK
∗

j,� =

{
<∞ |j − �| ≤ qq

0 otherwise
.

Thus

1

K

K∑

j=1

K∗∑

�=1

E(σK
∗

j,� ΓjΓ�) =
1

K

K∑

j=1

j+qw∑

�=j−qw
E(σKj,�ΓjΓ�)

=

j+qw∑

�=j−qw
E(σKj,�ΓjΓ�)

Next consider the second part of Assumption 2. The key is the second moment of the variable of interest

1

K∗2

K∗∑

j=1

K∗∑

�=1

K∗∑

r=1

K∗∑

s=1

E(σKj,�σ
K
r,sΓjΓ�ΓrΓs) =

1

K∗2

K∗∑

j=1

j+qw∑

�=j−qw

K∗∑

r=1

r+qw∑

s=r−qw
E(σKj,�σ

K
r,sΓjΓ�ΓrΓs)

=
1

K∗2

K∗∑

j=1

j+qw∑

�=j−qw

K∗∑

r=1,|r−j|>2qw

r+qw∑

s=r−qw
E(σKj,�σ

K
r,sΓjΓ�ΓrΓs)

+
1

K∗2

K∗∑

j=1

j+qw∑

�=j−qw

K∗∑

r=1,|r−j|≤2qw

r+qw∑

s=r−qw
E(σKj,�σ

K
r,sΓjΓ�ΓrΓs)

→




j+qw∑

�=j−qw
E(σKj,�ΓjΓ�)



2

3



Since this is just the square of the expected value, Assumption 2 is satisfied.
Next consider Assumption 3.
Notice that

µK
∗

j =
√
K∗E

(
ZiWij |GK

∗

)

=

[
K∑

�=1

Wi�β�

]
Wij

= E
(
σK

∗

j,� β�

)

Verifying Assumption 3 becomes virtually identical to verifying Assumption 2.

E(µK
∗

j Γj) =
1

K∗

K∗∑

j=1

E
(
µK

∗

j Γj
)

=
1

K∗

K∗∑

j=1

K∗∑

�=1

E
(
σK

∗

j,� β�Γj
)

=
1

K∗

K∗∑

j=1

j+qw∑

�=j−qw
E(σK

∗

j,� βjΓ�)

=

j+qw∑

�=j−qw
E(σK

∗

j,� βjΓ�)

and

E


 1

K∗

K∗∑

j=1

µK
∗

j Γj



2

=
1

K∗2

K∗∑

j=1

K∗∑

�=1

K∗∑

r=1

K∗∑

s=1

E(σK
∗

j,� σ
K∗

r,s βjΓ�βrΓs)

=
1

K∗2

K∗∑

j=1

j+qw∑

�=j−qw

K∗∑

r=1,|r−j|>2qw

r+qw∑

s=r−qw
E(σK

∗

j,� σ
K∗

r,s βjΓ�βrΓs)

+
1

K∗2

K∗∑

j=1

j+qw∑

�=j−qw

K∗∑

r=1,|r−j|≤2qw

r+qw∑

s=r−qw
E(σK

∗

j,� σ
K∗

r,s βjΓ�βrΓs)

→




j+qw∑

�=j−qw
E(σK

∗

j,� βjΓ�)



2

which is again just the square of the mean so this gives the result.

Proof of Theorem 2

The theorem imposes the assumption

A ≡ lim
K∗→∞

E


 1

K∗

K∗∑

j=1

σK
∗

jj (Γj)
2


 = lim

K∗→∞
E


 1

K∗

K∗∑

j=1

ωjσ
K∗

jj (Γj)
2




B ≡ lim
K∗→∞

E




1

K∗

K∗∑

�=1
��=j
Kt

(
σK

∗

j� ΓjΓ�

)



= lim

K∗→∞
E




1

K∗

K∗∑

�=1
��=j
Kt

(
ωjωlσ

K∗

j� ΓjΓ�

)




.

4



Following the proof of theorem 1, this assumption implies that MK∗

11
p→ PSA+ P 2SB, MK∗

22
p→ (1− PS)A+

(1− PS)
2
B + σ2ξ, and MK∗

12
p→ (1− PS)PSB, as in the i.i.d. case.

Following that proof, it is straightforward to show that

MK∗

Z1 = PSE
(
µK

∗

j Γj | Sj = 1
)

MK∗

Z2 = (1− PS)E
(
µK

∗

j Γj | Sj = 0
)

Consider the numerator of φK
∗

ε

MK∗

Z2 M
K∗

11 −MK∗

Z1 M
K∗

12

p→
[
(1− PS)E

(
µK

∗

j Γj | Sj = 0
)]
[PSA+ P 2SB]−

[
PSE

(
µK

∗

j Γj | Sj = 1
)]
[(1− PS)PSB]

= (1− PS)PSAE
(
µK

∗

j Γj | Sj = 0
)
+ (1− PS)P

2
SBE

(
µK

∗

j Γj | Sj = 0
)

− (1− PS)P
2
SBE

(
µK

∗

j Γj | Sj = 1
)

=(1− PS)PSAE
(
µK

∗

j Γj | Sj = 0
)
+
[
(1− PS)P

2
SB
[
E
(
µK

∗

j Γj | Sj = 0
)
−E

(
µK

∗

j Γj | Sj = 1
)]]

The plim of the numerator of φK
∗

is

MK∗

Z1 M
K∗

22 −MK∗

Z2 M
K∗

12

p→
[
PSE

(
µK

∗

j Γj | Sj = 1
)] [

(1− PS)A+ (1− PS)
2B + σ2ξ

]

−
[
(1− PS)E

(
µK

∗

j Γj | Sj = 0
)]
[(1− PS)PSB]

= (1− PS)PSAE
(
µK

∗

j Γj | Sj = 1
)
+ PS (1− PS)

2BE
(
µK

∗

j Γj | Sj = 1
)

− PS (1− PS)
2BE

(
µK

∗

j Γj | Sj = 0
)
+ PSE

(
µK

∗

j Γj | Sj = 1
)
σ2ξ

=(1− PS)PSAE
(
µK

∗

j Γj | Sj = 1
)
+ PS (1− PS)

2B
[
E
(
µK

∗

j Γj | Sj = 1
)
−E

(
µK

∗

j Γj | Sj = 0
)]

+ PSE
(
µK

∗

j Γj | Sj = 1
)
σ2ξ

Now notice that we can write the numerator of the expression φ− φε as

MK∗

Z1 M
K∗

22 −MK∗

Z2 M
K∗

12 −MK∗

Z2 M
K∗

11 −MK∗

Z1 M
K∗

12

=(1− PS)PSAE
[(

µK
∗

j Γj | Sj = 1
)
−E

(
µK

∗

j Γj | Sj = 0
)]

+
[
PS (1− PS)

2 − (1− PS)P
2
S

]
B
[
E
(
µK

∗

j Γj | Sj = 1
)
−E

(
µK

∗

j Γj | Sj = 0
)]

+ PSE
(
µK

∗

j Γj | Sj = 1
)
σ2ξ

=(1− PS)PS [A+B]E
[(

µK
∗

j Γj | Sj = 1
)
− E

(
µK

∗

j Γj | Sj = 0
)]

+ PSE
(
µK

∗

j Γj | Sj = 1
)
σ2ξ

>0

The result comes from the fact that we know that A+B > 0 and that E
(
µK

∗

j Γj | Sj = 1
)
> 0.

5



Proof of Theorem 3

Following a similar procedure to theorem 1

MK∗

11 = E





 1√

K∗

K∗∑

j=1

SjW̃ijGj



2

;GK∗




MK∗

22 = E





 1√

K∗

K∗∑

j=1

˜̃
W ijΓj + ξ



2

;GK∗




p→
∞∑

�=−∞
E

(
˜̃
W j
˜̃
W j−�

)
E (ΓjΓj−�)

MK∗

12 = E




 1√

K∗

K∗∑

j=1

SjW̃ijGj




 1√

K

K∑

j=1

˜̃
W ijΓj + ξ


 ;GK∗




= 0

MK∗

Z1 = E


Zi


 1√

K∗

K∗∑

j=1

SjW̃ijGj


 ;GK∗




MK∗

Z2 = E


Zi


 1√

K∗

K∗∑

j=1

(1− Sj)
˜̃
W ijΓj + ξ


 ;GK∗




p→
∞∑

�=−∞
E

(
˜̃
W j
˜̃
W j−�

)
E
(
βjΓj−�

)
+ σ2ξ

By definition of the projection, and using Assumption ??

φX′G =
MK∗

Z1

MK∗

11

φe =
MK∗

Z2

MK∗

22

p→

∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E
(
βjΓj−�

)

∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E (ΓjΓj−�) + σ2ξ

by definition of Gj

1√
K∗

K∗∑

j=1

W̃ijΓj =
1√
K∗

K∗∑

j=1

SjW̃ijGj +
1√
K∗

K∗∑

j=1

˜̃
W ijΓj

6



so one can write Assumption 9 as

∑∞
�=−∞E

(
W̃jW̃j−�

)
E
(
βjΓj−�

)

∑∞
�=−∞E

(
W̃jW̃j−�

)
E (ΓjΓj−�)

=

plimMK∗

Z1 +
∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E
(
βjΓj−�

)

plimMK∗

11 −∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E (ΓjΓj−�)

=

∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E
(
βjΓj−�

)

∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E (ΓjΓj−�)

which can be rewritten as

plimMK∗

Z1

plimMK∗

11

=

∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E
(
βjΓj−�

)

∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E (ΓjΓj−�)

Then if
∑∞

�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E
(
βjΓj−�

)
= 0,

φe
p→ 0 and φX′G

p→ 0,

otherwise

φe
φX′G

=

∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E (ΓjΓj−�)

∑∞
�=−∞E

(
˜̃
W j
˜̃
W j−�

)
E (ΓjΓj−�) + σ2ξ

. (2)

Proof of Theorem 4

Since we have not made distributional assumptions, we need only consider what is identified from the second
moments and Condition 1. Clearly π, λ β are identified from (3.1) and (3.2). Since the model is just identified
in the case that cov(v, ε) = 0, we need only think about what the additional information in Condition 1
generates. The 2SLS estimator converges to

α̂2SLS = α+
cov (v, ε)

λvar(v)
.

Is knowledge of Condition 1 sufficient to identify α? When ε is uncorrelated with W , Condition 1 is equivalent
to assuming that

cov(W ′β,W ′Γ)

var(W ′Γ)
=

cov(v, ε)

var(ε)
.

Suppose the model is not identified. Then there would be alternative values α∗,Γ∗, and ε∗ with α∗ 	= α
such that

α̂ = α∗ +
cov (v, ε∗)

λvar(v)
.

Under these conditions, note that

Y − α∗T = (α− α∗)T +W ′Γ + ε

= (α− α∗) [W ′π + u+ λ (W ′β + v)] +W ′Γ+ ε,

7



and thus

γ∗ = γ + (α− α∗) (β + λπ)

ε∗ = ε+ (α− α∗) (u+ λv) .

