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Abstract

In this paper we measure the effect of Catholic high school attendance on educational
attainment and test scores. Because we do not have a good instrumental variable for
Catholic school attendance, we develop new estimation methods based on the idea that the
amount of selection on the observed explanatory variables in a model provides a guide to
the amount of selection on the unobservables. We also propose an informal way to assess
selectivity bias based on measuring the ratio of selection on unobservables to selection on
observables that would be required if one is to attribute the entire effect of Catholic school
attendance to selection bias. We use our methods to estimate the effect of attending a
Catholic high school on a variety of outcomes. Our main conclusion is that Catholic high
schools substantially increase the probability of graduating from high school and, more
tentatively, college attendance. We find little evidence of an effect on test scores.



1 Introduction

Distinguishing between correlation and causality is the most difficult challenge faced by

empirical researchers in the social sciences. Social scientists rarely are in a position to run a

well controlled experiment. Consequently, they rely on a priori restrictions on the patterns

of interaction among the variables that are observed or unobserved. These restrictions

are typically in the form of exclusion restrictions or assumptions about the functional

form of the model, the distribution of the unobserved variables, or dynamic interactions.

Occasionally, the a priori restrictions are derived from a widely accepted theory or are

supported by other studies that had access to a richer set of data. However, in most cases,

doubt remains about the validity of the identifying assumptions and the inferences that are

based on them.

The challenge of isolating causal effects is particularly difficult for the question addressed

in our paper–“Do Catholic high schools provide better education than public schools?”

This question is at the center of the debate in the United States over whether vouchers,

charter schools, and other reforms that increase choice in education will improve the quality

of education. It is also highly relevant to the search for ways to improve teaching and gov-

ernance of public schools. Simple cross tabulations or multivariate regressions of outcomes

such as test scores and post secondary educational attainment typically show a substantial

positive effect of Catholic school attendance.1 However, many prominent social scientists,

such as Goldberger and Cain (1982), have argued that the positive effects of Catholic school

attendance may be due to spurious correlations between Catholic school attendance and

unobserved student and family characteristics. The argument begins with the observation

that it costs parents time and money to send their children to private school. In the ab-

sence of experimental data, the challenge in addressing this potentially large bias is finding

exogenous variation that affects school choice but not outcomes. Most student background

characteristics that influence the Catholic school decision, such as income, attitudes, and

education of the parents, are likely to influence outcomes independently of the school sector

because they are likely to be related to other parental inputs. Characteristics of private and

public schools that influence choice, such as tuition levels, student body characteristics, or

1The most influential examples are Coleman, Hoffer, and Kilgore (1982) and Coleman and Hoffer (1987).
Other early examples of studies of Catholic schools and other private schools are Noell (1982), Goldberger
and Cain (1982), and Alexander and Pallas (1985). Recent studies include Evans and Schwab (1995),
Tyler (1994), Neal (1997), Grogger and Neal (2000), Figlio and Stone (2000), Sander (2000) and Jepsen
(2000). Murnane (1984), Witte (1992), Chubb and Moe (1990), Cookson (1993) and Neal (1998) provide
overviews of the discussion and references to the literature. Grogger and Neal provide citations to a small
experimental literature, which for the most part has found positive effects of Catholic school.
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school policies, are likely to be related to the effectiveness of the schools.

Several recent studies, including Evans and Schwab (1995), Neal (1997), Grogger and

Neal (2000), Figlio and Stone (2000) and Altonji, Elder and Taber (1999) use various ex-

clusion restrictions to estimate the Catholic school effect on a variety of outcomes. Evans

and Schwab (1995) use religious affiliation as an exogenous source of variation in Catholic

school attendance and confirm the large positive estimates of Catholic school effects on

high school graduation and college attendance that they obtain when Catholic school at-

tendance is treated as exogenous. However, as Evans and Schwab recognize and Murnane

(1984) and Neal (1998) note, being Catholic could well be correlated with characteristics

of the neighborhood and family that influence the effectiveness of schools. Another influ-

ential paper by Neal (1997) uses proxies for geographic proximity to Catholic schools as an

exogenous source of variation in Catholic high school attendance. The basic assumption

is that the location of Catholics and/or Catholic schools was determined by historical cir-

cumstances and is independent of unobservables that influence performance in schools. He

finds evidence of a positive effect of Catholic high school attendance on high school and

college graduation among students in urban areas, particularly in the case of nonwhites.

In Altonji, Elder and Taber (1999, 2001), we employ a similar methodology using data on

zip code of residence and the zip codes of all of the Catholic high schools in the country to

compute a measure of distance from the nearest Catholic high school for our samples. We

conclude that the use of location or location interacted with religion is not a good way to

estimate Catholic school effects.2 Grogger and Neal (2000) come to a similar conclusion.3

Altonji, Elder, and Taber (2001) also find that Catholic religion has a strong association

with graduation rates for students who attended public eighth grades even though such

students rarely attend Catholic high school. This evidence and work by Ludwig (1997)

raises serious doubts about the validity of Catholic religion as an instrument.

2We provide evidence based on links to observed variables and to eighth grade test scores that suggests
that neither distance from Catholic high schools nor the interaction between distance and religion should
be excluded from the outcome equations unless detailed controls for location are included. (This informal
use of observables as a guide to correlation between the instrument and the unobservables led to the
current paper.) Failure to control for these factors leads to negative biases in estimates of Catholic school
effects. Unfortunately, including detailed geographic controls (such as 3 digit zip code) leads to very large
standard errors. We also follow Neal (1997) and Evans and Schwab (1995) by using bivariate probit models
to jointly estimate the Catholic School decision with the outcomes. We find that empirical identification
comes largely from the functional form of the model rather than exclusion of the measure of distance from
Catholic schools. Nonlinearities in the effects of student background rather than proxies for distance from
Catholic schools seem to be the main source of identification.

3Grogger and Neal (2000) use NELS:88, the data set for the present study. Altonji, Elder and Taber
(1999) analyze NELS:88, the National Longitudinal Survey of the High School Class of 1972, and NLSY79.
Neal (1997) uses the NLSY79.
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In this paper we develop new estimation strategies that may be helpful when strong

prior information is unavailable regarding the exogeneity of either the variable of interest

or instruments for that variable. We view this to be the situation in studies of Catholic

school effects and in many other applications in economics and the other social sciences.

We then use our strategies to assess the effectiveness of Catholic schools.

Our approach uses the degree of selection on observables as a guide to the degree of

selection on the unobservables. Researchers often informally argue for the exogeneity of an

explanatory variable or an instrumental variable by examining the relationship between the

instrumental variable and a set of observed characteristics, or by assessing whether point

estimates are sensitive to the inclusion of additional control variables.4 We provide a formal

analysis confirming the intuition that such evidence can be informative in some situations.

More importantly, we provide a way to quantitatively assess the degree of omitted variables

bias.5

Using our Catholic schools application, let the outcome Y be a function of the latent

variable6 Y ∗ which is determined as

Y ∗ = αCH +W 0Γ

= αCH +X 0ΓX + ξ,

where CH is an indicator for whether the student attends a Catholic high school, the

parameter α is the effect of Catholic school attendance on Y ∗, W is the vector of charac-

teristics (observed and unobserved) that determine Y and Γ is the causal effect of W on

Y ∗. In the second part of the equation X is the vector of observed variables, ΓX is the

corresponding subvector of Γ, and the error component ξ is an index of the unobserved

variables. Because it is extremely unlikely that the control variables X are all unrelated to

ξ, we work with

4See for example, Currie and Duncan (1995), Engen et al (1996), Poterba et al (1994), Angrist and Evans
(1988), Jacobsen et al. (1999), Bronars and Grogger (1994), Udry (1996),Cameron and Taber (2001), or
Angrist and Krueger (1999). Wooldridge’s (2000) undergraduate textbook contains a computer exercise
(15.14) that instructs students to look for a relationship between an observable (IQ) and an instrumental
variable (closeness to college).

5Two precursors to our study are Altonji’s (1988) study of the importance of observed and unobserved
family background and school characteristics in the school specific variance of educational outcomes and
especially Murphy and Topel’s (1990) study of the importance of selection on unobserved ability as an
explanation for industry wage differentials.

6We will focus on two special cases in this paper. The first is a continuous dependent variable in which
Y = Y ∗. The second is a binary variable in which Y = 1(Y ∗ > 0).
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(1.1) Y ∗ = αCH +X 0γ + ε,

where γ is defined so that cov(ε,X) = 0. Consequently, γ captures both the direct effect

of X on Y ∗, ΓX , as well as the relationship between X and the mean of ξ. Let CH∗ be

the latent variable that determines CH and let CH = 1(CH∗ > 0), where the indicator

function 1(·) is 1 when CH∗ > 0 and 0 otherwise. Consider the linear projection of CH∗

onto X 0γ and ε,

(1.2) Proj(CH∗|X 0γ, ε) = φ0 + φX0γX
0γ + φεε.

We formalize the idea that “selection on the unobservables is the same as selection on the

observables” as

Condition 1

φε = φX0γ.

We contrast this with the OLS condition,

Condition 2

φε = 0.

Roughly speaking, Condition 1 says that the part of Y ∗ that is related to the observables

and the part related to the unobservables have the same relationship with CH∗. Condition

2 says that the part of Y related to the unobservables has no relationship with CH∗.

We show that Condition 1 requires three types of assumptions. The first is that the

elements of X are chosen at random from W . The second is that the number of elements

in X and W are large, so that none of the elements dominates the distribution of school

choice CH or the latent variable Y ∗. These two assumptions are enough to establish

asymptotic equality of the coefficients of the projection of CH∗ onto X 0ΓX and ξ .7 To

establish Condition 1 we need an additional, very strong, assumption about the relationship

between X and the unobservable elements that determine ξ.

While the assumptions that lead to Condition 1 are strong and unlikely to hold ex-

actly, they are no less objectionable than the OLS assumptions leading to Condition 2:

7We take asymptotic approximations as the number of elements in W grows large.
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Cov(CH, ξ) = 0 and Cov(X, ξ) = 0.8 As we discuss in more detail in Section 3, ma-

jor data sets with large samples and extensive questionnaires are not designed to address

one relatively specific question, such as the effectiveness of Catholic schools, but rather to

serve multiple purposes. Because there are a limited number of factors that we expect

to matter for a particular outcome, know how to collect, and can afford to collect, many

relevant variables are left out. This is reflected in the typically low explanatory power of

social science models of individual behavior. Furthermore, in many applications, includ-

ing ours, the endogenous variable is correlated with many of the elements of X. Given

the constraints that shape the choice of X and the fact that many of the elements of X

are systematically related to CH∗, it is unlikely that the many unobserved variables that

determine ξ are unrelated to CH∗, which is basically what Cov(X, ξ) = 0 requires. Given

that the X variables are intercorrelated, the assumption that Cov(X, ξ) = 0 is likely to be

a poor approximation to reality even though it is made in virtually all empirical studies in

the social sciences.

We prove that Condition 1 provides identifying information for α, although it does not

always deliver point identification. More importantly, we argue that Conditions 1 and 2

represent extreme assumptions about the degree of selection on unobservables and the truth

is probably somewhere in between, with

Condition 3

0 ≤ φε ≤ φX0γ.

We prove that Condition 3 allows us to estimate a set of permissible values of α. We

view analysis based on Condition 1 and Condition 3 as a complement to the

standard analysis based on Condition 2, not as a replacement for it.

We also propose and justify a closely related but more informal way to use the relation-

ship between the observables as a guide to endogeneity bias. It is related to the common

practice of checking for a systematic relationship between CH and the mean of the ele-

ments of X. Let E(.) and V ar(.) be expected value and variance operators. We compute

estimates of E(X
0γ|CH=1)−E(X0γ|CH=0)

V ar(X0γ) , which is a measure of the degree to which the index of

observables in the outcome equation varies with CH. We then ask how many times larger

8Technically these two assumptions are sufficient for Condition 2 but not necessary. One possibility
is that Cov(CH,X) = Cov(CH, ξ) = 0 but this condition implies Condition 1 as well. The necessary
condition for φε = 0 and for OLS to be unbiased is Cov(CH, ε) ≡ Cov(CH, ξ −E(ξ|X))
= Cov(CH, ξ)− Cov(CH,X 0)V ar(X)−1Cov(X, ξ) = 0.
The latter condition can hold if both Cov(CH, ξ) = 0 and Cov(X, ξ) = 0 happen to fail in

a way that leads to a perfect cancellation of biases, or if Cov(CH, ξ) = 0, Cov(X, ξ) 6= 0, but
Cov(CH,X 0)V ar(X)−1Cov(X, ξ) = 0.. Neither of these cases is very interesting.
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the normalized shift in the index of the unobservables E(ε|CH=1)−E(ε|CH=0)
V ar(ε)

would have to

be to explain away the entire estimate of α. The null hypothesis that the single equation

estimator of α is unbiased corresponds to the case in which E(ε|CH=1)−E(ε|CH=0)
V ar(ε)

is 0, while

the hypothesis that X is a randomly chosen subset of W implies that

(1.3)
E(ε|CH = 1)−E(ε|CH = 0)

V ar(ε)
=

E(X 0γ|CH = 1)−E(X 0γ|CH = 0)

V ar(X 0γ)
.

If selection on unobservables must be several times stronger than selection on the observ-

ables to explain the entire estimate of α, then the case for a causal effect of Catholic school

is strengthened. We provide similar estimation methods that can be used as complements

to standard IV type estimators when an excluded variable (e.g., Catholic religion or prox-

imity to a Catholic school in the Catholic schools literature) is used to identify a model,

but there are concerns about whether it is exogenous.

In section 2 we set the stage for the development and application of our econometric

methods by providing a standard multivariate analysis of the Catholic school effect using

the National Educational Longitudinal Survey of 1988 (NELS:88). We present descriptive

statistics on the relationship between Catholic school attendance and a broad range of

observable measures of family background, eighth grade achievement, educational expec-

tations, social behavior, and delinquency. The descriptive statistics show huge Catholic

high school advantages in high school graduation and college attendance rates, and smaller

ones in 12th grade test scores. However, the evidence across the wide range of observ-

ables, which have substantial explanatory power in our outcome equations, suggests fairly

strong positive selection into Catholic schools. We also find that the link between observ-

ables and Catholic high school attendance is much weaker among children who attended

Catholic eighth grade and that public school eighth graders almost never attend Catholic

high school. These facts suggest that we can improve comparability of the “treatment”

and control groups and avoid confounding the effect of attending Catholic high school with

the effect of Catholic elementary school by focusing on the Catholic eighth grade sample.

This is what we do, in contrast to most of the literature.

We present an initial set of regression and probit models containing detailed controls for

student characteristics that are determined prior to high school. We find a small positive

effect on 12th grade math scores and a zero effect on reading scores. However, our estimates

of the effect of Catholic high school point to a very large positive effect of 0.15 on the

probability of attending a 4 year college 2 years after high school and 0.08 on the high

school graduation rate. The estimates are not very sensitive to the addition of a powerful
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set of controls, particularly in the case of the high school graduate rate. The insensitivity

of the results to the controls and the “modest” association between the observables that

determine the outcome and Catholic high school suggests that part of the educational

attainment effect is real. However, the small positive effects on math test scores could

easily be accounted for by positive selection on unobservables.

In sections 3 and 4 we develop and apply our methods for using the degree of selection

on observables to provide better guidance about bias from selection on unobservables.

Because high school outcomes depend on many variables that are determined after the

decision to attend Catholic high school is made, selection on unobservables that affect

outcomes is likely to be positive but weaker than selection on observables, with 0 ≤ φε ≤
φX0γ. Consequently, our estimates of a joint model of Catholic high school attendance

and educational attainment subject to Condition 1 are likely to overstate selection and

understate the Catholic school effect. Operationally, we use a bivariate probit model

without exclusion restrictions as the functional form for the joint model even though the

identification results are nonparametric. The estimate of the effect of Catholic school on

high school graduation declines from the univariate estimate of about 0.08, which we view

as an upper bound, to 0.07 when we impose equal selection, which we view as a lower

bound, although sampling error widens this range. The estimate of the effect on college

attendance declines from the univariate estimate of 0.15 to 0.07 or 0.02, depending on the

details of the estimation method.

Using (1.3) we estimate that selection on unobservables would have to be between 2.78

and 4.29 times stronger than selection on the observables to explain away the entire Catholic

school effect on high school graduation, which seems highly unlikely. It would have to be

between 1.30 and 2.30 times stronger to explain away the entire college effect, which is also

unlikely. However, more modest positive selection on the unobservables could explain away

the entire Catholic school effect on math scores. We conclude that Catholic high school

attendance substantially boosts high school graduation rates and, more tentatively, college

attendance rates.

In section 5 we extend our analysis to a subsample of urban minorities, for whom we

obtain larger univariate effects but also stronger evidence of selection. In section 6 we

provide conclusions and an agenda for further research on the use of observables as a guide

to selection bias.
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2 A Preliminary Analysis of the Catholic School Ef-
fect

In section 2.1 we describe the data. In section 2.2 we present the sample means of outcomes,

measures of family background, eighth grade achievement, social behavior, and delinquency

as a way of assessing the potential importance of selection bias and to motivate the choice

of sample. In section 2.3 we present probit and OLS regression estimates of the Catholic

school effect. These serve as a benchmark for our subsequent analysis. In section 2.4 we

present an analysis of the sensitivity of the Catholic high school effect to assumptions about

the degree of selection on unobservables.

