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Abstract

We present a simple way to estimate the e�ects of changes in a vector of observable variables
X on a limited dependent variable Y when Y is a general nonseparable function of X and
unobservables. We treat models in which Y is censored from above, below, or both. The
basic idea is to �rst estimate the derivative of the conditional mean of Y given X at x with
respect to x on the uncensored sample without correcting for the e�ect of x on the censored
population. We then correct the derivative for the e�ects of the selection bias. We discuss
nonparametric and semiparametric estimators for the derivative. As extensions, we discuss
the cases of discrete regressors and of endogenous regressors in both cross section and panel
data contexts.



1 Introduction

Many problems in economics involve dependent variables that are censored in some way.
For example, one may wish to know how consumers who demand a positive amount of a
good respond to changes in prices, income, or age. Furthermore, many of the restrictions
placed on demand by consumer theory apply only to consumers who are not at corner
solutions and must be tested using the uncensored observations. For example, one might
wish to estimate a compensated price e�ect. In the factor demand literature, the problem
of zero inputs often arises. For these reasons, a vast empirical literature has used the Tobit
or generalized Tobit models to study the e�ects of a set of independent variables X on a
censored dependent variable Y .

Unfortunately, almost all the literature on censored regression relies heavily on the as-
sumptions of additive separability and/or monotonicity in the error term U.1 In contrast,
nonseparability and nonmonotonicity are likely to be the rule rather than exception in the
choice problems based on constrained optimization that characterize much of economics. In
a world of heterogeneous consumers, the demand function Y = M(X, U) is unlikely to be
additively separable in the observed price, income, and preference variables X and the un-
observed preference variables U , especially given that preferences, prices, and endowments
interact through budget and time constraints. Monotonicity in the vector U is also unlikely.
Unobserved heterogeneity across �rms in technology and e�ciency will also enter factor
input demand functions in a nonseparable way unless one arti�cially restricts the form that
unobserved heterogeneity can take, as is often done by simply tacking an error term onto
the demand model.2

Altonji, Hayashi and Kotliko�'s (1997) study of altruism based models of money trans-
fers from parents to children is a concrete example of nonseparability and censoring in a
consumer demand context. In their application, Y = M(Xp, Xc, X2, U) if M(Xp, Xc, X2, U)
is positive and is 0 otherwise, where Xp and Xc are the endowments of the parents and
child and X2 and U are vectors of observed and unobserved preferences of the parents and
child. They point that nonseparability of M is a generic property of transfer equations
that are based on a consumer choice framework with interdependent preferences. Further-
more, a key theoretical prediction of altruism models of transfers, ∂M(Xp, Xc, X2, U)/∂Xp−
∂M(Xp, Xc, X2, U)/∂Xc = 1, applies only if M(Xp, Xc, X2, U) > 0, so one must account
for both censoring and nonseparability if one wishes to test it.3

In this paper, we present a simple way to estimate the e�ects of changes in a vector of
observable regressors X on a censored dependent variable Y when Y is a general nonsepa-
rable function of X and unobservables U . The general model we consider includes models
of the form Y = M(X, U) if L(X) < M(X, U) and Y = CL otherwise, where M(X, U) is
a di�erentiable function with respect to X indexed by U , L(X) is an unknown function of
X, and Y = CL indicates that Y is censored from below. The parameter of interest is the

1See, e.g., Chay and Powell (2001) for a survey.
2If the dependent variable is not censored or truncated, one can estimate average derivatives of nonsep-

arable regression models using the methods of Stoker (1986) and Powell, Stock and Stoker (1989) among
others.

3Similar issues arise in the public �nance literature concerning the extent to which public transfers
crowd out charitable giving, and whether targeted grants (such as food stamps) a�ect consumption patterns
di�erently from income.
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average derivative β(x) = E[∇M(X, U)|X = x, L(X) < M(X, U)], where ∇M(X, U) is the
partial derivative of M(x, u) with respect to x evaluated at (x, u) = (X, U). Note that in
the ordinary linear censored regression model with an additive error (i.e., the Tobit model),
β(x) is constant and coincides with the slope coe�cients of the regressors.

Our estimation strategy is simple. The basic idea is (i) estimate the derivative of Ψ(x) =
E[M(X, U)|X = x, L(X) < M(X, U)] with respect to x without correcting for the in�uence
of x on the composition of the uncensored population (i.e., selection bias) and then (ii)
correct the partial derivative ∇Ψ(x) for the e�ects of the selection bias. It turns out that
the correction term has a simple structure which only depends on Ψ(x), L(x), and on the
level and derivative of Pr{L(X) < M(X, U)|X = x}, the probability that Y is uncensored
given X = x. We consider models in which Y is censored from both above and below but
do not address the case in which the boundaries are stochastic conditional on X.

The paper continues in Section 2, where we provide a brief literature review. In Section
3 we present a canonical nonseparable censored dependent variable model. We then show
that β(x) is identi�ed from knowledge of certain estimable functions of x. Starting from the
expression for β(x) that underlies our identi�cation result, Section 4 discusses nonparametric
and semiparametric estimation of β(x). Section 5 brie�y discusses extensions to the case
of discrete regressors and to the case of endogenous regressors in both cross section and
panel data contexts. In Section 6 we provide some encouraging Monte Carlo evidence on
the performance of our estimators.

2 Previous Literature

Some early e�orts on estimation of parameters in nonseparable models are found in Han
(1987), Matzkin (1991), and Powell (1991). One of the di�culties in nonseparable models
is to de�ne an estimable parameter of interest. Han (1987) considered estimation of β
in models where Y = M(X ′β, U), Matzkin (1991) considered estimation of m in models
where Y = M(m(X), U), and Powell (1991) considered estimation of β in models where
Y = M(X, β, U). All models assume that U is a scalar and that M is nondecreasing in U .
Han (1987) and Matzkin (1991) allow the function M to be unknown and Powell (1991)
assumes it to be known. As the above authors discuss, these models generalize many limited
dependent variable models, some hazard models, and some transformation models.

Since the early drafts of our paper were circulated, a few papers on nonparametric
estimation of features of censored dependent variable models have appeared. Lewbel and
Linton (2002) consider the additively separable model

M(X, U) = m(X) + U, L(X) = c, H(X) = ∞,

where the constant c is known. Note that in their model β(x) = ∇m(x). Under the additive
error model they show that ∇m(x) is the derivative of E[I{Y > c}(Y − c)|X = x] divided
by the conditional probability that Y is uncensored given X = x. We show that this result
holds much more generally when we replace∇m(x) with β(x). We do not require an additive
error structure and allow for censoring from above and below and for censoring points that
depend generally on X.