But if this model satisfies the assumptions, we know that

cov(W ′β,W ′Γ∗)

var(W ′Γ∗)
=

cov(v, ε∗)

var(ε∗)
,

which is equivalent to

cov (W ′β,W ′Γ) + (α− α∗) cov (W ′β, (W ′π + λW ′β))

var (W ′Γ) + 2 (α− α∗) cov(W ′Γ, (W ′π + λW ′β)) + (α− α∗)2 var(W ′π + λW ′β)

=
cov (v, ε) + (α− α∗) cov (v, (u+ λv))

var(ε) + 2 (α− α∗) cov(ε, (u+ λv)) + (α− α∗)2 var(u+ λv)
.

Imposing the restriction from the true model,

φ ≡ cov(W ′β,W ′Γ)

var(W ′Γ)
=

cov(v, ε)

var(ε)
,

yields

φ+ (α− α∗)
cov(W ′β,(W ′π+λW ′β))

var(W ′Γ)

1 + 2 (α− α∗) cov(W
′Γ,(W ′π+λW ′β))
var(W ′Γ) + (α− α∗)2 var(W

′π+λW ′β)
var(W ′Γ)

=
φ+ (α− α∗) cov(v,(u+λv))var(ε)

1 + 2 (α− α∗) cov(ε,(u+λv))var(ε) + (α− α∗)2 var(u+λv)var(ε)

.

Solving out yields

0 = (α− α∗)3
[
cov (v, (u+ λv))

var(ε)

var(W ′π + λW ′β)

var(W ′Γ)
− cov (W ′β, (W ′π + λW ′β))

var(W ′Γ)

var(u+ λv)

var(ε)

]

+(α− α∗)2
[
φ
var(W ′π + λW ′β)

var(W ′Γ)
+ 2

cov (v, (u+ λv))

var(ε)

cov(W ′Γ, (W ′π + λW ′β))

var(W ′Γ)

−φvar(u+ λv)

var(ε)
− 2cov (W

′β, (W ′π + λW ′β))

var(W ′Γ)

cov(ε, (u+ λv))

var(ε)

]

+(α− α∗)

[
cov (v, (u+ λv))

var(ε)
+ 2φ

cov(W ′Γ, (W ′π + λW ′β))

var(W ′Γ)

−cov (W ′β, (W ′π + λW ′β))

var(W ′Γ)
− 2φcov(ε, (u+ λv))

var(ε)

]
.

Thus Condition 1 restricts the solutions α∗ to be the solutions of a cubic equation, one of which is α.

Proof of Theorem 5

If we use T as the instrument we obtain exactly the cubit from Theorem 4 with β = 0, u = 0, and λ = 1.
Thus

[
cov (v, (u+ λv))

var(ε)

var(W ′π + λW ′β)

var(W ′Γ)
− cov (W ′β, (W ′π + λW ′β))

var(W ′Γ)

var(u+ λv)

var(ε)

]

=

[
var (v)

var(ε)

var(W ′β)

var(W ′Γ)
− var (W ′β)

var(W ′Γ)

var(v)

var(ε)

]

= 0.

8



Using the definition of φ from the proof of Theorem 2,
[
φ
var(W ′π + λW ′β)

var(W ′Γ)
+ 2

cov (v, (u+ λv))

var(ε)

cov(W ′Γ, (W ′π + λW ′β))

var(W ′Γ)

−φvar(u+ λv)

var(ε)
− 2cov (W

′β, (W ′π + λW ′β))

var(W ′Γ)

cov(ε, (u+ λv))

var(ε)

]

=

[
φ
var(W ′β)

var(W ′Γ)
+ 2

var (v)

var(ε)

cov(W ′Γ,W ′β)

var(W ′Γ)

−φvar(v)
var(ε)

− 2var (W
′β)

var(W ′Γ)

cov(ε, v)

var(ε)

]

= φ
var(W ′β)

var(W ′Γ)
+ 2

var (v)

var(ε)
φ− φ

var(v)

var(ε)
− 2var (W

′β)

var(W ′Γ)
φ

= φ

[
var (v)

var(ε)
− var (W ′β)

var(W ′Γ)

]

[
cov (v, (u+ λv))

var(ε)
+ 2φ

cov(W ′Γ, (W ′π + λW ′β))

var(W ′Γ)

−cov (W ′β, (W ′π + λW ′β))

var(W ′Γ)
− 2φcov(ε, (u+ λv))

var(ε)

]

=

[
var (v)

var(ε)
+ 2φ

cov(W ′Γ,W ′β)

var(W ′Γ)
− var (W ′β)

var(W ′Γ)
− 2φcov(ε, v)

var(ε)

]

=

[
var (v)

var(ε)
− var (W ′β)

var(W ′Γ)

]

Thus, the model is a solution to the quadratic

(α− α∗)2 φ

[
var (v)

var(ε)
− var (W ′β)

var(W ′Γ)

]
+ (α− α∗)

[
var (v)

var(ε)
− var (W ′β)

var(W ′Γ)

]
,

which has two solutions:

1) α∗ = α

2) α∗ = α+
1

φ

= α+
var(ε)

cov(u, ε)

Verification that The Factor Model Satisfies Assumptions 2 and 3

Notice that

σK
∗

j,� = E
(
W̃ijW̃i� | GK

)

=

{
1
K∗Λ′j1Λj1 + σ2j1 j1 = j2

1
K∗Λ′j1Λj2 j1 	= j2

Then

1

K∗

K∗∑

j=1

K∗∑

�=1

E(σK
∗

j,� ΓjΓ�) =
1

K∗2

K∗∑

j=1

K∗∑

�=1

E(Λ′jΛ�ΓjΓ�) +
1

K∗

K∗∑

j=1

E(σ2jΓ
2
j)

=
1

K∗2

K∗∑

j=1

E(Λ′jΛjΓ
2
j ) +

1

K∗2

K∗∑

j=1

K∗∑

�=1
��=j

E(Λ′jΓj)E(Λ�Γ�) +
1

K∗

K∗∑

j=1

E(σ2jΓ
2
j)

p→ E(ΛjΓj)E(ΛjΓj) +E(σ2j1Γ
2
j)

9



thus the first part of Assumption 2 is satisfied.
Now consider the second part,

E


 1

K∗

K∗∑

j=1

K∗∑

�=1

E(σK
∗

j,� ΓjΓ�)



2

= E


 1

K∗2

K∗∑

j=1

K∗∑

�=1

Λ′jΛ�ΓjΓ� +
1

K∗

K∗∑

j=1

σ2jΓ
2
j



2

= E




 1

K∗

K∗∑

j=1

Λ′j1Γj



(
1

K∗

K∗∑

�=1

Λj2Γ�

)

2

+2




 1

K∗2

K∗∑

j=1

K∗∑

�=1

Λ′j1Λj2ΓjΓ�



(
1

K∗

K∗∑

r=1

σ2rΓ
2
r

)


+E


 1

K∗

K∗∑

j=1

σ2jΓ
2
j



2

p→
(
E
(
Λ′jΓj

)
E (Γ�Λ�)

)2
+ 2E

(
Λ′jΓj

)
E(σ2j1Γ

2
j) +E(σ2j1Γ

2
j)
2

=
(
E(Λ′jΓj)E(ΛjΓj) +E(σ2j1Γ

2
j)
)2

.

To see where the three pieces come from, if you multiplied everything out all the terms involving fourth
moments, third moments and second moments would disappear since we are dividing by K4.

Thus

V ar





 1

K∗

K∗∑

j=1

K∗∑

�=1

E(σK
∗

j,� ΓjΓ�)



2



=
1

K2

K∗∑

j=1

K∗∑

�=1

K∗∑

r=1

K∗∑

s=1

E(σK
∗

j,� σ
K∗

r,s ΓjΓ�ΓrΓs)

−


 1

K∗

K∗∑

j=1

K∗∑

�=1

E
(
σK

∗

j,� ΓjΓ�
)


2

p→
(
E(Λ′jΓj)E(ΛjΓj) +E(σ2j1Γ

2
j)
)2 −

(
E(Λ′jΓj)E(ΛjΓj) +E(σ2j1Γ

2
j)
)2

= 0

We next proceed to verify Assumption 3 in a way almost identical to that for Assumption 2.

1

K∗

K∗∑

j=1

K∗∑

�=1

E(σK
∗

j,� Γjβ�) =
1

K∗2

K∗∑

j=1

K∗∑

�=1

E(Λ′jΛ�Γjβ�) +
1

K∗

K∗∑

j=1

E(σ2jΓjβj)

p→ E(Λ′jΓj)E(Λjβj) +E(σ2j1Γjβj)

thus the first part of Assumption 3 is satisfied.
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Now consider the second part,

E


 1

K∗

K∗∑

j=1

K∗∑

�=1

E(σK
∗

j,� Γjβ�)



2

= E


 1

K∗

K∗∑

j=1

K∗∑

�=1

Λ′jΛ�Γjβ� +
1

K∗

K∗∑

j=1

σ2jΓjβj



2

= E




 1

K∗

K∗∑

j=1

Λ′j1Γj



(
1

K∗

K∗∑

�=1

Λj2β�

)

2

+2




 1

K∗

K∗∑

j=1

K∗∑

�=1

Λ′j1Λj2Γjβ�



(
1

K∗

K∗∑

r=1

σ2rΓrβr

)


+E


 1

K∗

K∗∑

j=1

σ2jΓjβj



2

p→
(
E
(
Λ′jΓj

)
E (β�Λ�)

)2
+ 2E

(
Λ′jΓj

)
E(σ2j1Γjβj) +E(σ2j1Γjβj)

2

=
(
E(Λ′jΓj)E(Λjβj) +E(σ2j1Γjβj)

)2
.

Thus

V ar





 1

K∗

K∗∑

j=1

K∗∑

�=1

E(σK
∗

j,� Γjβ�)



2



=
1

K∗2

K∗∑

j=1

K∗∑

�=1

K∗∑

r=1

K∗∑

s=1

E(σK
∗

j,� σ
K∗

r,s Γjβ�Γrβs)

−


 1

K∗

K∗∑

j=1

K∗∑

�=1

E
(
σKj,�Γjβ�

)


2

p→
(
E(Λ′jΓj)E(Λjβj) +E(σ2j1Γjβj)

)2 −
(
E(Λ′jΓj)E(Λjβj) +E(σ2j1Γjβj)

)2

= 0.

