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Abstract

We develop new estimation methods for estimating causal effects based on the idea that
the amount of selection on the observed explanatory variables in a model provides a guide
to the amount of selection on the unobservables. We discuss two approaches, one of which
involves the use of a factor model as a way to infer properties of unobserved covariates from
the observed covariates. We construct an interval estimator that asymptotically covers the
true value of the causal effect, and we propose related confidence regions that cover the true
value with fixed probability.



1 Introduction

Distinguishing between correlation and causality is the most difficult challenge faced by
empirical researchers in the social sciences. Social scientists are rarely in a position to run
a well controlled experiment. Consequently, they rely on a priori restrictions about the
relationships between the variables that are observed or unobserved. These restrictions are
typically in the form of exclusion restrictions or assumptions about the functional form of the
model, the distribution of the unobserved variables, or dynamic interactions. Occasionally,
the restrictions are derived from a widely accepted theory or are supported by other studies
that had access to a richer set of data. However, in most cases, doubt remains about the
validity of the identifying assumptions and the inferences that are based on them. This
reality has lead a number of researchers to focus on the estimation of bounds under weaker
assumptions than those that are conventionally imposed.

In this paper, we develop estimation strategies that may be helpful when strong prior
information is unavailable regarding the exogeneity of the variable of interest or instruments
for that variable. This is the situation in many applications in economics and the other social
sciences, with examples including the effectiveness of private schools, the effects of education
on crime, the effects of crime on labor market outcomes, or the effects of obesity on health
outcomes.

Our approach uses the degree of selection on observed variables as a guide to the degree
of selection on the unobservables. Researchers often informally argue for the exogeneity of
an explanatory variable or an instrumental variable by examining the relationship between
the instrumental variable and a set of observed characteristics, or by assessing whether point
estimates are sensitive to the inclusion of additional control variables.! We provide a formal
theoretical analysis confirming the intuition that such evidence can be informative in some
situations. More importantly, we provide ways to quantitatively assess the degree of selection
bias or omitted variables bias and in some situations provide ways to estimate bounds. To

fix ideas, let the Y be a continuous outcome of interest determined by:

!See for example, Currie and Duncan (1995), Engen et al (1996), Poterba et al (1994), Angrist and Evans
(1998), Jacobsen et al. (1999), Bronars and Grogger (1994), Udry (1996),Cameron and Taber (2001), or
Angrist and Krueger (1999). Wooldridge’s (2000) undergraduate textbook contains a computer exercise
(15.14) that instructs students to look for a relationship between an observable (IQ) and an instrumental
variable (closeness to college).



(1.1) Y =aT + XTx + WT*

where T is a treatment variable.? The parameter of interest is «, the causal effect of 7 on Y.
X is a vector of observed variables with coefficient vector I'x. X contains routinely measured
characteristics, like basic demographics, that are not at risk of being unmeasured. W€ is a
vector of all additional characteristics that are relevant for determining the outcome. Some
elements of W¢ are observed and some are unobserved. Using the notation W'I" to refer to

the vector of observed components of W', we can rewrite the model as:

(1.2) Y=ol +XTx+WT+e

with the term e capturing all the unobservable components of W<I.

The key idea in our paper is to model the relationship between W and W¢€. Our op-
erational definition of “selection on unobservables is like selection on observables” involves
thinking about the breakdown of exactly which characteristics are in W (and which are un-
observed) as being determined by random chance. In addition, we view both W and W€ as
having a large number of elements, none of which dominates in determining Y.> Dominant
characteristics, like gender or schooling in a wage regression, are assumed always measured
and in X. Finally, although the principal source of endogeneity bias here is that 1" is corre-
lated with ¢, an additional source of bias stems from the correlation between W and . In
the context of a model for the determination of W, the correlations between the elements of
W are informative about the nature of the correlation between W and ¢.

To illustrate the nature of the restrictions we use, consider the linear projection of 7" onto
X, W'T and ¢ :

(1.3) Proj(T|X, W'T, &) = ¢y + X'¢y + oW'T + ¢.c.

In the context of this projection, our formalization of the idea that, after controlling for
X, “selection on the unobservables is the same as selection on the remaining observables”

leads to:

2We will also discuss a binary depedent variable model in which the outcome is 1(Y > 0).
3We will utilize approximations that take the number of regressors in W¢ (and W) to be large.



Condition 1.
¢ = .

One may contrast Condition 1 with the implication of the usual OLS orthogonality con-

ditions:

Condition 2.
6. =0,

Roughly speaking, Condition 1 says that conditional on X, the part of Y that is related
to the observables and the part related to the unobservables have the same relationship with
T. Condition 2 says that the part of Y related to the unobservables has no relationship
with T'. We also present a set of assumptions regarding how W is determined from W€ that

imply an intermediate condition between the extremes of Conditions 1 and 2:

Condition 3.

0<¢.<¢if $>0
0>6.> 0 if $ <0.

We propose two alternative estimators that differ in how they model the relationship
between W and €. We refer to the first estimator as OU, which refers to using properties
of observed ("O") covariates to infer the properties of unobserved ("U") covariates. OU
amounts to estimating equation (1.2) using moment conditions that X and W are orthogonal
to € and the restriction ¢, = ¢. This estimates a lower (upper) bound on « if ¢ is greater (less)
than 0. It requires a high level assumption that implies, roughly speaking, that conditional
on X, the coefficient of the regression of 7" on (Y — aT") has the same sign and is at least as
large in absolute value as the coefficient of the regression of the part of T" that is orthogonal
to W on the corresponding part of Y — aT". The high level assumption is required because
the estimator does not make direct use of how the observed and unobserved explanatory
variables are interrelated to assess the consequences of omitted variables that affect both
the treatment and the outcome. Essentially, it treats W as exogenous, in common with the
vast IV literature that focusses on endogeneity of T' but treats the “controls”as exogenous.
Furthermore, it does not provide a way to account for the fact that randomness in which
elements of W¢ are observed influences the distribution of the estimator. This estimator

has been applied in Altonji, Elder and Taber (2005a, 2005b; hereafter, AET) to study the
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effectiveness of Catholic schools, as well as in a large number of other studies. We complete
the theoretical analysis of the estimator that is presented in preliminary form in AET (2002).

We also propose a second estimator that we believe is a more satisfactory approach
because it relaxes the assumption that W is essentially exogenous. In this second approach,
we develop a method of moments procedure that uses the bounds on selection embodied in
Condition 3 and also uses a factor structure to model the covariance between the observable
and unobservable covariates. This structure allows us to infer properties of unobserved
covariates based on the observed correlation structure of the observed covariates W. We show
that this estimator, which we name OU-Factor, consistently identifies a set that contains
a. We also provide a general bootstrap procedure that may be used to construct confidence
regions for the identified set, as well as a less computationally demanding bootstrap procedure
that typically works well in practice.

The paper continues in Section 2, where we provide a formal model of which covariates
are observed and which are unobserved. We provide an explicit set of assumptions under
which Condition 1, Condition 2, and Condition 3 hold, and we elaborate on why Condition
3 is the most plausible of the three. In Section 3 we present the OU estimator. We also
show that in general, Condition 1 is not sufficient to provide point identification of a. As a
practical matter, this is not critical, because we focus on the use of Condition 3 to identify
a range of admissible values for « rather than on point identification of . We then turn
to the OU-Factor estimator based on specifying a factor structure for W°. In Section 4 we
provide some Monte Carlo evidence on the performance of OU and OU-Factor. We offer

brief conclusions in Section 5.

2 Selection Bias and the Link Between the Observed
and Unobserved Determinants of the Instrument and
Outcome

In this section, we begin with a formal discussion of how the observables W are chosen from
the full set W¢. This is the first step in developing a theoretical foundation for using the
relationship between a potentially endogenous variable (or an instrument for that variable)
and the observables to make inferences about the relationship between such a variable and
the unobservables. In doing so, we provide a foundation for quantitatively assessing the

importance of the bias from the unobservables. We then provide a set of conditions under



which Condition 3 holds, which is central to OU and OU-factor.

2.1 How are Observables Chosen?

We do not know of a formal discussion of how variables are chosen for inclusion in data sets.
Here we make a few general comments that apply to many social science data sets. First, most
large scale data sets such as the National Longitudinal Survey of Youth 1979, the British
Household Panel, the Panel Study of Income Dynamics, and the German Socioeconomic
Panel are collected to address many questions. Data set content is a compromise among
the interests of multiple research, policy making, and funding constituencies. Burden on
the respondents, budget, and access to administrative data sources serve as constraints.
Obviously, content is also shaped by what is known about the factors that really matter
for particular outcomes and by variation in the feasibility of collecting useful information
on particular topics. Major data sets with large samples and extensive questionnaires are
designed to serve multiple purposes rather than to address one relatively specific question.
As a result, explanatory variables that influence a large set of important outcomes (such as
family income, race, education, gender, or geographical information) are more likely to be
collected. Because of limits on the number of the factors that we know matter, that we know
how to collect, and that we can afford to collect, many elements of W¢ are left out. This is
reflected in the relatively low explanatory power of most social science models of individual
behavior. Furthermore, in many applications, the treatment variable 7' is correlated with
many of the elements of W¢.

These considerations suggest that Condition 2, which underlies single equation methods
in econometrics, will rarely hold in practice. The optimal survey design for estimation of «
would be to assign the highest priority to variables that are important determinants of both
T and Y (it would also be to useful to collect potential instrumental variables that determine
T but not V). Condition 2 is based on the extreme assumption that surveys are sufficiently
well designed to ensure that ¢, = 0.

At the other extreme, one might suspect that the constraints on data collection are
sufficiently severe that it is better to think of the elements of W as a more or less random
subset of the elements of W¢ rather than a set that has been systematically chosen to
eliminate bias. Indeed, a natural way to formalize the idea that “selection on the observables

is the same as selection on the unobservables” is to treat observables and unobservables



symmetrically by assuming that the observables are a random subset of a large number of
underlying variables. More formally, we use the notation .S; to denote whether covariate W
is observed in the data set. In this notation, “selection on the observables is the same as
selection on the unobservables” amounts to assuming that .S; is an 7id binary random variable
which is equal to one with probability Pg for all covariates in W¢. Of course, there are other
ways to capture the idea of equality of selection on observables and unobservables. For
example, consider a more general notation Ps, = Pr(S; = 1). This object may vary across
types of variables but have no systematic relationship with the influence of the variables on
Y relative to the influence of the variables on T. Also, in many applications a small set
of exogenous variables may play a critical role in determining Y and T and are likely to
be available in data sets appropriate for the research topic in question. These variables are
represented by X.

To the extent that the data set was designed for the study of the effect of T" on Y, one
might expect that ¢ > ¢_ if ¢ > 0 in equation (1.3). Furthermore, in many problems Y is a
future outcome and will depend on unobserved factors that are determined after T or Z, a
potential instrument for 7', are determined. Consider the case of the effect of Catholic high
schools on 12th grade test scores studied by AET. In this case, € will reflect variability in test
performance on a particular day, which presumably has nothing to do with the decision to
attend Catholic high school. Furthermore, high school outcomes will be influenced by non-
anticipated shocks that occur after the beginning of high school, but all of the W used in
AET are measured in eighth grade. Given this sequencing, these shocks influence high school
outcomes but cannot affect the probability of starting a Catholic high school. Similarly, in
health applications, € may reflect health shocks (such as an accident or exposure to a virus)
that occur after the treatment choice 7" has been made.

With these considerations in mind, we partition W¢ into two categories of variables. The
first, W*, consists of K* variables that affect Y and potentially 7" (and possibly Z) and may
or may not be observed by the econometrician. The subvector W of W* is observed, while

the subvector W" is not. The second category consists of the vector W**, which represents



variables that have a zero probability of being observed and used. In this case,

.
WT = > SW,T;
j=1

K*
e = Y (1=S)WT; +W*T* = W"T" +¢
j=1
where I'* is the subvector of I'® that corresponds to W, I'** is the subvector of I'“ that

corresponds to W**, and £ = W*'I"™**. Given that W** represents unanticipated covariates,

we assume that ¢ is orthogonal to (W*, T, Z). This implies Condition 3

(2.1) 0 < ¢.<¢ifp>0
0 > ¢.>0if¢<0

as the basis for the estimation strategies developed below, which focus on estimation of a
confidence set for o that contains the true value rather than on point estimation.

Often there is a third category of variables, X, consisting of factors that play an essential
role in determining Y and potentially Z and T'. These would be included in any serious study
of Y and may be different in nature from the other variables and thus not informative about
how the properties of W*I'*. In AET’s study of Catholic schools, Catholic religion is such

a variable.

2.2 Implications of Random Selection of Observables

We are now ready to consider the implications of random selection from W*. We begin with
the general case. We first derive the probability limit of ¢_/¢ as the number of covariates in
W* becomes large. We then consider several special cases.

For individual i, we define Y; and Z; as outcomes for a sequence of models indexed by
K*, where K* is the number of elements of W*.# A natural part of the thought experiment
in which K™ varies across models is the idea that the importance of each individual factor
declines with K*. We take the dimensions of X and W** as fixed.

Define GX" as the information set consisting of the realizations of the S;, the I';, and the

joint distribution of W;; conditional on j = 1, ..., K*. That is, E(W;; | GX") is the mean for

4The “local to unity” literature in time series econometrics” (e.g., Stock, 1994) and the “weak instruments”
literatures (e.g., Staiger and Stock, 1997) are other examples in econometrics in which the asymptotic
approximation is taken over a sequence of models, which in the case of those literatures, depend on sample
size.



a given j, where the expectation is only over ¢, but E(WV;;) is an unconditional expectation
over both ¢ and j. It may be helpful to think of this data generation process as operating in
two steps. First the “model” is drawn: for a given K™, the joint distribution of W;;, T3, Z;, §;,
and S; are drawn. We can think of GX" as representing this draw. In the second stage of the
data generating process, individual data is constructed from these underlying distributions.

The two steps combine to generate Y; as is represented in Assumption 1.

Assumption 1.
1 —
(2.2) Yi=oTi+ X[Tx + —= > W;T; +¢
VK =

where (Wi;,T';) is unconditionally stationary (indeved by j), and X; includes an intercept.

We use slightly non-standard notation in Assumption 1. Rather than explicitly indexing

parameters by K*, we suppress a K* index on (W;;,I';) and bring a \/}(— out in front of the

sum. This scaling guarantees that no particular covariate will be any more important ex ante
than the others. It embodies the idea that a large number of components determine most
outcomes in the social sciences. Any variables that play an outsized role in Y and Z are
assumed to be observed with probability 1 and are included in the set of special regressors
X. The number of elements of X is fixed. Note that Assumption 1 involves unconditional
stationarity. Conditional on GX", the variance of the W;; and the contribution of the W;; to
the variance of Y will differ across j.