Chen, Dahl and Kahn (2005) provide an estimator for m(x) based on conditional quan-
tiles in a model similar to Lewbel and Linton's. They assume M(X, U) = m(X) + σ(X)U ,
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where U is a scalar and independent of X and σ(X) is strictly positive. Their approach
breaks down if monotonicity in U is dropped or the second additive error term appears in
the model m. They do not consider estimation of β(x) or the case in which L(X) depends
on X. In contrast, we place almost no restrictions on M(X, U) but only consider estimation
of β(x).

We wish to emphasize that interest in the conditional average e�ect β(x) depends on
the question at hand and the source of the bounds L(x) and H(x). If L(x) and H(x) are
due to data problems, (such as lower or upper bounds on reported values in a survey of
business income) rather than a natural part of the model (such as nonnegative consumer
expenditures) one is likely to be more interested in E[∇M(X, U)|X = x], the unconditional
average e�ect of x, than in β(x).4 If M takes the form of m(X) + U , as in Lewbel and
Linton for example, then β(x) is both the conditional and the unconditional e�ect. Our
estimator leaves M(X, U) and the distribution of U essentially unrestricted. Note that

E[Y |X] = E[Y |X, uncensored] Pr{uncensored|X}+ E[Y |X, censored] Pr{censored|X}.

Since there are no data on Y when censored, E[Y |X, censored] cannot be identi�ed without
assuming separability or imposing restrictions on both M(X, U) and the distribution of U.
Therefore, E[Y |X] cannot be identi�ed without a further assumption. One could combine
our estimator of the conditional average e�ect with an estimator of the average e�ect for
the censored cases that requires stronger assumptions.

Over the past decade there has been an explosion of research on nonseparable models
with particular attention to models with endogenous regressors.5 This literature is concerned
with estimation of the partial e�ects of X on Y as well as with estimation of the structural
function M(X, U) and the distribution function of U given X, which we do not address. In
the nonseparable simultaneous equation literature, monotonicity in a scalar valued U plays
a key role in the identi�cation of M(x, u) at given (x, u), but it may not be a reasonable
assumption for consumer expenditure problems or for choice problems based on constrained
optimization in general. We do not assume monotonicity in U or that U is a scalar.

3 The Model and Identi�cation of β(x)

We �rst introduce the model and parameter of interest. Let X ∈ Rk be a k × 1 random
vector of observables, and M(X, U) be a random function of X, where the unobservable
random object U indexes a class of di�erentiable functions from Rk to R. The random object
U does not need to be a scalar random variable or a �nite dimensional random vector. In

4As noted in the introduction β(x) can be used to test theoretical restrictions that apply to all the
uncensored cases. The β(x) parameter would permit one to test these even in the case of censoring due
to survey reporting limits, in the case when H(x) is a rationing limit on consumer expenditures that is
a known or unknown function of x, and in the case where a tax or subsidy leads to a discontinuity in
∇M(X, U) when M(X, U )̇ > H(X). (In the latter case, the researcher could impose censoring on Y to avoid
the discontinuity.)

5See, e.g., Blundell and Powell (2003), Chernozhukov, Imbens and Newey (2007), Chesher (2003, 2005),
Florens et. al. (2008), Hoderlein and Mammen (2007), Imbens and Newey (2009), and Matzkin (2007).
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our model, M(X, U) is a latent variable. Instead we observe Y :

(1) Y =


M(X, U) if L(X) < M(X, U) < H(X),
CL if M(X, U) ≤ L(X),
CH if H(X) ≤ M(X, U),

where L(X) and H(X) are scalar valued functions of X and CL and CH are constants that
indicate whether Y is censored from below or above, respectively. Our notation allows for
the possibility that the functions M(X, U), L(X), and H(X) do not depend on all of the
elements of X. The linear censored regression model (i.e., the Tobit model) is a special
case of (1) in which U is a scalar random variable, M(X, U) = X ′β + U , L(X) = 0, and
H(X) = ∞. For notational convenience we introduce three indicator random variables:
IM (X) = I{L(X) < M(X, U) < H(X)}, IL(X) = I{M(X, U) ≤ L(X)}, and IH(X) =
I{H(X) ≤ M(X, U)}, where I{A} = 1 if the event A occurs and 0 otherwise, and the
argument U is suppressed to simplify the notation.

Let ∇ denote the partial derivative with respect to x. The parameter of interest, β(x),
is the average derivative of M (X, U) with respect to X given that X = x and Y is not
censored:

(2) β(x) = E[∇M(X, U)|X = x, IM (X) = 1].

Note that in the Tobit model mentioned above, β(x) corresponds to the constant slope
parameter β.

We now discuss identi�cation of the parameter of interest β(x). For the sake of expo-
sition only we momentarily assume that U is a scalar with the Lebesgue density dµ and
that M(x, u) is continuous and monotonic with respect to u for each x. If U and X are
independent, the parameter of interest β(x) is written as

(3) β(x) =
� uH(x)

uL(x)
∇M(x, u)dµ(u)/GM (x),

where uL(x) and uH(x) solve M(x, u) = L(x) and M(x, u) = H(x), respectively, and
GM (x) = Pr{IM (X) = 1|X = x}. Denote

Ψ(x) = E[M(X, U)|X = x, IM (X) = 1] =
� uH(x)

uL(x)
M(x, u)dµ(u)/GM (x).

Let us examine the relationship between the derivative of Ψ(x) and β(x). The Leibniz
integral rule implies

∇[Ψ(x)GM (x)] =
� uH(x)

uL(x)
∇M(x, u)dµ(u)(4)

+M(x, uH(x))dµ(uH(x))∇uH(x)−M(x, uL(x))dµ(uL(x))∇uL(x).