Lemma 1

In this lemma, we will define and prove 23 intermediate results which will be useful for the proof of Theorem
6. Define

Γ̃(α) ≡ Γ + (α0 − α)δ

Γ̃∗(α) ≡ Γ∗ + (α0 − α)δ∗

Γ̃j(α) ≡ Γj + (α0 − α)δj

11



λ̂
p→

N→∞

√
Ps0Λ (1)

Σ̂
p→

N→∞
Σ (2)

1

N
V ′
(
Ỹ − αT̃

)
p→

N→∞
1√
K∗ΣΓ̃(α) (3)

1

N
V ′Z̃

p→
N→∞

1√
K∗Σβ (4)

1

N
F̃ ′
(
Ỹ − αT̃

)
p→

N→∞

(
Λ∗′Γ̃∗(α)

K∗

)
(5)

p→ E(ΛjΓj)

1

N
F̃ ′Z̃

p→
N→∞

(
Λ∗′β∗

K∗

)
(6)

p→ E(Λjβj)

1

N

(
Ỹ − αT̃

)′
Z̃

p→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ∗′β∗

K∗

)
+

1

K∗ Γ̃
∗(α)′Σβ∗ (7)

p→ E
(
ΛjΓ̃j(α)

)
E
(
Λjβj

)
+E

(
Γ̃j(α)σ

2
jβj

)

1

N

(
Ỹ − αT̃

)′ (
Ỹ − αT̃

)
p→

N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+
Γ̃∗(α)∗′ΣΓ̃∗(α)∗

K∗ (8)

+σ2ξ0 + 2(α− α0)σξω0 + (α− α0)
2 σ2ω

p→ E (ΛjΓj)
2 +E

(
Γ2j1σ

2
j1

)
+ σ2ξ0

1

K
λ̂
′
Σ̂−1λ̂

p→
N→∞

Ps0
K
Λ′−1Λ (9)

p→ Ps0E(Λ
2
j/σ

2
j)

1

N
F̃ ′F̃

p→
N→∞

1 (10)

1

N

1√
K

(
Ỹ − αT̃

)′
V Σ̂−1λ̂

p→
N→∞

√
Ps0√

K
√
K∗

K∑

j=1

Γ̃j(α)Λj (11)

p→ Ps0E
(
Γ̃j(α)Λj

)

1

N

1√
K

λ̂
′
V ′
(
Ỹ − αT̃

)
p→

N→∞

√
Ps0√

K
√
K∗

K∑

j=1

Γ̃j(α)Λjσ
2
j (12)

p→ Ps0E
(
σ2j Γ̃j(α)Λj

)

1

N

1√
K

F̃ ′V Σ̂−1λ̂
p→

N→∞
0 (13)

12



1

N2
F̃ ′V Σ̂−1V ′

(
Ỹ − αT̃

)
p→

N→∞
0 (14)

1

KN
λ̂
′
Σ̂−1V ′V Σ̂−1λ̂

p→
N→∞

Ps0
1

K

K∑

j=1

Λ2j
σ2j

(15)

p→ Ps0E(Λ
2
j/σ

2
j)

1

N2

1√
K

λ̂
′
Σ̂−1V ′V Σ̂−1V ′

(
Ỹ − αT̃

)
p→

N→∞

√
Ps0√

K
√
K∗Λ

′Γ̃ (α) (16)

p→ Ps0E
(
ΛjΓ̃j(α)

)

1

N2

(
Ỹ − αT̃

)′
V Σ̂−1V ′

(
Ỹ − αT̃

)
p→

N→∞
Γ̃ (α)

′ΣΓ̃ (α)

K∗ (17)

p→ Ps0E
[
σ2j Γ̃j(α)

2
]

1

N
√
K

λ̂
′
Σ̂−1V ′Z̃

p→
N→∞

√
Ps0√

K
√
K∗Λ

′β (18)

p→ Ps0E
(
Λjβj

)

1

N
F̃ ′Z̃

p→
N→∞

Λ∗′Γ∗

K∗ (19)

p→ E(Λjβj)

1

N2

(
Ỹ − αT̃

)′
V Σ̂−1V ′Z̃

p→
N→∞

Γ̃(α)′Σβ

K∗ (20)

p→ Ps0E
[
σ2j Γ̃j(α)βj

]

1

N3

(
Ỹ − αT̃

)′
VΣ−1V ′VΣ−1V ′

(
Ỹ − αT̃

)
p→

N→∞
Γ̃(α)′ΣΓ̃(α)

K∗ (21)

p→ Ps0E
(
σ2j Γ̃j(α)

2
)

1√
K∗N

Λ′Σ̂−1V ′
(
Ỹ − αT̃

)
p→

N→∞
1

K∗Λ
′Γ̃(α) (22)

p→ Ps0E
(
ΛjΓ̃j(α)

)

1√
K∗N

Λ′Σ̂−1V ′Z̃
p→

N→∞
1

K∗Λ
′β (23)

p→ Ps0E
(
Λjβj

)

Proof of Lemma 1

Result L1.1

Clearly this
√
PS0Λ is identified and with K fixed is a standard GMM problem so it is consistent.

Result L1.2

This follows directly from the Law of Large Numbers and Result L1.1.
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Result L1.3

1

N
V ′
(
Ỹ − αT̃

)
=

1

N

N∑

i=1

Vi

(
F̃i

(
Λ∗′Γ̃∗(α)

K∗

)
+

V ∗′
i Γ̃

∗(α)∗√
K∗ + ξi + (α− α0)ωi

)

p→
N→∞

1√
K∗ΣΓ̃

∗(α)

Result L1.4

1

N
V ′Z̃ =

1

N

N∑

i=1

Vi

(
F̃i

(
Λ∗′β∗

K∗

)
+

V ∗′
i β∗√
K∗ + ui

)

p→
N→∞

1√
K∗Σβ

Result L1.5

1

N
F̃ ′
(
Ỹ − αT̃

)
=

1

N
F̃ ′
[
F̃

(
Λ∗′Γ̃∗(α)

K∗

)
+ V ∗ Γ̃

∗(α)√
K∗ + ξ + (α− α0)ω

]

=

(
Λ∗′Γ∗

K∗

)
1

N

N∑

i=1

F̃ 2i +
1√
K∗

K∗∑

j=1

[
1

N

N∑

i=1

F̃iVijΓj

]
+
1

N

N∑

i=1

F̃i [ξi + (α− α0)ωi]

p→
N→∞

(
Λ∗′Γ∗

K∗

)

p→ E(ΛjΓj)

i with each piece falling from the law of large numbers

Result L1.6

1

N
F̃ ′Z̃ =

1

N
F̃ ′
[
F̃

(
Λ∗′β∗

K∗

)
+ V ∗ β∗√

K∗ + u

]

=

(
Λ∗′β∗

K∗

)
1

N

N∑

i=1

F̃ 2i +
1√
K∗

K∗∑

j=1

[
1

N

N∑

i=1

F̃iVijβj

]
+
1

N

N∑

i=1

F̃iui

p→
N→∞

(
Λ∗′β∗

K∗

)

p→ E(Λjβj)

with each piece falling from the law of large numbers
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Result L.1.7

1

N

(
Ỹ − αT̃

)′
Z̃ =

1

N

[
F̃

(
Λ∗′Γ̃∗(α)∗

K∗

)
+ V ∗ Γ̃

∗(α)√
K∗ + ξ + (α− α0)ω

]′ [
F̃

(
Λ∗′β∗

K∗

)
+ V ∗ β∗√

K∗ + u

]

=

(
Λ∗′Γ̃∗(α)

K∗

)
1

N

[
F̃ ′F̃

(
Λ∗′β∗

K∗

)
+ F̃ ′V ∗ β∗√

K∗ + F̃ ′u

]

+
1

N

Γ̃∗(α)′√
K∗ V ∗′

[
F̃

(
Λ∗′β∗

K∗

)
+ V ∗ β∗√

K∗ + u

]

+
1

N
ξ′
[
F̃

(
Λ∗′β∗

K∗

)
+ V ∗ β∗√

K∗ + u

]

+
1

N
(α− α0)ω

′
[
F̃

(
Λ∗′β∗

K∗

)
+ V ∗ β∗√

K∗ + u

]

p→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ∗′β∗

K∗

)
+

1

K∗ Γ̃
∗(α)′Σ∗β∗ + (α− α0) σω,u

p→ E
(
ΛjΓ̃j(α)

)
E
(
Λjβj

)
+E

(
Γ̃j(α)σ

2
jβj

)
+ (α− α0)σω,u

Result L1.8

1

N

(
Ỹ − αT̃

)′ (
Ỹ − αT̃

)
=

1

N

[
F̃

(
Λ∗′Γ̃∗(α)

K∗

)
+ V ∗ Γ̃

∗(α)√
K∗ + ξ + (α− α0)ω

]′
×

[
F̃

(
Λ∗′Γ̃∗(α)

K∗

)
+ V ∗ Γ̃

∗(α)√
K∗ + ξ + (α− α0)ω

]

=

(
Λ∗′Γ̃∗(α)

K∗

)
1

N

[
F̃ ′F̃

(
Λ∗′Γ̃∗(α)

K∗

)
+ 2F̃ ′V ∗ Γ̃

∗(α)√
K∗ + 2F̃

′ξ

]

+
1

N

Γ̃∗(α)′√
K∗ V ∗′

[
V ∗ Γ̃

∗(α)√
K∗ + 2ξ

]
+
1

N
ξ′ξ + (α− α0)

2

N
ξ′ω + (α− α0)

2 1

N
ω′ω

p→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+

1

K∗ Γ̃
∗(α)′Σ∗Γ̃∗(α) + σ2ξ0 + 2(α− α0)σξω0 + (α− α0)

2 σ2ω

p→ E
(
ΛjΓ̃j(α)

)
E
(
Λjβj

)
+E

(
Γ̃j(α)σ

2
jβj

)
+ σ2ξ0 + 2(α− α0)σξω0 + (α− α0)

2 σ2ω

Result L1.9

1

K
λ̂
′
Σ̂−1λ̂ =

1

K

K∑

j=1

λ̂
2

j

σ̂2j

p→
N→∞

Ps0
K

K∑

j=1

Λ2j
σ2j

p→ Ps0E

(
Λ2j
σ2j

)

by the law of large numbers.
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Result L1.10

1

N
F̃ ′F̃ =

1

N

N∑

i=1

F̃ 2i
p→ 1

by the law of large numbers

Result L1.11

1

N

1√
K

(
Ỹ − αT̃

)′
V Σ̂−1λ̂ =

1√
K

K∑

j=1

λ̂j

σ̂2j

1

N

N∑

i=1

(
Ỹi − αT̃i

)
vij

=
1

N

1√
K

N∑

i=1

K∑

j=1

(
F̃i

(
Λ∗′Γ̃∗(α)

K∗

)
+

K∗∑

�=1

vi�
Γ̃�(α)√
K∗ + ξi + (α− α0)ωi

)
vijλ̂j

σ̂2j

p→
N→∞

√
Ps0√

K
√
K∗

K∑

j=1

ΓjΛj

p→ Ps0E (ΓjΛj)

Result L1.12

This is similar to the previous one.