2.1 Data

Our data set is NELS:88, a National Center for Education Statistics (NCES) survey which

began in the Spring of 1988. The base year sample is a two stage stratified probability

sample in which a set of schools containing eighth grades were chosen on the basis of school

size and whether they were classified as private or public. In the second stage, as many

as 26 eighth grade students from within a particular school were chosen based on race

and gender. A total of 1032 schools contributed student data in the base year survey,

resulting in 24,599 eighth graders participating. Subsamples of these individuals were

reinterviewed in 1990, 1992, and 1994. The NCES only attempted to contact 20,062 base-

year respondents in the first and second follow-ups, and only 14,041 in the 1994 survey.

Additional observations are lost due to attrition.

The NELS:88 contains information on a wide variety of outcomes, including test scores

and other measures of achievement, high school dropout and graduation status, and post-

secondary education (in the 1994 survey only). Parent, student, and teacher surveys in

the base year provide a rich set of information on family and individual background, as

well as pre-high school achievement, behavior, and expectations of success in high school

and beyond. Each student was also administered a series of cognitive tests in the 1988,

1990, and 1992 surveys to ascertain aptitude and achievement in math, science, reading,

and history. We use standardized item response theory (IRT) test scores that account for

the fact that the difficulty of the 10th and 12th grade tests taken by a student depends on

the 8th grade scores. We use the 8th grade test scores as control variables and the 10th

and 12th grade reading and math tests as outcome measures.

We also use high school graduation and college attendance as outcome measures. The
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high school graduation variable is equal to one if the respondent graduated high school by

the date of the 1994 survey, and zero otherwise.9 The “College attendance” indicator is

one if the respondent was enrolled in a four-year college at the time of the 1994 survey and

zero otherwise.10 The indicator variable for Catholic high school attendance, CH, is one

if the current or last school in which the respondent was enrolled was Catholic as of 1990

(two years after the eighth grade year) and zero otherwise.11

We estimate models using a full sample, a Catholic eighth grade sample, and various

other subsamples. We always exclude approximately 400 respondents who attended non-

Catholic private high schools or private, non-Catholic eighth grades. Observations with

missing values of key eighth grade or geographic control variables (such as distance from the

nearest Catholic high school) were dropped. Sample sizes vary across dependent variables

because of data availability and are presented in the tables. The sampling probabilities for

the NELS:88 followups depend on choice of private high school and the dropout decision, so

sample weights are used to avoid bias from a choice based sample. Unless noted otherwise,

the results reported in the paper are weighted.12 Details regarding construction of variables

9We obtain similar results using a “drop out” dummy variable which equals one if a student dropped
out of high school by 1992, or if the student dropped out of high school by 1990 and was not reinterviewed
in 1992 or 1994, zero otherwise. This variable catches dropouts who left the survey by 1990 and were either
dropped from the sample or were nonrespondents.
10Our major findings are robust to whether or not college attendance is limited to 4-year universities,

full-time versus part-time, or enrolled in college “at some time since high school” or at the survey date.
11A student who started in a Catholic high school and transferred to a public school prior to the tenth

grade survey would be coded as attending a public high school (CH = 0). If such transfers are frequently
motivated by discipline problems, poor performance, or alienation from school, then misclassification of
the transfers as public high school students could lead to upward bias in estimates of the effect of CH on
educational attainment. We investigated this issue using an 8th grade question about whether the student
expected to attend Catholic high school and information about whether the student had changed high
schools prior to the 10th grade survey. Among Catholic school 8th graders for whom we have the relevant
data, 832 of 889 kids (94%) who reported that they expected to attend Catholic high school actually
attended Catholic high school. Among the remaining 57, only 12 students had transferred at least once
and of these only 3 failed to graduate high school. Furthermore, it is quite possible that 1 or 2 of these
students never started Catholic high school, perhaps because of a family move. We conclude that any bias
from misclassification of students is small.
12In the initial sample, private schools and schools with a minority enrollment of over 19 percent were

oversampled. The probability of sampling in the first and second follow-ups is smaller for high schools
attended by fewer than 10 students from the NELS:88 base year sample, and the sample weights are
inversely related to the number of sample members in the high school. This is likely to lead to undersampling
of students who attend private high schools. In contrast, the third follow-up sample design oversamples
those who attended private high schools. Furthermore, the sampling probability depends on whether the
student was believed to have dropped out of high school. Because the sample probabilities depend on
an endogenous right-hand side variable and the school attainment variables, it is necessary to weight the
analysis to obtain consistent parameter estimates. We use the first follow-up panel weights for the analysis
of 10th grade test scores, the second follow-up panel weights for the analysis of 12th grade scores, and
the third follow-up cross section weights for the analysis of high school graduation and college attendance.
The results are somewhat sensitive to the use of sample weights, although our main findings are robust to
weighting. Given the sampling scheme the weighted estimates are clearly preferred.
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and the composition of the sample are provided in Appendix B.

2.2 Characteristics of Catholic High School and Public High School
Students by Eighth Grade Sector

In Table 1 we report the weighted means by high school sector of a set of family background

characteristics, student characteristics, eighth grade outcomes, and high school outcomes.

We report results separately for students who attended Catholic eighth grades (the “C8”

sample) and for the full sample. The “outcomes” category displays by high school sector

the college attendance rate, high school graduation rate, and 10th and 12th grade math and

reading test scores for students from the NELS:88 sample.13 Looking at the full sample,

the graduation and college attendance rates differ enormously between the two sectors.

Catholic high school students are far less likely to drop out of high school than their public

school counterparts (0.02 versus 0.15), and are almost twice as likely to be enrolled in a

four year college in 1994 (0.59 versus 0.31). Differences in twelfth grade test scores are

more modest but still substantial–about 0.4 of a standard deviation higher for Catholic

high school students. In the C8 sample the gap in the dropout rate is also very large (0.02

versus 0.12) as is the gap in the college attendance rate (0.61 versus 0.38). In contrast, the

gap in the 12th grade math score is only about 0.25 standard deviations. Table 2 shows

that the gaps in school attainment and test scores are even more dramatic for minority

students in urban schools.

Tables 1 and 2 also show that the means of favorable family background measures, 8th

grade test scores and grades, and positive behavior measures in eighth grade are substan-

tially higher for the students who attend Catholic high schools. The large discrepancies for

many of the variables raise the possibility that part or even all of the gap in outcomes may

be a reflection of who attends Catholic high school. However, the gap is much lower for

most variables in the case of Catholic eighth graders. For example, the gap in log family

income is 0.49 for the full sample but only 0.19 for the C8 sample. The high school sector

gap in measures of the parents’ educational expectations for the child is more favorable to

the students who attend Catholic high school in the full sample than in the eighth grade

sample, and the difference in the student’s expected years of schooling is 0.72 in the full

sample but only 0.40 in the C8 sample.14 The high school sector differential in father’s

13In Table 1 and Table 2 the outcome variables are weighted with the same weights used in the regression
analysis, as described in the previous section. All other variables are weighted using second follow-up panel
weights.
14Appendix B and the footnotes to Table 3 provide the complete list of variables used in our multivariate

models. Many are excluded from Tables 1 and 2 to keep them manageable. The expectations variables in
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education is about one year in both samples, but for mother’s education it is 0.75 for the

full sample and 0.54 for the C8 sample. The discrepancy in the fraction of students who

repeated a grade in grades 4-8 is -0.05 in the full sample and only -0.01 in the C8 sample,

and the gap in the fraction of students who are frequently disruptive is -0.05 in the full

sample and 0 in the C8 sample. Both of these variables are powerful predictors of high

school graduation. Finally, the gap in the 8th grade reading and math scores are 3.86 and

3.44, respectively, in the full sample, but only 1.47 and 1.09, respectively, in the C8 sample.

These results hold for most of the other variables in Table 1. Specifically, differences by

high school sector among the family background characteristics and eighth grade outcomes

are much smaller for Catholic eighth graders than for public eighth graders. This pattern

is consistent with the presumption that since the parents of 8th graders from Catholic

schools have already chosen to avoid public school at the primary level, other, arguably

more idiosyncratic factors, are likely to drive selection into Catholic high schools from

Catholic eighth grade. Intuitively, it seems likely that these factors could lead to less

selection bias than in the full sample, although the overwhelming evidence based on a

very broad set of 8th grade observables is that selection bias is positive in both samples.

These considerations, the desire to avoid confounding the Catholic high school effect with

the effect of Catholic elementary school, and a concern about selection bias that arises

from the fact that only 0.3% of public school eighth graders in our effective sample go to

Catholic high school lead us to focus on the sample of Catholic eighth graders in most of

our analysis.15

2.3 Estimates of the Effect of Catholic High Schools

In this section of the paper we present regression and univariate probit estimates of the

effects of Catholic high school attendance on a set of outcomes. For reasons discussed

above, we focus on the subsample who attended Catholic eighth grade, although we also

present results for the full sample.

In the top panel of Table 3 we report the coefficient on CH in univariate probit, OLS,

Tables 1 and 2 are excluded from our outcome models because if Catholic school has an effect on outcomes,
this may be influence expectations.
15This is an unweighted percentage. The weighted percentage is 0.8%. We have made similar calculations

based on the sample of 16,070 individuals for whom information on sector of eighth-grade and sector of
10th grade is available. The corresponding estimate of the percentage of the eighth graders from public
schools who attend Catholic high schools is 0.3%. If one restricts the analysis to individuals whose parents
are Catholic, only 0.7% of students who attended public eighth-grade attend a Catholic high school. The
unweighted and weighted estimates of the percentage of Catholic high school 10th graders who attended
Catholic eighth-grade are 95.2 percent and 84.7 percent.
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and school fixed effects models for high school graduation.16 The difference in means for the

C8 sample is 0.105 when no controls are included, as shown by the marginal effect in the

probit with no controls (column 5). When we add the first set of controls, the coefficient

falls to 0.88 (0.25). The associated average marginal effect on the graduation rate is 0.084,

which is very large given that the graduation rate is 0.947 among students from Catholic

eighth grades. In the C8 sample the family background and geographic controls explain

only a small fraction of the raw difference in the graduation rate. The point estimate of

the marginal effect of CH declines slightly to 0.081 when we add eighth grade test scores

in column 7, and increases to 0.088 when we add a large set of eighth grade measures

of attendance, attitudes toward school, academic track in eighth grade, achievement, and

behavioral problems. The stability of the Catholic school effect is remarkable, especially

given the fact that the control variables in column 8 are quite powerful. One can see that

the Psuedo R2 of the regression model rises from 0.11 to 0.35 as we add the first set of

controls, and all the way to 0.58 when we add the full set of controls. These covariates are

powerful predictors of dropout behavior but lead to only a small change in the estimated

Catholic schooling effect.

The second row in Table 3 is based on linear probability models of high school grad-

uation. The coefficient on CH varies from 0.105 to 0.080 and closely agrees with the

probit estimates. Row 3 of columns 5-8 adds eighth grade fixed effects to the specifications

reported in row 2.17 The fixed effects estimate is 0.143 for the basic specification and 0.102

when the full set of controls is included.18

In Table 3 we also report estimates of the effect of Catholic high school attendance on

the probability that a student is enrolled in a 4 year college at the time of the 3rd follow-

up survey in 1994, 2 years after most students graduate from high school. For the basic

specification (column 6) the probit estimate implies that CH raises the college enrollment

probability by 0.154, which compares to a raw difference of 0.24 (column 5). This estimate

falls to 0.149 when we add detailed controls to the model. Once again the Psuedo R2 rises

substantially as we add more control variables. Linear probability models yield similar

estimates.

In Table 4 we report estimates of the effect of CH on 10th and 12th grade reading and

16Huber-White standard errors are reported throughout the paper. The standard errors account for the
use of weights and, with the exception of Table 7 and 8, they account for correlation among students from
the same eighth grade.
17That is, it includes separate intercepts for each eighth grade.
18We report fixed effects results to show that factors that vary across Catholic elementary schools (such

as public high school quality) do not drive the large positive estimates of the Catholic high school effect.
Bias from individual heterogeneity could well be more severe in the within-school analysis.
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math scores. In contrast to the above findings, we obtain modest negative estimates of the

effects of Catholic high schools on 10th grade reading scores. In the simplest specification

for the Catholic eighth grade subsample, we obtain a coefficient of -1.07 (0.97), which rises

to -0.87 (0.77) when the full set of controls and eighth grade fixed effects are added. We

obtain a small but statistically insignificant coefficient of -0.32 (1.01) in the case of math,

but this estimate declines to essentially 0 when we add detailed controls.

In the bottom panel of Table 4 we report estimates of the effects on 12th grade reading

and math scores. For the Catholic eighth grade sample with the full set of controls we

obtain a small positive effect of 1.14 (0.46) on the math score and 0.33 (0.62) on the reading

score. As Grogger and Neal (2000) emphasize, a positive effect of Catholic schools on the

high school graduation rate might lead to a downward bias in the Catholic high school

coefficient in the 12th grade test equations given that dropouts have lower test scores and

that dropouts have a lower probability of taking the 12th grade test. However, the issue

appears to be of only minor importance.19

To facilitate comparison with other studies, we also present estimates for the combined

sample of students from Catholic and public eighth grades. For this sample the effect

of CH on high school graduation is reduced from 0.123 to 0.052 after we add the full

set of controls (Table 3, columns 1-4). It is interesting to note, however, that the OLS

estimate is only 0.023 once the full set of controls are added and differs substantially from

the probit estimate of the average marginal effect. This reflects problems with the linear

probability specification when the outcomes is relatively rare and the explanatory variables

are powerful and vary widely in the sample. The college attendance results largely mirror

the high school graduation results. The probit estimate of the effect of Catholic school

attendance is 0.074 once the full set of controls are included, which is substantial relative

to the mean college attendance probability of 0.28.

19We deal with this issue by filling in missing data for both high school graduates and dropouts using
predicted values from a regression of the 12th grade score on the full set of controls in the outcome
regression, plus the Catholic high school dummy and the 10th grade test scores and a dummy variable for
whether the individual graduated from high school (high school graduation has a small and statistically
insignificant coefficient). Using the new dependent variable and sample the estimated effect of Catholic
high schools for 12th grade math and reading are 1.20 and 0.58 respectively. We obtain 1.20 and 0.56,
respectively, when we use an alternative imputation in which we adjust for differences in unobservables
using the assumption that the difference between dropouts with and without 12th grade test scores in
the mean/variance of the regression residual from the test score prediction regression is the same as the
difference in the mean/variance of the predicted values of the tests. The R2 of the prediction equations
are 0.70 for reading and 0.86 for math. The estimates of the reliability of the math test reported in the
NELS:88 documentation, while probably downward biased, are in the 0.87 to 0.90 range. Consequently,
a substantial part of the test score residual probably reflects random variation in test performance and is
unrelated to achievement levels. For this reason selection on unobservables in the availability of test data
is probably less strong than selection on the predicted portion of the test scores.
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Note that the choice of controls make a much larger difference in the full sample than

in the Catholic eighth grade sample. We do not fully understand this pattern. However,

conditioning on eighth grade variables is tricky in the full sample. The problem is that

a substantial number of variables are supplied by schools and teachers and may reflect

school specific standards. For example, the standards for being a “trouble maker” may

differ substantially between Catholic and public eight grades. As a result, in order to draw

inferences for the full sample we would want to control for type of eighth grade and interact

the covariates with this variable. However, since virtually all of the Catholic high school

students come from Catholic eighth grade, this essentially amounts to using the Catholic

eighth grade sample to identify the Catholic school effect. It is thus hard to justify why

one should be interested in the full sample.

Once detailed controls for eighth-grade outcomes are included, the estimates of the effect

of Catholic high schools on 10th grade math and reading scores are essentially 0, and the

estimates of the effects on 12th grade reading and math are only 1.14 and 0.92, respectively.

Again, there is little evidence that Catholic high schools increase achievement by 10th

grade, in accordance with the findings based on the Catholic eighth grade subsample. In

contrast, the 12th grade math and reading score results indicate a small but statistically

significant positive effect. Given the high degree of selection into Catholic high school in

the full sample on the basis of observable traits, these estimates may reflect the effects of

unobserved differences between public and Catholic high school students rather than actual

effects on test scores, and should be interpreted with caution.

2.4 A Sensitivity Analysis

Based on observables, there is not that much evidence of selection in the C8 subsample.

However, it is possible that a small amount of selection on unobservables could explain the

whole Catholic school effect. We now explore this possibility by examining the sensitivity

of the estimates of the Catholic high school effect to the correlation between the unob-

served factors that determine CH and the various outcomes Y . We display estimates of

the Catholic school effect for a range of values of the correlation between the unobserved

determinants of school choice and the outcome.