Throughout we will project all variables on X and take residuals to remove X from the

regression. We will use “tildes” to denote the residuals from these projections, so we define

[7[/2.]. = W;; — Proj(Wi; | Xi;G%)
T, =T, — Proj(T; | X;;G")
Z; = Z; — Proj(Z; | Xi;G5)
Y, =Y; — Proj(V; | Xi;G%7)

where Proj denotes a linear projection.” Let 0¥, = E (ijlg | gK ) To guarantee that

var(Y;) is bounded as K* becomes large, we assume that

Formally, the linear projection projection of a generic Y; on a generic X; is defined by X/ where §
satisfies E[(Y; — X/0)X; | G5"] = 0. Hereafter, this projection is meant to be the population projection, i.e.,
for a very large IV, but with K™ fixed.



Assumption 2.

0<K1*i1;nm?;;E , ITy) <

Kl*iinooVar( ZZUMF Fg)—)().

7=1 /(=1

and

The next two assumptions guarantee that cov(Z;,Y;) is well behaved as K* grows.
Assumption 3. For any j =1, ..., K* define ,uJK* so that

_ LK
B (ZWylg"") = -

Then

and
1 —
Kl*lgloo Var (F Zl,uj Pj) — 0
J:

Since Assumptions 2 and 3 are quite abstract, it may be helpful to pause to discuss
examples of models that satisfy Assumption 1-3 before turning to the rest of our assumptions.
The key example is the factor model of the X; and W;;, which is central to one of our
estimation strategies. To avoid repetition, we defer presentation of the factor model until
Section 5.

Another example is a case in which the 1W;; are linked across j through an MA model.
The MA example is the most straightforward when one examines Assumptions 1 and 2
given that those assumptions refer to observables as though they have a sequential ordering.
To simplify the example, we consider a case in which X; only contains an intercept term
and the W;; are stationary conditional on GX*. This means that the W;; will have the
same marginal distribution for all j. This is not realistic for the types of data sets typically
used by economists, and it is not required for Theorem 1,but it simplifies the exposition.”

Specifically, assume that across individuals 7, ;; is generated by independent and identically

6The case of a general ARMA structure is conceptually straightforward, but the algebra becomes sub-
stantially more complicated.

"What is important is that W;; is unconditionally stationary. Conditional on GX" | the distribution of
Wi; is not restricted.



distributed stationary M A(q,,) processes
qw
Wij = Cij + Zﬂégzjq 5
=1

where (;; is i.i.d. with finite variance ag. The W;; processes are also independent of the T';
process, and we assume further that I'; is generated from a stationary process with finite
fourth moments. We think of j as being ordered so that variables that measure related

factors appear close to each other in the j sequence.®

Given our assumptions about the W;;
processes and I';, it is almost immediate that Assumption 1 is satisfied by the MA model.
In the Appendix we show that the model satisfies Assumption 2.

To consider Assumption 3, we need a model for Z. In the Appendix, we prove that
Assumption 3 is satisfied by the MA model if the model for Z takes a form which is similar

to the form of Y;:

Assumption 4.
1 <
(2.3) Zi = XiBx +—== Y _ Wi, + 1,
VE* !

where (i) v; is independent of all of the elements of W€.(ii) 3; is a stationary process with

finite second moments. (3; may be correlated with T';.

It is convenient to rewrite the model for 7 as
T
(2.4) Zi = XIBx +—=>_ Wi;B,; + u;
vV K* oy

where u; = \/;K— Z]K:K 1 WijB; + ;, and all variables are residuals from linear projections
onto the space of X;. We use the above specification of Z; in much of the analysis below,
but we note that the main results below (Theorem 1 and Corollaries 1-3) do not require
assumptions about Z beyond those given in Assumptions 1-3.

Finally, we provide assumptions about the process under which observables are chosen.

Consider the case discussed above in which variables are chosen at random:

8For example, consider a study of educational attainment in which measures of student behavior (e.g.,
absenteeism, suspensions, getting into fights, acting out in class) are viewed as potentially important control
variables. If these variables appear in sequence, the above model captures the fact that they are dependent
and will have I'; coefficients that are related. Only a subset of the behavioral variables might actually be
observed.

10



Assumption 5. For j =1,...,K*, S; is independent and identically distributed with 0 <
Pr(S;=1)= P, <1. 5, is also independent of all other random variables in the model. If
var(§) = o7 = 0, then Ps < 1.

Assumption 6. £ is mean zero and uncorrelated with Z and W*.

As mentioned above, the assumption that ¢ is uncorrelated with Z and W* is not very
restrictive, since for a given value of K* one can redefine I'* and & so that £ is uncorrelated
with W*.

First we consider the relationship between ¢ and ¢, in the general case and then derive
three key special cases. Finally, we relax Assumption 5 that Ps; = Ps Vj and instead assume
that Pg; is a positive function of the degree to which omitting W; will lead to bias in the IV
estimator.

Note that our asymptotic analysis is nonstandard in two respects. First, we are allowing
the number of underlying explanatory variables, K*, to get large. Second, the random
variable W;; is different from the random variables I'; and S} in the following way. For each
J we draw one observation on I'; and S; which is the same for every person in the population;

however, each individual ¢ draws his own W;;.

Theorem 1. Define ¢ and ¢. such that
1 -
Proj (ZZ- | Xi, Nic Z S; Wi, ——= Z S;) Wi;L; + &; gK>
:X/¢X+¢( ZSWJ) ( Z S;) Wi, T +g>

Then under assumptions 1-3 and 5-6, if the probability limit of ¢ is nonzero, then

¢ K*—o00 (1—P5)A—|—Ug

where

A= hm E(K*Za r';) )

If the probability limit of ¢ is zero, then the probability limit of ¢. is also zero.

9 Assume one can write £; as §; = \/— ZJ 1 Wi;Buwj + fl where 51 is independent of W* and Z. Replace

T; with T'j + B,,; and replace &; with &; in (2.2). The key assumption would then be that £; is uncorrelated
with ;.

11



(Proof in Appendix)

Next we consider three separate cases which we present as corollaries. We omit the proofs

of these as they follow immediately from the proof of Theorem 1.

Corollary 1. When o7 =0,

plim(e — ¢.) = 0.

The case in which ag = 0 is the case in which W° = W* meaning that W is a random
subset of all of elements of W¢. Corollary 1 states that the coefficients of the projection of Z;
onto \/% ZJK:1 S;W;;I'; and \/% ZJKZ1 (1 —S;) W;;T'; approach each other with probability
one as K* becomes large.

The other extreme is the case in which all the important control variables that affect
both Z and Y are included in the model, so the variation in the composite error term e

arises from & only:

Corollary 2. When P; =1,

plim(¢,) = 0.

What about the case in which selection on observables is stronger than selection on
unobservables but there is still some selection on unobservables? This corresponds to the

case in which var(§) > 0 and Ps; < 1. The next Corollary considers this case:

Corollary 3. When 0 < P; <1 and 02 > 0,

either

0 < plim(¢.) < plim(¢),
or

plim(¢) < plim(¢.) <0,
or

0 = plim(,) = plim(g).

This Corollary plays a key role in the estimator below.

12



2.3 Systematic Variation in P,

In this subsection we extend Theorem 1 to the case in which Pi; is positively related to the
impact of including W;; on the bias in IV estimation of a.

Without loss of generality, assume the correlation between Z; and W/T' is positive as
one could multiply Z; by -1 to change the sign. In general, the impact of including a
particular W is a complicated function of I';, j;, the I'y and 4, of the variables that remain
excluded, and the covariances among both the included and excluded variables. Thus, it is
not straightforward to characterize the relative impact of the exclusion of particular variables
on the bias. Consequently, we do not attempt to formulate a general result, but instead
consider a special case in which it is easy to assess the relationship between ¢, and ¢. It
is intuitive that exclusion of W;; variables with a strong positive association with both Z;
and Y will lead to bigger bias, everything else equal. Consequently, we assume that .S; is

positively related to E(Z;W,I;). More specifically, we assume

Assumption 7.

E(ul;|S;=1)>FE (u,T;]15;=0) >0.

We make additional assumptions that make it very easy to establish the result. First, we

assume that S; is independent of W;;I'; :
Assumption 8. S; is independent of W;I';.

This is neither an attractive assumption nor a necessary condition, but it implies that

the variation in Ps, will not affect the second moments of

1 & 1 & ) }
—— > SiWylj, | ——= ) (1 =8;) Wyl; +¢;
(s (7=

0

as K* gets large.!’ With these assumptions in hand, in the Appendix we establish the

following result.

Theorem 2. Define ¢ and ¢. as in Theorem 1. Then under assumptions 1-3 and 5-8, as
K* gets large,
0<o.<o.

19Tf we impose (2.4), we might instead assume S; is positively correlated with F (8;I'j) but unrelated to
the marginal distributions of I';, 3, and cov(W;, W,) for all j and £.

13



(Proof in Appendix)

A key, but perhaps subtle, implication of this theorem is that we get the inequality ¢. < ¢

even when 02 = 0. This model thus gives another explanation for this inequality.

3 Estimators of «

We now discuss ways to estimate o. In Section 4.1 We set the stage by reviewing the OU
estimator introduced in AET (2002, 2005). Then we present OU-Factor, beginning with the

factor model of W* that it requires.

3.1 The OU Estimator

The OU Estimator is simple. If were were to estimate the standard treatment effect model
embodied in (1.2) by instrumental variables, we can think of this as GMM with the standard
moment conditions E((X, W)e) = 0 and the IV moment equation £(Ze) = 0. The basic idea
of the OU estimator is to simply replace the moment equation E(Ze) = 0 with condition 3.
The problem, however, is that Condition 3 is not operational unless E(e | W) = 0 because I'
is not identified. Mean independence of ¢ and (X, W) is maintained in virtually all studies
of selection problems, because without it, « is not identified even if one has a valid exclusion
restriction.!! Our discussion of how the observables are arrived at makes clear that this is
hard to justify in most settings. If the observables are correlated with one another, as in
most applications, then the observed and unobserved determinants of Y are also likely to be
correlated.

Most applications to date have involved either ' = 1(Z > 0) or T' = Z, so we focus on

this case (in which we suppress the norming of individual elements of W by v K*):
T=Z=XB,+WpB+u

AET address the problem as follows. Assume that E(e | X, W) is linear, and define G and

e to be the slope vector and error term of the “reduced forms”:

WG

(3.1) E (?—af | W)

(3.2) ?—E(?—af\va) = e

"The exception is when the instrument is uncorrelated with W (and X) as well as &, as when the
instrument is randomly assigned in an experimental setting.

14



Let ¢y and ¢, be the coefficients of the projection of 7" on WG and e (in a regression
model that includes X). Sufficient conditions for 0 < ¢, < ¢y when ¢y > 0 are the

assumptions of Theorem 1 and the following condition:

Assumption 9.

S B (Wil E(BTy) Xt (ijj—z) E (B;Lj-)

(3.3) R — = —— :
Do E (Wjo,g) E(TT5) > E <Wjoz> E(I;0;)

for the set of variables W; in j =1,..., K*,

where Wj is the component of Wj that is orthogonal to the observed variables (X, W), for
all elements of W*. Roughly speaking (3.3) says that the regression of T on (}7 —aT — 5)

—~

is equal to the regression of the part of T that is orthogonal to W on the corresponding part
of (}7 —aT — £>. One can show that this condition holds under the standard assumption
E(e | W) =0, in which case G and e equal I" and ¢, respectively. However, E(c | W) =0 is

not necessary for (3.3).!2

Theorem 3. Define ¢y and ¢, such that
-1 EEo__ 1 & _
Proj| Z; | — E SiWi;Gj, —— E (1—8;)WyT; + &G~
( JE* < Ao < i) Wigl g

1 = 1 &
= dwia <\/? > Ssz‘ij) + ¢ <\/? > (1= S) Wyl + fi) :
j=1 j=1

Then under assumptions 1-6 and 9, as K* gets large, if the probability limit of ¢ is nonzero,

then

PR Dyt 2 (WGWJ—Z> E(T0 )
— .
Owe X B (ijjfé) E(TyTj0) + oF

If the probability limit of ¢y is zero then the probability limit of ¢, is also zero.

(Proof in Appendix)

12For example, one can show that (3.3) will also hold if (Bij_g) is proportional to E (I';I";_¢) regardless
of the correlations among the Wj.
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Based on the argument that selection on unobservables is likely to be weaker than selec-
tion on observables, one might impose Condition 3 rather than Condition 1. The upshot is

that one can work with the system

Y = oT+W'G+e.

T = Wip+u
cov(u, e) Cov(W'B,W'G)
0 < |——= ,
~ | wvar(e) Var(W'G)

and estimate the set of a values that satisfy the above inequality restrictions. In practice,

cov(u,e)

AET find that the lower bound is obtained when the equality of selection condition e =
Cov(W'B,W'G)
Var(W'G)

as exogenous, with % =0.

is imposed and the upper bound corresponds to the case in which T is treated

One can perform statistical inference accounting for variation over ¢ conditional on which
W are observed in the usual way. We do not develop this idea here; however, there is no

obvious way to account for random variation due to the draws of .S;.

3.1.1 Is Equality of Selection on Observables and Unobservables Enough to
Identify o7
We favor using Condition 3 to estimate bounds for o based on a range of the degree of
selection on unobservables, but it is interesting to ask whether Condition 1 is sufficient for
point identification of o. Perhaps surprisingly, in general the answer is no. To demonstrate
this, we assume that Y is determined by Y = T+ W'I'+¢ as above and consider the special
case in which E(e | W) = 0, which implies that G =T" and e = €.
Define 7 and B so that

(3.1) Proj(Z |W) = W',
(3.2) Proj (T | W,2) = W'r+ A2,

and define v and u to be the residual components of Z and 7', so that

(3.3) v = Z-W3H
(3.4) uw = T—-Wr—\Z
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Theorem 4. Suppose that € is independent of W. Under Condition 1, the true value of o is

a root of a cubic polynomial. Thus the identified set contains one, two or three values.
(Proof in Appendix)

This theorem implies that even if Cov(e, W'T') = 0, there are typically either three
solutions (i.e., three values of «, which we label o*, that satisfy the moment conditions) or

there is a unique solution that equals «.