1

N

1√
K

(
Ỹ − αT̃

)′
V λ̂ =

1√
K

K∑

j=1

λ̂j
1

N

N∑

i=1

(
Ỹ − αT̃

)
vij

=
1

N

1√
K

N∑

i=1

K∑

j=1

(
F̃i

(
Λ∗′Γ̃∗(α)

K∗

)
+

K∗∑

�=1

vi�
Γ̃�(α)√
K∗ + ξi + (α− α0)ωi

)
vijλ̂j

p→
N→∞

√
Ps0√

K
√
K∗

K∑

j=1

ΓjΛjσ
2
j

p→ Ps0E
(
ΓjΛjσ

2
j

)

Result L1.13

1

N

1√
K

N∑

i=1

K∑

j=1

F̃i
vijλ̂j

σ̂2j
=

1√
K

K∑

j=1

λ̂j

σ̂2j

[
1

N

N∑

i=1

F̃ivij

]

p→
N→∞

0
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Result L1.14

1

N2
F̃ ′V Σ̂−1V ′

(
Ỹ − αT̃

)
=

1

N2

K∑

j=1

1

σ̂2j

[
N∑

i1=1

F̃i1vi1j

]
N∑

i2=1

vi2j

(
F̃i2

(
Λ∗′Γ̃∗ (α)

K∗

)
+

K∗∑

�=1

vi2�
Γ̃� (α)√

K∗ + ξi2 + (α− α0)ωi2

)

=

(
Λ∗′Γ∗

K∗

) K∑

j=1

[
1

N2

N∑

i1=1

N∑

i2=1

F̃i1vi1jvi2j

σ̂2j
F̃i2

]

+
K∑

j=1

[
K∗∑

�=1

vi2�
Γ�√
K∗

][
1

N2

N∑

i1=1

N∑

i2=1

F̃i1vi1jvi2j

σ̂2j

]

+
K∑

j=1

[
1

N2

N∑

i1=1

N∑

i2=1

F̃i1vi1jvi2j

σ̂2j

[
ξi2 + (α− α0)ωi2

]
]

p→
N→∞

0

Result L1.15

1

KN
λ̂
′
Σ̂−1V ′V Σ̂−1λ̂ =

1

K

K∑

j1=1

K∑

j2=1

λ̂j1 λ̂j2
σ̂2j1 σ̂

2
j2

[
1

N

N∑

i=1

vij1vij2

]

p→
N→∞

Ps0
K

K∑

j=1

Λ2j
σ2j

p→ Ps0E

(
Λ2j
σ2j

)

Result L1.16

1

N2

1√
K

λ̂
′
Σ̂−1V ′V Σ̂−1V ′

(
Ỹ − αT̃

)
=

1√
K

λ̂
′
Σ̂−1

(
1

N
V ′V

)
Σ̂−1

(
1

N
V ′
(
Ỹ − αT̃

))

p→
N→∞

√
Ps0√
K
Λ′Σ−1ΣΣ−1

(
1√
K∗ΣΓ̃ (α)

)

=

√
Ps0√

K
√
K∗Λ

′Γ̃ (α)

p→ Ps0E
(
ΛjΓ̃j (α)

)

Result L1.17

1

N2
Y ′V Σ̂−1V ′

(
Ỹ − αT̃

)
=

(
1

N
Y ′V

)
Σ̂−1

(
1

N
V ′
(
Ỹ − αT̃

))

p→
N→∞

(
1√
K∗ Γ̃ (α)

′ Σ

)
Σ−1

(
1√
K∗ΣΓ̃ (α)

)

=
1

K∗ Γ̃ (α)
′
ΣΓ̃ (α)

p→ Ps0E
(
σ2j Γ̃ (α)

2
j

)
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Result L1.18

1

N
√
K

λ̂
′
Σ̂−1V ′Z̃

p→
N→∞

1√
K

√
Ps0Λ

′Σ−1
(

1√
K∗Σβ

)

=

√
Ps0√

K
√
K∗Λ

′β

= Ps0E
(
Λjβj

)

Result L1.19

1

N
F̃ ′Z̃ =

1

N
F̃ ′
[
F̃

(
Λ∗′β∗

K∗

)
+ V ∗ β∗√

K∗ + u

]

=

(
Λ∗′β∗

K∗

)
1

N

N∑

i=1

F̃ 2i +
1√
K∗

K∑

j=1

βj

[
1

N

N∑

i=1

F̃iVij

]
+
1

N

N∑

i=1

F̃iui

p→
N→∞

Λ∗′β∗

K∗
p→ E

(
Λjβj

)

Result L1.20

1

N2

(
Ỹ − αT̃

)′
V Σ̂−1V ′Z

p→
N→∞

1

K∗ Γ̃ (α)
′ΣΣ−1Σβ

=
1

K∗ Γ̃ (α)
′Σβ

p→ Ps0E
(
Γ̃j (α)σ

2
jβj

)

Result L1.21

1

N3

(
Ỹ − αT̃

)′
V Σ̂−1V ′V Σ̂−1V ′

(
Ỹ − αT̃

)
=

(
1

N

(
Ỹ − αT̃

)′
V

)
Σ̂−1

(
1

N
V ′V

)
Σ̂−1

(
1

N
V ′
(
Ỹ − αT̃

))

p→
N→∞

1

K∗ Γ̃ (α)
′ΣΣ−1ΣΣ−1ΣΓ̃ (α)

=
1

K∗ Γ̃ (α)
′ΣΓ̃ (α)

p→ Ps0E
(
Γ̃j(α)

2σ2j

)

Result L.1.22

1

N
√
K∗Λ

′Σ̂−1V ′
(
Ỹ − αT̃

)
p→

N→∞
1√
K∗Λ

′Σ−1
(

1√
K∗ΣΓ̃ (α)

)

=
1

K∗Λ
′Γ̃ (α)

p→ Ps0E
(
ΛjΓ̃j(α)

)
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Result L.1.23

1

N
√
K∗Λ

′Σ̂−1V ′Z̃
p→

N→∞
1√
K∗Λ

′Σ−1
(

1√
K∗Σβ

)

=
1

K∗Λ
′β

p→ Ps0E
(
Λjβj

)

Lemma 2

Here we define and prove 6 additional results which will be useful in proving Theorem 6.
Let the notation Up denote uniform convergence in probability.

1

N

N∑

i=1

(
W̃ ′
i Γ̂ (θ) Z̃i

)
(1)

Up→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
1

K∗Λ
′Σ−1Λ

)(
Λ∗′β∗

K∗

)
+

(
Λ∗′Γ̃∗(α)

K∗

)(
1

K∗Λ
′β

)
+

(
1

K∗Λ
′Γ

)(
Λ∗′β∗

K∗

)
+
Γ̃(α)′Σβ

K∗

−

(
Λ∗′Γ̃∗(α)
K∗

)[( √
Ps0√

K
√
K∗

Λ′Σ−1Λ
)2 (

Λ∗′β∗

K∗

)
+
( √

Ps0√
K
√
K∗

Λ′Σ−1Λ
)( √

Ps0√
K
√
K∗

Λ′β
)]

Ps +
Ps0
K Λ′Σ−1Λ

−

( √
Ps0√

K
√
K∗

Λ′Γ
) [( √

Ps0√
K
√
K∗

Λ′Σ−1Λ
)(

Λ∗′β∗

K∗

)
+

√
Ps0√

K
√
K∗

Λ′β
]

Ps +
Ps0
K Λ′Σ−1Λ

Up→E(ΛjΓ̃j(α))Ps0E(Λ
2
j/σ

2
j )E(Λjβj) + 2E(ΛjΓ̃j(α))Ps0E

(
Λjβj

)
+ Ps0E

(
σ2j Γ̃j(α)βj

)

−
E(ΛjΓ̃j(α))E(Λjβj)P

2
s0

[
E(Λ2j/σ

2
j) + 1

]2

Ps + Ps0E(Λ2j/σ
2
j )

Γ̂K∗ (θ)′ Σ̂Γ̂K∗ (θ) (2)

Up→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Σ−1Λ

1

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+ 2

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Γ̃(α)

K∗

)
+

(
Γ̃(α)′ΣΓ̃(α)

K∗

)

− 2
[

1

1 + Ps0
KPs

Λ′Σ−1Λ

]
1

Ps

(
Λ∗′Γ̃∗(α)

K∗

√
Ps0√

K
√
K∗Λ

′Σ−1Λ+

√
Ps0√

K
√
K∗Λ

′Γ̃(α)

)2

+

[
1

1 + Ps0
KPs

Λ′Σ−1Λ

]2
1

P 2s

((
Λ∗′Γ̃∗(α)

K∗

)( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)2(
Ps0
K
Λ′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)

+2

(
Λ∗′Γ̃∗(α)

K∗

)( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)(
Ps0
K
Λ′Σ−1Λ

)( √
Ps0√

K
√
K∗Λ

′Γ̃(α)

)

+

( √
Ps0√

K
√
K∗Λ

′Γ

)2(
Ps0Λ

′ 1

K
Σ−1Λ

))

Up→Ps0E
[
σ2j Γ̃j(α)

2
]

+
(
E
(
ΛjΓ̃j(α)

))2

Ps0E

(
Λ2j
σ2j

)
+ 2Ps0 − 2

(
Ps0E

(
Λ2j
σ2j

)
+ Ps0

)2

Ps + Ps0E
(
Λ2j
σ2j

) + Ps0E

(
Λ2j
σ2j

)

Ps0E

(
Λ2j
σ2j

)
+ Ps0

Ps + Ps0E
(
Λ2j
σ2j

)




2
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1

N

N∑

i=1

(
W̃ ′
i Γ̂ (θ) W̃

′
i Γ̂ (θ)

)
(3)

Up→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Σ−1Λ

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+ 2

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Γ̃∗(α)

K∗

)
+
Γ̃(α)′ΣΓ̃(α)

K∗

− 2
(

1

Ps +
Ps0
K Λ′Σ−1Λ

)[(
Λ∗′Γ̃∗(α)

K∗

)(√
Ps0Λ′Σ−1Λ√
K
√
K∗

)
+

(√
Ps0Λ′Γ̃(α)√
K
√
K∗

)]2

+

(
1

Ps +
Ps0
K Λ′Σ−1Λ

)2(
Ps0
K
Λ′Σ−1Λ

)( √
Ps0√

K
√
K∗Λ

′Σ̂−1Λ
Γ̃∗(α)′Λ∗

K∗ +

√
Ps0√

K
√
K∗Λ

′Γ̃(α)

)2

+

[(
1

K∗Λ
′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)
+
Γ̃(α)′Λ

K∗

−
(

1

Ps +
Ps0
K Λ′Σ−1Λ

)[( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)2(
Λ∗′Γ̃∗(α)

K∗

)
+

( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)( √
Ps0√

K
√
K∗ Γ̃(α)

′Λ

)]]2

Up→E(Γ̃j(α)Λj)Ps0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj) + 2E(Γ̃j(α)Λj)Ps0E(Γ̃j(α)Λj) + Ps0E

(
σ2j Γ̃j(α)

2
)

− 2

[
Ps0E

(
Λ2j
σ2j

)
+ Ps0

]2

Ps + Ps0E
(
Λ2j
σ2j

) E
(
Γ̃j(α)Λj

)2
+




E
(
Λ2j
σ2j

)
+ 1

Ps + Ps0E
(
Λ2j
σ2j

)




2

P 3s0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj)

2

+


Ps0E(Γ̃j(α)Λj) + Ps0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj)


1−

Ps0E
(
Λ2j
σ2j

)
+ Ps0

Ps + Ps0E
(
Λ2j
σ2j

)







2

1

N

N∑

i=1

(
W̃ ′
i Γ̂ (θ)