Note that M(x, uH(x)) = H(x) and M(x, uL(x)) = L(x). Let GH(x) = Pr{IH(X) =
1|X = x} and GL(x) = Pr{IL(X) = 1|X = x}. Then ∇GH(x) = −dµ(uH(x))∇uH(x) and
∇GL(x) = dµ(uL(x))∇uL(x). Therefore, β(x) can be written as

(5) β(x) = ∇Ψ(x) + [Ψ(x)∇GM (x) + H(x)∇GH(x) + L(x)∇GL(x)]/GM (x).
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The second term in (5) corrects for the fact that x a�ects selection of the population for which
Y is observed. Given X = x, the correction term can be identi�ed from (i) Ψ(x)∇GM (x),
the product of the conditional mean of Y given that Y is uncensored and the derivative of the
probability that Y is uncensored, (ii) H(x)∇GH(x), the product of the upper bound H(x)
and the derivative of the probability that Y is censored from above, and (iii) L(x)∇GL(x),
the product of the lower bound L(x) and the derivative of the probability that Y is cen-
sored from below. All components are normalized by GM (x), the probability that Y is
uncensored.6

We now consider the general case where U need not be a scalar and continuous and
M(X, U) need not be monotonic and continuous in U . In particular, we impose the following
assumptions. Let Nx be a neighborhood of x.

Assumption 3.1. Assume that

(i) U and X are independent,

(ii) L(x) and H(x) are continuous at x and satisfy L(x′) < H(x′) for all x′ ∈ Nx,

(iii) GL(x), GM (x), and GH(x) are di�erentiable at x and GM (x) > 0,

(iv) M(x′, U) is continuously di�erentiable a.s. at each x′ ∈ Nx, and there exists a function

B such that for any x′ ∈ Nx, |∇M(x′, U)| ≤ B(U) a.s., and E[B(U)] < ∞,

(v) Pr{M(X, U) = L(X)|X = x} = Pr{M(X, U) = H(X)|X = x} = 0.

The �rst assumption is stronger than the usual conditional mean independence assump-
tion E[U |X] = 0 in a regression framework. However, the maximum likelihood estimator
for the Tobit model requires U to be normal and independent of X. In Section 5, we discuss
the case of endogenous regressors. The second assumption re�ects the de�nition of L and
H as the lower and upper bounds. The fourth assumption is standard and guarantees that
one may change the order of di�erentiation and integration. The rest of the assumptions
are natural given that we wish to identify some aspects of derivatives. Here we implicitly
assume that all elements of X are continuous.

Under these assumptions, we can show that the derivative formula in (5) still holds true
and obtain the main theorem.

Theorem 3.1. Under Assumption 3.1, the expression for β(x) in (5) holds true.

The proof is contained in the appendix. We emphasize that this theorem applies to any
random object U and that the region of integration need not be rectangular. In particular,
U may be a vector and M(X, U) need not be monotone in U . When L(x) = −∞, the term
L(x)∇GL(x) does not appear in (5) and when H(x) = ∞, the term H(x)∇GH(x) does not
appear. In the case of �xed censoring from below at zero (i.e., L(x) = 0 and H(x) = ∞),
the formula is β(x) = ∇Ψ(x) + Ψ(x)∇GM (x)/GM (x).

6Since identi�cation of β(x) by (5) requires knowledge of conditional probabilities GM (x), GL(x), and
GH(x) or their derivatives, our identi�cation strategy does not apply to truncated dependent variables.
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Remark 3.1. [Comparison with control function approach] Consider the standard Tobit
model for simplicity. The conventional control function approach (e.g., Heckman (1976)) is:
(i) obtain the conditional mean function E[Y |X = x, Y > 0] = x′β+Q(x) parametrically or
semiparametrically, where Q(x) = E[U |X = x, Y > 0], and then (ii) estimate β and Q(x)
jointly. In contrast, our approach is: (i) estimate ∇E[Y |X = x, Y > 0] = β +∇Q(x), and
then (ii) estimate the correction term ∇Q(x) to estimate β. More generally, β(x) is given
by (5), where the last three terms on the right hand side correspond to the correction terms
for sample selection. We emphasize that our approach can handle a general nonadditive
random object including a random function.

Remark 3.2. [Reduction to one dimensional error] As pointed out by a referee, one could
reduce the model (1) with the random object U to one with a scalar error term, say Ũ ,
by setting Ũ = F (M(X, U)|X), where F (·|X) is the conditional distribution function of
M(X, U) given X, and de�ning M̃(X, Ũ) by M̃(X, Ũ) = F−1(Ũ |X). If F (·|X) is strictly
increasing, Ũ is uniformly distributed on (0, 1). Clearly M̃(X, Ũ) = M(X, U), as one may
verify by substituting the de�nition of Ũ in the right-hand side of the de�nition of M̃ . Al-
though we could present the above identi�cation result in terms of Ũ and M̃ , we prefer the
presentation in terms of U and M for the following reasons. First, we regard U and M as
primitive objects which have direct economic interpretations, such as unobserved preferences
for U and demand functions for M . The transformed objects Ũ and M̃ are rather arti�cial.
Therefore, the conditions of the theorem are more intuitive and easier for an applied re-
searcher to verify when presented in terms of U and M . Second, the representation by Ũ and
M̃ does not facilitate the proof of Theorem 3.1. The above intuitive argument only leads to
a simple proof if F (·|X) is strictly monotonic. This excludes non-strict monotonic M with
respect to U , discrete U, and U with non-contiguous support. When U is a general random
object such as a utility function, it may require some additional conditions. In these general
cases, Ũ is not uniformly distributed but is a mixed distribution of continuous and discrete
points. With a mixed distribution of Ũ , the domain of integration with respect to Ũ is hard
to characterize and the intuitive argument in (3)-(5) under monotonicity and a continuous
distribution on a contiguous support cannot be applied directly. One-dimensionality alone
does not facilitate the proof, and having to impose some auxiliary assumptions to prove
identi�cation might mask the fact that only weak conditions are required on the primitives
of the model.