Theorem 5. If we impose the same model as above but use T as an instrument for itself,

the true value of o is a root of a quadratic polynomial with two roots:

var(e)
cov(u,€)’

(Proof in Appendix)

Although there are two roots, this result is useful. When an applied researcher is worried
about the bias in an IV estimator, including the case when Z = T, he or she often has a strong
prior about the sign of the bias, which is the sign of cov(u, ). Imposing an assumption about
the sign of cov(u,e) on the data delivers point identification; if one imposes that cov(u, €)
is positive (negative), then the smaller (larger) of the two solutions is the true value. One
should not make too much of this result, because in most applications variables represented
by W** will be present, so that var(£) will be positive and equality of selection will not hold.

Consequently, we focus on the construction of bounds rather than on point estimation.

3.2 QU—Factor: A Bounds Estimator Based on a Factor Model of
W

3.2.1 A Factor Model of ﬁ/;j

We now present a factor model of /VIZ]», which is central to the estimator proposed below.
The factor model is a convenient way to model the relationship among the covariates. We

assume that /VIZ]» has a factor structure

— 1 ~
(3.5) I/Vij:\/?Fi’Aj+vij, j=1,.., K",
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where F; is an r dimensional vector. We treat r as finite, so while the dimension of Wj;
grows, the number of factors remains constant. Keep in mind that ﬁ//ij is the component
of W;; that is orthogonal to X;. It may seem arbitrary to assume that (3.5) applies to ﬁ//ij
rather than W;;. To motivate this assumption, suppose that both W;; and X; are defined by

a factor model:

Wij = o+ F/Aj + v

1
Vi
1

where £ is the factor, o is the mean of IW;;, the dimension of X is K, x1, A, isa (K, — 1) xr

matrix and w; is a (K, — 1) x 1 vector. Then

1 1
= ——F/\;, +v;; — ——Proj(F; | X;)'A
\/ﬁ ity J \/ﬁ 7 (Fi | Xi) j
1 ~
= FIA; + vy

where we have defined E = F;, — proj(F; | X;). In the rest of this section we abstract from
X, and focus on ﬁ//m

We normalize the variance/covariance matrix of F; be to the identity matrix. Define
0¥ =E(}|j), j=1,..,K*. When we refer to the “factor model”, we will often mean the
model defined by (3.5), the model (2.2) for Y, and the model (2.3) for Z. We continue to
assume that &; and 1), are independent of all of the W;; and of each other. They may also
have factor structures, but the factors are uncorrelated with ﬁ’, The stochastic structure of
the model is that Aj, I';, 8; and O’? differ across 7, but are identical for all individuals in the
population, i = 1,..., N.

We model Z; according to assumption (2.4), and we define an analogous structure for 7;:

T X5X+ Wz36 + w;.

a3

We redefine G¥ " to refer to aspects of the model of W;, T}, Y;, and Z;, that do not vary across
individuals:

G = {(Fg‘aﬁj,(Sg‘,AJ,U?,Sj) forj=1,.,K"}.
For estimation, we make the following additional assumptions.
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Assumption 10. (i) (Fj,ﬁj,éj,Aj,a?) is 1.1.d with fourth moments; (ii) the components
& and ; of Y; and Z; respectively are independent of W and of each other; (iii) &; is
independent of X;.

Assumption 10 (ii) implies that there is a component of Z; that is independent of the
observed and unobserved determinants of Y. Without this there is no hope of identifying «
using Z or a component of Z as a source of exogenous variation in 7', because there is no
exogenous variation. In the Appendix we verify that the factor model of W in conjunction

with the model (2.2) for Y and (2.3) for Z satisfies Assumptions 1, 2, and 3 of Theorem 1.

3.2.2 An Estimator of an Admissible Set for o

In contrast to the OU estimator, here we use the factor model to directly address the problem
posed by the fact that basic introspection suggests that the elements of W; (as well as T},
X;, and Z;) are likely correlated with the error term. We study identification under the
following assumptions. First, we assume that the econometrician can observe the sequence
of models indexed by K* =1, ...,00 and that for each model she observes K,the number of
observed covariates in W (but not the number of unobserved covariates), as well as the joint
distribution of Y;, Z;, T;, X; and {W;; : S;; = 1} . Second, we assume that K/K* — Py.
Third, we assume that N becomes large faster than K*, with KW — 0, so that we can take
sequential limits. This seems like a good approximation in problems where K and K* are
large, but not for problems in which the number of variables that determine Y; is small.

In general the model is not point identified, so we provide an estimator of a set that
contains the true values. The key subset of the parameter vector of our model is § =
{a, ¢, Ps, 02), where we abstract from parameters that are point identified given 6. The true
value of 6 is 6y = {ao, gbO,Pso,ago) which lies in the compact set ©. Our approach is to
estimate a set © that asymptotically will contain the true value 4. The key restrictions on

the parameter set are that

(3.6) 0 <Py <1, and
(3.7) oz 20.

The case in which P,y = 1 corresponds to the standard IV case represented by Condition
2, while 020 = 0 corresponds to the “unobservables like observables” case represented by

Condition 1. We construct an estimate of the set of values of o by estimating the set of
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f that satisfy all of the conditions and then projecting onto the o dimension. We then go
on to discuss construction of confidence intervals. While the upper and lower bound of the
estimated set does not have to correspond to the cases in which Py, = 1 and 020 =0, in
practice we find that it does.

It will be useful to make use of matrix notation. We assume without loss of generality
that the variables are ordered so that j = 1,.., K corresponds to the K observed covariates

in W¢. Unless indicated otherwise,

e For a generic variable B;,7 =1, ..., N, B will represent the N x 1 vector.

e For a generic variable B;, j =1, ..., K*, B will represent the K x 1 vector of observable

characteristics and B* will represent the full K* x 1 vector.

e Lor a generic variable B;;,¢ =1,..,N,j = 1,..., K*, B will represent the NV x K matrix
of observable characteristics, B*the full N x K*matrix of covariates, and B; represents

the K x 1 vector of B;; for a given <.

e We also employ the convention of using capital letters for matrices so, for example, the

matrix version of v;; will be written as V.

Given the large amount of notation we concentrate on the 1 factor case (r = 1), so F,
and A; are scalars. We fully expect that the results generalize to the multiple factor case.

We now present the estimator, which has two stages.

Stage 1

In the first stage we estimate the Aq,.., Ax and 02, ...,0%. The moment conditions are the

K equations

S

(33) 2 (W, Wis) = 1

A?l—FO'Q ; jlz]-a"'aKa jl :j27

J1?

and the K - (K — 1)/2 equations

~ 1 o : .
(39) E (Wz]lwzjg) = F—/\gl v J J2 = 17 "'7K7 J1 % J2 -
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This is a standard GMM problem. As N grows we will obtain v/N consistent estimates
of \/%Aj for each j and for O/';z by using the sample analogues to (3.8) and (3.9). Note that
K* is not known since it depends on the number of unobserved variables. However, the
econometrician knows K = PgoK™*. To simplify the exposition we define )Tj to be the GMM
estimate of the parameter v K X \/%Aj = v/ PsoA; and A to be the corresponding vector.
In practice we just replace the left side of the equations by % ZZJL <WZ-1 Wm) and choose A;
and &;2 as the values that minimize the appropriately weighted difference between the values

of % Zf\;l </M21/W_;j2) and the predictions summarized in the moment conditions above.

Stage 2

We estimate the rest of the parameters in a second stage. If we knew g we could estimate

I' conditional on «q by taking advantage of the moment condition

VK*E [Ww (}7@ — agﬁ))} = VEK*E

K* K+
(J%m + ) ( j? > ﬁ(_ﬁmrz " j? ZP>]
1 — )
= A (ﬁ ; AzD) + 05,1
= N;E(ALy) + 02,1
We work with the sample analog of the above expression,
e (7)o ]

where ¥ is the diagonal matrix composed of the JJZ terms. Thus, for the parameter 6 we

can construct the estimator

1 1

(3.10) ') ~ [PsKﬁ#i}_

)

%W (V —oT).

where we define ¥ is the diagonal matrix composed of &;2- which is estimated in the first
stage.

One may show that
4 = [E(T;A5)E(B;A;) + E(T;8,03)] [Pao (1 — Pa) E(T%03) + Pyogy] |
" 0 [PRE(T;A)? + PoE(T303)] + [B(T;45)° + E(T503)] (1 = Puo) PoB(T303)

21



Using this fact, we define our estimator based on the following system of equations.

(311) ahyse- (6) =y S WIF (0) x

subject to € ©. We will show that when evaluated at 6, these equations converge to zero
as N and K* grow.

To understand the first two equations, note that when 02 = 0 they reduce to

)
2)—'
>
=
I
=l
1=

(WL (0) |2~ oW (0) 6 (Y~ oL, - W 0)) )

i=1

~ —~ —~,
i

((Vi—aTi = WL (0)) | Z: = sW/T (0) — 6 (Vi — oTi = W (0))] ).

)
'Zl\)
>
=
I
2|~
(1=

=1

These are the classic moment conditions of a linear regression of Z; on (WZ’ I'(h)) and
(Y; —oT; — ﬁ//i’ I' (6)) when the two regression coefficients are restricted to be the same. They
are the empirical analogue of Corollary 1 of Theorem 1. In the general case, the equations
are more complicated because the presence of £ leads to attenuation bias on the regression
coefficient on (17'1 —oT, — Wz’f (9))

When Pg = 1, the second equation reduces to

B 0) = =3 (7= oFs - W 0)) [7- 60 0)]).

In this case [ (0) could be estimated as the coefficient vector from a linear regression of
(571 — aﬁ) on W (Our estimator is asymptotically equivalent to this with K* fixed and N
getting large.) In that case, /V[Z-’ r (0) would have to be orthogonal to the error term, so this
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equation would reduce further to
N
) 1 S = o |
g (e, 0) = N ;_1 (YZ aT; WJ‘(Q)) X Z;,

which is the standard IV moment equation.
Turning to (3.13), ¢3; 5« () is the difference between the sample value of var (372 — aﬁ-)
for the hypothesized value of o and the variance implied by the model estimate.

We define the estimator © as the set of values of § that minimize the criterion function

QN,K* (9) = (gN,K* (‘9>/QQN,K* (‘9)7

where
v (0) = [ dhgee 0) Bog- (0) e (0) ]

and ) is some predetermined positive definite weighting matrix.

3.3 Consistency of the Estimator

In this section we prove consistently using the standard methods from Chernozhukov, Hong,
and Tamer (2007). Define Qy(#) as the probability limit of Qy x+(6) as N and K* get large.
Specifically we use sequential limits assuming that N grows faster than K*. The identified
set, Oy, is defined as the set of values that minimize Qy(6). We verify the conditions in
Chernozhukov, Hong, and Tamer (2007) to show that the Hausdorff distance between © and
O; converges in probability to zero and that 6, € ©;. Thus as the sample gets large our

estimate of © will contain the true value with probability approaching 1.

Assumption 11. F} &, and ¢, are all mean 0 and i.i.d. across individuals and are in-
dependent of each other with finite second moments. w; s i.i.d. across individuals with
finite second moments, is independent of F;, but may be correlated with &; and/or ;. v;;
is mean zero and i.i.d. across individuals and covariates with finite variance. The vector
(T, Ay, By, a?) is 1.1.d. across covariates with finite second moments.

Assumption 12. © is compact with the support of P, bounded below by p’ > 0.
Assumption 13. The dimension of F; is 1

Define dj(+,-)to be Hausdorff distance as defined in Chernozhukov, Hong, and Tamer
(2007).

23



Theorem 6. Under Assumptions 11-13, dh(@, ©1) converges in probability to zero and 0y €
0.

(Proof in Appendix)

One can form a set estimator for «q just by taking the projection of © onto a. That is,

we can define this set as

A= {a . there exists some value of (¢, P, 02) such that {«, ¢, Ps, ag} € (:)}

3.4 Constructing Confidence Intervals

In this section we discuss confidence interval construction. We start with the ideal procedure
one would use given unlimited computing resources. We then discuss a more practical

approach, which is the parametric bootstrap we use in the Monte Carlos below.

3.4.1 A General Procedure

Before discussing inference it is useful to step back and consider our basic approach. In
terms of identification we have four parameters (ag, ¢, PSO,O'g) but only 3 equations: the
population and limit of the sequence of models for (¢k, ¢%,q3) .'* However, we also have
limits on the parameter space. In particular 0 < Ps < 1 and ag > 0. In principle, while we
cannot get a point estimator for (g, ¢q, P2, ag), we construct the set estimator © for this
four dimensional parameter. Our set estimate for aq is just the set of a that lie within this
identified set.

We can construct a confidence region in the analogous manner. That is, we could first
construct a confidence set for (a, @y, Py, 0¢) and then let our confidence set for a be the
values of o that lie within this set. The most natural way to construct the larger confidence
set would be to “invert a test statistic.” That is, we would first construct a test statistic 7'(9)
which has a known distribution under the null hypothesis: # = 6,.'* For each potential 6,
we would construct an acceptance region of the test. When 7'(9) lies within this acceptance
region, § would belong to this confidence set, otherwise it would not. Given the confidence

set for the full parameter space, we take the confidence set to be the set of « that lie within

BIn the definition of the estimator, we have not explicitly defined A,I',3, or ¥ as parameters but the
estimates of these objects as functions of the data and 6. The main reason is that the dimension of these
objects grows with K *so in terms of consistency and inference it is easier to focus on the elements of 6.

14 A natural choice for a test statistic would be the objective function Qn - (6).
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this set. More formally let Ty g+ (f) be the estimated value of the test statistic and let 7(6)
the critical value. Assuming we reject when the test statistic is larger than the critical value,

the confidence set is defined as
Crx-={0€0|T(0) <T*(0)}
and our estimated confidence region for a can be written as
G, = {aeR| (a,@)méméw}.

There are many test statistics one could use and many ways to calculate the critical value.
We consider the following algorithm based on the bootstrap. Consider testing the null

hypothesis # = 0y. The most natural test statistic is the normalized criteria function, so that
Tnr+(0) = KQn x+(0).
Such a test statistic would be computed as follows:

1. Estimate parameters to be used in generating data for the bootstrap. This involves
using the data generation process for X; as well. That is, from the joint distribution

of (Xz> VVZ)>

(a) Estimate (A,Ax), X, and the data generating processes for F; and v;;.

(b) Estimate

f(@) . 1 ~~ -~ -1 1~ /> ~
= [PSK)\)HLE] W (Y—aT>
5(6)
Vi

(c) Given knowledge of Ps, estimate the distribution of (&;, ¥, w;).