(
Ỹi − αT̃i

))
Up→

N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Σ−1Λ

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+ 2

(
Λ∗′Γ̃∗(α)

K∗

)(
Γ̃j(α)

′Λ

K∗

)
+
Γ̃j(α)

′ΣΓ̃j(α)

K∗

(4)

−

[( √
Ps0√

K
√
K∗

Λ′Σ−1Λ
)(

Λ∗′Γ̃∗(α)
K∗

)
+

√
Ps0√

K
√
K∗
Λ′Γ̃j(α)

]2

Ps +
1
KΛ

′Σ−1Λ
Up→E(ΛjΓ̃j(α))

2Ps0E(Λ
2
j/σ

2
j) + 2E(ΛjΓ̃j(α))Ps0E

(
ΛjΓ̃j(α)

)
+ Ps0E

(
σ2j Γ̃j(α)

2
)

−E(ΛjΓ̃j(α))
2

[
Ps0E(Λ

2
j/σ

2
j) + Ps0

]2

Ps + Ps0E(Λ2j/σ
2
j )

1√
K

λ̂
′
Γ̂ (θ)

Up→
N→∞

[( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)
+

√
Ps0√

K
√
K∗ Γ̃(α)

′Λ

][
Ps

Ps +
Ps0Λ′Σ−1Λ

K

]

(5)

Up→PsE(ΛjΓ̃j(α))

[
Ps0E(Λ

2
j/σ

2
j) + Ps0

Ps +E(Λ2j/σ
2
j)Ps0

]
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Proof of Lemma 2

Result L2.1

1

N

N∑

i=1

(
W̃ ′
i Γ̂ (θ) Z̃i

)
=
1

N
Γ̂ (θ)

′
W̃ ′Z̃

=
1

N2

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′Z̃

=
1

N2

(
Ỹ − αT̃

)′
W̃


Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1


 W̃ ′Z̃

=
1

N2

(
Ỹ − αT̃

)′( 1√
K∗ F̃Λ

′ + V

)
Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1




×
(

1√
K∗ΛF̃

′ + V ′
)
Z̃

=

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1

K∗Λ
′Σ̂−1Λ

)(
1

N
F̃ ′Z̃

)
+

(
1

N

(
Ỹ − αT̃

)
F̃

)(
1√
K∗N

Λ′Σ̂−1V ′Z̃

)

− 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1√

K
√
K∗ Λ

′Σ̂−1λ̂

)2(
1

N
F̃ ′Z̃

)

− 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1√

K
√
K∗ Λ

′Σ̂−1λ̂

)(
1√
KN

λ̂
′
Σ̂−1V ′Z̃

)

+

(
1√
K∗N

(
Ỹ − αT̃

)′
V Σ̂−1Λ

)(
1

N
F̃ ′Z̃

)
+

1

N2

(
Ỹ − αT̃

)′
V Σ̂−1V ′Z̃

− 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1√
KN

(
Ỹ − αT̃

)′
V Σ̂−1λ̂

)(
1√

K∗
√
K

λ̂
′
Σ̂−1Λ

)(
1

N
F̃ ′Z̃

)

− 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1√
KN

(
Ỹ − αT̃

)′
V Σ̂−1λ̂

)(
1√
KN

λ̂
′
Σ̂−1V ′Z̃

)
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Up→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
1

K∗Λ
′Σ−1Λ

)(
Λ∗′β∗

K∗

)
+

(
Λ∗′Γ̃∗(α)

K∗

)(
1

K∗Λ
′β

)

− 1

1 + Ps0
KPs

Λ′Σ−1Λ

1

Ps

(
Λ∗′Γ̃∗(α)

K∗

)( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)2(
Λ∗′β∗

K∗

)

− 1

1 + Ps0
KPs

Λ′Σ−1Λ

1

Ps

(
Λ∗′Γ̃∗(α)

K∗

)( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)( √
Ps0√

K
√
K∗ Λ

′β

)

+

(
1

K∗Λ
′Γ̃(α)

)(
Λ∗′β∗

K∗

)
+
Γ̃∗(α)′Σβ

K∗

− 1

1 + Ps0
KPs

Λ′Σ−1Λ

1

Ps

( √
Ps0√

K
√
K∗ Λ

′Γ̃(α)

)( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)(
Λ∗′β∗

K∗

)

− 1

1 + Ps0
KPs

Λ′Σ−1Λ

1

Ps

( √
Ps0√

K
√
K∗ Λ

′Γ̃(α)

)( √
Ps0√

K
√
K∗ Λ

′β

)

=

(
Λ∗′Γ̃∗(α)

K∗

)(
1

K∗Λ
′Σ−1Λ

)(
Λ∗′β∗

K∗

)
+

(
Λ∗′Γ̃∗(α)

K∗

)(
1

K∗Λ
′β

)
+

(
1

K∗Λ
′Γ̃(α)

)(
Λ∗′β∗

K∗

)
+
Γ̃(α)′Σβ

K∗

−

(
Λ∗′Γ̃∗(α)

K∗

)[( √
Ps0√

K
√
K∗

Λ′Σ−1Λ
)2 (

Λ∗′β∗

K∗

)
+
( √

Ps0√
K
√
K∗

Λ′Σ−1Λ
)( √

Ps0√
K
√
K∗

Λ′β
)]

Ps +
Ps0
K Λ′Σ−1Λ

−

( √
Ps0√

K
√
K∗

Λ′Γ̃(α)
) [( √

Ps0√
K
√
K∗

Λ′Σ−1Λ
)(

Λ∗′β∗

K∗

)
+

√
Ps0√

K
√
K∗

Λ′β
]

Ps +
Ps0
K Λ′Σ−1Λ

Up→ E(ΛjΓ̃j (α))Ps0E(Λ
2
j/σ

2
j)E(Λjβj) +E(ΛjΓ̃j (α))Ps0E

(
Λjβj

)

+Ps0E
(
ΛjΓ̃j (α)

)
E(Λjβj) + Ps0E

(
σ2j Γ̃j (α)βj

)

−
E(ΛjΓ̃j (α))

[(
Ps0E(Λ2j/σ

2
j)
)2

E(Λjβj) + Ps0E(Λ2j/σ
2
j )Ps0E

(
Λjβj

)]

Ps + Ps0E(Λ2j/σ
2
j)

−

(
Ps0E(ΛjΓ̃j (α))

) [(
Ps0E(Λ

2
j/σ

2
j)
)
E(Λjβj) + Ps0E(Λjβj)

]

Ps + Ps0E(Λ2j/σ
2
j)

= E(ΛjΓ̃j (α))Ps0E(Λ
2
j/σ

2
j)E(Λjβj) + 2E(ΛjΓ̃j (α))Ps0E

(
Λjβj

)

+Ps0E
(
σ2j Γ̃j (α)βj

)
−

E(ΛjΓ̃j (α))E(Λjβj)P
2
s0

[
E(Λ2j/σ

2
j) + 1

]2

Ps + Ps0E(Λ2j/σ
2
j)

The pointwise convergence follows from the algebra and lemma 1. Uniformity comes from the fact that Ps
is bounded from below by P �

s (and above by some finite number) in which case the relevant functions are
clearly stochastically equicontinuitous. Throughout the rest of the proof we see the same basic structure
throughout, so we do not repeat this statement each time.
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Result L2.2

Γ̂ (θ)′ Σ̂Γ̂ (θ) =
1

N

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
Σ̂

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1

N
W̃ ′
(
Ỹ − αT̃

)

=
1

N

(
Ỹ − αT̃

)′
W̃


Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1


 Σ̂

×


Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1


 1

N
W̃ ′
(
Ỹ − αT̃

)

=
1

N

(
Ỹ − αT̃

)′( 1√
K∗ F̃Λ

′ + V

)
Σ̂−1

1

N

(
1√
K∗ F̃Λ

′ + V

)′ (
Ỹ − αT̃

)

−2


 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂


 1

N

(
Ỹ − αT̃

)′( 1√
K∗ F̃Λ

′ + V

)

× 1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1

1

N

(
1√
K∗ F̃Λ

′ + V

)′ (
Ỹ − αT̃

)

+


 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂



2

1

N

(
Ỹ − αT̃

)′ ( 1√
K∗ F̃Λ

′ + V

)
1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1Σ̂

×
[
1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1

]
1

N

(
1√
K∗ F̃Λ

′ + V

)′ (
Ỹ − αT̃

)

=

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
Λ′Σ̂−1Λ

1

K∗

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

+2

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1

N

1√
K∗Λ

′Σ̂−1V ′
(
Ỹ − αT̃

))
+

(
1

N

(
Ỹ − αT̃

)′
V Σ̂−1

1

N
V ′
(
Ỹ − αT̃

))

−2


 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂


 1

Ps

((
1

N

(
Ỹ − αT̃

)′
F̃

)(
1√

K
√
K∗Λ

′Σ̂−1λ̂

)2(
1

N
F̃ ′
(
Ỹ − αT̃

))

+2

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
Λ′Σ̂−1λ̂

1√
K
√
K∗

)(
1√
K

λ̂
′
Σ̂−1

1

N
V ′
(
Ỹ − αT̃

))

+

(
1√
K

λ̂
′
Σ̂−1

1

N
V ′
(
Ỹ − αT̃

))2)

+


 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂



2 (

λ̂
′ 1
K Σ̂

−1λ̂
)

P 2s

((
1

N

(
Ỹ − αT̃

)′
F̃

)(
1√

K
√
K∗Λ

′Σ̂−1λ̂

)

+

(
1

N

(
Ỹ − αT̃

)′
V

1√
K
Σ̂−1λ̂

))2
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Up→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Σ−1Λ

1

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+ 2

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Γ̃(α)

K∗

)
+

(
Γ̃(α)′ΣΓ̃(α)

K∗

)

−2
[

1

1 + Ps0
KPs

Λ′Σ−1Λ

]
1

Ps

(
Λ∗′Γ̃∗(α)

K∗

√
Ps0√

K
√
K∗Λ

′Σ−1Λ+

√
Ps0√

K
√
K∗Λ

′Γ̃(α)

)2

+

[
1

1 + Ps0
KPs

Λ′Σ−1Λ

]2
1

P 2s

((
Λ∗′Γ̃∗(α)

K∗

)( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)2(
Ps0
K
Λ′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)

+2

(
Λ∗′Γ̃∗(α)

K∗

)( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)(
Ps0
K
Λ′Σ−1Λ

)( √
Ps0√

K
√
K∗Λ

′Γ̃(α)

)

+

( √
Ps0√

K
√
K∗Λ

′Γ̃(α)

)2(
Ps0Λ

′ 1

K
Σ−1Λ

))

Up→ E
(
ΛjΓ̃j (α)

)2
Ps0E

(
Λ2j
σ2j

)
+ 2E

(
ΛjΓ̃j (α)

)
E
(
ΛjΓ̃j (α)

)
Ps0 + Ps0E

[
σ2j Γ̃j (α)

2
]

−2




1

1 + Ps0
Ps

E
(
Λ2j
σ2j

)



1

Ps


E

(
ΛjΓ̃j (α)