4 Estimation

We can nonparametrically estimate β(x) by plugging nonparametric estimators for the un-
known functions Ψ(x), ∇Ψ(x), GM (x), ∇GM (x), ∇GL(x), ∇GH(x), L(x), and H(x) into
the identi�cation formula (5). In Altonji, Ichimura and Otsu (2008) (hereafter, AIO (2008)),
we suggest: (i) estimate the conditional mean and derivative functions Ψ(x), ∇Ψ(x), GM (x),
∇GM (x), ∇GL(x), and ∇GH(x) by local polynomial regression (see, e.g, Fan and Gijbels
(1996)), and (ii) estimate the boundary functions L(x) and H(x), by local polynomial ex-
treme quantile regression (Chernozhukov (1998) and Ichimura, Otsu and Altonji (2008)),
where the quantile point drifts to zero (to estimate L(x)) or one (to estimate H(x)) at a
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certain rate as the sample size increases.7 AIO (2008) show that the nonparametric estima-

tor β̂(x) is consistent and is asymptotically normal at the
√

nhk+2
n -rate with the bandwidth

hn for the local polynomial regression.
To avoid the curse of dimensionality, the slower convergence rate of the nonparametric

estimator β̂(x) for larger k, AIO (2008) also propose an average derivative estimator over a
compact subset X̄ of the support of X, that is β̂ = n−1

∑n
i=1 I{Xi ∈ X̄}β̂(Xi)/(n−1

∑n
i=1 I{Xi ∈

X̄}). They show that this estimator is asymptotically normal at the
√

n-rate. An alternative
parameter is the average derivative over X̄ conditional on IM (Xi) = 1, which may be esti-
mated as β̂∗ = n−1

∑n
i=1 I{Xi ∈ X̄, IM (Xi) = 1}β̂(Xi)/(n−1

∑n
i=1 I{Xi ∈ X̄, IM (Xi) = 1}).

Another way to circumvent the curse of dimensionality is to impose a priori parametric
restriction about potential functional forms on Ψ(x), GH(x), GL(x), L(x), and H(x) without
specifying the distribution of U . To aid the search for functional forms, the following lemma
identi�es the conditions that the parametric speci�cation must satisfy to be consistent with
a member of the class of models speci�ed in (1).

Lemma 4.1. In addition to Assumption 3.1, suppose that

1. there exists ε > 0 such that L(x) + ε < Ψ(x) < H(x)− ε for all x,

2. there exist p1 and p2 such that 0 < GL(x) < p1 < p2 < 1−GH(x) < 1 for all x.

3. Ψ(x), GL(x), GH(x), L(x), and H(x) are continuously di�erentiable in x.

Then (1) holds with M(X, U) = M0(X) + M1(X)U1 + M2(X)U2, where M1(x),M2(x) > 0
for all x, U1 and U2 are independent scalar random variables, and U = (U1, U2) has the

joint density fU such that Ψ(x) =
�
u∈{u:IM (x)=1} M(x, u)fU (u)du.

It is remarkable that we do not need to consider more general forms of M(X, U) than the
one speci�ed in this lemma. The reason is that the parameter of interest in our analysis is the
conditional mean of the derivative ∇M(X, U) rather than the whole function M(X, U) or
the distribution of M(X, U).8 For example, suppose that we parametrize L(x; θL), H(x; θH),
GL(x; θL, θH , θR), GH(x; θL, θH , θR), and Ψ(x; θL, θH , θR) to satisfy the conditions in this
lemma, where the parameters θL, θH , and θR do not overlap. We can �rst estimate θL and
θH by the extreme quantile regression estimators θ̂L and θ̂H (Chernozhukov (2005)), and
then estimate θR by maximizing the criterion function:

`(θR) =
n∑

i=1

[IL(Xi) log GL(Xi; θ̂L, θ̂H , θR) + IM (Xi) log GM (Xi; θ̂L, θ̂H , θR)

+IH(Xi) log GH(Xi; θ̂L, θ̂H , θR)]−
n∑

i=1

(Yi −Ψ(Xi; θ̂L, θ̂H , θR))2IM (Xi).

If
√

n(θ̂L − θL) = op(1) and
√

n(θ̂H − θH) = op(1), standard conditions guarantee the
asymptotic normality of the semiparametric estimator for β(x) at the

√
n-rate.

7For example, in STATA our estimator can be implemented using the lpoly and qreg packages for local
polynomial regression and quantile regression, respectively.

8The point made in Remark 3.2 also applies here. Although Lemma 4.1 is useful to assist the search for
parametric functional forms, it is more convenient and general to present the identi�cation result in terms
of primitive objects U and M , as in Theorem 3.1
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5 Extensions

In this section we brie�y discuss some extensions of our approach.9

5.1 Endogenous Regressors in a Cross Section

One may use a control function approach to handle correlation between X and U . Assume
that the distribution of X depends on a vector of observable variables W . Write X as
X = ϕ(W ) + V , where ϕ(W ) is de�ned so that E[V |W ] = 0 a.s. Assume

(6) U ⊥ W |V.

This assumption is strong, but will be hard to avoid unless one is willing to impose additional
restrictions on M(X, U), such as monotonicity in a scalar valued function of U . Let dµ(·|·)
be the generic notation for conditional densities. The parameter of interest β(x) in (2) can
be written as

(7) β(x) =
�

v

�
u∈{u:IM (x)=1}

{∇M(x, u)dµ(u|x, v)/GM (x, v)}dµ(v|x).

Let Ψ(x, v) = E[Y |X = x, V = v, IM (X) = 1]. By (6), Ψ(x, v) can be written as

Ψ(x, v) =
�

u∈{u:IM (x)=1}
M(x, u)dµ(u|ϕ(w), v)/GM (x, v)

=
�

u∈{u:IM (x)=1}
M(x, u)dµ(u|v)/GM (x, v),

where GM (x, v) = Pr{IM (X) = 1|X = x, V = v} (GL(x, v) and GH(x, v) are de�ned
similarly). Di�erentiating Ψ(x, v) with respect to x holding v �xed leads to

∇Ψ(x, v) =
�

u∈{u:IM (x)=1}
∇M(x, u)dµ(u|v)/GM (x, v)

+{H(x)∇GH(x, v) + L(x)∇GL(x, v) + Ψ(x, v)∇GM (x, v)}/GM (x, v).

Rearrangement of the above equation establishes β(x) =
�

β(x, v)dµ(v|x) where
(8)
β(x, v) = ∇Ψ(x, v)− {H(x)∇GH(x, v) + L(x)∇GL(x, v) + Ψ(x, v)∇GM (x, v)}/GM (x, v).