~[Lxsas] iz
| PK N

2. Generate N bootstrap samples. Where for each sample:
(a) Draw K observable covariates from the actual set of covariates (with replacement)
with appropriate (1:], @j, /):j, ijj)

(b) Draw (K* — K) unobservable covariates from the actual set of covariates (with

replacement) with appropriate <fj, /Bj, Aj, fljj)
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(c) Now for ¢ = 1, N generate all of the (X;, W) using the DGP for f; and v;;.
(d) Using the DGP for v, and &, generate Z; and (Y; — ag1;) (Note that we do not

need to generate data on Yy and T; themselves because only (371 - aoﬁ-> enters

the moment conditions that define the test statistic.)

(e) Given generated bootstrap data construct the test statistic Qn x+(¢). (This in-

volves the intermediate steps of estimating 3, A\ and I'as well.)

3. From the bootstrap sample we can estimate the distribution of the test statistic and

calculate the critical value given the size of the test.

For this critical value to be correct, we need that the bootstrap distribution of Ty x+(6o)
provides a consistent estimate of the actual distribution of Ty g+ (6o).

It will prove useful to define

A2 !
X; = | ALy AyB; T3y Tioss, Sigt Silhy S;TiNjo5  SiB;A; SiB;A;0% SiT07 S;

J
and
Xo=E(x;)-
Our next goal to show that the limit of ¢y x+(fy) as N gets large is a known function of

only ¢ and the mean of x;. This property will the asymptotic distribution straight forward

to figure out. The proof is still in progress, so we write it as a congjecture.

Conjecture 7. Under Assumptions 11-13, the bootstrap distribution of the test statistic is

consistent.
(Proof in progress)

In the appendix we present the algorithm one would use to implement this approach in

practice.

3.4.2 A Parametric Bootstrap Procedure

In practice, implementing the procedure above in impractical because testing the null over
a four dimensional grid is computationally difficult. Additionally, one often has a strong
prior about the sign of the selection bias. We can obtain tighter bounds by imposing this

prior (formally defined as "monotone selection" in Manski and Pepper, 2000). While our
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estimation interval can potentially be much more complicated, for the simulations we have
run, we consistently find a compact region with one end of the region occurring at the
instrumental variable estimate (Ps = 1) and the other occurring at the “observables like
unobservables”assumption (o = 0). Without loss of generality we will assume positive
selection bias so that the upper bound occurs under the constraint Ps = 1. We will also
assume that the minimum value occurs at o¢. We propose a parametric bootstrap procedure
to construct one-sided confidence interval estimators for the lower and upper bounds of this
set, denoted i, and oy, respectively. We construct these intervals such that the estimator
&.10.min has 10% nominal probability of being below auuin. The estimator & 19 max has a 10%

nominal probability of exceeding v ax.

3.4.3 Construction of & 10 min

The procedure for estimating & 10min involves the following steps.

1. Estimate the parameters under the model under the assumption that o, = 0. We do

this by solving the system of equations
0= Q}V(amma ¢> PSa 0) = q?v(amzna ¢a PS> 0) = Q?V(amma ¢> PSa 0)

for a, @, and ﬁg. In doing this we also obtain estimates of A, ¥, and  for the observable

covariates.

2. Next we need to estimate some additional parameters that will be used for generating

the bootstrap sample.

(a) Obtain estimates of the distributions for Fj, v;; given the estimates of [%, A;].
This can be done in a number of different ways. One could specify a parametric
distribution and estimate the distribution parameters. Alternatively, one could
do this completely nonparametrically. A third possibility is to take advantage of
the fact that our estimator involves up to second moments of the variables, so
only up to 4rth moments of the distributions of these variables matter for the
sampling distribution of dq;,. Instead of specifying parametric distributions, one
could use a method of moments procedure to estimate up to the fourth moments
from sample estimates of E (W;}Wé,) and 67,, Aj, j = 1..., K for various values

of r and s. One could then pick convenient parametric distributions for 6; and
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v, J = 1,..., K and choose parameters of the distributions to match the relevant
moments.'® Call the estimates of the additional parameters of the ; distribution

By and the additional parameters of the v;; distribution ij.16

(b) Next we need to estimate the distribution of (§;,1;,w;). We can use the same
three approaches as in the previous case. To use the third we need estimates of
fourth moments. To obtain them, one can use the fourth moments of }7; - dﬁ, Z

and ﬁ Consider

K* K*
~ 1 —~ 1 —~
EEH =EY; —aT)* — E(—— § W) — B(—— § jWijrj)Qag.
2% j=1 VK j=1

We have the estimate of G, so E (57; — ozi-)4 can be replaced with the corre-

sponding sample moment. We also have estimates of E/( \/}T Z]K:l /VIZJTJ-)2 and
0z. One can use a similar procedure to estimate £ (¢}). The relevant moment

condition is
1 K __ 1 K
E(W}) = E(Z)* = E(——= Y _ WiiB))* = E(——=Y_WiB,)’o7, .
( ) ( ) (\/FJZI J]) (\/FJZI J]) P

Note that this requires an estimate ofﬁ and afp, but estimating these is completely
analogous to estimating 7 and 02 where the dependent variable is now Z; rather
than Y; — oT}. Estimation of 4, 02 and F(wf) is analogous. We would then
pick convenient parametric distributions for this joint distribution, and estimate
parameters B¢y, The joint distribution should not constrain the second and
fourth moments unless one wishes to impose additional a priori information (such

as normality) on it. We leave implicit the fact that BMW depends on Qyiy.

3. Construct the Bootstrap sample. This involves a few different steps.

15Sticking with the one factor case and taking W;; to be mean zero, using independence of 0; and the v;;,
and using the fact that var(f;) = 1, the moments are E(W},) = AYE(6;) + E(v};) + 4A%102,; and

E(W?2ijW3,) = A2A2,E(67) + 02,02, for all j,j' # j pairs. The idea generalizes to the multiple factor
case.

16 An alternative is to use the K observed W, impose the estimates A; and the estimates of &,;, choose
parametric distributions for ; v14, ..., Vg, and fit the parameters of those distributions. The chosen distri-
butions should not impose constraints on the second and fourth moments. In principle, one could work with
nonparametric distributions with the variance constrained to match the a%j. A nonparametric approach is
unattractive from a computational point of view — given that our estimators only involve second moments,
it does offer any clear advantages.

28



A

(a) Using the estimates [B 500, A, By, =1, ..., K, and the estimates Ps, draw K*
values of [Bj, fj, Ovj) A E ;] by sampling with replacement from the K estimated
values. Let the first K correspond to the “observed” W's for purposes of the

bootstrap replication.

(b) Using (&vj,f\j,Bj) and By, generate (f)®, (vi;)® and then WZ(J , 1 = 1...N.,

j=1,.., K* where (b) denotes the bth bootstrap replication, (b) = 1, ..., Npoot-

(c) Using the K* values of B the associated K* vectors Ww ,

wz(b), use égﬂp?w to generate N values of (ZE ), Ti( ), Y;(b)).

Omin, and the draws of

4. For each bootstrap sample compute a by solving

0= qN(b ( in)zm%oa PS,O) - qN b)( gn)ma@%PSaO) - qN b)( 571271’(107PS>0)
on the bootstrap samples.

5. Calculate the 90" quantile of the bootstrap sample of @, and subtract the different
between that and our point estimate from our point estimate of @, to obtain the

lower bound of our confidence set.

3.4.4 Construction of & 9o max

To obtain & gomax, We assume that the largest value of & that satisfies the restrictions of the
model is obtained when one imposes the assumption that Pg =1 and ignores the possibility
that unobserved Wj that induce positive correlation between Tl and }7; If one sets 155 to 1
in the matrix [PS;KX,X + i] and replaces the matrix with W'IW in equation 3.10) for I'(6),
then the solution for & is IV. Under the null, all of the W; are observed. Thus we do not
need to impose a model of how the W; are related to each other to account for the effects
of missing W;. One can construct the one sided confidence interval estimate using the
appropriate robust standard error estimator given assumptions about serial correlation and
heteroskedasticity in &,. Alternatively, one can use a conventional bootstrap procedure.
While the simplicity of the above approach is attractive, it has an important shortcoming.
We have not been able to prove that OLS is the upper bound when Pgs is less than 1
Cov(W,e) # 0. This is because bias in [’ may lead to a partially offsetting bias in é.
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4 Monte Carlo Evidence (very preliminary)

In this section we present Monte Carlo evidence on the performance of Ay, which we
estimate based on doy_ ractor, and Gmayx, Which we estimate based on &prg because in our
context dmax turns out to be essentially the same as the OLS estimator. We also present
evidence on the performance of aoy.!"

In discussing the design, we first restate the equations of the model of Y;, T}, and W;;:

o
1
i = aoTi+ T ZWMFJ' +&;

= Ty +— ZWM J+¢_ Z Wyl + €,

Jj=Ko+1
Wi = \/%QQAJ_‘_UiJ
T — 7 — Liwﬁg. + 1),
i < 2 ij Pj i
We focus on the case in which 6 is a scalar (r = 1). We vary assumptions about

Py = K/K*, the fraction of the W;; variables that are included in the model.

4.1 W parameters

The distributions of the variables that determine W;; are

0; ~ N(0,1)

vij ~ N(0,0%,); 0y; ~ U(1.0,2.0)
Aj=A+A;

Aj ~ U(—Apasxs Amax)

For this specification,

1"The OLS estimator is essentially the same as the estimate of « based on our moment equations with Pg
set to 1. The two differ because we use the moments implied by the estimated factor structure rather than
the actual variance covariance matrix of W in the moment condition for I'. In the designs we consider we
found that the maximum value of & consistent with ag > 0 occured at Pg = 1, although we have not proved
that this has to be the case for any model with a factor structure.
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1 1 <
E[Coo(W;, Willj # J1= 7= B(NAy) = EAQ and
‘ . 1 12 L A 2 2
E[V(LT(W])] = K*A +3K* [Amax] +E(Uvj)>

E[Cov(W; ,WZ-/ )]

E[Var(W;)] in the tables

where the expectations are defined over j and j'. We report

below.

4.2 Parameters of the Y; and 7; Equations

I'; and 3; have expected values ur and ji4, respectively, and depend on a common component

g; and the components er; and €g; that are specific to I'; and ;. They are determined by

Je (1 - ga)
2+ (=g T+ (L= g
_ : . (L=b)
O R S E E i N (R

where ¢, er,, and €p, are uniform random variables with mean 0 and variance 1. They are

mutually independent and independent across j.

The parameters g. and b. determine relative weights on ¢; and the idiosyncratic terms
€r;,€8;) thereby determining the covariance between I'; and ;. We have normalized the
weights so that var(I';) = var(8;) = 1 regardless of the choice of g. and b.. ¢Z and b? are
the shares of the variances accounted for by the common component ¢;, respectively. For

the above design,

Je - ba . .
B 7 Crn LR R e N LA
= Hppg ;)] # 5
Je - be . -

cov(Ty, B;) = corr(Ly,B;) =

= 0,j#]

2+ (1— g% B2+ (b3 ) 7

E@;-Ty) = prpr+1,j=7
= s J# T

EB;-By) = paug+1,5=17"
= Ugligs J #7
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Below we consider the effects of varying g. and b., and we also consider a case in which

B; =0 for all j.

4.3 Additional Parameter Values

We also examine the sensitivity of the estimates to the importance of ¢ and &, the idiosyn-
cractic components of T" and Y, respectively. To do this, we vary O'g so as to vary the
expected fraction of the variance of the unobservable component of Y that is due to £. That

is, we choose ag to manipulate

1 K*
2 _ 2 2
RZ=FE {o—g /(ﬁvar(zj%+1 W,T;|T) + 0—5)} :
where the expectation is defined over the joint distribution of I', 5, and W. Similarly, we

set 07 to control
Ri =F la?p/(%lfar(z;{_l W;3,18) + O’i)} )

We report R7, and Rf in the tables below. Note that for a given value of R, the value of
ag will depend on the choice of Pg, but ¢ and ¢, will not. We view this as an attractive
parameterization because we are primarily concerned with ensuring that ¢ and ¢, do not
depend on Ps.'® The expected values of ¢ and ¢. at the true o are complicated functions
of the parameters of the data generation process, so we simply compute the average values
in each design as well as the average estimate of <Aﬁ at Qupin-

For all experiments, we set N = 2000 and report results based on 1000 Monte Carlo
replications. The bootstrap estimates of the .10 one sided confidence interval estimate is
based on 1000 bootstrap replications for each Monte Carlo replication. We set K* to 100,
be to 0.5, and ag to 1.0 in all the experiments reported, and we vary Pg, Rg, A, Ao, Iy,

Ir, ge, and b, across experiments. Specifically, we set Pg of 0.2, 0.4, and 0.8 and we set Rg to

181f we fix Var(¢;) at a nonzero value, the ratio ¢./¢ approaches 0 (the case in which OLS is unbiased)
as Pg approaches 1. In assessing how variation in Pg matters, we wish to hold constant the degree to which
selection on observables is similar to selection on unobservables. For each Monte Carlo experiment we set
ai and ag to the fixed values

R2 1 K*
2 _ 3 T.
o = FE - RE o Var( E - WJI‘J|F)]
R2 1 K*
2 _ Y 3.
O RY K~ VW(ZJ':KOH WJB]W]

given the values of the other parameters of the experiment.
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0, 0.2, and 0.4. We vary pig, pr, ge, and b, such that £(3;I';) = 0.09, 0.3, and 0.6. Finally,
we vary A and /NXmaX. In one case, we set A = 0, which means that E[Corr(Wi;, W) = 0 if
J # j'. In the other case, E[Corr(W;;, W;;)] = 0.2 if j # j'.

4.4 Monte Carlo Results

We first consider a baseline case in which 7} is randomly assigned. Table MC1 reports results
for a design in which 3; = 0 for all j (s = 0, var(eg;) = 0, and b. = 0), which means that T
does not depend on the W;. For these designs, dors is unbiased because E(¢) = E(¢,) = 0.
We use the median as our measure of central tendency but also report the 10th and 90th
percentile values. We use the 90th-10th differential as a measure of dispersion. The median
values of ¢, ¢_, and a across replications are shown in the three rows of the table.

The estimates of &g are tightly distributed around 1.0 in all three cases. The dispersion
declines with Ps, reflecting a smaller variance of the unobserved components of Y as Pg
increases. The values of &y and of G,y are also tightly distributed around 1.0, although
they are estimated less precisely than the OLS coefficients. When Ps = 0.2, the 90th-10th
differential of Gy, is roughly double that of the 90th-10th differential for &g, but when
Ps = 0.8, the three estimators have similar dispersion. The results are not very sensitive to
the value of P,.