)(
Ps0E

(
Λ2j
σ2j

))2
E
(
ΛjΓ̃j (α)

)

+2E
(
ΛjΓ̃j (α)

)
Ps0E

(
Λ2j
σ2j

)
Ps0E

(
ΛjΓ̃j (α)

)
+
(
Ps0E

(
ΛjΓ̃j (α)

))2
)

+




1

1 + Ps0
Ps

E
(
Λ2j
σ2j

)




2

1

P 2s


E

(
ΛjΓ̃j (α)

)(
Ps0E

(
Λ2j
σ2j

))2
Ps0E

(
Λ2j
σ2j

)
E
(
ΛjΓ̃j (α)

)

+2E
(
ΛjΓ̃j (α)

)(
Ps0E

(
Λ2j
σ2j

))(
Ps0E

(
Λ2j
σ2j

))
Ps0E

(
ΛjΓ̃j (α)

)
+
(
Ps0E

(
ΛjΓ̃j (α)

))2
(
Ps0E

(
Λ2j
σ2j

)))

= Ps0E
[
σ2j Γ̃j (α)

2
]
+
(
E
(
ΛjΓ̃j (α)

))2

Ps0E

(
Λ2j
σ2j

)
+ 2Ps0 − 2

(
Ps0E

(
Λ2j
σ2j

)
+ Ps0

)2

Ps + Ps0E
(
Λ2j
σ2j

)

+Ps0E

(
Λ2j
σ2j

)

Ps0E

(
Λ2j
σ2j

)
+ Ps0

Ps + Ps0E
(
Λ2j
σ2j

)




2
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Result L.2.3

1

N

N∑

i=1

(
W̃ ′
i Γ̂ (θ) W̃

′
i Γ̂ (θ)

)

=
1

N
Γ̂ (θ)′ W̃ ′W̃ Γ̂ (θ)

=
1

N3

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

=
1

N3

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1(
1√
K∗ΛF̃

′ + V ′
)(

1√
K∗ F̃Λ

′ + V

)[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

=
1

N3

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1

K∗ΛF̃
′F̃Λ′

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

+ 2
1

N3

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1√
K∗ΛF̃

′V

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

+
1

N3

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
V ′V

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

Lets consider each of the three pieces above.
First

1

N3

(
Ỹ − αT̃

)′
W̃

[
1

Ps0K
λ̂
′
λ̂+ Σ̂

]−1
V ′V

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

=
1

N3

(
Ỹ − αT̃

)′
W̃


Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1


V ′V

×


Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1


 W̃ ′

(
Ỹ − αT̃

)

=
1

N3

(
Ỹ − αT̃

)′
W̃ Σ̂−1V ′V Σ̂−1W̃ ′

(
Ỹ − αT̃

)

−2
(

1

Ps +
1
K λ̂

′
Σ̂−1λ̂

)
1

N3

(
Ỹ − αT̃

)′
W̃ Σ̂−1V ′V

1

K
Σ̂−1λ̂λ̂

′
Σ̂−1W̃ ′

(
Ỹ − αT̃

)

+

(
1

Ps +
1
K λ̂

′
Σ̂−1λ̂

)2
1

N3

(
Ỹ − αT̃

)′
W̃
1

K
Σ̂−1λ̂λ̂

′
Σ̂−1V ′V

1

K
Σ̂−1λ̂λ̂

′
Σ̂−1W̃ ′

(
Ỹ − αT̃

)
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Now deal with each of these three pieces

1

N3

(
Ỹ − αT̃

)′
W Σ̂−1V ′V Σ̂−1W ′

(
Ỹ − αT̃

)

=
1

N3

(
Ỹ − αT̃

)′( 1√
K∗ F̃Λ

′ + V

)
Σ̂−1V ′V Σ̂−1

(
1√
K∗ΛF̃

′ + V ′
)(

Ỹ − αT̃
)

=
1

N3

(
Ỹ − αT̃

)′ 1√
K∗ F̃Λ

′Σ̂−1V ′V Σ̂−1
1√
K∗ΛF̃

′
(
Ỹ − αT̃

)

+2
1

N3

(
Ỹ − αT̃

)′ 1√
K∗ F̃Λ

′Σ̂−1V ′V Σ̂−1V ′
(
Ỹ − αT̃

)

+
1

N3

(
Ỹ − αT̃

)′
V Σ̂−1V ′V Σ̂−1V ′

(
Ỹ − αT̃

)

=

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1

NK∗Λ
′Σ̂−1V ′V Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

+2

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1

N2
√
K∗Λ

′Σ̂−1V ′V Σ̂−1V ′
(
Ỹ − αT̃

))

+
1

N3

(
Ỹ − αT̃

)′
V Σ̂−1V ′V Σ̂−1V ′

(
Ỹ − αT̃

)

p→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Σ−1Λ

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)

+2

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Γ̃(α)

K∗

)
+
Γ̃(α)′ΣΓ̃(α)

K∗

p→ E(Γ̃j(α)Λj)Ps0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj)

+2E(Γ̃j(α)Λj)Ps0E(Γ̃j(α)Λj) + Ps0E
(
σ2j Γ̃j(α)

2
)
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1

N3

(
Ỹ − αT̃

)′
W̃ Σ̂−1V ′V

1

K
Σ̂−1λ̂λ̂

′
Σ̂−1W̃ ′

(
Ỹ − αT̃

)

=
1

N3

(
Ỹ − αT̃

)′( 1√
K∗ F̃Λ

′ + V

)
Σ̂−1V ′V

1

K
Σ̂−1λ̂λ̂

′
Σ̂−1

(
1√
K∗ΛF̃

′ + V ′
)(

Ỹ − αT̃
)

=
1

N3

(
Ỹ − αT̃

)′ 1√
K∗ F̃Λ

′Σ̂−1V ′V
1

K
Σ̂−1λ̂λ̂

′
Σ̂−1

1√
K∗ΛF̃

′
(
Ỹ − αT̃

)

+
1

N3

(
Ỹ − αT̃

)′ 1√
K∗ F̃Λ

′Σ̂−1V ′V
1

K
Σ̂−1λ̂λ̂

′
Σ̂−1V ′

(
Ỹ − αT̃

)

+
1

N3

(
Ỹ − αT̃

)′
V Σ̂−1V ′V

1

K
Σ̂−1λ̂λ̂

′
Σ̂−1

1√
K∗ΛF̃

′
(
Ỹ − αT̃

)

+
1

N3

(
Ỹ − αT̃

)′
V Σ̂−1V ′V

1

K
Σ̂−1λ̂λ̂

′
Σ̂−1V ′

(
Ỹ − αT̃

)

=

(
1

N
F̃ ′
(
Ỹ − αT̃

))( 1

KN
Λ′Σ̂−1V ′V Σ̂−1λ̂

)(
1

K∗ λ̂
′
Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

+

(
1

N
F̃ ′
(
Ỹ − αT̃

))( 1

NK
Λ′Σ̂−1V ′V Σ̂−1λ̂

)(
1

N
√
K∗ λ̂

′
Σ̂−1V ′

(
Ỹ − αT̃

))

+

(
1

N2
√
K

(
Ỹ − αT̃

)′
V Σ̂−1V ′V Σ̂−1λ̂

)(
1√

K
√
K∗ λ̂

′
Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

+

(
1

N2
√
K

(
Ỹ − αT̃

)′
V Σ̂−1V ′V

1

K
Σ̂−1λ̂

)(
1

N
√
K

λ̂
′
Σ̂−1V ′

(
Ỹ − αT̃

))

p→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(√
Ps0Λ

′Σ−1Λ

K

)(√
Ps0
K∗ Λ

′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)

+

(
Λ∗′Γ̃∗(α)

K∗

)(√
Ps0Λ′Σ−1Λ

K

)(√
Ps0Λ′Γ̃(α)

K∗

)

+

( √
Ps0√

K
√
K∗Λ

′Γ

)( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)

+

( √
Ps0√

K
√
K∗Λ

′Γ̃(α)

)( √
Ps0√

K
√
K∗Λ

′Γ̃(α)

)

=

[(
Λ∗′Γ̃∗(α)

K∗

)(√
Ps0Λ

′Σ−1Λ√
K
√
K∗

)
+

(√
Ps0Λ

′Γ̃(α)√
K
√
K∗

)]2

p→
[
E(Γ̃j(α)Λj)Ps0E

(
Λ2j
σ2j

)
+ Ps0E

(
Γ̃j(α)Λj

)]2

= E
(
Γ̃j(α)Λj

)2
[
Ps0E

(
Λ2j
σ2j

)
+ Ps0

]2
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1

N3

(
Ỹ − αT̃

)′
W̃
1

K
Σ̂−1λ̂λ̂

′
Σ̂−1V ′V

1

K
Σ̂−1λ̂λ̂

′
Σ̂−1W̃ ′

(
Ỹ − αT̃

)

=

(
1

N
λ̂
′
Σ̂−1V ′V

1

K
Σ̂−1λ̂

)(
1√
KN

λ̂
′
Σ̂−1

(
1√
K∗ΛF̃

′ + V ′
)(

Ỹ − αT̃
))2

=

(
1

N
λ̂
′
Σ̂−1V ′V

1

K
Σ̂−1λ̂

)

×
((

λ̂
′
Σ̂−1Λ

1√
K
√
K∗

)(
1

N
F̃ ′
(
Ỹ − αT̃

))
+

1√
KN

λ̂
′
Σ̂−1V ′

(
Ỹ − αT̃

))2

p→
N→∞

(
Ps0
K
Λ′Σ−1Λ

)( √
Ps0√

K
√
K∗Λ

′Σ−1Λ
Γ̃∗(α)′Λ∗

K∗ +

√
Ps0√

K
√
K∗Λ

′Γ̃(α)

)2

p→ P 3s0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj)

2

(
E

(
Λ2j
σ2j

)
+ 1

)2

28



Now put these three pieces together

1

N3

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
V ′V

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

Up→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Σ−1Λ

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+ 2

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Γ̃(α)

K∗

)
+
Γ̃(α)′ΣΓ̃(α)

K∗

− 2
(

1

Ps +
Ps0
K Λ′Σ−1Λ

)[(
Λ∗′Γ̃∗(α)

K∗

)(√
Ps0Λ

′Σ−1Λ√
K
√
K∗

)
+

(√
Ps0Λ

′Γ̃(α)√
K
√
K∗

)]2

+

(
1

Ps +
Ps0
K Λ′Σ−1Λ

)2(
Ps0
K
Λ′Σ−1Λ

)

×
( √

Ps0√
K
√
K∗Λ

′Σ̂−1Λ
Γ∗′Λ∗

K∗ +

√
Ps0√

K
√
K∗Λ

′Γ̃(α)

)2

Up→E(Γ̃j(α)Λj)Ps0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj) + 2E(Γ̃j(α)Λj)Ps0E(Γ̃j(α)Λj) + Ps0E

(
σ2j Γ̃j(α)

2
)