Taking v as known, the functions on the right hand side of (8) can be estimated using
the nonparametric and semiparametric approaches discussed in Section 4. Thus we can

9In AIO (2008), we consider measurement error in the outcome. Suppose that H(x) = ∞, L(x) is some
known constant, and instead of Y and IM (X), we observe Y ∗ = IRIM (X)(e1Y + e2) and I∗M = IRIM (X),
respectively, where the indicator IR for reporting is 1 with probability p and is 0 with probability 1− p that
is independent of (X, U, e1, e2), the multiplicative measurement error e1 is a positive random variable with
mean µ that is independent of (X, U, IR), and the additive measurement error e2 is a random variable with
mean 0 that is independent of (X, U, IR). It is easy to show that if one uses Y ∗ instead of Y to estimate
β(x) in (5), then the probability limit of the estimator of β(x) is µβ(x). If L(x) has to be estimated, this
form of measurement error will lead to bias even for the case of µ = 1. More general forms of measurement
error, such as correlation of IR with (X, U, e1, e2), will lead to bias even if µ = 1 and L(x) is known.
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estimate β(x, v) for each (x, v). The conditional density dµ(v|x) can be estimated by using
the residual V̂ of nonparametric regression of X on W as a proxy for V . Integration over v
for the product of the estimators of β(x, v) and dµ(v|x) yields an estimator of β(x). Also,
β(x) = E[β(X, V )|X = x] can be estimated by nonparametric regression of β(X, V̂ ) on X.

Our treatment of endogeneity is closely related to a number of estimation procedures in
the literature in which an estimated control variable is used, particularly Smith and Blundell
(1986) and Rivers and Vuong (1988) in the context of the Tobit and probit models. Because
of nonseparability between X and U , one must use (7) to �undo� the e�ects of conditioning
on V . Blundell and Powell (2004) and Altonji and Matzkin (2001) use the same idea in
settings that di�er from ours. Chesher (2003) and Imbens and Newey (2009) consider the
case in which X = g(Z, V ), g is monotone in scalar V , M takes the form of M(X, V, U),
and M is monotone in scalar U . See also Matzkin (2003). Following their approach, one can
recover V from the cumulative distribution function of X given Z and proceed as outlined
above if Z and (V,U) are independent.10 We suspect that the speci�cation of M(X, U) and
estimation method used in Florens et. al. (2008) could be used here as well.

A number of papers in the literature discuss estimation in nonseparable models with
endogenous variables when a control variable Z that is excluded from X is observed directly
and has the property U ⊥ X|Z. If one has such a variable, then one can estimate β(x) as�

β(x, z)dµ(z|x), where one obtains β(x, z) by replacing v with z, V with Z, and dµ(v|x)
with the conditional density dµ(z|x) of Z given X = x in the equations leading to β(x, v).
The problem with this strategy, of course, is that it may be hard to think of applications in
which an appropriate Z variable is directly available.

5.2 Endogenous Regressors in a Panel

Suppose that one has panel data observations Yit, Xit, and IMit = I{Yit is uncensored},
where i is a group indicator and t is a time indicator (t = 1, . . . , T ). It may be possible to
construct a suitable control variable Z from the panel data on Xit. Following Altonji and
Matzkin (2001, 2005), if the conditional distribution of Uit is exchangeable in (Xi1, . . . , XiT ),
then symmetric functions of (Xi1, . . . , XiT ), such as the group mean of Xit for each i, might
be a suitable choice for Zi such that Xit ⊥ Uit | Zi. See Altonji and Matzkin (2001, 2005)
for the details.11 12

In some applications within group variation in Uit may be related to Xit conditional
on Zi. Following the lines of the papers above, the estimated control variable approach in
Section 5.1 can be extended by writing Xit = ϕ(Wit, Zi) + Vit with E[Vit|Wit, Zi] = 0 a.s.
and assuming Uit ⊥ Wit|Zi, Vit. In this case, the parameter of interest can be written as

10These papers and others discussed by Blundell and Powell (2003), Chesher (2007), and Matzkin (2007)
focus on estimation of M(x, u) and ∇M(x, u) for given (x, u) as well as the distribution of U . Identifying
these objects is much more demanding than identifying an average derivative such as β(x) so it is not
surprising that stronger assumptions are required. Note that β(x) is what Altonji and Matzkin (2005) call
a local average response.

11Exchangeability alone does not restrict the symmetric functions su�ciently to permit one to identify
the functions in β(x, z) nonparametrically. Consequently, some restrictions on the functions in β(x, z) (e.g.
linear index restrictions) would be needed.

12To identify the average derivative at some t, although we need panel data for Xit (to construct Zi),
cross section data at t are su�cient for Yit and IMit.
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β(x) =
�
z,v β(x, z, v)dµ(z, v|xit = x), where β(x, z, v) is de�ned by replacing v with (z, v),

V with (Z, V ), and dµ(v|x) with the conditional density dµ(z, v|x) of (Z, V ) given X = x
in (8).

The panel data version of our estimator complements Honoré's (1992) trimmed LAD
estimator, which permits one to estimate θ in censored and truncated regression models
when M(Xit, Uit) = Xitθ+Uit. His estimator is based on di�erencing the panel observations
in clever ways and is quite distinct from our approach. See Arellano and Honoré (2001,
Section 7) for additional discussion and references.

5.3 Discrete Regressors

Our identi�cation strategy may be generalized to the case where the regressor vector X
contains not only continuous regressors XC but also discrete ones XD. Let βC(xC , xD)
denote the vector of average derivatives of M(X, U) with respect to XC given IM (X) = 1,
XC = xC , and XD = xD. It would be straightforward to extend our methods above to
allow estimation of βC(xC , xD). However, estimation of the e�ect of XD raises issues of
identi�cation. For simplicity, assume XD is a scalar binary and L(X) = 0 and H(X) = ∞.
There are a number of ways we can de�ne parameters of interest. For example, we can
consider identi�cation of

β01
D (xC , xD) = E[IM (XC , 1)M(XC , 1, U)−M(XC , 0, U)|IM (XC , 0) = 1, XC = xC ].

This is the e�ect of a shift in XD from 0 to 1 on the average value of Y chosen by those
for whom IM (xC , 0) = 1 (initially uncensored).13 In our setup, the object β01

D (xC , xD) is
not identi�ed in general. In AIO (2008), we assume that M(xC , 0, u′) < M(xC , 0, u′′) if and
only if M(xC , 1, u′) < M(xC , 1, u′′) (see Heckman, Smith and Clements (1997)), and obtain
the following estimable bounds for β01

D (xC , xD) :

Ψ(xC , 1) max{GM (xC , 1) + GM (xC , 0)− 1, 0}/GM (xC , 0)−Ψ(xC , 0)
≤ β01

D (xC , xD)
≤ Ψ(xC , 1)GM (xC , 1)/GM (xC , 0)−Ψ(xC , 0).