We turn next to designs in which OLS estimates of a are biased. In Table MC2a, we
set g = pup = 0.3, which leads to bias OLS estimates for the specification we consider. To

see this, note that even if b. = g. = 0, so that the elements of 3; and I'; are uncorrelated,
OLS will be biased if Ps < 1 because F(3,I';) = 0.09. In the top panel of the table, A =0,
so that E[Corr(W;;, W;;)] =0V j # j'. We consider the b, = g. = 0 case in the first three
columns of the table. In the first column, with Ps = 0.2, ¢ and ¢, are small. (The median
of ¢ = 0.043 and the median of ¢. = 0.041. For this design ¢ = ¢. and both are positive,
so the difference reflects sampling error.) The bias in OLS in this case is small regardless
of the value of Ps. The precision of the OLS estimator is also essentially invariant to the
value of Pg.!? In contrast, the performance of the d&oy and G, estimators improves as
Pg increases. aop exhibits some downward bias when Pg = 0.2, but duy,, is approximately

unbiased in all cases. @, and Aoy are noisier than OLS but not dramatically so when

Ps = 0.8.

191t is surprising that the bias in OLS is not monotone decreasing in Pg. Sampling error may be the
reason, but phenomen shows up in several places in the tables.
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In the next three columns of the table, we chose b. and g. so that E(I';3,) = 0.3. Not
surprisingly, the upward bias in OLS is higher than the corresponding cases in the first three
columns of the table, with the median of aprg rising to 1.256 when Pg = 0.2 and 1.101
when Pg = 0.8. Again, G, is essentially unbiased in all three cases, with the dispersion
declining with Pg. The last three columns increase b. and g. so that F (Fjﬁj) to 0.6 and
Corr(T;, B
which E(I';3;) = 0.3. Interestingly, the doy and Qi estimators are less noisy as E(I';3;)
increases. When E(I';3;) = 0.6 and Ps = 0.8 (column 6) shown in the last column, the

;) = .51. For each value of Pg, the bias in OLS increases relative to the cases in

oy and G, estimators have no more sampling error than the OLS estimator.

Table MC2b repeats the calculations found in Table MC2a but introduces a factor struc-
ture such that E[Corr(W,;, Wi;1)] = 0.2 if j # j'. We impose this correlation by setting A to
3.4. In order to keep E[Var(W;;)] constant relative to the A = 0 case, we reduce Amax from
6.2 to 2.0. The bias in OLS tends to be lower for this design, perhaps because the regressors
that are included do a better job of controlling for the omitted W; when the correlation
among the W is higher. Intuitively, as E[Corr(W;;, W;;:)] — 1, it does not matter which
regressors are actually observed and which are not. The increase in the correlation across
W; that comes from 6 is associated with an improvement in the performance of éyin relative
to dapr . In particular, Goy is substantially downward biased unless E(T';3,) = 0.6 or Ps
= 0.8. This may be due to fact that the & oy estimator is based on the assumption that the
restriction ¢ = ¢, based on the true I'; carries over to the coefficient vector I'"" of the projec-
tion of Y; — o;T on the observables W;. The positive correlation between the observed and
unobserved covariates that is present in these designs results in positive omitted variables
bias on the observed f‘j. The bias arises because the unobserved covariates are positively
correlated with Y. Since the observed covariates are also positively correlated with 7" in
these designs, the positive bias on the estimates of I'; may lead the projection of 7' on W;I'"
to overstate the amount of selection bias, inducing a negative bias in the AET estimates of
ap. This negative bias also affects the OLS estimator, partially counteracting the positive
bias caused by correlation of T" with the unobserved elements of W. This is why the positive
bias on the OLS estimates is smaller in Table MC2b than in Table MC2a.

Most importantly, dq,;, performs very well in the presence of a factor structure. It had a
median close to 1 in all cases and a 90th-10th differential that is similar to OLS in the cases

in which F (F]ﬂj) = 0.3 or 0.6. This superior performance of G, relative to aoy is due
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to the fact that explicitly accounting for the factor structure eliminates the positive bias on
the estimates of I';, which in turn eliminates the negative bias in the estimate of a.

In Table MC3a, we relax the assumption that the observables are a random set of all the
unobservables by setting Rg = 0.2. In the top panel, A = 0 and Kmax = 6.2, as in Table
MC2a. Not surprisingly, allowing a positive variance for £ has no effect on the median of
OLS. However, the lower bound estimators oy and Gy, are now both downward biased for
a because the assumption that ¢ = ¢. no longer holds. This is easiest to see in the three
cases in which Pg equals 0.8; in all three cases ¢, is approximately equal to 0.8¢; in other
words, selection on unobservables is now only 80 percent as large as selection on observables.
When E(I';3,) = 0.3, the median of doy varies from 0.907 to 0.975 depending on Ps, and
the corresponding median values of G, are 0.976, 0.956, and 0.979. However, the sampling
variance of the &vypr and ay,;, estimators is quite wide when Pg is small. ' When we increase
be and g. so that E(I';3,) = 0.6, the positive bias in OLS increases, as in table MC2a, while
there is no systematic change for the other estimators. The sampling variances of aoy
and A, are wider in this case than in the analogous cases in Table MC2a (in which the
assumption ¢ = ¢, holds.). We do not fully understand this pattern, but in spite of it, the
lower bound estimators usefully complement OLS.

Table MC3b again allows for correlation among the elements of IW; by setting A and Kmax
so that E[Corr(W;;, W;;)] = 0.2. Relative to the iid case, the performance of ¢y, improves
substantially, with median values that are close to 1.0 for all cases. The sampling distribution
narrows substantially, perhaps reflecting the fact that when the W; are correlated, it is easier
to “fill in” for the effects of missing covariates using our moment conditions, so that it matters
less which elements of W* are actually observed. Relative to the values in Table MC3a,
the negative bias of the oy estimator increases and the positive bias of the &g declines,
again reflecting positive correlation between the observed and unobserved elements of W*.

Finally, Tables MC4a and MC4b are analogous to tables MC3a and MC3b, except now we
set Rg = 0.4, thereby lowering ¢_ relative to ¢. The median of OLS is essentially unchanged
relative to the cases in which Rg is 0 or 0.2, which is not surprising. The performance of & oy
is poor in all three cases in which Pg = 0.2, with large sampling errors and negative bias. The
medians of ay,;, range between 0.786 and 0.982, but this estimator is noisy relative to OLS
except when Ps = 0.8 and E(I';3;) = 0.6. As we saw earlier in a comparison of Tables MC3a
and MC3Db, the performance of Qi improves substantially when E[Corr(W;;, Wi;/)] = 0.2.
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There appears to be negative bias in all cases, but this bias is typically small relative to the
positive bias in aprg. The negative bias in oy is substantial in most cases, reflecting the
fact that ¢ > ¢, as well as the positive correlation between the observed and unobserved
elements of WW.

The Monte Carlo results may be summarized as follows. First, the median of ay,;, and
aoy are similar when there is no factor structure, although a,,;, is less dispersed, particu-
larly when Pg = .2. Qu, performs much better than oy when there a factor structure,
although in some unreported experiments we have found that the estimators perform sim-
ilarly. Second, both ap;, and @y are biased down when ¢ > ¢_. This is to be expected,
because both estimators are based on the assumption that ¢ = ¢, and are to be interpreted
as lower bound estimators if ¢ > ¢. > 0 ( in the case ¢ > 0). Third, the downward bias in
Qmin When ¢ > ¢_ is reduced considerably when there is a factor structure, at least in the
cases we consider. Fourth, precision is worse than with OLS. The loss of precision depends
on the design and is negligible in the case in which T is randomly assigned (Table MC1).
However, a,,, is sufficiently precise to provide useful information about « in all of the cases

that we consider.

5 Conclusion

In many situations, exclusion restrictions, functional form restrictions, or parameter restric-
tions are not sufficiently well grounded in theory or sufficiently powerful to provide a reliable
source of identification. What can one do?

As we noted in the introduction, it is standard procedure to look for patterns in the
relationship between an explanatory variable or an instrumental variable and the observed
variables in the model when considering exogeneity. We provide a theoretical foundation for
thinking about the degree of selection on observed variables relative to unobserved variables,
and we propose two estimators that make explicit use of the pattern of selection in the
observables to bound the treatment effect. We contrast the standard IV or OLS assumption
that the researcher has chosen the control variables so that the instrument (or the treatment
itself) are not related to the unobservables with the assumption that the control variables
are randomly chosen from the full set variables that influence the outcome, and argue that
the truth is likely to lie somewhere in between.

Our estimators build on Theorem 1, which concerns the coefficients of the projection of
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an outcome on the regression indices of the observables and the unobservables. A number of
assumptions are required, but roughly speaking, the theorem says that when the number of
observed and unobserved variables that influence the outcome are large, the coefficient on the
index of unobservables will lie between 0 and the coefficient on the index of observables. Both
OU and the OU — Factor estimators identify bounds by imposing the inequality restriction
on the econometric model for the outcome. However, in the likely case that the observed
and unobserved variables are related, the coefficients on the control variables will to suffer
from omitted variables bias, invalidating the restriction and the case for bounds. The OU
estimator combines Theorem 1 with a high level assumption about the link among the
observed and unobserved variables. The OU — Factor estimator adds the assumption that
the observed and unobserved explanatory variables have a factor structure, which provides
additional moment restrictions that permit one to account for the effects of omitted variables.
We show that the estimator identifies a set that asymptotially contains the true value of the
treatment parameter. We derive the asymptotic distribution of the OU — Factor estimator
and present a parametric bootstrap approach to statistical inference. Our Monte Carlo
simulations are generally encouraging, particularly for OU — Factor.

There is a very long research agenda. More Monte Carlo evidence is needed in the context
of real world applications and data sets. Thus far we have not applied the OU — Factor
estimator, and we have not performed Monte Carlo studies for designs with multiple factors.
The OU estimator has the advantage of simplicity and has already been used in a number
of applications. However, a way to account for randomness in which explanatory variables
are included in W when constructing confidence intervals is needed. Ultimately, we believe
that incorporating a formal model of the relationships among the observed and unobserved
variables in W¢ is the more promising long-run research path. The linear factor model that
we employ in developing the OU — Factor estimator is a natural way to do this, but it is
also restrictive. Other models of the joint distribution of the covariates should be explored.
We only touch upon the case of heterogeneous treatment effects and so far we have only
considered models in which the index that determines the outcome is an additively separable
function.

More generally, we think of OU and OU — Factor as a start for an investigation into a
broader class of estimators based on the idea that if one has some prior information about

how the observed variables were arrived at, then the joint distribution of the outcome, the
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treatment variable, the instrument, and the observed explanatory variables are informative
about the distribution of the unobservables.

In closing, we caution against the potential for misuse of the idea of using observables
to draw inferences about selection bias, whether through an informal comparison of means
or through the estimators we propose. The conditions required for Theorem 1 imply that it
is dangerous to infer too much about selection on the unobservables from selection on the
observables if the observables are small in number and explanatory power, or if they are

unlikely to be representative of the full range of factors that determine an outcome.
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Table MC1

Design: Z Randomly Assigned (all g terms=0)

Factor structure such that E((Cov(W;,W;))=0

Median of ¢ 0.004 -0.003 -0.002
Median of ¢, 0.001 -0.001 0.001
Median of estimated ¢ at a,, 0.002 -0.002 -0.002
Gmax

10th percentile 0.943 0.986 0.988

Median 1.005 1.002 1.000

90th percentile 1.049 1.017 1.014
Qouy

10th percentile 0.911 0.981 0.985

Median 1.000 1.006 1.000

90th percentile 1.092 1.021 1.013
Omin

10th percentile 0.909 0.981 0.984

Median 1.001 0.994 1.000

90th percentile 1.117 1.010 1.014

Notes: In all specifications, the true value of a=1, E(I")=0, all § terms=0, N=2000, and K*=100.



Median of ¢
Median of @,

Median of estimated ¢ at a,,,

Gmax

10th percentile
Median

90th percentile

Qouy
10th percentile

Median

90th percentile

CQmin

10th percentile
Median

90th percentile

Table MC2a

A: Factor structure such that E((Corr(W;,W;))=0

Notes: In all specifications, the true value of a=1, E(I")=E(B)=0.3, N=2000, K*=100, R2w=0.5, and R2§=0.

E(B*T)=0.09 E(BT)=0.3 E(BT)=0.6
Pg=0.2  Pg=0.4 Pg=0.8 Pg=0.2 Pg=0.4 Pg=0.8 Pg=0.2 Pg=0.4 Pg=0.8
0.043 0.058  -0.016  0.432 0.453 0.453 0.848 0.820 0.823
0.041 0.081 -0.019  0.456 0.446 0.452 0.815 0.831 0.817
0.067 0.049  -0.014 0415 0.465 0.451 0.786 0.816 0.815
0.959 0.959 0.950 1.167 1.102 1.038 1.376 1.264 1.119
1.040 1.036 1.012 1.256 1.180 1.101 1.477 1.351 1.181

1.128 1.114 1.077 1.345 1.256 1.170 1.550 1.421 1.249
0.089 0.694 0.905 0.307 0.749 0.920 0.621 0.797 0.947
0.822 0.986 1.001 0.940 1.007 1.004 0.987 0.997 1.004
1.232 1.248 1.094 1.422 1.269 1.086 1.382 1.156 1.057
0.624 0.783 0.888 0.624 0.810 0.907 0.739 0.837 0.941

1.017 1.032 0.999 0.993 0.998 1.006 1.001 1.002 1.004
1.384 1.276 1.101 1.371 1.202 1.096 1.195 1.107 1.061



Median of ¢
Median of @,

Median of estimated ¢ at a,,,

qmax

10th percentile
Median

90th percentile

Oou
10th percentile

Median

90th percentile

Cmin

10th percentile
Median

90th percentile

Table MC2b

B: Factor structure such that E((Corr(W;,W;))=0.2

E(B*T)=0.09 E(B'T)=0.3 E(BT)=0.6
Pg=0.2  Pg=0.4 Pg=0.8 Pg=0.2 Pg=0.4 Pg=0.8 Pg=0.2 Pg=0.4 Pg=0.8
0.606 0.587 0.594 0.735 0.772 0.782 0.924 0.929 0.928
0.629 0.575 0.605 0.767 0.727 0.752 0.920 0.932 0.914
0.649 0.620 0.639 0.750 0.785 0.803 0.923 0.943 0.941
0.956 0.965 0.922 1.084 1.029 0.955 1.224 1.192 1.060
1.038 1.039 1.011 1.137 1.116 1.042 1.294 1.293 1.137
1.102 1.119 1.109 1.228 1.202 1.158 1.448 1.425 1.262
0.554 0.539 0.732 0.639 0.616 0.777 0.864 0.872 0.880
0.761 0.771 0.915 0.795 0.866 0.938 0.966 0.979 0.991
0.886 0.948 1.057 0.914 1.057 1.121 1.067 1.066 1.078
0.851 0.877 0.930 0.864 0.889 0.933 0.911 0.923 0.959
0.998 1.003 1.004 0.989 0.993 1.002 0.983 0.999 1.005
1.156 1.144 1.077 1.105 1.088 1.049 1.068 1.058 1.041

Notes: In all specifications, the true value of a=1, E(I")=E(B)=0.3, N=2000, K*=100, R?,=0.5, and R?=0.