Consider the bivariate probit model
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CH = 1(X 0β + u > 0)(2.1)

Y = 1(X 0γ + αCH + ε > 0)(2.2) ·
u
ε

¸
∼ N

µ·
0
0

¸
,

·
1 ρ
ρ 1

¸¶
.(2.3)

While this model is formally identified without an exclusion restriction, semiparametric

identification requires such an excluded variable. Furthermore, empirical researchers are

highly skeptical of results from this model in the absence of an exclusion restriction. Our

thought exercise in this section is to treat this model as if it were underidentified by one

parameter. In particular, we act as if ρ is not identified.20

In Table 7 we display estimates of Catholic schooling effects that correspond to various

assumptions about ρ, the correlation between the error components in the equation for

CH and Y .21 We report results for high school graduation in the top panel and college

attendance in the bottom panel, and include both probit coefficients and average marginal

effects on the outcome probabilities (in brackets). We include family background, eighth

grade tests, and other eighth grade measures. However, because of convergence problems

in estimating the bivariate probit models we eliminated the dummy variables for household

composition (but not marital status of parents), urbanicity, region, and indicators for “stu-

dent rarely completes homework”, “student performs below ability”, “student inattentive

in class”, “a limited English proficiency index”, and “parents contacted about behavior”

from the set of controls. We vary ρ from 0 (the univariate probit case that we have already

considered above) to 0.5 by estimating bivariate probit models constraining ρ to the speci-

fied value. For the full sample, the raw difference in the high school graduation probability

is 0.13. When ρ = 0 the estimated effect is 0.058, and the figure declines to 0.037 when

ρ = 0.1 and to 0.011 if ρ = 0.2. Given the strong relationship between the observables that

determine high school graduation and Catholic school attendance in the full sample, the

evidence for a strong Catholic school effect is considerably weaker than suggested by the

estimates that take Catholic school attendance as exogenous.

For our preferred sample of Catholic 8th graders, the results are less sensitive to ρ,

presumably because the pseudo R2 is higher. The effect on high school graduation is 0.078

when ρ = 0,which is slightly below the estimate we obtain with the full set of controls in

20We use the bivariate probit because it is convenient. An alternative would be to treat ε and u non-
parametrically subject to the normalization var(ε) = var(u) = 1 and the restriction corr(ε, u) = ρ.
21See Rosenbaum (1995) for examples of this type of sensitivity analysis.
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Table 3. It declines to 0.038 when ρ = 0.3 and is still positive when ρ = 0.5. Thus, for

the Catholic 8th grade sample, the correlation between the unobservable components of

Catholic school attendance and high school graduation would have to be greater than 0.5

to explain the estimated effect under the null of no “true” Catholic high school effect.

In the bottom panel of Table 7 we present the results for college attendance. For the full

sample, the results are very similar to the high school graduation results. The evidence for

a positive effect of CH on college attendance is stronger in the Catholic 8th grade sample

than in the full sample, with the effect remaining positive until ρ is about 0.3. However, in

this sample the strongest evidence is for a positive effect of CH on high school graduation.

The problem with this type of analysis is that, without prior knowledge, it is hard to

judge the magnitude of ρ.We will show in section 3 that the assumption that “selection on

the unobservables is similar to selection on the observables” can help solve this problem.

Summarizing the results to this point, our preferred estimates, which are based on

the Catholic eighth grade sample, suggest a strong positive effect of CH on high school

graduation and college attendance. For this subsample, the relationship between Catholic

high school attendance and other observables seems weak and the estimates are not very

sensitive to the addition of a powerful set of control variables, especially in the high school

graduation case. Finally, in Table 7 we show that in the C8 sample the degree of selection

on unobservables must be quite high to explain the full Catholic high school effect. This

is where the typical analysis of bias due to selection on unobservables based on patterns

in the observables would end. We would conclude that part of the Catholic school effect

on educational attainment is real, but could not go much beyond such a statement. In

the remainder of the paper, we formalize the idea of using the degree of selection on the

observables as a guide to bias from selection on unobservables and provide ways of formally

incorporating such information into the sensitivity analysis. We then apply our methods

to study the effect of CH. Readers who are primarily interested in the empirical results

may wish to skip to Section 4.

3 Selection Bias and the Link Between the Observed
and Unobserved Determinants of School Choice and
Outcomes

In the empirical work to this point we have casually argued that “if the unobservables are

anything like the observables,” there seems to be a substantial effect of Catholic high school
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on schooling outcomes. As mentioned above many other papers also use the relationship

between an endogenous variable or an instrumental variable and the observables to make

inferences about the relationship between these variables and the unobservables. The main

goal of this section is to develop a theoretical foundation for this practice and to provide

a way to quantitatively assess the importance of the bias from the unobservables. In

particular we show that modeling how the set of observed variables is determined can yield

conditions that are useful for identification or the construction of bounds of treatment

effects.

In section 3.1 we present a formal model of observables and unobservables, which we

motivate with a discussion of the practical considerations that determine the content of

data sets. The purpose of the model is to make clear the type of assumptions that are

likely to yield Condition 1 and to aid interpretation of the parameters φXγ and φe in (1.2) .

It also justifies the particular form of Condition 1 as a way to represent the idea of equality

of selection on observables and unobservables.

In section 3.2 we point out that a structural model of school choice, in which the odds

of attending a Catholic school depend directly on the outcome, can also lead to Condition

1. In section 3.3 we consider the implications of Condition 1 for point identification of

the treatment effect, although in our application we treat it as a bound on the amount

of selection. In Section 3.4 we consider the case of continuous dependent variables and

the case in which a possibly invalid instrumental variable is available. In Appendix A.8

we provide a preliminary discussion of how one may extend the methodology to allow for

heterogeneous treatment effects. In section 3.5 we discuss the relevance of our analysis

for studies of the Catholic school effect. We argue that the truth is somewhere between

Conditions 1 and 2, with 0 ≤ φε ≤ φX0γ and then show how one can use the inequality to

construct bounds on α.

3.1 A Model of Observed and Unobserved Variables

Our outcome variable is some function of the latent variable Y ∗. In some cases we may be

interested in a binary variable such as graduating from high school (GHS) in which the

outcome may be GHS = 1(Y ∗ ≥ 0). In others the continuous variable Y ∗ itself may be
the variable of interest (such as test scores in the analysis above). Let W be the full set of

variables that determine Y ∗ according to

(3.1) Y ∗ = αCH +W 0Γ,
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where Γ is a conformable coefficient vector. We assume that Γ is random, but is drawn

once and is identical for everyone in the population. However, W and CH are random

variables that vary across members of the population, so that each individual obtains an

independent draw of W and CH but common values of Γ and α.

Assume that some of the elements ofW are observable to the econometrician and others

are not (or that the econometrician does not know that some of the observed variables

belong in the model for Y ∗). Following the notation above, denote the observable portion

of W as X and the corresponding elements of Γ as ΓX so that

(3.2) Y ∗ = αCH +X 0ΓX + ξ,

where ξ is unobserved. That is, for each potential covariate,Wj, let Sj be a dummy variable

indicating whether Wj is observable. Then

(3.3) X 0ΓX =
KX
j=1

SjWjΓj, ξ =
KX
j=1

(1− Sj)WjΓj.

Like Γj, Sj does not vary across the population.

Define the projection of the latent variable CH∗ onto X 0ΓX and ξ to be

(3.4) Proj(CH∗|X 0ΓX , ξ) = φ0 + φX0ΓXX
0ΓX + φξξ.

We will make use of a condition similar to condition 1,

(3.5) φX0ΓX = φξ

We do not know of a formal discussion of how variables are chosen for inclusion in

data sets. Here we make a few general comments that apply to many social science data

sets, including NELS:88. First, most large scale data sets such as NLSY, NELS:88, the

PSID, and the German Socioeconomic Panel are collected to address many questions. Data

set content is a compromise among the interests of multiple research, policy making, and

funding constituencies. Burden on the respondents, budget, and access to administrative

data sources serve as constraints. Obviously, content is also shaped by what is known about

the factors that really matter for particular outcomes and by variation in the feasibility

of collecting useful information on particular topics. Explanatory variables that influence

a large set of important outcomes (such as family income, race, education, gender, or

geographical information) are more likely to be collected. Major data sets with large

samples and extensive questionnaires are designed to serve multiple purposes rather than
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to address one relatively specific question, such as the effectiveness of Catholic schools. As

a result of the limits on the number of the factors that we know matter and that we know

how to collect and can afford to collect, many elements of W are left out. This is reflected

in the relatively low explanatory power of social science models of individual behavior.

Furthermore, in many applications, including ours, the endogenous variable is correlated

with many of the elements of X.

These considerations suggest that Condition 2, which underlies single equation methods

in econometrics, will rarely hold in practice. The optimal survey design for estimation of

α would be to assign the highest priority to variables that are important determinants of

both CH∗ and Y ∗ when choosing S. (It would also be to collect potential instrumental

variables that determine CH∗ but not Y ∗.) However, many factors that influence Y ∗ and

are correlated with CH∗ and/or X are left out.

The other extreme is that the constraints on data collection are sufficiently severe that it

is better to think of the elements of X as a more or less random subset of the elements ofW

rather than a set that has been systematically chosen to eliminate bias. Indeed, a natural

way to formalize the idea that “selection on the observables is the same as selection on

the unobservables” is to treat observables and unobservables symmetrically by assuming

that the observables are a random subset of a large number of underlying variables. In

our notation this amounts to assuming that Sj is an iid binary random variable which

is equal to one with probability PS. The outcome of Sj determines whether covariate Wj

is observed. Of course, there are other ways to capture the idea of equality of selection

on observables and unobservables. For example, PS may vary across types of variables

but have no systematic relationship with the values of Γj relative to the influence of the

variables on CH∗. To the extent that the data set was designed for the study of the effect

of CH∗ on Y ∗, one might expect φX0ΓX > φξ in equation (3.4). For this and other reasons

discussed in section 3.5, we focus on φX0γ > φε > 0 as the basis for our empirical work.

We are now ready to consider the implications of random selection from W . It is easy

to show that (3.5) holds on average over draws of the vector {S1....SK}.22 This result in
itself is not useful in practice because we only observe one draw of the sequence of Sj and

Γj. To justify the condition we now show that as the number of covariates W gets large,

the condition φX0ΓX = φξ will become approximately true for a given draw of Sj and Γj.

22Define φc and ω such that

Proj (CH∗ |W 0Γ) = φ0 + φcW
0Γ(3.6)

ω = CH∗ − φ0 − φcW
0Γ.
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That is, equality of selection on observables and unobservables will hold.

We define Y ∗K , CHK , and CH∗
K as outcomes for a sequence of models where there are K

factors that determine Y ∗K .
23 A natural part of the thought experiment in which K varies

across models is the idea that the importance of each individual factor declines with K.

That is,

(3.8) Y ∗K = αCHK +
KX
j=1

WK
j ΓKj ,

whereWK
j and/or ΓKj depend on K. To insure that Y

∗
K is well behaved as K gets large, we

specify that the net effect of the change in scale of WK
j and/or ΓKj on the scale of W

K
j ΓKj

is inversely proportional to
√
K, which means that the above equation may be rewritten as

(3.9) Y ∗K = αCHK +
1√
K

KX
j=1

WjΓj.

We restrictWjΓj in this sequence to be stationary so that no particular covariate will be any

more important ex-ante than others. This embodies the idea that a large number of factors

are important in determining outcomes in social science data and that none dominate.

Without loss of generality we normalize the model by assuming that E(WjΓj) = 0.

We now show that under certain assumptions (3.5) will hold as the number of elements of

W gets large. Note that our asymptotic analysis is nonstandard. First, we are allowing the

number of underlying factors, K, to get large. Second, the random variable Wj is different

in a sense than the random variables Γj and Sj. For each j we draw one observation on

Notice that

E(X 0ΓXω) = E

 KX
j=1

SjWjΓjω

(3.7)

= PSE

ω
KX
j=1

WjΓj


= PSE(ωW

0Γ) = 0.

Similar logic yields E(ξω) = 0. Consequently, since

CH∗ = φ0 + φcW
0Γ+ ω

= φ0 + φcX
0ΓX + φcξ + ω

and since X 0ΓX and ξ are orthogonal to ω, φX0γ = φε = φc.
23The “local to unity” literature in time series econometrics” (discussed in Stock, 1994) and the “weak

instruments” literatures (Staiger and Stock, 1997) are other examples in econometrics in which the asymp-
totic approximation is taken over a sequence of models, which in the case of those literatures, depend on
sample size.
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Γj and Sj which is the same for every person in the population; however, each individual

will draw his own Wj. Consider the projection of CH∗
K on the observable portion of Y ∗K ,

given by 1√
K

PK
j=1 SjWjΓj, and the unobservable portion, given by 1√

K

PK
j=1 (1− Sj)WjΓj.

This projection is meant to be the population projection (i.e., for a very large number of

persons) but with K fixed. That is, this projection conditions on a particular realization of

Γj and Sj, j = 1...K. Theorem 1 states that the projection coefficients on 1√
K

PK
j=1 SjWjΓj

and 1√
K

PK
j=1 (1− Sj)WjΓj approach each other with probability one as K gets large.

Theorem 1 Assume that (1) Wj and Γj are independent nondegenerate, stationary, er-

godic processes that satisfy the conditions for White’s (1984) Central Limit Theorem 5.15,

(2) E(WjΓj) = E(CH∗
K) = 0, and (3) Sj is independent and identically distributed with

0 < Pr(Sj = 1) < 1.

Let

Vj ≡
½
plim
K→∞

√
KE (CH∗

KWj | Γ1, ...ΓK)
¾
.

Assume that for each j, E(Vj) <∞, the sequence {ΓjVj} satisfies the mixing conditions
specified in McLeish’s (1975) law of large numbers, and

plim
K→∞

sup
j

¯̄̄
Γj
³
Vj −

√
KE (CH∗

KWj | Γ1, ...ΓK)
´¯̄̄
= 0.

Define φX0ΓX ,K and φξ,K such that conditional on S1, ..., SK ,Γ1, ...,ΓK,

Proj

Ã
CH∗

K |
1√
K

KX
j=1

SjWjΓj,
1√
K

KX
j=1

(1− Sj)WjΓj

!

= φX0ΓX ,K

1√
K

KX
j=1

SjWjΓj + φξ,K
1√
K

KX
j=1

(1− Sj)WjΓj.

Then as K gets large,
¡
φX0ΓX ,K − φξ,K

¢
converges in probability to zero.

(Proof in Appendix A.1)

The assumptions of the theorem concerning Vj say that the relationship between CH∗
K

andWj is well behaved as K gets large. To motivate these assumptions suppose that CH∗
K

were treated symmetrically with (Y ∗K − αCHK) so that

(3.10) CH∗
K =

1√
K

KX
j=1

Wjβj + ηK,
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where E(Wjβj) = 0 and the sequence {Wjβj} is stationary. Under standard mixing as-
sumptions about Wj and

©
Γj, βj

ª
this will satisfy the conditions in the theorem.24 Note

that the theorem does not require any assumptions about the form of CH, CH∗ or the

relationship between them. In particular, it applies to the special cases CH = CH∗ both

continuous, CH = CH∗ both binary, and CH binary/ CH∗ discrete. We make use of all

three of these cases below.

3.2 Correlation Between X and ξ

Mean independence of ξ and X is maintained in virtually all studies of selection prob-

lems, because without it, α is not identified even if one has a valid exclusion restriction.25

Similarly, (3.5) is not operational unless E(ξ|X) = 0 because ΓX is not identified. Our

discussion of how the observables are arrived at makes clear that it is hard to justify in

most settings, including ours. If the observables are correlated with one another, as in most

applications, then the observed and unobserved determinants of Y ∗ are also likely to be

correlated.

Assume that the conditional expectation is linear. Following the notation above, define

γ and ε to be the slope vector and error term of the “reduced form”

E (Y ∗ − αCH | X) ≡ X 0γ(3.11)

Y ∗ −E (Y ∗ − αCH | X) ≡ ε.(3.12)

We consider the case in which CH∗ is linear as defined in (3.10) and consider our data

generation process defined above. In appendix A.2 we provide a sufficient condition for the

24To see this note that

Vj = plim
K→∞

√
KE (CH∗KWj | Γ1, ...ΓK)

= plim
K→∞

E

 KX
j2=1

WjWj2βj2 | Γ1, ...ΓK


= E

 ∞X
j2=1

WjWj2βj2 | Γ1,Γ2, ...
 .

Conditional on a sequence of Γj this will be finite as long as the serial dependence between WjΓj and
Wjβj falls fast enough. Since Γj is random, Vj is also random and well behaved as K gets large. It is then
straightforward to provide conditions about

©
Γj , βj

ª
under which Vj will satisfy the conditions for the law

of large numbers.
25The exception is when the instrument is uncorrelated with X as well as ξ, as when the instrument is

randomly assigned in an experimental setting.
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coefficients of the projection of CH∗ on X 0γ and ε to be equal and thus satisfy Condition

1. The sufficient conditions are the conditions of Theorem 1 and

(3.13)

P∞
c=−∞E (WjWj−c)E

¡
βjΓj−c

¢P∞
c=−∞E (WjWj−c)E (ΓjΓj−c)

=

P∞
c=−∞E(W̃jW̃j−c)E

¡
βjΓj−c

¢P∞
c=−∞E(W̃jW̃j−c)E (ΓjΓj−c)

,

where W̃j is the component of Wj that is orthogonal to X. Roughly speaking (3.13) says

that the regression of CH∗ on Y ∗−αC is equal to the regression of the part of CH∗ that is

orthogonal to X on the corresponding part of Y ∗−αC. One can show that this condition

holds under the standard assumption E(ξ | X) = 0, in which case γ and ε are identical to

ΓX and ξ, respectively. However, E(ξ | X) = 0 is not necessary for (3.13). For example, in
appendix A.2 we show that (3.13) will also hold if E

¡
βjΓj−c

¢
is proportional to E (ΓjΓj−c)

regardless of the correlations among the Wj.