6 A Monte Carlo Investigation

We now evaluate the �nite sample performance of our nonparametric and semiparamet-
ric estimators for average derivatives. In Table 1, we report the results of Monte Carlo
experiments based on the model

Y = max{M(X, U), L(X)},
M(X, U) = α0 + α1X + α2XU1 + U2, L(X) = a0 + a1X,

13The alternative parameter E[M(XC , 1, U)−M(XC , 0, U)|IM (XC , 1) = 1, IM (XC , 0) = 1, XC = xC ] can
be analyzed analogously.
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where U = (U1, U2)′ ∼ N

((
0
0

)
,

(
1 0
0 1

))
and X ∼ Uniform[0, 4]. We consider three

cases for the parameter values,

Case 1 : (α0, α1, α2, a0, a1) = (1,−0.5, 1, 0, 0),
Case 2 : (α0, α1, α2, a0, a1) = (1,−0.5, 1, 0, 0.5),
Case 3 : (α0, α1, α2, a0, a1) = (1,−0.5, 0, 0, 0).

In Cases 1 and 3, the censoring point L(X) = 0 is treated as known. Case 2 requires
estimation of the boundary function L(X). In Case 3, the function M(X, U) is linear
and separable. So, β(x) is constant and the conventional Tobit is the maximum likelihood
estimator. The column headings report the values of x at which β(x) is evaluated. The
column labelled �Avg. β� reports results for the averaged estimator β̂ =

∑n
i=1 I{Xi ∈

X̄}β̂(Xi)/
∑n

i=1 I{Xi ∈ X̄} with X̄ = [0.5, 3.5]. The column labelled �Avg. β∗� reports

results for β̂∗ =
∑n

i=1 I{Xi ∈ X̄, IM (Xi) = 1}β̂(Xi)/
∑n

i=1 I{Xi ∈ X̄, IM (Xi) = 1} and thus

weights β̂(Xi) by the distribution of X for the uncensored cases. The rows labeled �True
Value� reports the true values of β(x) when x is 0.5, 1, 1.5, 2, 2.5, 3, and 3.5, and the
true values of E[β(Xi)|Xi ∈ X̄], and E[β(Xi)|Xi ∈ X̄, IM (Xi) = 1]. Note that β(x) varies
substantially with x in both Cases 1 and 2, and the variation is due entirely to selection.
The rows labelled �AIO-NP� report the results for a nonparametric estimator, the rows
labelled �AIO-SP� report the results for a semiparametric estimator, and the rows labelled
�Tobit� report the results for the Tobit estimator. The rows labelled �Unadjusted� report
the nonparametric estimator of ∇Ψ(x), the �rst term of (5). The �rst rows for each panel of
the estimators report the means of the estimates across Monte Carlo replications. The rows
labelled with �sd� report the standard deviations of the estimates across the replications.
The rows labelled �se� report the means of the asymptotic standard error estimates, and
the rows labelled �90%� are the coverages rates of the 90% asymptotic con�dence intervals.
The sample size is 2,000 and the number of replications is 5,000.

For AIO-NP, we estimate the functions Ψ, ∇Ψ, GM , and ∇GM by local second-order
polynomial regressions with the Epanechnikov kernel and the rule of thumb bandwidth in
Fan and Gijbels (1996). In Case 2, the boundary function L(x) is estimated by local linear
quantile regression at the �rst percentile with the uniform kernel and the bandwidth at
0.5. For AIO-SP, we specify Ψ(x; θ1) to be a fourth order polynomial in x plus a constant
term and estimate θ1 by OLS. We do not impose the restriction that the estimated values
of Ψ(x; θ1) are greater than 0 for all x. For the conditional probability GM (x; θ2), we
specify GM (x; θ2) = Φ(P (x; θ2)) where Φ(·) is the standard normal distribution function
and P (x; θ2) is a fourth order polynomial in x plus a constant. We estimate θ2 by the
maximum likelihood. In Case 2, L(x) is estimated by the linear quantile regression at the
�rst percentile.14 The Tobit estimation assumes that the analyst does not know the form of
M(X, U) and approximates it with a fourth-order polynomial with an additively separable
normal error term. In Case 2, the Tobit is estimated assuming the true boundary function
L(x) is known.

14Although we do not report here, both the nonparametric and semiparametric quantile regression esti-
mators for L(x) perform very well in terms of bias and standard deviations.
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In Case 1 Tobit substantially underestimates β(x) for all values of x. The unadjusted
estimator substantially overestimates β(x). Thus, the e�ect of the correction term (i.e., the
second term in (5)) is not negligible. The bias in AIO-NP is very small for all values of x,
but (surprisingly) is bit larger for Avg. β and Avg β∗. The standard errors of AIO-NP are
close to the Monte Carlo standard deviations of the estimates. Coverage rates are close the
nominal level of 90%. AIO-SP also exhibits little bias. Not surprisingly, it has a smaller
standard deviation than AIO-NP. The standard errors of AIO-SP are close to the Monte
Carlo standard deviations and coverage rates are close to 90%.

In Case 2, we need to estimate the boundary function L(x). In spite of this additional
complication, the results are similar to Case 1. Both AIO-NP and AIO-SP track β(x)
closely, while Tobit with knowledge of L(x) and the unadjusted regression estimator are
both substantially biased. The standard errors for AIO-NP are overstated and coverage
rates are above the nominal value.

In Case 3, Tobit is the maximum likelihood estimator for β(x), which equals −0.5 for all
values of x. This case is useful for evaluating the e�ciency loss of our estimators compared
to Tobit. The standard deviations of AIO-NP are about three times larger than those of
Tobit for the average derivative and typically about 1/3 larger at speci�c values of x. The
e�ciency loss of AIO-SP compared to Tobit is small.

In AIO (2008), we report results for additional parameter values and for designs in
which U1 = U2. The results are generally consistent with those we report here. However,
we have found cases in which the fourth-order polynomial for AIO-SP does not provide an
adequate approximation over the whole range of x, leading to signi�cant bias for some values
of β(x). For example, in Case 1 when X is uniform over [−4, 4], AIO-SP underestimates
β(x) at x = 2 by about .21, while AIO-NP tracks β(x) closely. One can, of course, alter
the bias/variance properties of AIO-NP by changing the bandwidth. Similarly, one can
alter the functional forms for AIO-SP. The best choice depends on sample sizes and prior
information about functional forms.