Table MC3a

A: Factor structure such that E((Corr(W;,W;))=0

E(B*)=0.09 E(B*N)=0.3 E(B*N)=0.6
Pg=0.2  Pg=0.4 Pg=0.8 Pg=0.2 Pg=04 Pg=0.8 Pg=0.2 Pg=04 Pg=0.8

Median of ¢ 0.041 0.074 0.064 0.438 0.444 0.454 0.850 0.816 0.832
Median of @, 0.084 0.059 0.081 0.353 0.347 0.337 0.632 0.640 0.631
Median of estimated ¢ at a,,, 0.026 0.078 0.054 0.412 0.495 0.474 0.670 0.718 0.791
Gmax

10th percentile 0.958 0.948 0.949 1.165 1.138 1.039 1.378 1.334 1.120

Median 1.045 1.041 1.019 1.257 1.224 1.101 1.476 1.407 1.181

90th percentile 1.137 1.127 1.089 1.345 1.314 1.171 1.551 1.479 1.248
Qou

10th percentile 0.030 0.626 0.890 0.213 0.258 0.884 0.033 0.439 0.889

Median 0.844 0.971 0.996 0.868 0.784 0.975 0.783 0.806 0.953

90th percentile 1.347 1.270 1.101 1.388 1.276 1.067 1.346 1.121 1.013
CAmin

10th percentile 0.591 0.626 0.881 0.227 0.576 0.865 0.275 0.493 0.882

Median 0.987 0.987 0.997 0.879 0.878 0.979 0.738 0.812 0.952

90th percentile 1.430 1.419 1.112 1.516 1.215 1.077 1.063 0.950 1.017

Notes: In all specifications, the true value of a=1, E(I")=E(B)=0.3, N=2000, K*=100, R?,=0.5, and R?=0.2.



Table MC3b

B: Factor structure such that E((Corr(W;,W;))=0.2

E(B*)=0.09 E(B*M)=0.3 E(B*N)=0.6
Pg=0.2  Pg=0.4 Pg=0.8 Pg=0.2 Pg=0.4 Pg=0.8 Pg=0.2 Pg=0.4 Pg=0.8
Median of ¢ 0.767 0.675 0.615 0.909 0.899 0.806 1.097 1.077 0.956
Median of @, 0.464 0.430 0.446 0.564 0.533 0.580 0.689 0.670 0.697
Median of estimated ¢ at a,,, 0.625 0.654 0.639 0.678 0.712 0.802 0.755 0.823 0.915
qmax
10th percentile 1.017 0.938 0.965 1.112 1.091 1.026 1.208 1.202 1.087
Median 1.072 1.036 1.021 1.188 1.157 1.068 1.300 1.284 1.130
90th percentile 1.142 1.136 1.089 1.280 1.231 1.134 1.397 1.379 1.217
Gou
10th percentile 0.145 0.452 0.753 0.333 0.505 0.725 0.379 0.556 0.852
Median 0.577 0.697 0.910 0.649 0.752 0.922 0.713 0.812 0.948
90th percentile 0.737 0.832 0.958 0.834 0.877 0.970 0.863 0.901 0.982
Cmin
10th percentile 0.437 0.738 0.898 0.447 0.690 0.904 0.380 0.641 0.907
Median 0.813 0.929 0.975 0.788 0.871 0.969 0.732 0.840 0.963
90th percentile 1.204 1.198 1.036 1.026 2.202 1.014 0.903 0.922 0.994

Notes: In all specifications, the true value of a=1, E(")=E(B)=0.3, N=2000, K*=100, R?,=0.5, and R%=0.2.



Table MC4a

A: Factor structure such that E((Corr(W;,W;))=0

E(B*)=0.09 E(B*M)=0.3 E(B*N)=0.6
Pg=0.2  Pg=0.4 Pg=0.8 Pg=0.2 Pg=04 Pg=0.8 Pg=0.2 Pg=04 Pg=0.8
Median of ¢ 0.060 0.044 0.041 0.440 0.442 0.455 0.841 0.812 0.827
Median of @, 0.047 0.050 0.025 0.259 0.252 0.249 0.461 0.465 0.467
Median of estimated ¢ at a,,, 0.031 0.082 0.057 0.402 0.487 0.504 0.512 0.585 0.744
Gmax
10th percentile 0.949 0.954 0.947 1.188 1.149 1.028 1.364 1.313 1.125
Median 1.044 1.045 1.014 1.270 1.228 1.093 1.466 1.392 1.165
90th percentile 1.147 1.136 1.078 1.355 1.328 1.166 1.565 1.507 1.250
Qou
10th percentile 0.002 0.304 0.793 -0.449 -0.280 0.750 -0.656 -0.185 0.712
Median 0.863 0.876 0.989 0.705 0.551 0.887 0.446 0.437 0.825
90th percentile 1.314 1.260 1.141 1.418 1.232 1.028 1.486 0.977 0.911
CAmin
10th percentile 0.492 0.608 0.798 -0.505 -0.010 0.762 -0.628 -0.225 0.703
Median 0.979 0.982 0.984 0.657 0.655 0.890 0.288 0.418 0.832
90th percentile 1.378 1.213 1.139 1.702 1.582 1.021 1.080 0.699 0.920

Notes: In all specifications, the true value of a=1, E(I")=E(B)=0.3, N=2000, K*=100, R?,=0.5, and R?=0.4.



Median of ¢
Median of @,

Median of estimated ¢ at a,,,

qmax

10th percentile
Median

90th percentile

Oou
10th percentile

Median

90th percentile

Cmin

10th percentile
Median

90th percentile

Notes: In all specifications, the true value of a=1, E(")=E(B)=0.3, N=2000, K*=100, R?,=0.5, and R%=0.4.

Table MC4b

B: Factor structure such that E((Corr(W;,W;))=0.2

E(B*T)=0.09 E(BT)=0.3 E(BT)=0.6
Pg=0.2  Pg=0.4 Pg=0.8 Pg=0.2 Pg=0.4 Pg=0.8 Pg=0.2 Pg=0.4 Pg=0.8
0.878 0.770 0.649 1.076 0.988 0.831 1.311 1.204 0.993
0.323 0.295 0.315 0.385 0.395 0.412 0.489 0.466 0.493
0.500 0.339 0.643 0.537 0.622 0.785 0.565 0.673 0.865
1.020 0.983 0.965 1.130 1.117 1.023 1.219 1.204 1.084
1.077 1.043 1.016 1.198 1.164 1.084 1.284 1.281 1.140
1.168 1.124 1.075 1.270 1.243 1.134 1.390 1.372 1.186
0.455 0.031 0782  -0.317  0.016 0.789  -0.353  0.034 0.786
0.248 0.482 0.870 0.294 0.513 0.876 0.267 0.537 0.891
0.533 0.697 0.918 0.595 0.720 0.927 0.610 0.736 0.943
-0.156  0.248 0.838  -0299  0.175 0.817  -0.555  0.041 0.796
0.516 0.672 0.933 0.377 0.590 0.914 0.297 0.553 0.901
1.643 2.447 1.001 0.932 0.789 0.966 0.662 0.739 0.954



Appendix

Proof of Theorem 1:

To simplify the notation, define
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Assumptions 1 and 2 guarantee that
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Notice that the probability limit of the denominator of equation (1) is

plim M M35 — M5 MS™ 5 PsE (M; L ) [(1—Ps) A+ (1 - Ps)? B+ o]
(1—Ps)E (uf rj> (1— Ps) PsB

—E (uf*Fj) [Py (1= Ps) A+ o]

Given that A > 0, and since it cannot be the case that P, = 1 and o¢ = 0, this expression can only equal
Z€ero ifE(qu* ;) =0.
plim ¢ = 0, then ¢, = 0)

T ) = 0. In that case, ¢, also converges to zero, proving the second part of the theorem (if
Now assume that ¢ does not converge to zero

Consider the numerator of equation (1)
M M — ME M 51— Po)B (4 T,) (PsA + PEB)-
PsE (ﬁ"n) (1 - Ps)PsB)

- B (uf*rj) Py(1—Ps)A
Thus,

¢ A-Ps)A+a?

Verification That MA Model Satisfies Assumptions 2 and 3
To see that Assumption 2 is satisfied first note that
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Since this is just the square of the expected value, Assumption 2 is satisfied.
Next consider Assumption 3.
Notice that
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Verifying Assumption 3 becomes virtually identical to verifying Assumption 2.
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which is again just the square of the mean so this gives the result.

Proof of Theorem 2

The theorem imposes the assumption
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Following the proof of theorem 1, this assumption implies that Mﬁ L PsA+ PZB, M{g EN (1-Ps)A+
(1—Ps)*B+ oz, and M 2 (1 — Ps) PsB, as in the i.i.d. case.
Following that proof, it is straightforward to show that
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The result comes from the fact that we know that A+ B > 0 and that E (uX'T'; | S; =1) > 0.



Proof of Theorem 3

Following a similar procedure to theorem 1
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So one can write Assumption 9 as
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Proof of Theorem 4

Since we have not made distributional assumptions, we need only consider what is identified from the second
moments and Condition 1. Clearly 7, A 8 are identified from (3.1) and (3.2). Since the model is just identified
in the case that cov(v,e) = 0, we need only think about what the additional information in Condition 1
generates. The 2SLS estimator converges to

. cov (v, €)

a =a+——=.

25L8 Avar(v)

Is knowledge of Condition 1 sufficient to identify a? When ¢ is uncorrelated with W, Condition 1 is equivalent

to assuming that
cov(W’'B,W'T")  cov(v,e)

var(W'T)  war(e) *

Suppose the model is not identified. Then there would be alternative values o*,T'*, and * with a* # «
such that

cov (v, e*)

a=a Avar(v)

Under these conditions, note that

Y —o*T

(a—a*")T+W'T +¢
= (a—a)[Wrn+u+AX(WB+v)]+WT+e,



and thus
7=yt (@—a)(B+AT)
e* = e+ (a—a”)(u+ ).
But if this model satisfies the assumptions, we know that

cov(W'B,W'T*)  cov(v,e")

var(W'T*)  war(e*) ’

which is equivalent to
cov (W'B,W'T) + (o — o) cov (W' B, (W'm + A\W'p))
var (W'T) + 2 (o — a*) cov(W'T, (W'm + AW'B)) + (a — a*) var(W'r + AW'3)
B cov (v,e) 4+ (o — a*) cov (v, (u + Av))
*var(e) + 2 (a — a*) cov(e, (u+ Av)) + (a — a*)? var(u + Av)

Imposing the restriction from the true model,

cov(W'B,W'T")  cov(v,e)

var(W'T)  war(e) ’

¢

yields

« cov(W'B, (W n+AW'B
(b + (a —a ) ( 'Ua(T(W’F) ))
%\ coo(W'D,(W'n4+ AW’ \2 var(W! an+AW’
1+2 (Oé —a ) o vai(W’;) 2 + (Oé -—a ) - 7var(1/;/i_’l“) 2
(b + (a _ Oé*) cov(v,(u+Av

var(e)

- 1+2(a—a*)w +(Oéfoz*)2 var(u+Av)

var(e) var(e)

Solving out yields

0=(a—a*)? {cov (v, (u+ M) var(W'a + A\W’'B)  cov (W'B, (W' + AW'B)) var(u + /\v)}

var(e) var(W'T) var(W'T) var(e)
var(W'n + A\W'3) 5OV (v, (u+ Av)) coo(W'T, (W'n + AW’ 3))

var(W'T) var(e) var(W'T)
var(u+Av) 5 COV (W'B, (W' + AW'B)) cov(e, (u + )\v))}

var(e) var(W'T) var(e)

o | cov (v, (u+ Av)) cov(W'T, (W'nm + AW’ 3))
tla—a?) { var(e) +2¢ var(W'T)
~cov(W'B, W'm + AW'B)) 2¢cov(£, (u+ /\v))}
var(W'T) var(e) '

+(a—a")? [¢

—¢

Thus Condition 1 restricts the solutions a* to be the solutions of a cubic equation, one of which is a.

Proof of Theorem 5

If we use T as the instrument we obtain exactly the cubit from Theorem 4 with § = 0,u = 0, and A = 1.
Thus

var(e) var(W'T) var(W'T) var(e)
_ {Uar (v) var(W'B)  war (W'B) var(v)
var(e) var(W'T)  var(W'T) var(e)
= 0.

[cov (v, (u+ Av)) var(W'n + \W'B)  cov (W'B, W'n + AW'S)) var(u + Av)




Using the definition of ¢ from the proof of Theorem 2,
Pvar(W’w + AW'3) 5 COV (v, (u+ Av)) cov(W'T, (W'm + AW'B))

var(W'T) var(e) var(W'T)
_war(u+ ) 5 COV (W'B, (W'm 4+ AW'S)) cov(e, (u+ Av))
var(e) var(W'T) var(e)
_ [(bvar(W’ﬁ) L guar (v) cov(W'T, W'p)

var(W'T) var(e)  var(W'T)
7¢var(v) B 2var( W'B) cov(e, ))}

var(e) var(W'T) wvar(e
_wvar(W'B) var (v) var(v) var (W'3)
N d)var(W’F) 2 var(e) - d)var(s) —2 var(W'T) ¢

_ {var (v)  war (W'B)
- T lwar(e)  war(W'T)

cov (v, (u + A\v))
{ var(e) +2¢
_cov(W'B, (W'm + AW'B))

cov(W'T, (W'm + AW’ 3))
var(W'T)

cov(g, (u+ Av))
var(W'T) -2 var(e) }
ar (v) coo(W'T,W'B)  war (W’p) cov(e,v)
[var(s) +2¢ var(W'T)  var(W'T) —2 var(e) ]
(

- [ O

Thus, the model is a solution to the quadratic

w2, var(v)  wvar (W’'S) o |var (v)  wvar (W'Q)
(a=a’)"¢ [var(a) B UGT(W'P):| +la—a’) L}(zr(a) B UGT(W'P):| ’
which has two solutions:
a* = «
1
o = a+ g
B var(e)
= ot cov(u, €)

Verification that The Factor Model Satisfies Assumptions 2 and 3
Notice that

Ufg E (W”WM | QK)
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thus the first part of Assumption 2 is satisfied.
Now consider the second part,

* * 2
E ZZE o, T,Ty)
K j=1/¢=1

* * 2

= E K*Z;;A'Agr Fz-l-K*ZUZFZ
1 & 1 & 2

= E FZA’jlrj (FZAJ-2PK>

j=1 =1

. .
1
o (B sanr ) (3]
j=14¢=1 r=1
2

+FE o Z 02F2

(E(A}Fj)E(PgAg))2+2E(A’- J) E(02 T%) + E(02 I2)?