In a Monte Carlo analysis not reported, we did not find large biases even when the

unobservables were correlated with the observables in the original data generating process,

which provides additional reassurance. In fact we often found the coefficients on X 0γ

and ε to be closer to each other than the coefficients on X 0ΓX and ξ. Exploring the

consequences of the relationship between X and ξ deserves a high research priority. It is

important for our case in which one is treats observables similar to unobservables, but it is

also important for the more standard case in which the treatment effect or an instrumental

variable are assumed to be uncorrelated with the unobservables. We believe the data

generation framework we have developed will prove useful in that regard. However, given

our Monte Carlo evidence and the strength of our empirical results below we do not think

the link between X and ξ drives our results. Given the amount of material in this paper

we leave a full analysis of this difficult issue to further research.

3.3 Structural Models of School Choice and Condition 1

A conventional path to identification of causal effects in the presence of endogeneous vari-

ables is through the use of an economic model as a source of informed restrictions. Here we

digress briefly to show that this kind of approach can also deliver restrictions like Condition

1. Suppose that Catholic school attendance depends on X and ε only through Y ∗. In

addition, CH∗ may depend on some additional unobserved variables that are unrelated to

X and ε. In this case, the equation for CH∗ would take the form

(3.14) CH∗ = a1 (Y
∗ − αCH) + ς,

where ς is uncorrelated with X and ε. Combining (3.14) with (1.1) one obtains

(3.15) CH∗ = φcX
0γ + φcε+ ς,
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where φc = a1, and Condition 1 is satisfied. However, (3.14) is much stronger than

our assumptions justifying Condition 1 because it implies CH∗ is linear with coefficients

βj = φcγj for every j.

The above model might be a plausible approximation to the decision making process

of the schools, parents, and children in situations in which schools are oversubscribed and

select students to maximize outcomes such as achievement or college attendance. Many

Catholic high schools give admissions tests and base decisions in part on the results, so the

criterion of the high schools is partly related to 10th grade or 12th grade test performance.

But particular elements of X may influence CH∗ quite differently from the way in which

they influence secondary school outcomes.26 Our point is simply to establish that structural

models of school choice and outcomes may also lead to Condition 1. Our model of the data

generation process is sufficient for Condition 1, but it is not necessary.

3.4 Identification Based on Condition 1

We are now ready to discuss identification of α. Model (3.1) above is linear; however, in

studying identification we want to isolate the contribution of Condition 1 from the role of

linearity or large sample properties (e.g., normality of ε is implied by our model as the

number of factors gets large). We want to rely only on Condition 1 rather than all of

the implications of the model.27 We also wish to avoid some of the complications that

arise in studying nonparametric identification of discrete choice models. Consequently,

we study identification of α using the familiar “treatment effect” model without exclusion

restrictions:
26For example, the relative effects of specific variables such as religion, race, parental education, and the

ability and motivation of the child on sector choice and outcomes may be different. Allowing the effects of
a subset of the observed variables to enter freely into (3.14) may not be sufficient and one would require a
priori information about which variables to enter. The implicit restrictions on the unobservables embodied
in (3.14) also pose a problem, since whether or not a student graduates from high school or attends college
will be influenced by many factors that are determined after the child decides whether to attend a Catholic
high school.
27The use of a subset of restrictions implied by a model for identification is common in applied work.

For example, as long as the probability of going to a Catholic school is nonlinear, linearity of g in (3.16)
below is sufficient for identification of α and one does not need an exclusion restriction. The propensity
score could be used as an instrument. We are taking a similar approach here in that we do not want
identification to come from the linearity assumption, but rather from the relationship between observables
and unobservables.
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CH = 1(CH∗ ≥ 0)(3.16)

Y ∗ = αCH + g(X) + ε(3.17)

E(ε | X) = 0.(3.18)

The econometrician observes (X,CH, Y ), but not ε or the latent variableCH∗.28 g(X)corresponds

to X 0γand is defied so that E(ε | X) = 0.
It is well known that (3.16)-(3.18) is not nonparametrically identified without an exclu-

sion restriction. We are essentially one parameter (or one equation) short of identification.

This result suggests that one more restriction on this set of equations may deliver identifi-

cation of α.

In the notation of (3.16)-(3.18), the analog to Condition 1 is

Condition 1-NP

Proj(CH∗|g(X), ε) = φ0 + φg(X)g(X) + φεε ; φg(X) = φε .

This is equivalent to

(3.19)
cov(CH∗, g(X))

var(g(X))
=

cov(CH∗, ε)
var(ε)

.

The next theorem says that Condition 1-NP sometimes delivers point identification and

always restricts the model so that the solutions α∗ for α are the roots of a cubic.

Theorem 2 In the selection model (3.16)-(3.18) let α be the true value of the treatment

effect. Under Condition 1-NP, from the data we can identify a set A of which α is a

member. The elements α∗ of A are the roots of an identified cubic equation.

(Proof in Appendix A.3)

The value α∗ = α is one root of the cubic. Except for pathological cases, there will be

either no other real roots, or two others.29

In the Appendix A.3 we discuss why Condition 1 does not always yield point identifica-

tion. In our application we do not obtain multiple roots. In any case, in most applications

attention will focus on construction of bounds based on Theorem 4 below rather than on

point identification.
28At this point we abstract from most of the recent literature on program evaluation by assuming that α

does not vary across individuals. Allowing for heterogeneity in this parameter adds a number of additional
issues even in the presence of an exclusion restriction (see e.g. Cameron and Heckman (1998), Heckman
and Robb (1985), Heckman (1990), Imbens and Angrist (1994), and Manski (1989,1994)). We consider
heterogeneity in α in section A.8.
29If all three coefficients of the cubic are 0, there are infinitely many solutions. If the cubic is tangent to

0, there can be two roots. While both of these cases are possible, they are very special.
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3.5 Extensions

3.5.1 Continuous Endogenous Variables

The discussion in the previous subsection focused on a model such as Catholic schooling in

which CH is binary and the restriction applies to the underlying latent variable. However,

as we have already noted, the link between CH and CH∗ in Theorem 1 is not restricted to

CH = 1(CH∗ > 0). Many potential applications of the idea involve continuous endogenous

variables. We maintain the model

(3.20) Y ∗ = αCH + g(X) + ε

but no longer require that CH be binary. Instead assume that

(3.21) CH = CH∗

and define

b(X) = E(CH | X)(3.22)

u = CH − b(X).(3.23)

In this case we obtain a stronger identification result using Condition 1-NP and one

additional assumption:

Theorem 3 In model (3.20)-(3.23) assume Condition 1-NP and that

var(u)

var(b(X))
6= var(ε)

var(g(X))
.

Then one can identify the set A which consists of two values, the true α and α+ var(ε)
cov(u,ε)

.

(Proof in Appendix A.4)

Although there are two roots, this result is useful. When an applied researcher is worried

about the bias in a regression type estimator, he or she often has a strong prior about the

sign of the bias, which is the sign of cov(u, ε). Imposing an assumption about the sign of

cov(u, ε) on the data delivers point identification; if one imposes that cov(u, ε) is positive

(negative), then the smaller (larger) of the two elements in A is the true value. We stress
again, however, that in most applications attention will focus on construction of bounds

based on Theorem 4 below rather than point identification.
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3.5.2 Using an Invalid Instrumental Variable

The results above extend to the important case in which the researcher works with an

instrumental variable Z but suspects that it may be correlated with the error term in the

outcome equation. For simplicity we focus on the linear case and maintain our notation

Y ∗ = αCH +X 0γ + ε,

where X is observable but ε is not. CH is a binary variable in our case but could also be

continuous. γ is defined so thatX is uncorrelated with ε, but CH is potentially endogenous

and thus correlated with ε. We assume that the instrument Z does not influence Y directly,

but is correlated with CH. However, Z is not necessarily a valid instrument because it might

be correlated with ε. We extend the idea of using the data generation process as an aid

to identification by showing that if the relationship between X 0γ and Z is similar to the

relationship between ε and Z, then we can sometimes obtain identification.

Define β and π such that

Proj (Z | X) = X 0π,(3.24)

Proj (CH | X,Z) = X 0β + λZ,(3.25)

and define v as the residual component of Z, so that

(3.26) Z = X 0π + v.

Consider running two stage least squares. The coefficient on the endogenous variable in

this regression converges to bα = α+
cov (v, ε)

λvar(v)
.

If Z were a valid instrument, v would be uncorrelated with ε and bα would equal α. The
assumption cov(v,ε)

λvar(v)
= 0 is equivalent to assuming that

Condition 2-IV

Proj(Z|X 0γ, ε) = φ0 + φZ,X0γX
0γ + φZ,εε; φZ,ε = 0,

where φZ,X0γ and φZ,ε are defined to be the coefficients of the projection. However,

without an unusually strong form of a priori information, it is hard to argue that Z is

orthogonal to the index ε of unobservable determinants of Y ∗ if the relationships of Z and

27



Y ∗ to a broad set of observable determinants of Y ∗ are similar. A large absolute value of

φZ,X0γwould imply such a similarity.

An alternative is the type of data set generation process that leads to Condition 1. One

can apply Theorem 1 directly replacing CH∗ with Z, which yields a condition analogous to

(3.5). Using an argument similar to that in Section 3.2, one obtains a condition analogous

to Condition 1.

Condition 1-IV Proj(Z | X 0γ, ε) = φ0 + φZ,X0γX
0γ + φZ,εε; φZ,X0γ = φZ,ε .

This is equivalent to assuming that

cov(X 0π,X 0γ)
var(X 0γ)

=
cov(v, ε)

var(ε)
.

Many of the points made above about Condition 1 and 2 apply to Condition 1-IV and

Condition 2-IV. In particular, it is hard to argue that φZ,ε = 0 if the relationships of Z

and a broad set of observable determinants of Y ∗ are similar and if that leads to a large

absolute value of φZ,X0γ.

Condition 1-IV restricts the solutions α∗ to be the solutions of a cubic equation, one of

which is α. This means that typically there are either three solutions (i.e. three values of

α∗ that we can not distinguish between) or there is a unique solution that equals α. The

details are in Appendix A.5. In practice, one would use IV estimation subject to Condition

1-IV as part of a sensitivity analysis rather than for point identification. The analysis of

bounds in Section 3.5 can be extended to the IV case.

3.6 Bounding the Catholic School Effect using Condition 3

We have data on a broad set of family background measures, teacher evaluations, test

scores, grades, and behavioral outcomes in eighth grade, as well as measures of proximity

to a Catholic high school. These measures have substantial explanatory power for the

outcomes that we examine, and a large number of the variables play a role, particularly

in the case of high school graduation and college attendance. Once we restrict the sample

to Catholic eighth graders and condition on Catholic religion and distance from a Catholic

high school, a broad set of variables make minor contributions to the probability of Catholic

high school attendance. The relatively large number and wide variety of observables that

enter into our problem suggests that the observables may provide a useful guide to the

unobservables.
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However, the “random selection of observables” model that leads to Condition 1 is not

to be taken literally. There are in fact strong reasons to expect the relationship between the

unobservables to be weaker than the relationship between the observables. First, random

selection of observables is an extreme assumption. In reality, X has been selected with an

eye toward reducing bias in single equation estimates rather than at random. For example,

we control for race and ethnicity, which are strongly related to both Catholic school atten-

dance and education attainment. We also include parental background measures that figure

prominently in discussions of selection bias as well as for detailed eighth grade achievement

and behavior measures. Second, in the case of the 12th grade test scores, ε will also reflect

variability in test performance on a particular day, which presumably has nothing to do

with the decision to start Catholic high school. Finally, the most important reason is

that shocks that occur after eighth grade are excluded from X. These will influence high

school outcomes but not the probability of starting a Catholic high school. To see this

rewrite ε as ε = ε1+ ε2, where ε1 includes factors determined prior to high school and ε2 is

the independent innovation in the error term that is determined during high school. Since

CH∗ is determined in eighth grade, we can impose our data generation condition on the

variables determined prior to high school, in which case

(3.27) φg(X) =
cov(CH∗, g(X))

var(g(X))
=

cov(CH∗, ε1)
var(ε1)

.

Assume without loss of generality that cov(CH∗, g(X)) ≥ 0 as is true in our data. Since
var(ε) > var(ε1) and cov(CH∗, ε) = cov(CH∗, ε1) then

φε =
cov(CH∗, ε)

var(ε)
≤ cov(CH∗, ε1)

var(ε1)
= φg(X).

Since cov(CH∗, ε1) ≥ 0 and φε ≥ 0, Condition 1 is replaced by Condition 3. With this
condition, we are able to identify bounds on α, as stated in the following theorem.

Theorem 4 For any value α∗ there is a unique g and ε consistent with the selection model

(3.16)-(3.18). Define gα∗ and εα∗ as these objects. Assuming without loss of generality that

cov(CH∗, gα∗(X)) > 0, we can identify the set

A =
½
α∗ ∈ < : 0 ≤ cov(CH∗, εα∗)

var(εα∗))
≤ cov(CH∗, gα∗(X))

var(gα∗(X))

¾
.

Under Condition 3 the true value α is a member of this set.

(Proof in Appendix A.6)
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Treating the restriction as a bound actually simplifies the identification procedure. We

simply identify the set of values of α that are consistent with (3.27). The possibility that

more than one value of α∗ solves (3.27) exactly plays no special role. The identification

proof is constructive and suggests a manner for testing hypotheses about α (or constructing

confidence intervals). Following the logic of the proof, for any potential value α0 we can

construct gα0 and εα0 and then test whether the restriction holds for those values.

For our data and empirical specification we find that the upper bound on α occurs

when one assumes that cov(CH∗,ε)
var(ε)

= 0 and the lower bound occurs when one assumes that
cov(CH∗,g(X))

var(g(X)
= cov(CH∗,ε)

var(ε)
. Thus, in the empirical work below, we interpret estimates of α

that impose Condition 1 as a lower bound for α and single equation estimates with CH

treated as exogenous (which impose Condition 2) as an upper bound. This simplifies the

analysis substantially. If the lower bound estimates point to a substantial Catholic school

effect, we interpret this as strong evidence in favor of such an effect. As it turns out, for some

outcomes and samples, such as high school graduation, the single equation estimates are so

large relative to the degree of selection on the observables that the lower bound estimate is

still substantial. In other cases, even an amount of selection on the unobservables that is

small relative to the selection on the observables is sufficient to eliminate the entire Catholic

School effect.

4 Estimates of the Catholic School Effect Using Se-
lection on the Observables to Assess Selection Bias

4.1 Using the indices of Observables in the School Choice and
Outcome Equations to Bound ρ.

We now return to the bivariate probit model given by (2.1), (2.2), and (2.3) and use The-

orem 4 to bound α. We argued above that Condition 1 represents an extreme assumption.

The true amount of selection is in accordance with Condition 3–somewhere between in-

dependence (Condition 2) and Condition 1. In practice we have found the model to be

monotonic so the highest value of the treatment effect α occurs at ρ = 0 while the mini-

mum value occurs when Condition 1 is binding. Consequently, we focus on estimating the

model while imposing Condition 1 and interpret the result as a lower bound on α. In the

bivariate probit case, Condition 1 may be re-written30 as

30Keep in mind that in the binary probit the variances of ε and u are normalized to 1.
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(4.1) ρ =
Cov(X 0β,X 0γ)

V ar(X 0γ)
.

In the top panel of Table 8, we present estimates that use the Catholic eighth grade

sample directly and maximize the likelihood subject to (4.1) . The estimate of ρ is 0.24.

The estimate of α is 0.59 (0.33), which implies an effect of 0.07 on the probability of high

school graduation. Consequently, even with the extreme assumption of equality of selection

on observables and unobservables imposed, there is evidence of a large positive effect of

attending Catholic high school on high school graduation.

The results for college attendance follow a similar pattern. The regression relationship

between the indices of observables that determine CH and college attendance is sufficiently

strong that imposing the restriction leads to a reduction in the estimated effect of Catholic

schooling. The point estimate of 0.07 is substantial, although it is not statistically signifi-

cant.

To improve precision of the estimates of α and as a check on the robustness of the results,

we also try an alternative method that uses information contained in the public 8th grade

sample. We partition X and γ into the subvectors {X1,X2, ...,XG} and {γ1, γ2, ..., γG}
consisting of variables and parameters that fall into similar categories. In practice, G is 6.

We estimate γ on the public 8th grade sample on the grounds that very few such students

go to Catholic school, and so selectivity will not influence the estimates of γ even though

the mean of the error term may be different for this sample. We assume that the values of

γ are the same for students from Catholic and public 8th grades, up to a proportionality

factor for each subvector. Note that the univariate models reported above for the full

sample implicitly assume that γ does not depend on the sector of the 8th grade. We are

relaxing that assumption to some extent. The results using the second estimation method

are reported in the middle panel of Table 8. In the case of high school graduation, ρ is only

0.09 and the estimate of the effect on the graduate probability is 0.09. However, the college

effect is only 0.02. The restrictions on γ pass with a p-value of .12 in the high school

graduation case, but fail with a p-value of .03 in the college attendance case, so perhaps

the method 2 results for college attendance should be discounted. Details are in Table 8

note 4.31

31For completeness, Table 8 also presents estimates of α and ρ from an unrestricted bivariate probit
on the Catholic school sample. The estimates α and ρ for high school graduation are quite close to the
restricted estimates, although this is a matter of luck in view of the large standard errors. In the college
attendance case we obtain a large and implausibly negative value of ρ equal to -0.52 and an implausibly
large but very imprecise estimate of α equal to 1.18. As Grogger and Neal (2000) note, a finding of
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4.2 The Relative Amount of Selection on Unobservables Required
to Eliminate the Catholic School Effect

In this section we provide a different, more informal way to use information about selection

on the observables as a guide to selection on the unobservables that permits us to use the

Catholic high school indicator directly. Consider the alternative restriction,

Condition 4

E(ε | CH = 1)− E(ε | CH = 0)

var(ε)
=

E(X 0γ | CH = 1)− E(X 0γ | CH = 0)

var(X 0γ)
.