− 2

[
Ps0E

(
Λ2j
σ2j

)
+ Ps0

]2

Ps + Ps0E
(
Λ2j
σ2j

) E
(
Γ̃j(α)Λj

)2

+




E
(
Λ2j
σ2j

)
+ 1

Ps + Ps0E
(
Λ2j
σ2j

)




2

P 3s0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj)

2

which is the third of the three terms above.
Next consider the first

1

N3

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1

K∗ΛF̃
′F̃Λ′

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

=

(
1

N
F̃ ′F̃

)(
1

N
√
K
Λ′
[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

))2
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Focus on the term

1

N
√
K∗Λ

′
[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

=
1

N
√
K∗Λ

′


Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1



(

1√
K∗ΛF̃

′ + V ′
)(

Ỹ − αT̃
)

=
1

N
√
K∗Λ

′Σ̂−1
1√
K∗ ΛF

′
(
Ỹ − αT̃

)
+

1

N
√
K∗Λ

′Σ̂−1V ′
(
Ỹ − αT̃

)

− 1

N
√
K∗Λ

′ 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1

1√
K∗ΛF̃

′
(
Ỹ − αT̃

)

+
1

N
√
K∗Λ

′ 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1V ′

(
Ỹ − αT̃

)

=

(
1

K∗Λ
′Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))
+

1

N
√
K∗Λ

′Σ̂−1V ′
(
Ỹ − αT̃

)

−
(

1

Ps +
1
K λ̂

′
Σ̂−1λ̂

)(
1√

K∗
√
K
Λ′Σ̂−1λ̂

)(
1√

K∗
√
K

λ̂
′
Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

−
(

1

Ps +
1
K λ̂

′
Σ̂−1λ̂

)(
1√

K∗
√
K
Λ′Σ̂−1λ̂

)(
1

N
√
K

λ̂
′
Σ̂−1V ′

(
Ỹ − αT̃

))

Up→
N→∞

(
1

K∗Λ
′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)
+
Γ̃(α)′Λ

K∗

−
(

1

Ps +
Ps0
K Λ′Σ−1Λ

)[( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)2(
Λ∗′Γ̃∗(α)

K∗

)
+

( √
Ps0√

K
√
K∗Λ

′Σ−1Λ

)( √
Ps0√

K
√
K∗ Γ̃(α)

′Λ

)]

Up→Ps0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj) + Ps0E(Γ̃j(α)Λj)

−




1

Ps + Ps0E
(
Λ2j
σ2j

)






(
Ps0E

(
Λ2j
σ2j

))2
E(Γ̃j(α)Λj) + Ps0E

(
Λ2j
σ2j

)
Ps0E(Γ̃j(α)Λj)




=Ps0E(Γ̃j(α)Λj) + Ps0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj)


1−

Ps0E
(
Λ2j
σ2j

)
+ Ps0

Ps + Ps0E
(
Λ2j
σ2j

)




Now finally the middle piece

1

N3

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1√
K∗ΛF̃

′V

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

=

{
1

N

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
1√
K∗Λ

}{
1

N2
F̃ ′V

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)}

Note that we have already derived the plim of

{
1
N

(
Ỹ − αT̃

)′
W̃
[

1
PsK

λ̂
′
λ̂+ Σ̂

]−1
1√
K∗
Λ

}
. So the final piece
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to deal with is

1

N2
F ′V

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W ′
(
Ỹ − αT̃

)

=
1

N2
F̃ ′V


Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1



(

1√
K∗ΛF̃

′ + V ′
)(

Ỹ − αT̃
)

=
1

N2
F̃ ′V Σ̂−1

1√
K∗ΛF̃

′
(
Ỹ − αT̃

)
+

1

N2
F̃ ′V Σ̂−1V ′

(
Ỹ − αT̃

)

− 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

N2
F̃ ′V

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1

1√
K∗ΛF̃

′
(
Ỹ − αT̃

)

− 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

N2
F̃ ′V

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1V ′

(
Ỹ − αT̃

)

=

(
1

N
√
K∗ F̃

′V Σ̂−1Λ

)(
1

N
F̃ ′Y

)
+

1

N2
F̃ ′V Σ̂−1V ′

(
Ỹ − αT̃

)

−
(

1

Ps +
1
K λ̂

′
Σ̂−1λ̂

)(
1

N
√
K∗ F̃

′V Σ̂−1λ̂

)(
1

K
λ̂
′
Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

−
(

1

Ps +
1
K λ̂

′
Σ̂−1λ̂

)(
1

N
√
K

F̃ ′V
1

K
Σ̂−1λ̂

)(
1

N
√
K

λ̂
′
Σ̂−1V ′

(
Ỹ − αT̃

))

Up→
N→∞

0

Putting the pieces together we get the result.
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Result L.2.4

1

N

N∑

i=1

(
W̃ ′
i Γ̂ (θ)

[
Ỹi − αT̃i

])
=
1

N2

(
Ỹ − αT̃

)′
W̃

[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

=
1

N2

(
Ỹ − αT̃

)′
W̃


Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1


 W̃ ′

(
Ỹ − αT̃

)

=
1

N2

(
Ỹ − αT̃

)′( 1√
K∗ F̃Λ

′ + V

)
Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1




×
(

1√
K∗ F̃Λ

′ + V

)′ (
Ỹ − αT̃

)

=

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1

K∗Λ
′Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

+ 2

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1√
K∗N

Λ′Σ̂−1V ′
(
Ỹ − αT̃

))

− 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1√

K∗
√
K
Λ′Σ̂−1λ̂

)2(
1

N
F̃ ′
(
Ỹ − αT̃

))

− 2

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1

N

(
Ỹ − αT̃

)′
F̃

)(
1√

K∗
√
K
Λ′Σ̂−1λ̂

)(
1√
KN

λ̂
′
Σ̂−1V ′

(
Ỹ − αT̃

))

+
1

N2

(
Ỹ − αT̃

)′
V Σ̂−1V ′

(
Ỹ − αT̃

)

− 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1√
KN

(
Ỹ − αT̃

)′
V Σ̂−1λ̂

)(
1√
KN

λ̂
′
Σ̂−1V ′

(
Ỹ − αT̃

))

Up→
N→∞

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Σ−1Λ

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+ 2

(
Λ∗′Γ̃∗(α)

K∗

)(
Γ̃(α)′Λ

K∗

)

− 1

1 + Ps0
KPs

Λ′Σ−1Λ

1

Ps

(
Λ∗′Γ̃∗(α)

K∗

)( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)2(
Λ∗′Γ̃∗(α)

K∗

)

− 2

1 + Ps0
KPs

Λ′Σ−1Λ

1

Ps

(
Λ∗′Γ̃∗(α)

K∗

)( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)( √
Ps0√

K
√
K∗Λ

′Γ

)
+
Γ̃(α)′ΣΓ̃(α)

K∗

1

1 + Ps0
KPs

Λ′Σ−1Λ

1

Ps

( √
Ps0√

K
√
K∗Λ

′Γ̃(α)

)2

=

(
Λ∗′Γ̃∗(α)

K∗

)(
Λ′Σ−1Λ

K∗

)(
Λ∗′Γ̃∗(α)

K∗

)
+ 2

(
Λ∗′Γ̃∗(α)

K∗

)(
Γ̃(α)′Λ

K∗

)
+
Γ̃(α)′ΣΓ̃(α)

K∗

−

[( √
Ps0√

K
√
K∗

Λ′Σ−1Λ
)(

Λ∗′Γ̃∗(α)
K∗

)
+

√
Ps0√

K
√
K∗
Λ′Γ̃(α)

]2

Ps +
1
KΛ

′Σ−1Λ
Up→ E(ΛjΓ̃j(α))

2Ps0E(Λ
2
j/σ

2
j ) + 2E(ΛjΓj)Ps0E (ΛjΓj) + Ps0E

(
σ2j Γ̃j(α)

2
)

−E(ΛjΓ̃j(α))2
[
Ps0E(Λ

2
j/σ

2
j ) + Ps0

]2

Ps + Ps0E(Λ2j/σ
2
j)
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Result L2.5

1√
K

λ̂
′
Γ̂ (θ) =

1√
KN

λ̂
′
[
1

PsK
λ̂
′
λ̂+ Σ̂

]−1
W̃ ′
(
Ỹ − αT̃

)

=
1√
KN

λ̂
′

Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1


 W̃ ′

(
Ỹ − αT̃

)

=
1√
KN

λ̂
′

Σ̂−1 − 1

1 + 1
KPs

λ̂
′
Σ̂−1λ̂

1

KPs
Σ̂−1λ̂λ̂

′
Σ̂−1



(

1√
K∗ΛF̃

′ + V ′
)(

Ỹ − αT̃
)

=

(
1√

K
√
K∗ λ̂

′
Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

− 1

1 + Ps0
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1

K
λ̂
′
Σ̂−1λ̂

)(
1√

K
√
K∗ λ̂

′
Σ̂−1Λ

)(
1

N
F̃ ′
(
Ỹ − αT̃

))

+
1√
KN

λ̂
′
Σ̂−1V ′

(
Ỹ − αT̃

)

− 1

1 + Ps0
KPs

λ̂
′
Σ̂−1λ̂

1

Ps

(
1

K
λ̂
′
Σ̂−1λ̂

)(
1√
KN

λ̂
′
Σ̂−1V ′

(
Ỹ − αT̃

))

Up→
N→∞

( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)

− 1

Ps +
Ps0Λ′Σ−1Λ

K

(
Ps0Λ′Σ−1Λ

K

)( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)

+

√
Ps0√

K
√
K∗ Γ̃(α)

′Λ− 1

Ps +
Ps0Λ′Σ−1Λ

K

(
Ps0Λ

′Σ−1Λ

K

)( √
Ps0√

K
√
K∗ Γ̃(α)

′Λ

)

=

[( √
Ps0√

K
√
K∗ Λ

′Σ−1Λ

)(
Λ∗′Γ̃∗(α)

K∗

)
+

√
Ps0√

K
√
K∗ Γ̃(α)

′Λ

][
Ps

Ps +
Ps0Λ′Σ−1Λ

K

]

Up→
[
Ps0E(Λ

2
j/σ

2
j)E(ΛjΓ̃j(α)) + Ps0E(ΛjΓ̃j(α))

] [ Ps
Ps +E(Λ2j/σ

2
j)Ps0

]

= PsE(ΛjΓ̃j(α))

[
Ps0E(Λ

2
j/σ

2
j) + Ps0

Ps +E(Λ2j/σ
2
j )Ps0

]

Proof of Theorem 6:

The vast majority of work for this proof has been done in Lemmas 1 and 2.
To simplify the notation, define

a(Ps, α) ≡
(
E
(
ΛjΓ̃j(α)

))2

Ps0E

(
Λ2j
σ2j

)
+ 2Ps0 − 2

(
Ps0E

(
Λ2j
σ2j

)
+ Ps0

)2

Ps + Ps0E
(
Λ2j
σ2j

) + Ps0E

(
Λ2j
σ2j

)

Ps0E

(
Λ2j
σ2j

)
+ Ps0

Ps + Ps0E
(
Λ2j
σ2j

)