Jl J .71 J
= (E(AJT)E(AT;) 4 E( Jlff)) :

1=

To see where the three pieces come from, if you multiplied everything out all the terms involving fourth
moments, third moments and second moments would disappear since we are dividing by K*.
Thus

2

Var

ZZE JZFF@
j=14=1
KZZZZ

j=14¢=1r=1s=

K*

E(c%, ok ;T T, Ty)
1

* * 2
(EEX e ()
j=1/¢=1
2, (E(A;-Fj)E(AjF,)+E(JJII‘?)) ((A;Fj)E(Ajr,)+E(aJ1F§))

We next proceed to verify Assumption 3 in a way almost identical to that for Assumption 2.

K*ZZE oK T8 = K*QZZEAAJJB@ ZE o2T;53;)

j=1¢=1 Jj=14=1

thus the first part of Assumption 3 is satisfied.
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Now consider the second part,

* * 2
E KZZE e Jﬁz)

j=1/¢=1

K* K*
1

2
vy jﬁg+K*202F3B
j=1/¢=1

1 & 1 & i
= B |2 000 (FZAM@)
j=1 =1
I s
ZZA/ A;,T58, (K*Zazr,ﬂ,)
j=11¢=1 r=1

K~ 2
1 2
+E (K* Za—jrjﬁj)

=1

2 (BE(NT)E (BZAZ))Z +2E (AT;) E(05 T;8;) + E(05 T';5;)
= (B(NT)EAB) + E(02T;6,))".

Thus

* * 2
(K* ZZE MFJBZ )

j=1/¢=1

K*

D)0 B ILLLRLLEE
1

j=14=1r=1s=

( S5 E o 6)
j=1/¢=1
(B(AT)E(A;B

0.

/ )+ E(03T8,))" = (BT E(A8,) + B(63T;8,))°

1=

Lemma 1

In this lemma, we will define and prove 23 intermediate results which will be useful for the proof of Theorem
6. Define

I(a) =T+ (ag — a)d
(o) =T* + (o — )5

11



PN PyoA

SV (Vo) L \/%Ef(a)

1
P
N—oo \/K*E/B
A
!

*/f* ))
Lj)
ﬁ
B;)
(a)

A

‘)

(
(

E (A1) B (A;8)) + E (T;(0)038, )

(
L(-at)z * (A*T* L ) (T )+ i tarss

+a§0 +2(a — ap)oewo + (v — a0)2 a2

A E(Ajr) +E(F§1 J1)+a£0

1A”\71A p Pyo —1
N o A4
ﬁ) PSOE(A?/O—?)
1~~
K
1 1 17 P PSO T
~ K(Y—aT) vETIR o A ﬁv\/ﬁz H(a)A,

K
1 1 ~ P, ~
— v (Y—aT) EA 0 T;(a)A,0
N K N—o0 \/K\/K*; J( ) 7
L PyE <Uffj(a)AJ>
11 ~ a7 p
N KFVE A N 0

12

A*/f* a)) (A*’f*(a)) N f*(a)*’Ef*(a)*
K* K* K~



mF vs-ly (f/ - af)

1 ~~ ~ g~
E_l / E_l
KN)\ Vv A

NLT Sy sy (f/ af)
% (V- af)’vi—lvf (¥ — of)

= (V- oT) vSv'Z

% (ff — af)' 7o R VAT YA VL (ff — af)

1 IS=1y71 (v T
mNAE 1% (Y aT)
L ys-yiz

VN

Proof of Lemma 1

Result L1.1

Clearly this v/PgoA is identified and with K fixed is a standard GMM problem so it is consistent.

Result L1.2

This follows directly from the Law of Large Numbers and Result L1.1.
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Result L1.3

N - -
<V (Y—aT) - N§V(F< o |t tat (amanw
p 1 T
YIM(«
N:)oo v K* ( )
Result L1.4
1 1 i - A*Iﬁ* V*Iﬁ*
—V'z = =MV <Fz< " >+z—+u1)
N Ni:l K VK
1
p
Result L1.5
1~ /=~ ~ 1~ |~ [ AYT*(a) ()
—F' (Y —aoT = —F'|F f——— —
N ( a) ¥ ( o >+V \/FJrer(Oé ap) w

=
N—o0 K*
L BTy

i with each piece falling from the law of large numbers

Result L1.6
L = 1~ [= (A5 . B
~FZ = SF {F(K V=t
A*I/B*> 1§V:~2 1 K* [1 N 1 ~
= . ~r E + Z _ZF’L‘/:LJBJ +_ZEU'L
( K Nz:l K> j=1 Nz—l Ni:l
- (52)
N—oo K*
= E(Ajﬁj)

with each piece falling from the law of large numbers
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Result L.1.7

! - A*lﬁ* . 6*
[F( Tor >+V \/F+u}

1
N

K N
_ A*/f*(a) A*/B Ty % B* IRl

)V*’{ (A*/ )BJFV*\Z*(_*JW}

*

f(5) v

K
- [P (55 v

() (55 s o

2|~

(v-af)Z = ﬁ<ﬂ>+v P et (a—ag)w

ZIH

_|_

3

_|_

2= ==

N—o0

1=

B (AT5(@) E(A8,) + E (Ty(0)028;) + (a = o) 0w

Result L1.8

ZIH

!
A*T* ' («
N ( )—I—V* +§+(a—a0) 1 X

F(A*/I‘* >+ ()+£+(a_a0) ‘|

K Ni<
_ (@) ( *IK** ) +oF V*lz/*;{_) 4 2R
+]ivf;@/v*’ v 1:/%) F2| + TEE+ (@ a0) w8+ (o - 00)* W
ey (A*T* > (A*T* a)> 1*I‘*(a)’2*f*(a) + 02+ 2(a — 60)oewn + (@ — a)? 02
L B (AT5(@) B (A8)) + B (T5(@)028,) + 0% +2(a — a0)aeu + (o — ag)* 02

Result L1.9
K ~2
1 ~~ ;~ 1 A
AT = =) L
S K25

by the law of large numbers.
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Result L1.10

1 1 &
_~/~:_ 2 P
NF N;Fl —1
by the law of large numbers
Result L1.11
K N
11 (~ PO 1 A1 -~
=V —al)vEX = =Y I3 (Vi-ali)u,
N VK K=o N3
N K ~
11 ~ [ A¥YT* ()
ey (7 (M)
i=1 j=1
K
Py
SR L Y
N —o0 \/E K =
= PsoE(FJ’AJ)

Result L1.12
This is similar to the previous one.

(17

L
N

— af)/V:\\ !

5l

Result L1.13

2

jAjO'j
K ~
- Ly
= —5
K= 7}

o0
N —o0

16

+§vi Lele) +£i+(aa0)wi> kL
= VK




Result L1.14

U ssiio (v !
mF'vz—lv’(chvT) = —22—3

1

2

P
Iy

]

j=1 i1=11=1
2 0
N—oo
Result L1.15
1 v 1 al1s _ 1
KN/\E V'V = K -
2 P,
N—oo K
L p,
Result L1.16
1 1 ~s a o T
N N 3t} V4 76 St vl (Y— T) =
N VR ¢
N
N—oo
N
Result L1.17
iY VEWA(Y —aT =
N2 “ B
RN
N —oo
LN

11 Ullj
1

N
> > Tl
~2
[

i1=11i2=1

e

N _ A*IF* K*
3 s (B (25 S
10=1 (=

N

J
N N =
’Ll:l =1

~2

=2 &, JF(OZO‘O)“%]]

AT
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Result L1.18

1 o~ ~ ~ b 1 1
—AxWwvz 5 /P A’E‘1< ¥ )
NVE N YRV VP
P
SV,
N
= PoE(A;8)
Result L1.19
1 Il _ 1 o | A*/B* * B*
~FZ = SF [F( =) +V eru
A*/ K 1 N ~ 1 N ~
3:1 i=1 i=1
ﬁ) A*I/B
N—oo K*
5 E(AB))
Result L1.20
= (?—af)'vi—lv'z 2 Ly sn-ing
N2 N—ooo K*
1 ~
= = T(a)ss
», PsoE( (a) 25)
Result L1.21
i(?—a'T“)’Vi*lv’Vi*lv’ (f/—o/f) — i(f/—af)lv s—1( Ly s (L (?—a'f)
N3 N N N
p. 1= 1 1
2 =he'seee ST (@)
= =T ()5 (o)

Result L.1.22
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Result L.1.23

1 ~ ~ 1
Nz B Nyt ( )y >
NVE® Nooo VE* ViR

sOE (A_]ﬁ_])
Lemma 2

Here we define and prove 6 additional results which will be useful in proving Theorem 6.
Let the notation U, denote uniform convergence in probability.

> (W) Z) )

(M) (qhmota) () + () (o) + (o) (42
(*5=) {(\FJ—A' )" (S + (- ve) (ﬁl\};‘;—*A'ﬁ)]
P, + L2 Ars-1A
(=) (=) () + |
P+ Lo psi-1p
E(AT; () P B(A /03 B(A;8,) + 2B(A, T () Pu B (A;8;) + PuE (03T (@)8)

E(A;T5(0)E(A;8;) P2 [E(A2/02) + 1)
P, + PoE(A2/0?)

Up

T (0) STk (0) 2)
v, [AYT*(a) A*T* A*T*(a)\ [ A'T(a) ['(a)'S0(a)
AR (o) (75 >2< ) (45 - ()
2
*/F* / \/P_ /
B 1+§;§LA/E A ( K T 1A+¢—¢—A U)

1
e
1+ ?}%A’E A

SR
() () () ()

() (i)

2

2
ttoni s () ona - e () [0 0
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. (AT (@) [ASTIAN [(AYT*(a) AT*(a) \ [ NT*() I'(a)SI ()

5 (A ) (M5 (M) o (A ) (M) T

., 1 AT (a) <\/P_30A’E—1A>+ VAT ]
P+ Lo Ny 1A K* VEVEK* VEVK*

2 ~ 2
1 PsO _ PSO S P*(Oz)/A* PsO =~
+ —N'YS 1A> A'STIA + AT(«
( ) ( VEKVEK* K* VEVK* (@)

- o]
A2 2
A2 PoF (54) + Puo
+ | PoET()A)) + PoE | =2 | BT (e)A;) |1 - L
g P, + PoE ( ;)

S (WEE) (Vi-af)) % (A*f?*(a)) (22 ( A*/Iii(a)) . (A*IIF(**(Q)> (fj f3'A> Bl
(W

() (F) + Ty
- P+ £ASTA

%E(Ajfj(a))zPsoE(Af/a?) + QE(Ajfj(a))PsoE (Aﬂi(a)) + PsoF (a?fj(ay)

, [PoE(A2/02) + Py)’

1 e U Py _ AT (a) Po = P,
— AT = |2y 1A) + Tla)yA| | ——=——
i ”N?oo[(ﬁm—* < )t URvE O | B rerEs
(5)
- PoE(A2/o?) + P,
EPE(AT (@) | = A7) + o

P, + E(A2/0?) Py
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Proof of Lemma 2

Result L2.1

N
1 N N P
N; (WiP(H) Zz> =L W'z
1 N\~ 1 ~~ A_lNI~
—W(Y—QT)W{ SK)\)\+E] W'Z
1/~ o~ |« 1 1 e —
=— (Y —aT) W |Z! - _ SIS Wz
N2 ( ) 14 Klpq)\/zfl)\ KP,
~ ~\/ 1 =~ 1 1 NS
=— (Y —aT FA’+V) y1l— —— DIREPYN Mk
: ) (\/K* 1+ g A SR K
1 ~
><< AF' +V') Z
V)
(A A (s (L7525 aP B (Ll ysry
(N(Y oT) F><K*AE A)(NFZ)+<N(Y aT)F)(mNAE V'Z
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U, A*'f*(a) A*/ﬁ A*/P* 1,
Njoo< K* )(K*AE 1A)< +< )(K*Aﬁ>

B 1 i A*IP* ( P‘SO A,E_1A>2 <A*Iﬁ*>
I+ BENT AT, A 7
)28

1 i A*IP* \/PSO E 1A> ( PSO Alﬁ)
+ FLNTTA P VEVE* VEVEK*
1 = A*/ﬁ
# (AT (5 ) o)
e (i ) (i) ()
1+ £ NSIA P \VK VK™ VEVE* K

e (v ) (i)
14+ £ NSIA P \WVKVE™ VEVE*

_ (%) ( KL e A) (A*/B N (A;{ > A/ﬁ) ( KL A'f(a>) (AKB) +f(c;§;zﬁ

() [ o) (458) = () ()

K ){(\Fﬁ 7o) + (AN
P+ LaAs-1A
( VP AT ( )) [( MPSO A/ —1A> (L;{'éﬁ) + \/%\I;SI(;_*AIB}

N

P+ sOA/E 1A

A

E(A;T; () PoE(A} /o) E(A;8;) + E(AT; (@) P (A;5;)
+PyoFE (Ajfj (OZ)) E(AJ/B ) + Py ( ( )ﬁ])
E(A;T; (0)) [(PoB(A2/0%)” E(A;8)) + PoB(A2/0) P (A;8;)
P, + PoE(A2/?)
(PoBOST; (@) [(PoB(A2/02) B(A;8,) + P B(A;5))]
P, + PSOE(Ag/JE)
= B(AT; (@) PoE (A /09 E(A;5;) + 2E(AT; () PooFE (4;6;)

E(MT () E(A;8;) P2 [E(A2/02) +1)°
Py + PoE(A2/o?)