Overall, the Monte Carlo results are very encouraging.
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A Appendix

A.1 Proof of Theorem 3.1

It is su�cient to prove the derivative formula (4) for ∇1, the partial derivative with respect
to the �rst element of x, i.e.,
(9)

∇1

�
M(x, u)IM (x)dµ(u) =

�
∇1M(x, u)IM (x)dµ(u)−H(x)∇1GH(x)− L(x)∇1GL(x).

The left hand side of (9) is written as

lim
ε→0

[�
M(x + εe1, u)IM (x + εe1)dµ(u)−

�
M(x, u)IM (x)dµ(u)

]
/ε

= lim
ε→0

�
[M(x + εe1, u)−M(x, u)] IM (x + εe1)dµ(u)/ε

+ lim
ε→0

�
M(x, u) [IM (x + εe1)− IM (x)] dµ(u)/ε = T1 + T2,

where e1 = (1, 0, . . . , 0). Assumption 3.1 (ii), (iv), and (v) imply limε→0 IM (x + εe1) =
IM (x) a.s. Thus, Assumption 3.1 (iv) and the Lebesgue dominated convergence theorem
imply that T1 =

�
∇1M(x, u)IM (x)dµ(u). We now consider T2. From the de�nition of IM

and Assumption 3.1 (ii),

IM (x + εe1)− IM (x) = [I{L(x + εe1) < M(x + εe1, U)}+ I{M(x + εe1, U) < H(x + εe1)}]
− [I{L(x) < M(x,U)}+ I{M(x,U) < H(x)}] ,

a.s. for all ε su�ciently close to zero. So, T2 can be written as

T2 = lim
ε→0

�
M(x, u) [I{L(x + εe1) < M(x + εe1, u)} − I{L(x) < M(x, u)}] dµ(u)/ε

+ lim
ε→0

�
M(x, u) [I{M(x + εe1, u) < H(x + εe1)} − I{M(x, u) < H(x)}] dµ(u)/ε.

Since I{L(x + εe1) < M(x + εe1, u)} = 1 − I{M(x + εe1, u) ≤ L(x + εe1)} for all ε
su�ciently close to zero, the following lemma completes the proof.

Lemma A.1. Under Assumption 3.1,

lim
ε→0

�
M(x, u) [I{M(x + εe1, u) < H(x + εe1)} − I{M(x, u) < H(x)}] dµ(u)/ε(10)

= −H(x)∇1GH(x).

Proof. It is su�cient to show that both an upper bound and a lower bound of the left
hand side of (10) converge to the right hand side as ε → 0. The left hand side of (10) equals

lim
ε→0

�
M(x, u)I{M(x + εe1, u) < H(x + εe1)}I{M(x, u) ≥ H(x)}dµ(u)/ε

− lim
ε→0

�
M(x, u)I{M(x + εe1, u) ≥ H(x + εe1)}I{M(x, u) < H(x)}dµ(u)/ε.(11)
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Since the argument is analogous, we only show the result for an upper bound.
For any small ε > 0 that satis�es the neighborhood condition in assumption 3.1 (iv), by

the mean value theorem there exists 0 < ε̃ < ε such that

M(x + εe1, U) = M(x,U) +∇M(x + ε̃e1, U)ε a.s.,

so that by assumption 3.1 (iv)

M(x + εe1, U) ≤ M(x,U) + sup
0<ε̃<ε

∇M(x + ε̃e1, U)ε ≤ M(x,U) + sup
x′∈N(x,ε)

∇M(x′, U)ε

≤ M(x,U) + B(U)ε,

a.s., where N(x, ε) is a neighborhood around x with radius ε. Analogously by replacing the
supremum with the in�mum, we can show that M(x + εe1, U) ≥ M(x,U)−B(U)ε a.s.

By these inequalities, (11) can be bounded from above by

lim
ε→0

�
H(x + εe1)I{M(x + εe1, u) < H(x + εe1)}I{M(x, u) ≥ H(x)}dµ(u)/ε

+ lim
ε→0

�
B(u)I{M(x + εe1, u) < H(x + εe1)}I{M(x, u) ≥ H(x)}dµ(u)

− lim
ε→0

�
H(x + εe1)I{M(x + εe1, u) ≥ H(x + εe1)}I{M(x, u) < H(x)}dµ(u)/ε

+ lim
ε→0

�
B(u)I{M(x + εe1, u) ≥ H(x + εe1)}I{M(x, u) < H(x)}dµ(u).

By Assumption 3.1 (ii), (iv), and (v), the Lebesgue dominated convergence theorem implies
that the second term and the fourth term converge to zero. The �rst term and the third
term can be rewritten as

lim
ε→0

H(x + εe1)
�

[I{M(x + εe1, u) < H(x + εe1)} − I{M(x, u) < H(x)}] dµ(u)/ε

which equals the right hand side of (10) under Assumption 3.1 (ii) and (iii). Therefore, the
conclusion is obtained.

A.2 Proof of Lemma 4.1

Denote the marginal distribution functions of U1 and U2 by F1 and F2, respectively. Suppose
F1 and F2 have zero mean, strictly increasing, and have smooth marginal densities f1 and
f2, respectively. For these distributions we construct a function

M(x, u) = M0(x) + M1(x)u1 + M2(x)u2

so that GL(x) = Pr {M(X, U) ≤ L(X)|X = x}, GH(x) = Pr {M(X, U) ≥ H(X)|X = x},
and Ψ(x) = E [M(X, U)|IM (X) = 1, X = x]. For notational convenience from now on we
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drop the arguments x from functions. First, note that

GL =
� ∞

−∞
f1(u1)F2

(
L−M0 −M1u1

M2

)
du1

=
� ∞

−∞
f2(u2)F1

(
L−M0 −M2u2

M1

)
du2,(12)

1−GH =
� ∞

−∞
f1(u1)F2

(
H −M0 −M1u1

M2

)
du1

=
� ∞

−∞
f2(u2)F1

(
H −M0 −M2u2

M1

)
du2.(13)

If L = −∞ (or H = +∞), then GL = 0 (or GH = 0) and these equalities are trivially
satis�ed. Similarly,

ΨGM = M0GM + M1

� ∞

−∞
u1f1(u1)

[
F2

(
H −M0 −M1u1

M2

)
− F2

(
L−M0 −M1u1

M2

)]
du1

+M2

� ∞

−∞
u2f2(u2)

[
F1

(
H −M0 −M2u2

M1

)
− F1

(
L−M0 −M2u2

M2

)]
du2.