This condition implies that the relationship between Catholic high school and the lo-

cation of the distribution of the index of the observables that determine outcomes and the

index of unobservables is the same, after adjusting for differences in the dispersion of these

distributions. We justify this condition in Appendix A.7. The discussion in Section 3.2

pertains to Condition 4 as well.

For reasons discussed earlier, the standardized difference in the mean of the unobserv-

ables that determine is Y is likely to be smaller than the standardized difference in the

index of observables. One way to gauge the strength of the evidence for a Catholic school

effect is to see how much of it would remain if Condition 4 were true, and to ask how

large the ratio on the left would have to be relative to the ratio on the right to eliminate

the entire Catholic school effect. An advantage of this approach is that we do not have

to simultaneously estimate the parameters of the CH and Y equations subject to (4.1).

Consequently, we are able to use the full control set used in columns 4 and 8 of Tables 3

and 4. In Altonji, Elder, and Taber (2001) we expand on this approach by showing how it

can be used to evaluate an instrumental variable.

To gauge the role of selection bias in a simple way we ignore the fact that Y is estimated

by a probit but rather treat α as if it were estimated by a regression of the latent variable

Y ∗ = X 0γ + αCH + ε on X and CH. Let X 0β and gCH represent the predicted value and

residuals of a regression of CH on X so that CH = X 0β +gCH. Then,

Y ∗ = X 0[γ + αβ] + αgCH + ε.

negative selection on unobservables based on bivariate probit models is not uncommon in the Catholic
schools literature and is sometimes attributed to pre-existing differences in student motivation or discipline
that are poorly captured in existing data sets. We are very skeptical of this interpretation because the rich
set of 8th grade student behavior measures in NELS:88 point to positive selection more or less across the
board. Our view is that without exclusion restrictions or a restriction such as Condition 1, identification
of α and ρ is very tenuous. We place little weight on the unrestricted estimates.
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Assuming that the bias in a probit is close to the bias in OLS applied to the above model

and using the fact that gCH is orthogonal to X leads to the familiar formula

plim bα ' α+
cov(gCH, ε)

var
³gCH´

= α+
var (CH)

var
³gCH´ [E(ε | CH = 1)−E(ε | CH = 0)] .

Thus, subject to Condition 4 one can estimate E(X 0γ | CH = 1)− E(X 0γ | CH = 0) and

estimate the magnitude of this bias.

We use the single equation estimates of α obtained under the assumption that Catholic

schooling is exogenous in the outcome equation. A problem with using Condition 4 is that

bias in α will lead to bias in the estimates of γ, which are required to evaluate the left hand

side of the equation. We believe that in many applications this problem will be minor.

However, as a robustness check we try three alternative ways to obtain γ. The first method

is use the γ from the public eighth grade sample to form the indexX 0γ for each Catholic 8th

grade student. The results are reported in the first row of Table 9. In the case of high school

graduation, the estimate of (E(X 0γ | CH = 1) − E(X 0γ | CH = 0)) /V ar(X 0γ) is 0.30.

That is, the mean/variance of the probit index of X variables that determine high school

graduation is 0.30 higher for those who attend Catholic high school than for those who do

not. Since the variance of εi is 1.00, the implied estimate ofE(ε | CH = 1)−E(ε | CH = 0)

if Condition 4 holds is 0.30 (row 1, column 3). Multiplying by var (CHi) /var
³gCHi

´
yields

a bias of 0.37, while the estimate of α is 1.03. The last column of the table reports that

the ratio bα/[ var(CH)
var(gCH)(E(ε | CH = 1)− E(ε | CH = 0))] = (1.03/.37) = 2.78. That is, the

normalized shift in the distribution of the unobservables would have to be 2.78 times as

large as the shift in the observables to explain away the entire Catholic school effect. This

seems highly unlikely.

The second row of Table 9 reports the results when the left hand side of Condition 4

is evaluating using the estimate of γ obtained from the single equation probit estimate of

the high school graduation equation on the Catholic school sample. The third row uses

the estimate of γ when α is constrained to be 0. For these methods, the implied ratios are

4.29 and 3.55 respectively. The results in Table 9 suggest that a substantial part of the

effect of CH on high school graduation is real.

For college attendance the ratios range between 1.30 and 2.03 depending on how we

estimate γ (rows 4, 5, and 6). Since the ratio of selection on unobservables relative to

selection on observables is likely to be less than 1, part of the Catholic school effect on
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college graduation is probably real.

Table 10 presents 10th and 12th grade test score results using the same methodology

described above. The coefficient on CH has a positive and statistically significant coeffi-

cient only in the case of 12th grade math scores. However, this effect is small (1.14) and

would be almost completely eliminated assuming the upper bound Condition 4 holds. Even

if selection on unobservables is only one half as strong as that on observables, the effect

of Catholic schooling would be negligible. Given the weak evidence from the univariate

models and the likelihood of some positive bias, we conclude that Catholic high school

probably has little effect on test scores.

5 Results by minority status and urbanicity

A number of studies, including Evans and Schwab (1995), Neal (1997), and Grogger and

Neal (2000) using NELS:88 have found much stronger effects of Catholic schooling for

minority students in urban areas than for other students. Table 2 reports differences in

the means of outcomes and control variables, by high school type, for all urban minority

students and for urban minority students who attended Catholic eighth grades. Note that

54 of the 56 minority students who attended Catholic high school came from Catholic

eighth grades. Only 15 of the 700 urban minority students in public 10th grades came from

Catholic 8th grades, which is too few observations to support an analysis on the Catholic

eighth grade subsample. In the full urban minority sample the control variables provide

evidence of strong positive selection into Catholic high schools. The gaps in mother’s

education and father’s education are 0.66 years and 1.69 years, respectively. The gap in

the log of family income is 0.83. There are also very large discrepancies in the base year

measures of parental expectations for schooling and student expectations for schooling and

white-collar work, large gaps in the eighth-grade behavioral measures, and gaps of 6.49

and 3.28 in the eighth grade reading and math tests, respectively. Since there is more

selection on observable variables for this subsample, one might expect more selection on

unobservables as well. This could explain the large measured Catholic schooling effects.

In Table 5 we report models of the high school graduation probability estimated using

the urban sample of white students as well as the urban sample of minorities. All of the

regression models include our full set of controls. For the minority sample, the probit

estimate implies that the average marginal effect of CH on high school graduation is 0.191.
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The linear probability estimate is 0.133 (0.056).32 One important caveat in interpreting

these results is that of the 110 urban minority students who attend Catholic high school,

only one subsequently drops out. There clearly appears to be a strong Catholic high

school effect on graduation, but one should be wary of small sample bias in calculating the

asymptotic standard errors. Turning to the bottom panel of Table 5, we find a substantial

effect of Catholic high school on college attendance, with estimates for the urban minority

sample varying from 0.144 to 0.182 depending on the estimation methods. Consistent with

previous work, the effects are generally larger for minorities than for the samples of whites.

However, since there is more selection on observable variables for this subsample it seems

quite plausible that there could be more selection on unobservables as well and that this

could explain the large measured Catholic schooling effects.

Table 6 presents test score results for the urban minority sample. As shown in the second

column of the table, we obtain negative but small and statistically insignificant estimates

of the effect of Catholic schooling on both the math and reading 10th grade tests, which

agrees with the analysis based on both the full NELS:88 sample and the Catholic eighth

grade subsample. We obtain a coefficient of -0.19 (1.39) for the 12th grade reading score

as well, and a coefficient of 1.25 (1.09) for the 12th grade math score. Evidently, most

or all of the substantial Catholic high school advantage for urban minorities in test scores

disappears once we control for family background and 8th grade outcomes. This result

reflects the large gap in the means of the controls in favor of minorities attending Catholic

high school. As one can see in the table, we obtain similar results when we add suburbanites

and extend our analysis to a pooled urban/suburban minority subsample.

We also perform a sensitivity analysis based on (2.1)-(2.3) for the urbanminority sample.

Turning again to Table 7, note that the raw differential in the high school graduation

probability is 0.22 and the estimate of the Catholic school effect under the assumption

ρ = 0 is 0.176. The estimate is 0.132 when ρ = 0.2, and 0.013 when ρ = 0.5. Thus,

the correlation between the unobservables would have to be in the neighborhood of 0.5, a

very large correlation, for one to conclude that the true effect of Catholic schools on the

graduation rates of urban minorities is 0. This value seems unreasonable.

We also estimated the restricted bivariate probit model as in Table 8 for urban mi-

norities. We experienced computational difficulties in estimating the model for high school

32The estimate including eighth grade school fixed effects is essentially zero, which leaves open the
possibility that cross-school variation in the opportunities available to urban minority students may be
responsible for the positive estimated Catholic high school effects. However, the standard error of the fixed
effects estimate is quite large (.107), so one should not make too much of this result.
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graduation that we suspect are related to the fact that only 1 Catholic school attendee

failed to graduate. For college attendance, we obtained an estimate of ρ of 0.5 and a neg-

ative but insignificant estimate of α. Due to the computational problems, we focus on an

analysis involving the differences in indices of observable variables based on Condition 4. In

Table 11 rows 2 and 4 we form the measure of selection on observables using the estimates

of γ from the urban minority public 8th grade sample. For this sample under Condition 4

the implied shift in (E(ε | CH = 1) − E(ε | CH = 0)) is 0.56 in the case of high school

graduation and 0.72 in the case of college attendance, which reflects strong selection on

the observables that influence these outcomes. Still, selection on the unobservables would

have to be 2.37 times as strong as selection on the observables to explain away the entire

high school graduation effect. This seems very unlikely to us; the evidence suggests that

for urban minorities a substantial part of the estimated effect of Catholic schooling on

graduation is real. On the other hand, we cannot rule out the possibility that much of the

effect of CH on college attendance is due to selection bias.

In Table 12 we report the results of an analysis of test scores. As we have already noted,

there is little evidence that Catholic high school improves the reading scores of minorities.

The table shows that in the case of 12th grade reading scores (E(X 0γ | CH = 1) −
E(X 0γ | CH = 0)) /V ar(X 0γ) is 0.090. Under Condition 4 this amount of favorable

selection on the observables implies an estimate of (E(ε | CH = 1) − E(ε | CHi = 0))

equal to 2.76. Since the point estimate of α is already negative, there is certainly no

evidence that Catholic schools boost 12th grade reading scores.

In the case of 12th grade math, the point estimate of α is 1.82 and the implied estimate

of (E(ε | CH = 1) − E(ε | CH = 0)) under Condition 4 is 1.17, and the implied ratio of

selection on unobservables to selection on observables required to explain away the entire

estimate of α is 0.89, which seems large given that a substantial part of the unexplained

variance is due to unreliability in the tests. (See note 16.) Consequently, we would not rule

out a small positive effect on math but there is little evidence that Catholic high schools

substantially boost the test scores of urban minorities.33

33These test score findings are robust to the imputation procedures for dropouts described in Section 2.3.
In contrast, Grogger and Neal (2000) find some evidence for a Catholic school effect on minority test scores
using median regression, particularly when they restore high school dropouts with missing test score data
to the sample by simply assigning them 0. We have not fully investigated the source of the discrepancy,
but suspect that our use of a more extensive set of control variables, our imputation process, differences in
the samples used, and differences between mean and median regression all play a role.
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6 Conclusion

Our analysis of the Catholic school effect is guided by three premises. The first is that the

exclusion restrictions used in previous studies do not provide a reliable means of identifying

the Catholic school effect. The second premise is that in the absence of a bulletproof

instrument, it is important to start with a rich set of control variables and with treatment

and control groups who look similar in eighth grade. This leads us to focus on students

from Catholic eighth grades. Conditioning on Catholic eighth graders allows us to avoid

concerns about lack of comparability between the tiny fraction of students from public

primary schools who attend Catholic high school and other students. It also allows us to

isolate the effect of Catholic high school from the effect of Catholic primary school.

The third premise is that the degree of selection on the observables is informative about

selection on unobserved characteristics. As we noted in the introduction, it is standard

procedure to consider the relationship between an explanatory variable or an instrumental

variable and the observed variables in the model in discussions of exogeneity. The method-

ological contribution of this paper is to formalize the use of such information and to provide

a way to assess the degree of selection bias. We make the theoretical point that knowledge

of how the observable variables are chosen from the full set of variables can be sufficient

to identify the effect of an endogenous variable. We illustrate this by establishing identifi-

cation in the case in which selection on observables and unobservables is the same in the

sense that unit shifts in the indices of observables and unobservables that determine the

outcome have the same effect on school choice. In the Catholic school case, selection on

the observables is likely to be stronger than selection on the unobservables. Consequently,

the estimates of our model subject to the restriction imposed by equal selection provides a

lower bound estimate of the effect of Catholic schools while the single equation estimates

provide an upper bound. We also propose an informal way to assess selectivity bias based

on a measure of the ratio of selection on unobservables relative to selection on observables

that would be required if one is to attribute the entire Catholic school effect to selection

bias.

We have three main substantive findings regarding Catholic schools. First, attending

Catholic high school substantially raises high school graduation rates. In the Catholic

eighth grade sample, only 0.02 of the 0.105 Catholic high school advantage in graduation

rates is explained by eighth grade outcomes or family background. We obtain a lower bound

estimate of 0.07 when we impose equality of selection of observables and unobservables an

upper bound estimate of 0.08 when we assume that there is no selection on unobservables.
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While estimates that treat Catholic school attendance as exogenous almost certainly over-

state the effect of Catholic high schools, the degree of selection on the unobservables would

have to be much stronger than the degree of selection on the observables to explain away

the entire effect. We also find that the upper bound effect of Catholic school on the proba-

bility of college attendance is very large (0.15) when Catholic school attendance is treated

as exogenous, but the lower bound estimates ranges between 0.07 and 0.02 depending on

estimation details. We conclude that part of the effect of CH on college attendance is

probably real, but the evidence is less clear cut than in the high school graduation case.

Second, we find little evidence that Catholic high schools raise reading scores. In fact,

some of our point estimates are negative. The single equation estimates point to a positive

effect of about 0.1 standard deviations on the 12th grade math score. However, given

sampling error and evidence of positive selection bias, we do not have much evidence that

Catholic high schools boost test scores.

Third, our results for urban minorities suggest that Catholic high school attendance

substantially raises the probability of high school graduation for this group. Single equation

estimates of the impact on college attendance are also very large, but the degree of positive

selection on the observables that determine college attendance is sufficiently large that one

could not rule out selection bias as the full explanation for the Catholic school effect on

college attendance. In the full urban minority sample, differences by high school sector

in family background characteristics and eighth grade performance are very large. The

assumption that the selection on the unobservables mirrors selection on the observables

results in a larger selectivity bias correction for this group. Although in common with

other recent studies we obtain larger single equation estimates of the Catholic school effect

for urban minorities than other groups, these differences may be due to differences in the

degree of selection bias.

A natural followup to our study would be an examination of the mechanism through

which Catholic schools affect high school graduation. Such a study would draw on the

literature on Catholic schools and the NELS:88 data on school characteristics and student

behavior during the high school years. Multivariate analysis of the effect of differences

in background and eighth grade social behavior suggests that such differences are more

important for graduation than for test scores (not reported). Many of the traits of Catholic

schools stressed by Bryk et al (1993) and Coleman and Hoffer (1987) may work to reduce the

dropout probability among low achieving students or students with behavioral problems.

The more structured and communitarian environment normally found in Catholic high
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schools may be effective in reducing dropout rates and increasing college attendance.

There is a long agenda for future research on the econometric methods that we propose.

With regard to the theoretical foundations, high priorities include additional analysis of

identification in both single equation and instrumental variables settings and a full analysis

of heterogeneous effects case introduced in Appendix A.8. In our application, the measure

of the relative degree of selection on observables and unobservables is not very sensitive to

how we compute γ, the parameters of the outcome equation, and we were able to use the

public 8th grade sample as a benchmark for γ in any case. However, a theoretical analysis

of conditions under which bias in the estimates of γ is important would be helpful.

With regard to the art of assessing when and how to use the methods that we describe,

a monte carlo analysis of how the methods perform in the context of real world examples

would be informative, particularly in those cases in which concern about identification

is a first order issue. Examples of hard to research questions that strike us as ripe for

application of our methods include the effect of drugs and alcohol on future socioeconomic

outcomes, the effect of criminal activity on future labor market success and the effects of

peer characteristics on school outcomes. One could also carry out a monte carlo analysis

in which one samples at random from the hundreds of 8th grade family background and

student characteristics available in NELS:88, although this would be taking too literally the

idea of random inclusion of variables. This idea could be formalized and used to bootstrap

the estimates. More generally, we have used the model in Section 3.1 to justify the use

of Condition 1 as a piece of identifying information. An alternative approach that should

be developed is to use additional implications of the data generation model to perform

inference. An important component of this would be to allow for more general patterns

of dependence between the observables and unobservables. If the covariates are chosen at

random and one can observe the covariance pattern among the observable covariates, one

should be able to use this information to infer the dependence between the observable and

unobservable covariates.