2


and note that
a(Ps0) = 0.
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First consider

q1N,K∗ (θ) =
1

N

N∑

i=1

W̃ ′
i Γ̂ (θ) Z̃i −

φPsσ
2
ξ

(1− Ps)Γ̂K∗ (Ps)
′
Σ̂Γ̂K∗ (Ps) + Psσ2ξ

1

N

N∑

i=1

W̃ ′
i Γ̂ (θ) W̃

′
i Γ̂ (θ)

− φ(1− Ps)Γ̂ (θ)
′ Σ̂Γ̂ (θ)

(1− Ps)Γ̂ (θ)
′ Σ̂Γ̂ (θ) + σ2ξ

1

N

N∑

i=1

W̃ ′
i Γ̂ (θ)

[
Ỹi − αT̃i

]

From Lemmas 1 and 2, this converges uniformly to

E(ΛjΓ̃j(α))Ps0E(Λ
2
j/σ

2
j )E(Λjβj) + 2E(ΛjΓ̃j(α))Ps0E

(
Λjβj

)
+ Ps0E

(
σ2j Γ̃j(α)βj

)

−
E(ΛjΓ̃j(α))E(Λjβj)P

2
s0

[
E(Λ2j/σ

2
j) + 1

]2

Ps + Ps0E(Λ2j/σ
2
j )

−


 φPsσ

2
ξ

(1− Ps)
[
Ps0E

[
σ2j Γ̃j(α)

2
]
+ a(Ps)

]
+ Psσ2ξ


×

[
E(Γ̃j(α)Λj)Ps0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj) + 2E(Γ̃j(α)Λj)Ps0E(Γ̃j(α)Λj) + Ps0E

(
σ2j Γ̃j(α)

2
)

−2

[
Ps0E

(
Λ2j
σ2j

)
+ Ps0

]2

Ps + Ps0E
(
Λ2j
σ2j

) E (ΓjΛj)
2 +




E
(
Λ2j
σ2j

)
+ 1

Ps + Ps0E
(
Λ2j
σ2j

)




2

P 3s0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj)

2

+


Ps0E(Γ̃j(α)Λj) + Ps0E

(
Λ2j
σ2j

)
E(Γ̃j(α)Λj)


1−

Ps0E
(
Λ2j
σ2j

)
+ Ps0

Ps + Ps0E
(
Λ2j
σ2j

)







2


−




φ(1− Ps)
[
Ps0E

[
σ2j Γ̃j(α)

2
]
+ a(Ps)

]

(1− Ps)
[
Ps0E

[
σ2j Γ̃j(α)

2
]
+ a(Ps)

]
+ Psσ2ξ


×

[
E(ΛjΓ̃j(α))

2Ps0E(Λ
2
j/σ

2
j) + 2E(ΛjΓ̃j(α))Ps0E

(
ΛjΓ̃j(α)

)
+ Ps0E

(
σ2j Γ̃j(α)

2
)

−E(ΛjΓ̃j(α))2
[
Ps0E(Λ

2
j/σ

2
j ) + Ps0E

(
ΛjΓ̃j(α)

)]2

Ps + Ps0E(Λ2j/σ
2
j)




Substituting θ0 for θ yields
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E
(
ΛjΓ̃j(α)

)
Ps0E(Λ

2
j/σ

2
j)E(Λjβj) + 2E

(
ΛjΓ̃j(α)

)
Ps0E

(
Λjβj

)
+ Ps0E

(
σ2j Γ̃j(α)βj

)

−E(ΛjΓ̃j(α))E(Λjβj)Ps0
[
E(Λ2j/σ

2
j ) + 1

]

−


 φ0Ps0σ

2
ξ0

(1− Ps0)Ps0E
[
σ2j Γ̃j(α)

2
]
+ Ps0σ2ξ0


×

[
E
(
Γ̃j(α)Λj

)
Ps0E

(
Λ2j
σ2j

)
E
(
Γ̃j(α)Λj

)
+ 2E

(
Γ̃j(α)Λj

)
Ps0E

(
Γ̃j(α)Λj

)
+ Ps0E

(
σ2jΓ

2
j

)
− 2Ps0E

(
Λ2j
σ2j

)
E
(
Γ̃j(α)Λj

)2

−2Ps0E
(
Γ̃j(α)Λj

)2
+ Ps0E

(
Λ2j
σ2j

)
E
(
Γ̃j(α)Λj

)2
+

[
Ps0E

(
Γ̃j(α)Λj

)2]2
]

−




φ0(1− Ps)Ps0E
[
σ2j Γ̃j(α)

2
]

(1− Ps0)Ps0E
[
σ2j Γ̃j(α)

2
]
+ Ps0σ2ξ0


×

[
E(ΛjΓ̃j(α))

2Ps0E(Λ
2
j/σ

2
j) + 2E(ΛjΓ̃j(α))Ps0E

(
ΛjΓ̃j(α)

)
+ Ps0E

(
σ2j Γ̃j(α)

2
)

−E(ΛjΓ̃j(α))2
[
Ps0E(Λ

2
j/σ

2
j ) + Ps0E

(
ΛjΓ̃j(α)

)]]

=E
(
ΛjΓ̃j(α)

)
)PE

(
Λjβj

)
+ Ps0E

(
σ2j Γ̃j(α)βj

)

− φ0


 Ps0σ2ξ0

(1− Ps0)Ps0E
[
σ2j Γ̃j(α)

2
]
+ Ps0σ2ξ0



[
Ps0E

(
σ2j Γ̃j(α)

2
)
+
[
Ps0E(Γ̃j(α)Λj)

]2]

− φ0




(1− Ps0)Ps0E
[
σ2j Γ̃j(α)

2
]

(1− Ps0)Ps0E
[
σ2j Γ̃j(α)

2
]
+ Ps0σ2ξ0



[
E(ΛjΓ̃j(α))Ps0E

(
ΛjΓ̃j(α)

)
+ Ps0E

(
σ2j Γ̃j(α)

2
)]

=Ps0

(
E(ΛjΓ̃j(α))E

(
Λjβj

)
+E

(
σ2j Γ̃j(α)βj

)

−φ0
(1−Ps0)Ps0E[σ2j Γ̃j(α)2]+Ps0σ2ξ0

×
[
σ2ξ0

[
Ps0E

(
σ2j Γ̃j(α)

2
)
+
[
Ps0E(Γ̃j(α)Λj)

]2]
+ (1− Ps)E

[
σ2j Γ̃j(α)

2
] [

E(ΛjΓ̃j(α))Ps0E
(
ΛjΓ̃j(α)

)
+ Ps0E

(
σ2j Γ̃j(α)

2
)]]

=0

Next consider

q2N,K∗ (θ) =
1

N

N∑

i=1

(
Ỹi − αT̃i − W̃ ′

i Γ̂ (θ)
)
×

[
Z̃i − φW̃ ′

i Γ̂ (θ)−
φ(1− Ps)Γ̂ (θ)

′ Σ̂Γ̂ (θ)

(1− Ps)Γ̂K∗ (Ps)
′ Σ̂Γ̂K∗ (Ps) + Psσ2ξ

(
Ỹi − αT̃i − W̃ ′

i Γ̂K∗ (Ps)
)]

=
1

N

N∑

i=1

(
Ỹi − αT̃i

)[
Z̃i − φW̃ ′

i Γ̂ (θ)−
φ(1− Ps)Γ̂K∗ (Ps)

′ Σ̂Γ̂K∗ (Ps)

(1− Ps)Γ̂ (θ)
′ Σ̂Γ̂ (θ) + Psσ2ξ

(
Ỹi − αT̃i − W̃ ′

i Γ̂K∗ (Ps)
)]

−q1N,K∗ (θ)

=
1

N

N∑

i=1

(
Ỹi − αT̃i

)
Z̃i −

φPsσ
2
ξ

(1− Ps)Γ̂ (θ)
′ Σ̂Γ̂ (θ) + Psσ2ξ

1

N

N∑

i=1

(
Ỹi − αT̃i

)
W̃ ′
i Γ̂K∗ (Ps)

− φ(1− Ps)Γ̂ (θ)
′ Σ̂Γ̂ (θ)

(1− Ps)Γ̂ (θ)
′ Σ̂Γ̂ (θ) + Psσ2ξ

1

N

N∑

i=1

(
Ỹi − αT̃i

)
− q1N,K∗ (θ) .
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This expression converges uniformly in probability to

E(ΛjΓ̃j(α))E(Λjβj) +E
(
Γ̃j(α)βjσ

2
j

)
− p lim(q1N,K∗ (θ))

−


 φPsσ

2
ξ

(1− Ps)
[
Ps0E

[
σ2j Γ̃j(α)

2
]
+ a(Ps)

]
+ Psσ2ξ


×

[
E(ΛjΓ̃j(α))

2Ps0E(Λ
2
j/σ

2
j) + 2E(ΛjΓ̃j(α))Ps0E

(
ΛjΓ̃j(α)

)
+ Ps0E

(
σ2j Γ̃j(α)

2
)
−E(ΛjΓ̃j(α))

2

[
Ps0E(Λ

2
j/σ

2
j) + Ps0

]2

Ps + Ps0E(Λ2j/σ
2
j)

]

−




φ(1− Ps)
[
Ps0E

[
σ2j Γ̃j(α)

2
]
+ a(Ps)

]

(1− Ps)
[
Ps0E

[
σ2j Γ̃j(α)

2
]
+ a(Ps)

]
+ Psσ2ξ


×

[
E(ΛjΓ̃j(α))

2 +E
(
Γ̃j(α)

2σ2j

)
+ σ2ξ0

]

Plugging in θ0 for θ yields

E(ΛjΓj)E(Λjβj) +E
(
Γjβjσ

2
j

)

−φ0

(
Ps0σ

2
ξ

(1− Ps0)Ps0E
[
σ2jΓ

2
j

]
+ Ps0σ2ξ

)
×

[
E(ΛjΓj)

2Ps0E(Λ
2
j/σ

2
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2
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]
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2
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= 0

Finally consider

q3N,K∗ (θ) =
1

N

N∑
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(
Ỹi − αT̃i

)2
−
(
Γ̂ (θ)
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′
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which converges uniformly in probability to

E
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(
ΛjΓ̃j(α)

)
)
[
Ps0E(Λ

2

j/σ
2

j)+Ps0
Ps+E(Λ2j/σ

2

j )Ps0

]

Ps




2

−
Ps0E

[
σ2j Γ̃j(α)

2
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2



Ps

−σ2ξ

Evaluated at θ = θ0 this is

E(ΓjΛj)
2 +E(Γ2jσ

2
j) + σ2ξ0 − (E(ΛjΓj))2

−
Ps0E

[
σ2jΓ

2
j

]

Ps0
− σ2ξ0

= 0.

We have thus shown that Q0(θ0) = 0, so θ0 ∈ ΘI . Since the convergence of qN,K∗(θ) is uniform, the
convergence of QN,K∗(θ) to Q0(θ) is uniform as well. Given that the parameter space of θ is compact,
Assumption C.1 of Chernozhokov, Han, and Tamer (2007) is satisisfied. Applying their Theorem 3.1 gives
the desired result.
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