Y PoE (aifj (@) @) -

The pointwise convergence follows from the algebra and lemma 1. Uniformity comes from the fact that Ps
is bounded from below by P! (and above by some finite number) in which case the relevant functions are
clearly stochastically equicontinuitous. Throughout the rest of the proof we see the same basic structure
throughout, so we do not repeat this statement each time.
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Result L2.2

L (9) ST (6)

! (ffﬁ)’( 1 ﬁA’+V> L s-150s-18
VE* P

! (J%m +v)' (7 - o)

(% (- af)’ﬁ) NEIA ;) (%ﬁ (v - af))

Lo V) (st Y (vslo (5 oF
+2( (Y oT) F (AE )\ﬁm)<ﬁ)\2 ~V (Y aT>

23

(% \/%A’f:‘lv’ (¥ - af)) + (% (¥ —of) Ve Ly (7 - aT))
1

. af)'ﬁ) <ﬁ—1ﬂ{_mx) (%ﬁ (7 - a’f))



U, . AT( (@) [ AT() I'(a)ST(a)
A () feo) (52 = (50 (52) - ()

K* K
P(Oé P() —1 \/]D_ / i
- 1+—ﬂLAE A ( K~ \/_\/_ A+\/_\/_A ()>
1 A~ P() VP 1 Py 1 A*If*(a)
1+ B Ars-1A P2<< K> )(WFAE A) ( M A)( K )

+2 (A IF(*( )> (Vf;__zxz 1A> (%A’E‘M) (\%?%A'f(a))
>>2

( VP PsoA%ElA»

VEVE
% g (Ajfj (a)) PyoE (—2> +2F (Ajfj (a)) E (Ajfj (a)) Py + PoE [aifj (a)ﬂ

A'T(a

2
A2\ | PoE (54) + Peo

+PyoE | =% J
95 ) | P+ PyE (—)
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Result L.2.3

N <

=1

P
-7 WT
S (0) WWE (0
(o) W xa e8| i eS| W (V- af
=5 (V¥ —aT) KT PE T (¥ -eT)

1 /o N[ 1 ~= 7'/ 1  ~ o, 1~ 1 v 7'~
L oat) W[ A8 Larin [ L3548 @ (7 - af)
N P.K | & P.K

2 L (7o) W [-o3 4 8] ARy [-LX3 18] W (P of
+ N3< *a> PE T i PE T < *a>

L (5 of) W [-oie s v [Sada s (7T
+N3( _a) PR T PR T ( _a)
Lets consider each of the three pieces above.
First
L (5 of) W 518 v [SLwae s W (P af
N3( _a) Pk T PE T ( _a)
1 /e o | 1 1 e e
= — (Y —aT) W |Z!=- — ST VYV
W ( ) [ 1+ 2 NS KL
$-1 L L syt | 5 (v o
x |51 = SN 5L S VS W(Y—aT)
1+ 2 XS
—~ ~\ | —~ ~ —~ ~ ~
_ —1 —1
= 5 (V—al) WEVVETW (Y - aT)
1 L (v =\ ey LSy S 1T (o o
DY [ — —3(Y—aT> WSV S0 S W(Y—aT>
s-1x /) N K

= (- af)’ W%i-lxx’i—1v’v%i-l§§’i—lﬁ' (¥ - of)
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Now deal with each of these three pieces

N—oo

1=

/

(aT

Jws
( 7) (73
)

Sy Sl (37 - af)

/\

+V) Syl (\/%Af’+v’) (fua'f)

' _FA'S 1V’V§‘1\/% F (?faf)

_FNSTVIVETY (Tf - aT)

oz (V= o) VSV VS (V - of)

(Jiv (V-of) F (ﬁA’iW’ViU\) (%ﬁ (V- aT))
42 (% (V- af)/ﬁ> ( 2\/_A SvvETY (Y - af)>
+% (V- ozf>/ VESWVETV (Y - of)

(A*f*(@) (A’21A> (A*f*(@)

i (A*’Zi(a)) (A’If(ia)> . f(a);if(@

BT (), PoE (f,‘ ) BT ()1,

J

+2B(T;(a)A;) Po B(T(0)A;) + PuE (02T;(a)?)
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N—o0

. 1~ ot e _
—1y/7 -1 =117/ _
WYV SN W(Y aT)

(¥ o)
L (V= of) ( =N v) DR SEOVHR (\/%AF’ ¥ v’) (¥ - of)
( ) ﬁA'i-lv'v%i—lXX’i-lﬁAﬁ' (¥ - of)

-~ ~ ~ o~ 1 ~ ;~~~ ~ ~
I _ ISS=1y//y, - -1 =1y, _
tya (V- oT) = FASTVY 570 V(¥ —aT)
! sy isans L (}7 —~ af)
3 K /K *

1~
70 1V’VKE BAS-y

(
o ?ﬁ)) (ﬁmlwiu) ( L35 1A) (leﬁ (?ﬁ))

?—af)

E (ffﬁ)) (ﬁ/\’ SEAVAATS SRl DY

(
+ (N?i/f( —aT) V§‘1V’V§‘1X> (\/K\/FXE_IJQ (NF' (f/—af))
(

Nzi/f( aT) Vi—lv'v%i—ﬁ) (N—X’i—lv' (?—dT“))

(i) () () ()
. (AIF( ) (\/—A/ ) (ﬁ}[(\if(a))
() ) (4F2)
(A*/f*@)) (\/P_S()A’E—lA> .\ <¢P_50A'f(a)>r

K VEVE VEVE"

E(fj( SOE ( ) + PboE )AJ>‘|

2
i
2
J
( >+PSO

+

+

q|
SN V) (S

E (fj(
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Lo ivervy ey s—157 (v _ 7
—STA STV SRS W(Y aT)
1 ~~ 1~ 1~ 1 ~
=(=A2"WV=X 1)\) (—)\ »t
<N K \/EN N K*
(s leny
—<N/\ZJ VY S )\)
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Now put these three pieces together
1 ~ ~\ ! ~— /\//\
W(Y—aT)W{PS ] —aT)
U, (A*T*( > 1A> (A*T* > A*’F* )) (Af(@) (@) ST ()
=3 +2 +
~ 2
_q A*T* (\/ oS ) n VPsoA'T(c)
P, + P“A’E A VEVK*
2
sO 1
NY'A
+<P +P°A’E 1A> )

( VP _prsoi I L VP p T(a ))2

)\)\—i—E] V'V

VEVE K *«*V—‘
BT (a)A;)PoE (—5) )+ 2B(T;(a)A)) P E(T;()A;) + PooE (aﬁj(a)?)
PoE + P 2
—2%1& e ;] s(ti0n)
s0
AGIEAY

A? ~
+ " PYLE <—§> E(Tj(a)A)?
P, + PoE (54) 7]

which is the third of the three terms above.
Next consider the first

-1 -1
1 1 ~~ =~ 1 ~ ~ 1 ~~ =~ ~ /~ ~
W Y —AF'FN by W'Y —aT
3 (Y aT) {Ps A+ ] - {P A+ } ( a)

_ (%ﬁﬁ)(NVZA{ s

] W (?J))Z
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Focus on the term

1 o &
e [ } W (Y—aT)
1 / -1 1 1 B acnk<T | ( 1 = /) iyl =
- S PP —AF +V'") (Y —aT
NVEK* 14+ 2 A S-13 KPs VK* ( )
1 1 ~ 1 - ~
AL AF' (Y —aT) + NS W' (Y —aT
NVEK* VE* ( ) NVEK* ( )
1 1 1 o min 1 o~ e -
— A Yot AF' (Y —aT
NVE* 11 _1 3513 KP, K™ ( )
KP,
1 1 1

T F
1
) (Ps " %X'il})
1
) (Ps " %X’il})
= (%A’ElA) (A*’i**(a)> . f(fogA
_<P +P_501A/21A> (\/ll\D/_—AE 1A) (A*'IP;*(OC)> (\/11\0/__1&, A) (%f(a)%)]

U, A2 ~ ~
—PyE <0§> E(Lj()Aj) + PsoE(L'j()Ay)

(o () s e () i)
PoB (4] ) BE@A) + P (2] PoB(Es(@)4))

PyE ( ) + Péo

PerPsOE(U?) |

1
- A2
Ps +PSOE (_%>

o4

AN )

. N0

:wmﬂmm)+@ﬂ< )mﬂmmﬂ1—

ﬁ.\)| e

Now finally the middle piece

Vsl o my [vias] W (5 o
+ T T ( _O‘>

{%(?aT>I’W7[P:KXIX+§}IV%A}{NZF’V[PK }1W’(?af>}

~ N US|
Note that we have already derived the plim of {% (Y — aT) w [P_lK /\//\ + Z} 1 A} . So the final piece

L(f/ fﬁ)’w L
N3 @ P.K

S

K*
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to deal with is

-1
1, 1~ o e ~
NQFV{PSK)\)\—FE] W(Y—aT)
1~ = 1 1 o e 1~ -~
= =PV |- _ ! (—AF’+V’> Y —oT
N2 1+K1Pq)‘/271)‘KPS v K* ( )
_ Llaps L w5 e L EUS v (o
= pEVET AR (Y —aT) + 5 F'VEV' (Y —aT)
1 1~ 1 aqoiay 1~ o o
— S ——— 7 IIREDPN Yk AF' (Y —aT
1 1~ 1 o e - -
— ——— ——F'V SIS (Y —aT
1+ Klps)\/z—l)\ N2 KP, ( )
= L _pys-a) (Lryv)+ Lrvs-1v (v —af
- \WwE )T o

v ) (
() (e ) () (57 6 -)
() i) g

- 1A,A — L_Fv 2‘1/\> (LAE—W'(Y aT))
P+ £ASIA ) \NVEK NVK
%
N—oo

Putting the pieces together we get the result.
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Result L.2.4
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1+ £ NSIA Py \VEVE

X
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X
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K~ K~

P
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VEVE"

o
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VEVE*
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ar) + NGING
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P, + PoE(A2]o?)
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Result L2.5

1 ~~
L0 =

N—o0

1 ~ T~
) AA+S W’( —aT)
7w e
1 ~ s 1 1 o j~/a ~, /= ~
PN D - S ST WY —aT
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Proof of Theorem 6:

The vast majority of work for this proof has been done in Lemmas 1 and 2.
To simplify the notation, define

a(Ps,a) = (E (Ajfj(a)))z PyE (

and note that

2 2
A2 (P.SOE( >+P.50> A2 P.SOE< >+P.50
— | +2Py -2 % 7+ PoE | =%
7 P, + PooE (5) %) | P+ P ()
J J

(PSO) 0.
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First consider

b (0 = LY W02 ohe LSOO
4N, K+ = N 2 i i (1- Ps)fK* (P, ST g (Ps) + Psag N & ' '
p(1-P)T(0)'ST(0) 1

From Lemmas 1 and 2, this converges uniformly to

B(AT5(0)) P B(A3 /e B(A;B;) + 2B(A;T; (@) PoE (A;8;) + PuF (03T;(0)5))

 B(AT,(0)B(A;B)P3 [B(A2/0?) +1]°
P, + P E(A2/0?)

B oP, o¢ "
(1-P,) [PS()E [azf ~(a)2} +a(P, )} + Pyo?

E(T;(a)A;) P E <—> Aj) + 2B(F5(@)A) Puo B(F (@)A) + P (07T ()?)
2 2
[PsoE( Dero [ E(H) AV
) P (%) E(T;A;)" + PR (g) P3FE (g—é) E(T;(a)A;)?
- 2\ Pok (5) +po|]
+ | PoB(T;(a)A;) + PoE (-;) ET;(a)A;) |1 -
i 75 P, + PoE (;;)
(ot =P) [PuE [o3T(0) )
(1- P,) [PsoE [o—irj(a) } + P,o?
[E(Ajfj(a))zpsoE(Af/a ) + 2B(A;T () PoE (AJFJ +P50E (0 T';(q) )
—~B(\;T;(a))? [PSOE(A?/U )+ Pl (A T )r

P, + PoE(A2/0?)

Substituting 6y for 6 yields
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This expression converges uniformly in probability to

BT (@) E(A;8,) + B (Ty()8,03) - plim(ak . (0

B ¢P, e
(1 = P)) [P [03T5(0)2] +a(P.)] + Poo?
~ L [PoE(A2/0%) + Py’

E(A;T;(0)?PoE(A2/02) + 2E(Ajfj( JPoE (AT5(@)) + PoF (03T5(0)?) = B(A;T;() BT PaE (o)
( 6(1 = P) [PoE [02T5(0)?| + a(P)] )
(1-P,) [PS()E[ 2T (a) } +a(P)} + Pyo?
(BT (@) + B (Ti(0)%02) + o)
Plugging in 0y for 0 yields
E(ATHEN;B)) + B (T;8;07)

P500'£
%0 (1= Pu)PooE [02T2] + Pyo? .
[E(AT;)?PoE(AS/03) + 2E(AT;) Py E (AT)) + Py E (0513) — E(A;T;)? [P E(AZ /o) + Py] |

(1= Pyo)PoE [03T3]
R Pu0)PyE [02T2] + Pyo?

= E(ATH)EA;B)) +E (T;8;07)

> [E(AT;)? 4+ E (T307) + 0Z]

Py 212
—do ((1 — Py) [PoE [aff?“ +Psogg> [E(AT i) Pso + PyE ( jfj)}

(1= Py)PoE [07172]
¢ ((1 — Py)PoE [0312] + Pyo?
= E(\TH)EWNB) + E (T;8;03)
(Psoago [E(A;T;)2 Py + PooE (0313)] + (1 — Py) P E [0317] [E(Ajr >+ E (I'%03) + aso} )
0 (1= Py) [PaoE [02T2]] 4 Pyoo?

) [E(AT;)? 4+ E (T3073) + 02]

= E(\TH)E(A;B)) + E (T;8,07)
Puogy [E(AT))?Poo + E (03T3)] + (1 — Pao) P E [0313] [E(AT;)? + E (T307)]
B (1= Pyo) [PsoE [05T3]] + Psoo?

= 0

Finally consider

N ) N2 o~ o
e )= 3 (o) - (F2) - EOZE0 e
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which converges uniformly in probability to

= PoB(A2/0?)+P0 ] °
PE (Ajrj(a))) [PSOJFE(A?/G?)PS[)O

P,

B (F0,) + BT f0)ed) + ok -

PyoE [agfj(a)ﬂ

Ps
2 2 2 9
i) o) ane sy [
e o2 s+ PsoE| —5
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Evaluated at 6 = 0 this is

E(TjA))* + E(I30%) + 0 — (B(A,T;))°
PoE [U?Fﬂ 2
o
= 0.

We have thus shown that Q(fg) = 0, so 6y € ©;. Since the convergence of gy x~() is uniform, the
convergence of Qn k+(0) to Qo(#) is uniform as well. Given that the parameter space of 6 is compact,
Assumption C.1 of Chernozhokov, Han, and Tamer (2007) is satisisfied. Applying their Theorem 3.1 gives
the desired result.
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