In closing, we caution against the potential for misuse of the idea of using observables

to draw inferences about selection bias. The conditions required for Theorem 1 imply that

it is dangerous to infer too much about selection on the unobservables from selection on

the observables if the observables are small in number and explanatory power or if they are

unlikely to be representative of the full range of factors that determine an outcome.
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Appendix A

A.1 Proof of Theorem 1
Proof. We simplify the notation by defining

EK (·) ≡ E (· | S1, ..., SK ,Γ1, ...ΓK)
Define

φ ≡
plim
K→∞

EK (CH∗
K (YK − αCHK))

plim
K→∞

EK
¡
(YK − αCHK)

2¢(A-1)

=

plim
K→∞

1
K

PK
j=1 Γj

√
KEK (CH∗

KWj)

plim
K→∞

1
K

PK
j1=1

PK
j2=1

Γj1Γj2E
K (Wj1Wj2)

=

plim
K→∞

1
K

PK
j=1 ΓjVj + plim

K→∞
1
K

PK
j=1 Γj

³√
KEK (CH∗

KWj)− Vj
´

P∞
c=−∞E(ΓjΓj−cWjWj−c)

=

plim
K→∞

n
1
K

PK
j=1E (ΓjVj)

o
P∞

c=−∞E(ΓjΓj−cWjWj−c)
.

The term 1
K

PK
j=1 Γj

³√
KEK (CH∗

KWj)− Vj
´
goes to zero as a result of our assump-

tion about plim
K→∞

supj

¯̄̄
Γj
³
Vj −

√
KE (CH∗

KWj | Γ1, ...,ΓK)
´¯̄̄

. We apply the central limit

theorem to WjΓj in deriving the denominator and apply the law of large numbers for the
numerator. Under the assumptions of the theorem both the numerator and denominator
are finite.
To simplify the exposition define

ΨK =

"
1√
K

PK
j=1 SjWjΓj

1√
K

PK
j=1 (1− Sj)WjΓj

#

By definition of the projection of interest·
φX0ΓX ,K

φξ,K

¸
=

£
EK (ΨKΨ

0
K)
¤−1

EK (ΨKCH
∗
K)

=

·
φ
φ

¸
+
£
EK (ΨKΨ

0
K)
¤−1

EK

µ
ΨK

µ
CH∗

K −Ψ0
K

·
φ
φ

¸¶¶
.

From the conditions in the theorem EK (ΨKΨ
0
K) is finite and positive definite.
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To see that EK

µ
ΨK

µ
CH∗

K −Ψ0K

·
φ
φ

¸¶¶
converges to zero note that

plim
K→∞

EK

Ã
1√
K

KX
j=1

SjWjΓj

µ
CH∗

K −Ψ0K

·
φ
φ

¸¶!

=plim
K→∞

1√
K

KX
j=1

SjΓjE
K (WjCH

∗
K)

− plim
K→∞

EK

ÃÃ
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K

KX
j=1
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!Ã
1√
K

KX
j=1

WjΓjφ

!!

=plim
K→∞

1

K

KX
j=1

E (SjΓjVj)

− plim
K→∞

1

K

KX
j1=1

KX
j2=1

Sj1Γj1Γj2E
K (Wj1Wj2)φ

=E (Sj) plim
K→∞

(
1

K

KX
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E (ΓjVj)

)
−E(Sj)

Ã ∞X
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!
φ
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where the final equality follows from(A− 1). By virtually the same argument

plim
K→∞

EK

Ã
1√
K

KX
j=1

(1− Sj)WjΓj

µ
CH∗

K −Ψ0
K

·
φ
φ

¸¶!
= 0.

Thus

plim
K→∞

©
φX0ΓX ,K

ª
= plim

K→∞

©
φξ,K

ª
= φ

A.2 Deriving Condition 1
As above treat the model as

CH∗
K =

1√
K

KX
j=1

Wjβj

Y ∗K =
1√
K

KX
j=1

WjΓj

where we have incorporated αCHK into Y ∗K to simplify the notation. In this section we
use notation that differs somewhat from the text. Throughout this section we use “hats”
to define the predicted value from a linear projection of a variable onto the observable

41



covariates in W and “tildes” to denote the residual from that regression. For example
Y ∗K = Ŷ ∗K+ Ỹ ∗K where Ŷ

∗
K is the linear prediction from a regression of Y

∗
K on the observables.

In the notation of the text

Ŷ ∗K = X 0γ

Ỹ ∗K = ε

Furthermore we simplify the notation by dropping the K subscript when we mean the
probability limit of the variable so Y ∗ ≡plim{Y ∗K} .
Since cov(Ŷ ∗K , Ỹ

∗
K) = 0, in this notation Condition 1 can be written as

(A-2)
cov(CH∗, Ŷ ∗)

var(Ŷ ∗)
=

cov(CH∗, Ỹ ∗)

var(Ỹ ∗)
.

It is straightforward to verify that (A-2) is equivalent to

(A-3)
cov(CH∗, Y ∗)

var(Y ∗)
=

cov(gCH∗, Ỹ ∗)

var(Ỹ ∗)
.

When does our data generation process yield (A-2)? Since CH∗
K and Y ∗K are linear we

can also write

gCH∗
K =

1√
K

KX
j=1

fWjβj(A-4)

Ỹ ∗K =
1√
K

KX
j=1

fWjΓj.

Under the assumptions in Theorem 1 as the number of regressors gets large for any j,

cov(CH∗, Y ∗)
var(Y ∗)

≈
P∞

c=−∞E
¡
WjβjWj−cΓj−c

¢P∞
c=−∞E (WjΓjWj−cΓj−c)

(A-5)

=

P∞
c=−∞E (WjWj−c)E

¡
βjΓj−c

¢P∞
c=−∞E (WjWj−c)E (ΓjΓj−c)

,

where the expectation is over both (WjWj−c) and
¡
βjΓj−c

¢
.

Similarly,

(A-6)
cov(gCH∗, Ỹ ∗)

var(Ỹ ∗)
≈

P∞
c=−∞E(W̃jW̃j−c)E

¡
βjj−c

¢P∞
c=−∞E

³
W̃jW̃j−c

´
E (ΓjΓj−c)

.

Comparison of (A-5) and (A-6) establishes the claim in the text that the conditions in
Theorem 1 combined with (3.13) are sufficient for (A-2).
In general the autocovariance structure of Wj will be different from the autocovariance

structure of W̃j, and the restriction (A-2) will not be valid. We now provide an example
(other than the standard case in which X is uncorrelated with the excluded variables) for
which (3.13) and (A-2) hold.
Assume that for some constant τ

E
¡
βjΓj−c

¢
= τE (ΓjΓj−c) .
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In this case

cov(gCH∗, Ỹ ∗)

var(Ỹ ∗)
=

P∞
c=−∞E

³
W̃jW̃j−c

´
τE (ΓjΓj−c)P∞

c=−∞E(W̃jW̃j−c)E (ΓjΓj−c)
= τ .

Such a case can occur when Γj and βj have the same stationary ARMA process. To see
this consider the MA(∞) process

βj = ω1j + θ1ω
1
j−1 + θ2ω

1
j−2 + ...

Γj = ω2j + θ1ω
2
j−1 + θ2ω

2
j−2 + ...

where the joint distribution of (ω1j , ω
2
j) is serially uncorrelated with constant variance and

cov(ω1j , ω
2
k) = 0 when k 6= j. Then (defining θ0 = 1)

E
¡
βjΓj−c

¢
= cov(ω1j , ω

2
j)

∞X
r=0

θrθr+c

E (ΓjΓj−c) = var(ω2j)
∞X
r=0

θrθr+c

so

E
¡
βjΓj−c

¢
=

cov(ω1j , ω
2
j)

var(ω2j)
E (ΓjΓj−c) .

A.3 Proof of Theorem 2
Proof. Consider any value α∗ 6= α that is consistent with the model (3.16)-(3.18) and
Condition 1-NP. Define (g∗(X), ε∗) as the analogues of (g(X), ε) that accompany α∗. Then

E(Y | CH = 0,X) = g∗(X) +E(ε∗ | CH∗ ≤ 0,X)
= g(X) +E(ε | CH∗ ≤ 0,X),

E(Y | CH = 1, X) = α∗ + g∗(X) +E(ε∗ | CH∗ > 0, X)
= α+ g(X) +E(ε | CH∗ > 0,X),

and
E (ε∗ | X) = 0.

Solving these equations for g∗ yields

g∗(X) = g(X) + p(X) (α− α∗) ,

where p(X) is the propensity score (i.e. p(X) = Pr(CH = 1 | X) and thus
ε∗ = (α− α∗) (CH − p(X)) + ε.

If the alternative model satisfies (3.19) then

cov(CH∗, g∗(X))
var(g∗(X))

=
cov(CH∗, ε∗)

var(ε∗)
,

43



or

cov(CH∗, g(X)) + (α− α∗) cov(CH∗, p(X))

var(g(X)) + 2 (α− α∗) cov(g(X), p(X)) + (α− α∗)2 var(p(X))

=
cov(CH∗, ε) + (α− α∗) cov (CH∗, CH − p(X))

var(ε) + 2 (α− α∗) cov(ε, CH − p(X)) + (α− α∗)2 var(CH − p(X))
.

Defining

φ ≡ cov(CH∗, g(X))
var(g(X))

=
cov(CH∗, ε)

var(ε)
,

and dividing top and bottom by var(g(X)) and var(ε), we get

φ+ (α− α∗) cov(CH
∗,p(X))

var(g(X))

1 + 2 (α− α∗) cov(g(X),p(X))
var(g(X))

+ (α− α∗)2 var(p(X))
var(g(X))

=
φ+ (α− α∗) cov(CH

∗,CH−p(X))
var(ε)

1 + 2 (α− α∗) cov(ε,CH−p(X))
var(ε)

+ (α− α∗)2 var(CH−p(X))
var(ε)

.

Algebraic manipulation yields

0 = (α− α∗)3
·
var(CH − p(X))

var(ε)

cov(CH∗, p(X))
var(g(X))

− var(p(X))

var(g(X))

cov (CH∗, CH − p(X))

var(ε)

¸
+(α− α∗)2

·
φ
var(CH − p(X))

var(ε)
+ 2

cov(CH∗, CH − p(X))

var(ε)

cov(CH∗, p(X))
var(g(X))

−φvar(p(X))
var(g(X))

− 2cov(g(X), p(X))
var(g(X))

cov (CH∗, CH − p(X))

var(ε)

¸
+(α− α∗)

·
cov(CH∗, p(X))

var(g(X))
+ 2φ

cov(ε, CH − p(X))

var(ε)

−cov (CH
∗, CH − p(X))

var(ε)
− 2φcov(g(X), p(X))

var(g(X))

¸
.

Thus the only values of α∗ that are consistent with the observed data and Condition 1-NP
of the model are members of the set A, so the set is identified. Furthermore note that
α∗ = α is a member of the set.

To understand why Condition 1-NP does not always yield point identification, note that
in (3.19) the denominators, var(g(X)) and var(ε), are not identified without knowledge of
α. In particular, define (α∗, g∗, ε∗) to be an alternative possibility for (α, g, ε) that satisfies
(3.16)-(3.19). For this possibility (3.19) can be rewritten as

(A-7) cov(CH∗, g∗(X))var(ε∗) = cov(u, ε∗)var(g∗(X)).

In that case one can show that

var(g∗(X)) = var (g(X) + (α− α∗) p(X))(A-8)

= var(g(X)) + 2 (α− α∗) cov(g(X), p(X)) + (α− α∗)2 var(p(X)).

The right hand side of (3.19) is the product of var(g∗(X)), which is quadratic in (α− α∗),
and cov(u, ε∗), which is linear in (α− α∗). This yields a cubic in (α− α∗).
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It is not clear how much we should worry about this potential problem even in the
case that one is using the condition for point identification rather than a bound. Consider
equation (A-8). We suspect that in typical applications, the contribution of (α∗ − α)p(X)
to the variance of g∗(X) will be small relative to var(g(X)) when α∗ remains within a
reasonable range. In this case the other two roots are not worrisome since they involve
changes in var(g∗(X)) outside the range of plausibility. In our empirical work we have
found that var(g∗(X)) is insensitive to reasonable values of α∗, but the question of whether
this is true in most applications can only be answered through empirical implementation.

A.4 Proof of Theorem 3
Proof. Follow similar logic to Theorem 2. Consider any value α∗ 6= α that is consistent
with the model and Condition 1-NP. Then define (g∗(X), ε∗) as the analogues of (g(X), ε)
that accompany it. Then

Y = α∗CH + g∗(X) + ε∗.
Since ε∗ must be mean zero conditional on X,

g∗(X) = g(X) + (α− α∗) b(X),

and
ε∗ = ε+ (α− α∗)u ,

where b(X) and u are defined in the text.
If the alternative model satisfies the conditions in the theorem then

cov(CH∗, g∗(X))
var(g∗(X))

=
cov(CH∗, ε∗)

var(ε∗)
.

Substituting in for g∗ and ε∗ leads to

cov(b(x), g(X)) + (α− α∗) var(b(X))

var(g(X)) + 2 (α− α∗) cov(g(X), b(X)) + (α− α∗)2 var(b(X))
(A-9)

=
cov(u, ε) + (α− α∗) var (u)

var(ε) + 2 (α− α∗) cov(ε, u) + (α− α∗)2 var(u)
.

As above, defining

φ ≡ cov(b(X), g(X))

var(g(X))
=

cov(u, ε)

var(ε)

and dividing top and bottom of the left hand side of (A-9) by var(g(X)) and the right
hand side by var(ε) (respectively), one finds that

φ+ (α− α∗) var(b(X))
var(g(X))

1 + 2 (α− α∗)φ+ (α− α∗)2 var(b(X))
var(g(X))

=
φ+ (α− α∗) var(u)

var(ε)

1 + 2 (α− α∗)φ+ (α− α∗)2 var(u)
var(ε)

.

Algebraic manipulation leads to

0 = (α− α∗)
·
var(b(X))

var(g(X))
− var(u)

var(ε)

¸
+ (α− α∗)2 φ

·
var(b(X))

var(g(X))
− var(u)

var(ε)

¸
.

This gives two roots

α∗ = α

α∗ = α+
1

φ
= α+

var(ε)

cov(u, ε)
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Thus the only values of α∗ that are consistent with the observed data and Condition 1-NP
are members of the set A, so it must be identified. Furthermore note that α∗ = α is a
member of the set.

A.5 Cubic Solution from Instrumental Variables Approach
Following the text above, the question is whether the assumptions allow us to pin down
the bias. Suppose it cannot. Then there would exist alternative values α∗, γ∗, and ε∗ with
α∗ 6= α so that for the same bα as in the text

bα = α∗ +
cov (v, ε∗)
λvar(v)

.

Under these conditions note that

Y − α∗CH = (α− α∗)CH +X 0γ + ε

= (α− α∗) [X 0β + u+ λ (X 0π + v)] +X 0γ + ε,

and thus

γ∗ = γ + (α− α∗) (β + λπ)
ε∗ = ε+ (α− α∗) (u+ λv) .

But if this model satisfies the assumptions we know that

cov(X 0π,X 0γ∗)
var(X 0γ∗)

=
cov(v, ε∗)
var(ε∗)

,

which is equivalent to

cov (X 0π,X 0γ) + (α− α∗) cov (X 0π, (X 0β + λX 0π))

var (X 0γ) + 2 (α− α∗) cov(X 0γ, (X 0β + λX 0π)) + (α− α∗)2 var(X 0β + λX 0π)

=
cov (v, ε) + (α− α∗) cov (v, (u+ λv))

var(ε) + 2 (α− α∗) cov(ε, (u+ λv)) + (α− α∗)2 var(u+ λv)
.

Imposing the restriction from the true model

φ ≡ cov(X 0π,X 0γ)
var(X 0γ)

=
cov(v, ε)

var(ε)
,

yields

φ+ (α− α∗) cov(X
0π,(X0β+λX0π))
var(X0γ)

1 + 2 (α− α∗) cov(X
0γ,(X0β+λX0π))
var(X0γ) + (α− α∗)2 var(X0β+λX0π)

var(X0γ)

=
φ+ (α− α∗) cov(v,(u+λv))

var(ε)

1 + 2 (α− α∗) cov(ε,(u+λv))
var(ε)

+ (α− α∗)2 var(u+λv)
var(ε)

.
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Solving out yields

0 = (α− α∗)3
·
cov (v, (u+ λv))

var(ε)

var(X 0β + λX 0π)
var(X 0γ)

− cov (X 0π, (X 0β + λX 0π))
var(X 0γ)

var(u+ λv)

var(ε)

¸
+(α− α∗)2

·
φ
var(X 0β + λX 0π)

var(X 0γ)
+ 2

cov (v, (u+ λv))

var(ε)

cov(X 0γ, (X 0β + λX 0π))
var(X 0γ)

−φvar(u+ λv)

var(ε)
− 2cov (X

0π, (X 0β + λX 0π))
var(X 0γ)

cov(ε, (u+ λv))

var(ε)

¸
+(α− α∗)

·
cov (v, (u+ λv))

var(ε)
+ 2φ

cov(X 0γ, (X 0β + λX 0π))
var(X 0γ)

−cov (X
0π, (X 0β + λX 0π))
var(X 0γ)

− 2φcov(ε, (u+ λv))

var(ε)

¸
.