Reparameterize so that λ = M1/M2. By holding λ constant, we can �nd M∗
0 (λ) and M∗

2 (λ)
that solve (12) and (13) with respect to M0 and M2, respectively. Let lλ and hλ denote the
solutions to GL =

�∞
−∞ f1(u1)F2(lλ − λu1)du1 and 1 − GH =

�∞
−∞ f1(u1)F2(hλ − λu1)du1,

respectively. Then by the de�nitions, M∗
0 (λ) and M∗

2 (λ) are written as

M∗
0 (λ) =

hλL− lλH

hλ − lλ
, M∗

2 (λ) =
H − L

hλ − lλ
.

By substituting these solutions, the right hand side of the expression for ΨGM above can
be regarded as a function of λ (denote the function by m(λ)). Thus, for the conclusion it is
su�cient to check the existence of λ∗ > 0 that solves ΨGM = m(λ). From the mean value
theorem and Condition 1, the existence of λ∗ can be veri�ed by showing that

(14) lim
λ→0

m(λ) < (L + ε)GM , lim
λ→∞

m(λ) > (H − ε)GM ,

for some ε > 0 satisfying Condition 1.
We now show (14). Choose F1 and F2 so that F−1

1 (p1) < 0 < F−1
1 (p2) and F−1

2 (p1) <
0 < F−1

2 (p2) for some p1 and p2 satisfying Condition 2. Note that hλ → h0 and lλ → l0 as
λ → 0, where h0 and l0 solve F2(h0) = 1 − GH and F2(l0) = GL, respectively. Similarly,
hλ/λ → h∞ and lλ/λ → l∞ as λ → ∞, where h∞ and l∞ solve F1(h∞) = 1 − GH and
F1(l∞) = GL, respectively. From Condition 2, we have l0 < 0 < h0 and l∞ < 0 < h∞. As
λ → 0, we have

m(λ) → LGM +
H − L

h0 − l0

� h0

l0

(u− l0)f2(u)du,

and as λ →∞, we have

m(λ) → HGM − H − L

h∞ − l∞

� h∞

l∞

(h∞ − u)f1(u)du.

Therefore, by choosing F1 and F2, we can obtain l0, h0, l∞, and h∞ that satisfy (14). This
completes the proof.
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Table 1:

Case 1: M(X, U) = 1− 0.5X + XU1 + U2, L (X) = 0, percentage uncensored: 54.7%
Evaluation Point of β(x) Avg.β Avg.β∗

0.5 1 1.5 2 2.5 3 3.5

True Value -0.310 -0.085 0.092 0.214 0.297 0.355 0.398 0.156 0.120

AIO-NP -0.298 -0.097 0.063 0.189 0.270 0.352 0.409 0.0985 0.0986

sd 0.164 0.134 0.182 0.217 0.286 0.332 0.638 0.184 0.184

se 0.206 0.146 0.178 0.220 0.270 0.327 0.665

90% 0.959 0.925 0.899 0.904 0.892 0.902 0.909

AIO-SP -0.295 -0.078 0.075 0.200 0.305 0.374 0.391 0.158 0.123

sd 0.146 0.141 0.135 0.140 0.222 0.239 0.521 0.065 0.057

se 0.146 0.143 0.137 0.141 0.223 0.240 0.525

90% 0.899 0.903 0.902 0.904 0.906 0.904 0.900

Tobit -0.626 -0.426 -0.241 -0.081 0.041 0.116 0.131 -0.137 -0.178

sd 0.182 0.157 0.140 0.120 0.186 0.176 0.375 0.048 0.049

Unadjusted 0.050 0.300 0.447 0.522 0.562 0.592 0.608 0.411 0.411

sd 0.134 0.106 0.139 0.163 0.212 0.244 0.466 0.128 0.129

Case 2: M(X, U) = 1− 0.5X + XU1 + U2, L (X) = 0.5X, percentage uncensored: 40.2%

True Value -0.260 0.064 0.318 0.486 0.599 0.676 0.732 0.401 0.312

AIO-NP -0.224 0.043 0.272 0.458 0.572 0.653 0.752 0.403 0.360

sd 0.167 0.154 0.206 0.257 0.326 0.384 0.743 0.261 0.269

se 0.270 0.190 0.225 0.279 0.352 0.442 0.909

90% 0.991 0.955 0.929 0.925 0.937 0.942 0.953

AIO-SP -0.234 0.078 0.314 0.492 0.615 0.680 0.709 0.408 0.323

sd 0.154 0.151 0.142 0.160 0.248 0.267 0.609 0.074 0.060

se 0.153 0.152 0.145 0.159 0.248 0.269 0.607

90% 0.893 0.904 0.903 0.902 0.902 0.893 0.896

Tobit -0.709 -0.357 -0.052 0.193 0.370 0.466 0.473 0.090 -0.023

sd 0.183 0.159 0.139 0.122 0.186 0.176 0.376 0.045 0.051

Unadjusted 0.351 0.662 0.830 0.913 0.951 0.967 0.991 0.775 0.775

sd 0.134 0.116 0.154 0.186 0.238 0.277 0.524 0.142 0.144

Case 3: M(X, U) = 1.0− 0.5X + U2, L (X) = 0, percentage uncensored: 50.0%
True Value -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

AIO-NP -0.500 -0.499 -0.499 -0.497 -0.493 -0.499 -0.507 -0.509 -0.508

sd 0.148 0.090 0.098 0.097 0.112 0.120 0.204 0.073 0.073

se 0.154 0.089 0.092 0.098 0.107 0.122 0.243

90% 0.917 0.896 0.890 0.906 0.891 0.915 0.948

AIO-SP -0.501 -0.503 -0.503 -0.499 -0.497 -0.500 -0.513 -0.501 -0.501

sd 0.125 0.080 0.082 0.063 0.092 0.096 0.181 0.026 0.027

se 0.125 0.079 0.080 0.064 0.092 0.094 0.183

90% 0.899 0.895 0.893 0.898 0.900 0.892 0.900

Tobit -0.498 -0.504 -0.502 -0.498 -0.495 -0.499 -0.514 -0.501 -0.501

sd 0.120 0.077 0.074 0.056 0.082 0.081 0.159 0.024 0.026

Unadjusted -0.279 -0.244 -0.212 -0.183 -0.155 -0.136 -0.118 -0.191 -0.191

sd 0.121 0.070 0.073 0.072 0.076 0.082 0.141 0.047 0.047
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