One solution to this cubic is the true α (i.e. α = α∗). Depending on whether the solution
to the remaining quadratic is real or not, this value may be the only solution or there may
be two others.

A.6 Proof of Theorem 4
Proof.
For any value α∗ 6= α, consider an alternative model

Y ∗ = α∗CH + gα∗ (X) + εα∗

with E(εα∗ | X) = 0 in which gα∗and εα∗ satisfy the conditions of (3.16)-(3.18) .
Then it must be the case that

gα∗(X) = E(Y − α∗CH | X)
= E(αCH + g(X)− α∗CH | X)
= (α− α∗) b(X) + g(X).

Thus gα∗ is identified and
εα∗ = Y − α∗CH − gα∗ (X)

is also identified.
Since gα∗and εα∗ are identified, the set

A =
½
α∗ ∈ < : 0 ≤ cov(CH∗, εα∗)

var(εα∗))
≤ cov(CH∗, gα∗(X))

var(gα∗(X))

¾
must be identified.
At the true value of α, gα∗(X) = g(X) and εα∗ = ε. Since for this model Condition 3

implies that

0 ≤ cov(CH∗, ε)
var(ε))

≤ cov(CH∗, g(X))
var(g(X))

,

the true value of α is a member of this set.
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A.7 Justifying Condition 4
Consider applying Theorem 1 and (3.13) in the case in which CH∗ = CH. Following the
notation in the text this would imply that

Proj(CH|X 0γ, ε) = φ0 + φX0γX
0γ + φεε;φX0γ = φε .

Since ε is uncorrelated with X by definition of γ, the above equation implies

(A-10)
cov(CH,X 0γ)
var(X 0γ)

=
cov(CH, ε)

var(ε)
.

Let P = Pr(CH = 1). Since CH is binary, for any random variable Q,

cov(CH,Q) = P (1− P ) [E(Q | CH = 1)− E(Q | CH = 0)] .

Applying this to (A-10) for Q = ε and Q = X 0γ yields

E(X 0γ | CH = 1)− E(X 0γ | CH = 0)

var(X 0γ)
=

E(ε | CH = 1)− E(ε | CH = 0)

var(ε)

which is Condition 4.
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A.8 Heterogeneity in the Effects of Catholic Schools
Our analysis extends in a natural way to the case of heterogeneity in the effect of attending
Catholic school. Let Y ∗ch and Y ∗p be the outcomes conditional on choice of Catholic high
school and public high school, respectively, for a given student. As above let W be the set
of covariates that fully determine Y ∗ch and Y

∗
p and let X be the observed components of W .

The heterogeneous effects model may be written as

CH∗ = b(X) + u
Y ∗ch = gch(X) + εch
Y ∗p = gp(X) + εp,

where Y ∗ch is observed if CH
∗ ≥ 0, in which case CH = 1, and Yp is observed otherwise. Our

previous specification is a special case of this model in which gch(X)−gp(X) is constant and
εch = εp. Treating the data generation processes for Y ∗ch and Y ∗p as equivalent to the data
generation process for Y ∗−αCH above and applying Theorem 1, we obtain the restrictions

Proj(CH∗|gch(X), εch) = φchgch(X) + φchεch
Proj(CH∗|gp(X), εp) = φpgp(X) + φpεp.

These restrictions can be used to help identify the model in a way that is directly
analogous to our use of Condition 1 to identify the model in the homogeneous effects
case. We conjecture that if the components of X are a random subset of the components
of W and if the number of elements of W and X are large, then the joint distribution
of (b(X), gch(X), gp(X)) is the same as the joint distribution of (u, εch, εp) up to a scale
parameter that depends on the fraction of elements of W that are observed. If this is the
case, then a nonparametric or semiparametric analysis may be possible, at least in theory.
We leave a full analysis of this case to future work.
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Appendix B: Sample Creation and Variables Used

B.1 Description of all variables used
The variables used in the empirical analysis can be classified into several categories: demo-
graphics, family background, geography, eighth grade test scores, eighth grade performance
in school, and outcomes. We describe each of these in turn, with NELS:88 variables used
in the creation of our measures shown in italics.

Demographic Variables:
These include indicators for female, asian, hispanic, black, and whether catholic, which is
created from parental responses regarding religion (byp29).

School Sector:
Eighth Grade Sector (g8ctrl1 )
High School Sector (CH) (g10ctrl1)

Family Background Measures:
Household composition: Separate 0-1 indicators for whether the student lives with his/her
mother and father, mother and male guardian, father and female guardian, mother only, or
father only. Excluded category is ”other relative or non-relative”. Created from byfcomp.

Parents’ marital status: Separate 0-1 indicators for divorced, widowed, separated, never
married, and not married but living in a marriage-like relationship. The excluded category
is married. Created from byparmar.

Mother’s and father’s education: Continuous variables ranging from 8-18 years created
from parental questionnaires (byp30 and byp31 ). If these variables are missing, student
responses from bys34a and bys34b are used.

Log family income: Continuous variable created using the midpoints of the ranges of the
categorical variable byfaminc.

Missing value treatment: All family background variables are set equal to the sample mean
when missing, and new 0-1 indicators for missing values are created for each of the original
variables.

Geographic Variables:
Region and Urbanicity: These are 0-1 indicator variables taken from the urbanicity and re-
gion controls for the 8th grade school the student attended, variables g8urban and g8region.
There are a total of 3 urbanicity and 8 region categories.

Distance Measures: 6 categories of distance from the student to the nearest catholic high
school, ranging from 0-1 mile, 1-3, 3-6, 6-10, 10-20, and over 20. Student’s residence was
taken as the center of the 8th grade school’s zip code. The zip code was determined by
matching on zipcode population in NELS with the Census of Population and Housing zip
code level data. High school locations were assigned the center of the zip code as reported
in Ganley’s Catholic Schools in America, 1988 edition. We obtain the minimum distance
for each student by first computing distance to all of the Catholic schools using a program
from the National Oceanic and Atmospheric Administration.

Eighth Grade Test Score Measures:
All test scores were taken from NELS standardized values from Item Response Theory
scaled scores–by2xrstd, by2xmstd, by2xsstd, and by2xhstd.

Eighth Grade Performance-in-School Measures:
Delinquency Index: Created from student self-reports of whether sent to the office for
misbehavior (bys55a) or parents contacted because of a behavior problem (bys55e). This
variable ranges in value from 0-4.

Student got in a fight: Created from student self-reported variable bys55f, this variable
ranges from 0 (“never”) to 2 (”more than twice in the past semester”).
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Student performs below ability: 0-1 indicator variable taken from teacher surveys (byt1_2
and byt4_2 ).

Student rarely completes homework: 0-1 indicator variable taken from teacher surveys
(byt1_3 and byt4_3 ).

Student frequently absent: 0-1 indicator variable taken from teacher surveys (byt1_4 and
byt4_4 ).

Student frequently tardy: 0-1 indicator variable taken from teacher surveys (byt1_5 and
byt4_5 ).

Student inattentive in class: 0-1 indicator variable taken from teacher surveys (byt1_6 and
byt4_6 ).

Student frequently disruptive in class: 0-1 indicator variable taken from teacher surveys
(byt1_8 and byt4_8 ).

Trouble-Maker: 0-1 indicator variable created from bys56e, and coded as 1 if the student
report indicates that other students see the respondent as a ”very big” trouble-maker.

Behavior problem: 0-1 indicator variable created from byp50, regarding whether the parent
considers their child to have a behavior problem in school.

Parents Contacted About Behavior: Created from byp57e, this variable corresponds to
how often parents report being contacted about behavior problems in the past school year,
ranging from 0 (“never”) to 3 (“more than four times”).

Limited English Proficiency Composite: 0-1 indicator variable bylep, a NELS composite
variable created from student and teacher reports.

Repeated Grade: 0-1 indicator of whether a student repeated any grade 4-8, taken as the
maximum of the student (bys74e-bys74i) and parent (byp46e-byp46i) reports.

Grade trouble index: Created from student self-reports of whether sent to the office for
grade problems (bys55b) or parents contacted because of a grade problem (bys55d). This
variable ranges in value from 0-4.

Risk index: Taken from NELS composite variable byrisk, ranging from 0-6. This variable
was constructed using NELS coding, from the following 6 questionnaire variables: byfcomp,
bypared, byp6, bys41, bylep, and byfaminc.

Grade Index: Taken from NELS variable bygrads, ranging from 0-4.

Unpreparedness Index: Taken from student self-reports regarding how often the respondent
comes to class without pencil or paper (bys78a), books (bys78b), and homework (bys78c),
each of which range from 1 (usually) to 4 (never). These variables are summed so that the
index ranges from 3 to 12.

Gifted: 0-1 indicator of whether parent reported student to be currently enrolled in a
gifted/talented program (byp51 ).

Outcome Measures:
Test Scores: All 10th and 12th grade test scores were taken from NELS standardized values
from Item Response Theory scaled scores–f12xrstd, f12xmstd, f22xrstd, and f22xmstd.

High School Graduation: 0-1 indicator for whether received high school diploma as of the
third follow-up, coded equal to one if hsstat=1.

College Attendance: 0-1 indicator for whether enrolled in a 4-year college as of April 1994,
coded equal to one if third follow-up variable enrl0494=15 or 16.
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B.2 Sample Creation
The final sizes for the three samples used were 11,278 for the pooled (Catholic and public
8th grade) sample, 973 for Catholic 8th graders only, and 844 for the urban minorities,
although sample sizes in the empirical work will differ slightly due to nonresponse in the
outcome measures. Observations were excluded for one of several reasons: the 8th or 10th
grade school sector could not be determined to be either public or Catholic, or one or
more of the previously described demographic variables, location variables, eighth grade
test scores, or eighth grade performance-in-school measures were missing. Attrition rates
based on these grounds are presented below for each of the three samples. The sample
sizes given in tables 3-12 reflect additional observations lost due to missing data on the
particular dependent variable used.
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Sample Attrition in NELS:88
Reason for Excluded Observations Remaining Sample Size

Full NELS:88 Cath. 8th Grade Urban Minority
No excluded cases 27,805 2,602 2,999

Student attended a non-Catholic 25,233 2,602 2,895
private 8th Grade
8th grade school type missing 21,674 2,602 2,825

Student excluded from 2nd 16,460 1,416 1,648
followup sample
Student in 2nd followup sample 16,168 1,398 1,574
but not interviewed
Student attended a non-Catholic 16,130 1,393 1,571
private 10th grade
10th grade school type missing 15,852 1,388 1,507

Missing location or demographic 14,367 1,174 1,327
variables
Missing 8th grade test scores 13,648 1,146 1,195

Missing 8th grade performance- 11,278 973 844
in-school variables
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Table 1
Comparison of Means of Key Variables by Sector

Catholic 8th Grade
Variable Public 10th Cath 10th Difference Public 10th Cath 10th Difference

Demographics (N=11,167) (N=672) (N=366) (N=640)
FEMALE 0.52 0.45 -0.07 0.61 0.50 -0.11
ASIAN 0.03 0.04 0.01 0.05 0.05 0.00
HISPANIC 0.09 0.09 0.00 0.08 0.09 0.01
BLACK 0.10 0.09 -0.01 0.07 0.11 0.04
WHITE 0.78 0.78 0.00 0.80 0.74 -0.06

Family Background
MOTHER'S EDUCATION IN YEARS 13.21 13.96 0.75 13.34 13.88 0.54
FATHER'S EDUCATION IN YEARS 13.49 14.51 1.01 13.39 14.38 0.99
LOG OF FAMILY INCOME 10.23 10.72 0.49 10.47 10.66 0.19
MOTHER ONLY IN HOUSE 0.14 0.09 -0.05 0.07 0.09 0.02
PARENT MARRIED 0.79 0.89 0.10 0.90 0.88 -0.02
PARENTS CATHOLIC 0.28 0.82 0.54 0.84 0.84 0.00

Geography
RURAL 0.36 0.03 -0.33 0.13 0.01 -0.12
SUBURBAN 0.45 0.51 0.06 0.40 0.48 0.08
URBAN 0.19 0.46 0.27 0.47 0.51 0.04
DISTANCE TO CLOSEST CATHOLIC HS, MILES 22.16 2.97 -19.19 6.91 2.37 -4.53

Expectations 1

SCHOOLING EXPECTATIONS IN YEARS 15.25 15.97 0.72 15.52 15.92 0.40
VERY SURE TO GRADUATE HS 0.84 0.89 0.05 0.84 0.90 0.06
PARENTS EXPECT AT LEAST SOME COLLEGE 0.89 0.98 0.09 0.94 0.98 0.04
PARENTS EXPECT AT LEAST COLLEGE GRAD 0.79 0.92 0.13 0.88 0.91 0.03
STUDENT EXPECTS WHITE-COLLAR JOB 0.47 0.61 0.14 0.55 0.59 0.04

8th Grade Variables
DELINQUENCY INDEX, RANGE FROM 0 TO 4 0.64 0.53 -0.11 0.54 0.46 -0.08
STUDENT GOT INTO FIGHT 0.24 0.23 -0.02 0.20 0.19 -0.01
STUDENT RARELY COMPLETES HOMEWORK 0.19 0.08 -0.11 0.08 0.06 -0.01
STUDENT FREQUENTLY DISRUPTIVE 0.12 0.08 -0.05 0.08 0.08 0.00
STUDENT REPEATED GRADE 4-8 0.06 0.02 -0.05 0.03 0.02 -0.01
RISK INDEX, RANGE FROM 0 TO 4 0.69 0.35 -0.34 0.39 0.39 0.00
GRADES COMPOSITE 2.94 3.16 0.22 3.09 3.20 0.11
UNPREPAREDNESS INDEX, FROM 0 TO 25 10.77 11.08 0.31 10.84 11.02 0.17
8TH GRADE READING SCORE 51.19 55.05 3.86 54.12 55.59 1.47
8TH GRADE MATHEMATICS SCORE 51.13 54.57 3.44 52.89 53.98 1.09

Outcomes
10TH GRADE READING STANDARDIZED SCORE 51.02 54.69 3.66 54.63 54.62 -0.01
10TH GRADE MATH STANDARDIZED SCORE 51.12 55.03 3.91 53.40 54.52 1.12
12TH GRADE READING STANDARDIZED SCORE 51.20 54.60 3.40 53.25 54.70 1.45
12TH GRADE MATH STANDARDIZED SCORE 51.20 55.54 4.34 53.13 55.63 2.49
ENROLLED IN 4 YEAR COLLEGE IN 1994 0.31 0.59 0.28 0.38 0.61 0.23
HS GRADUATE 0.85 0.98 0.13 0.88 0.98 0.10

Notes:
(1) The Expectations variables are not included in our empirical models

Full Sample



Table 2
Comparison of Means of Key Variables by Sector, NELS:88 Urban Minority Subsample

Catholic 8th Grade
Variable Public 10th Cath 10th Difference Public 10th Cath 10th Difference

Demographics (N=700) (N=56) (N=15) (N=54)
FEMALE 0.57 0.57 0.00 0.60 0.61 0.01
ASIAN 0.00 0.00 0.00 0.00 0.00 0.00
HISPANIC 0.44 0.49 0.05 0.34 0.45 0.11
BLACK 0.56 0.51 -0.05 0.66 0.55 -0.11
WHITE 0.00 0.00 0.00 0.00 0.00 0.00

Family Background
MOTHER'S EDUCATION, IN YEARS 12.61 13.27 0.66 13.58 13.21 -0.37
FATHER'S EDUCATION, IN YEARS 12.64 14.33 1.69 12.66 14.36 1.70
LOG OF FAMILY INCOME 9.62 10.45 0.83 10.16 10.38 0.22
MOTHER ONLY IN HOUSE 0.29 0.27 -0.02 0.29 0.23 -0.06
PARENT MARRIED 0.57 0.74 0.18 0.71 0.79 0.08
PARENTS CATHOLIC 0.39 0.58 0.19 0.39 0.55 0.16

Geography
RURAL 0.00 0.00 0.00 0.00 0.00 0.00
SUBURBAN 0.00 0.00 0.00 0.00 0.00 0.00
URBAN 1.00 1.00 0.00 1.00 1.00 0.00
DISTANCE TO CLOSEST CATHOLIC HS, MILES 6.04 1.90 -4.14 1.90 2.01 0.11

Expectations 1

SCHOOLING EXPECTATIONS, IN YEARS 15.27 16.10 0.83 16.48 16.05 -0.43
VERY SURE TO GRADUATE HS 0.80 0.94 0.14 0.88 0.94 0.06
PARENTS EXPECT AT LEAST SOME COLLEGE 0.90 0.99 0.09 0.95 0.99 0.04
PARENTS EXPECT AT LEAST COLLEGE GRAD 0.78 0.86 0.08 0.84 0.85 0.01
STUDENT EXPECTS WHITE-COLLAR JOB 0.53 0.72 0.19 0.50 0.70 0.20

8th Grade Variables
DELINQUENCY INDEX, RANGE FROM 0 TO 4 0.88 0.63 -0.25 1.22 0.65 -0.57
STUDENT GOT INTO FIGHT 0.34 0.19 -0.15 0.05 0.19 0.15
STUDENT RARELY COMPLETES HOMEWORK 0.25 0.13 -0.12 0.23 0.14 -0.09
STUDENT FREQUENTLY DISRUPTIVE 0.19 0.17 -0.02 0.14 0.17 0.03
STUDENT REPEATED GRADE 4-8 0.11 0.05 -0.06 0.10 0.05 -0.05
RISK INDEX, RANGE FROM 0 TO 4 1.30 0.90 -0.40 1.05 0.91 -0.14
GRADES COMPOSITE 2.78 2.88 0.09 3.01 2.88 -0.13
UNPREPAREDNESS INDEX, FROM 0 TO 25 10.99 11.28 0.29 11.10 11.27 0.17
8TH GRADE READING SCORE 46.76 53.25 6.49 49.99 52.88 2.89
8TH GRADE MATHEMATICS SCORE 45.43 48.71 3.28 48.88 48.61 -0.27

Outcomes
10TH GRADE READING STANDARDIZED SCORE 47.14 51.46 4.32 48.62 50.75 2.13
10TH GRADE MATH STANDARDIZED SCORE 45.80 48.92 3.12 48.16 48.09 -0.07
12TH GRADE READING STANDARDIZED SCORE 47.29 50.78 3.49 52.74 50.17 -2.57
12TH GRADE MATH STANDARDIZED SCORE 46.40 51.71 5.31 51.46 50.92 -0.54
ENROLLED IN 4 YEAR COLLEGE IN 1994 0.23 0.52 0.28 0.28 0.56 0.28
HS GRADUATE 0.78 0.99 0.21 0.89 1.00 0.11

Notes:
(1) The Expectations variables are not included in our empirical models

Full Sample



Table 3

OLS, Fixed Effect, and Probit Estimates of Catholic High School Effects5,6

in Subsamples of NELS:88
Weighted, (Huber-White Standard Errors in Parentheses)

[Marginal Effects in Brackets4]

Full Sample Catholic 8th Grade Attendees
Controls

(1) (2) (3) (4) (5) (6) (7) (8)
None Fam. BG, (2) plus (3) plus None Fam. BG, (1) plus (2) plus

city size, 8th grade other 8th city size, 8th grade other 8th
and region.1 tests grade and region.1 tests grade

measures2 measures2

HS Graduation
Probit 0.97 0.57 0.48 0.41 0.99 0.88 0.95 1.27

(0.17) (0.19) (0.22) (0.21) (0.24) (0.25) (0.27) (0.29)
[0.123] [0.081] [0.068] [0.052] [0.105] [0.084] [0.081] [0.088]

(Pseudo R2) 0.01 0.16 0.21 0.34 0.11 0.35 0.44 0.58

OLS 0.123 0.041 0.033 0.023 0.105 0.081 0.080 0.080
(0.011) (0.015) (0.015) (0.015) (0.035) (0.025) (0.024) (0.021)

Fixed Effects3 0.097 0.063 0.061 0.066 0.143 0.115 0.113 0.102
(0.032) (0.031) (0.030) (0.026) (0.045) (0.035) (0.033) (0.027)

College in 1994
Probit 0.73 0.37 0.33 0.32 0.60 0.48 0.56 0.60

(0.08) (0.09) (0.09) (0.09) (0.13) (0.15) (0.15) (0.15)
[0.283] [0.106] [0.084] [0.074] [0.236] [0.154] [0.154] [0.149]

(Pseudo R2) 0.02 0.19 0.29 0.34 0.04 0.18 0.29 0.36

OLS 0.283 0.135 0.113 0.111 0.236 0.159 0.162 0.145
(0.030) (0.032) (0.028) (0.026) (0.048) (0.050) (0.044) (0.043)

Fixed Effects3 0.146 0.084 0.086 0.097 0.269 0.219 0.220 0.207
(0.050) (0.049) (0.044) (0.043) (0.058) (0.056) (0.049) (0.048)

Notes:
(1) Control sets (2)-(4) include race (white/nonwhite), hispanic origin, gender, urbanicity (3 categories), region (8 categories), and distance to
the nearest Catholic high school (5 categories). Family background variables used as controls include log family income, mother’s and father’s
education, 5 dummy variables for marital status of the parents, and 8 dummy variables for household composition.
(2) ”Other 8th grade measures” include measures of attendance, attitudes toward school, academic track, achievement, and behavioral
problems (from teacher, parent, and student surveys). See Appendix Table 1.
(3) Fixed effects models include 807 and 75 dummy variables, respectively, for each 8th grade school represented in the 2 samples.
(4) Marginal effects of probit models are computed as average derivatives of the probability of an outcome with respect to catholic
high school attendance.
(5) NELS:88 3rd follow-up questionnaire weights used in the computations.
(6) Sample sizes for Full sample: N=8560 (HS Graduation), N=8315 (College Attendance). For Catholic 8th Grade sample, N=859 (HS
Graduation), N=834 (College Attendance)



Table 4

OLS and Fixed Effect Estimates of Catholic High School Effects4,5

in Subsamples of NELS:88
Weighted, (Huber-White Standard Errors in Parentheses)

Full Sample Catholic 8th Grade Attendees
Controls

(1) (2) (3) (4) (5) (6) (7) (8)
None Fam. BG, (1) plus (2) plus None Fam. BG, (1) plus (2) plus

city size, 8th grade other 8th city size, 8th grade other 8th
and region.1 tests grade and region.1 tests grade

measures2 measures2
10th Grade Reading Score
OLS 3.65 1.69 0.17 0.15 0.22 -1.07 -1.27 -1.32

(0.51) (0.62) (0.38) (0.37) (0.86) (0.97) (0.61) (0.59)
R2 0.01 0.18 0.69 0.69 0.00 0.18 0.64 0.67

Fixed Effects3 0.20 -0.63 0.52 0.64 -0.11 -0.31 -0.60 -0.87
(1.00) (0.99) (0.72) (0.70) (1.16) (1.19) (0.76) (0.77)

10th Grade Math Score
OLS 3.94 1.31 0.06 0.16 0.88 -0.32 -0.16 -0.11

(0.56) (0.54) (0.47) (0.45) (0.96) (1.01) (0.51) (0.49)
R2 0.01 0.24 0.78 0.79 0.00 0.22 0.77 0.79

Fixed Effects3 1.43 -0.13 0.17 0.30 0.50 -0.32 -0.15 -0.09
(0.97) (0.93) (0.52) (0.50) (1.20) (1.21) (0.60) (0.55)

12th Grade Reading Score
OLS 4.28 2.08 1.18 1.14 1.92 0.17 0.37 0.33

(0.47) (0.54) (0.38) (0.38) (0.82) (0.98) (0.63) (0.62)
R2 0.01 0.19 0.60 0.60 0.01 0.19 0.59 0.62

Fixed Effects3 2.21 0.74 1.55 1.64 1.75 0.35 0.48 0.27
(0.95) (1.21) (0.84) (0.81) (1.06) (1.33) (0.82) (0.79)

12th Grade Math Score
OLS 4.86 1.98 1.07 0.92 2.79 1.10 1.46 1.14

(0.44) (0.54) (0.34) (0.32) (0.77) (1.00) (0.53) (0.46)
R2 0.01 0.26 0.72 0.74 0.02 0.26 0.73 0.77

Fixed Effects3 3.50 0.75 1.07 1.24 3.30 1.29 1.66 1.19
(0.94) (1.09) (0.66) (0.61) (1.01) (1.29) (0.67) (0.58)

Notes:
(1) Control sets (2)-(4) include race (white/nonwhite), hispanic origin, gender, urbanicity (3 categories), region (8 categories), and distance to
the nearest Catholic high school (5 categories). Family background variables used as controls include log family income, mother’s and father’s
education, 5 dummy variables for marital status of the parents, and 8 dummy variables for household composition.
(2) ”Other 8th grade measures” include measures of attendance, attitudes toward school, academic track, achievement, and behavioral problems
(from teacher, parent, and student surveys). See Table 2 and Appendix Table 1.
(3) Fixed effects models include 807 and 75 dummy variables, respectively, for each 8th grade school represented in the 2 samples.
(4) NELS 1st follow-up and 2nd follow-up panel weights used for the 10th and 12th grade models, respectively.
(5) Sample sizes for Full sample: N=10,180 (10th Reading), N=10,166 (10th Math), N=8116 (12th Reading), N=8119 (12th Math). For Catholic
8th Grade sample, N=878 (10th Reading), N=878 (10th Math), N=739 (12th Reading), N=739 (12th Math).



Table 5

OLS, Fixed Effect, and Probit Estimates of Catholic High School Effects
by Race and Urban Residence. Full Set of Controls1,3

(Huber-White Standard Errors in Parentheses)
[Marginal Effects in Brackets4]

Sample
(1) (2) (3) (4)

Urban and Suburban Urban and Suburban Urban Urban
White Only Minorities Only White Only Minorities Only

HS Graduate (N=3799) (N=1308) (N=1002) (N=697)
Sample Mean 0.88 0.80 0.88 0.80

Probit 0.443 0.524 1.176 1.592
(0.279) (0.338) (0.417) (0.673)
[0.046] [0.085] [0.091] [0.191]

OLS 0.022 0.058 0.069 0.133
(0.016) (0.040) (0.023) (0.056)

Fixed Effects2 0.062 0.023 0.136 -0.009
(0.031) (0.089) (0.048) (0.107)

College in 1994 (N=3695) (N=1258) (N=981) (N=666)
Sample Mean 0.37 0.26 0.32 0.26

Probit 0.354 0.697 0.506 0.677
(0.107) (0.201) (0.167) (0.303)
[0.087] [0.158] [0.110] [0.144]

OLS 0.115 0.168 0.151 0.146
(0.030) (0.058) (0.044) (0.090)

Fixed Effects2 0.119 0.180 0.160 0.182
(0.052) (0.115) (0.070) (0.158)

Notes:
(1) All models include controls for hispanic origin, gender, region, citysize, distance to the nearest Catholic school (5 categories), family background,
8th grade tests, and other 8th grade measures. (from teacher, parent, and student surveys). See Table 3 notes 1 and 2.
(2) Fixed effects models include a dummy variable for each 8th grade school attended by members of the sample.
(3) NELS:88 third follow-up sampling weights used in the computations.
(4) Marginal effects of probit models are computed as average derivatives of the probability of an outcome with respect to Catholic school attendance.



Table 6

OLS, Fixed Effect, and Probit Estimates of Catholic High School Effects
by Race and Urban Residence3. Full Set of Controls1

Weighted, (Huber-White Standard Errors in Parentheses)
[Marginal Effects in Brackets]

Sample
(1) (2) (3) (4)

Urban/Suburban Urban/Suburban Urban Urban
White Only Minorities Only Whites Only Minorities Only

10th Grade Reading Score (N=4637) (N=1386) (N=1194) (N=734)
Sample Mean 52.82 47.78 52.73 47.52

OLS 0.40 -1.38 0.01 -0.92
(0.45) (0.74) (0.60) (1.21)

Fixed Effects 0.24 -3.06 0.49 -2.68
(0.81) (2.07) (0.92) (2.21)

10th Grade Math Score (N=4633) (N=1382) (N=1195) (N=733)
Sample Mean 53.11 46.69 52.67 46.08

OLS 0.56 -1.04 0.16 -0.65
(0.32) (0.83) (0.49) (1.21)

Fixed Effects 0.19 -0.08 0.03 -0.50
(0.51) (1.32) (0.66) (1.86)

12th Grade Reading Score (N=3638) (N=1051) (N=978) (N=561)
Sample Mean 52.94 47.72 53.33 47.61

OLS 1.30 -0.72 1.59 -0.19
(0.44) (0.98) (0.67) (1.39)

Fixed Effects 1.33 -3.05 2.24 -1.86
(1.00) (3.04) (1.15) (2.81)

12th Grade Math Score (N=3638) (N=1053) (N=979) (N=563)
Sample Mean 53.09 47.33 52.90 48.88

OLS 1.07 1.17 1.69 1.25
(0.35) (0.76) (0.52) (1.09)

Fixed Effects 0.81 1.84 1.33 0.37
(0.61) (1.57) (0.86) (2.18)

Notes:
(1) All models include controls for hispanic origin, gender, region, city size, distance to the nearest Catholic school (5 categories),
family background, 8th grade tests, and other 8th grade measures. (from teacher, parent, and student surveys). See Table 3 notes 1 and 2.
(2) Fixed effects models include a dummy variable for each 8th grade school attended by members of the sample
(3) NELS 1st follow-up and 2nd follow-up panel weights used for the 10th and 12th grade models, respectively.



Table 7

Sensitivity Analysis: Estimates of Catholic High School Effects Given
Different Assumptions on The Correlation of Disturbances in Bivariate Probit

Models in Subsamples of NELS:882. Modified Control Set3.
(Huber-White Standard Errors in Parentheses) [Marginal Effects in Brackets]

Correlation of Disturbances1

ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5

HS Graduation:
Full Sample 0.459 0.271 0.074 -0.132 -0.349 -0.581
Raw difference=0.12) (0.150) (0.150) (0.150) (0.148) (0.145) (0.140)

[0.058] [0.037] [0.011] [-0.021] [-0.060] [-0.109]

Catholic 8th Graders 1.036 0.869 0.697 0.520 0.335 0.142
(Raw difference=0.08) (0.314) (0.313) (0.310) (0.306) (0.299) (0.290)

[0.078] [0.064] [0.050] [0.038] [0.025] [0.011]

Urban 1.095 0.905 0.706 0.499 0.282 0.053
Minorities (0.526) (0.538) (0.549) (0.560) (0.570) (0.578)
(Raw difference=0.22) [0.176] [0.157] [0.132] [0.101] [0.062] [0.013]

College Attendance:
Full Sample 0.331 0.157 -0.019 -0.196 -0.376 -0.558
(Raw difference=0.31) (0.070) (0.070) (0.070) (0.068) (0.067) (0.064)

[0.084] [0.039] [-0.005] [-0.047] [-0.087] [-0.125]

Catholic 8th Graders 0.505 0.336 0.165 -0.008 -0.184 -0.362
(Raw difference=0.23) (0.121) (0.120) (0.119) (0.117) (0.114) (0.110)

[0.140] [0.093] [0.045] [-0.002] [-0.050] [-0.099]

Urban 0.447 0.269 0.090 -0.091 -0.272 -0.455
Minorities (0.282) (0.282) (0.280) (0.276) (0.269) (0.259)
(Raw difference=0.30) [0.116] [0.062] [0.020] [-0.020] [-0.057] [-0.091]

Notes:
(1) Models estimated as bivariate probits with the correlation ρ between u and ε set to the values in column headings.
(2) NELS:88 3rd follow-up sampling weights used in the computations.
(3) Due to computational difficulties, several variables were excluded from the control sets in the bivariate probit models: all
dummy variables for household composition, urbanicity and region, indicators for “student rarely completes homework”,
“student performs below ability”, “student inattentive in class”, “parents contacted about behavior”, and a limited-English
proficiency index. Other than these exclusions, the controls are identical to those described in Table 3 notes 1 and 2.



Table 8

Sensitivity of Estimates of Catholic Schooling Effects on College Attendance and HS Graduation to
Assumptions about Selection Bias in NELS:88, Catholic 8th Grade Subsample2, Modified Control Set3

(Huber-White Standard Errors in Parentheses) [Marginal Effects in Brackets]

Model (Estimated as a Bivariate Probit)

CHi = 1(X
0
iβ + u > 0)

Yi = 1(X
0
iγ + αCHi + � > 0)

Estimation Method 1: β, γ, and α estimated simultaneously as a constrained bivariate probit model:

Model Constraint on ρ HS Graduation Coefficients College Attendance Coefficients

bρ bα bρ bα
(1) ρ =

cov(Xβ,Xγ)
var(Xγ)

0.24 0.59 0.24 0.11

(0.33) (0.16)

[0.07] [0.07]

(2) ρ = 0 0 1.04 0 0.51

(0.31) (0.12)

[0.08] [0.14]

Estimation Method 2: 2-step, with β obtained from a univariate probit, γ from a univariate probit on the public 8th
grade subsample. Next, α is computed from a bivariate probit with β fixed at this initial value and γ fixed up to 6
proportionality factors.4

Model Constraint on ρ HS Graduation Coefficients College Attendance Coefficients

bρ bα bρ bα
(3) ρ =

cov(Xβ,Xγ)
var(Xγ)

0.09 0.94 0.27 0.06

(0.30) (0.10)

[0.09] [0.02]

Estimation Method 3: β, α, γ, and ρ estimated from an unrestricted bivariate probit model.

Model Constraint on ρ HS Graduation Coefficients College Attendance Coefficients

bρ bα bρ bα
(4) none 0.13 0.77 -0.52 1.18

(1.12) (0.50)

[0.07] [0.27]
Notes:
(1) Estimation performed on a sample of Catholic 8th grade attendees from NELS:88. N=859 for the HS graduation sample, and N=834 for the
college attendance sample.
(2) NELS:88 3rd follow-up sampling weights used in the computations.
(3) Due to computational difficulties, several variables were excluded from the control sets in the bivariate probit models. See Table 7, note 3.
(4) The categories of proportionality factors are demographics/family background, test scores, behavioral problems, school attendance and attitudes
toward school, grades and achievement, and distance measures. The coefficients and (standard errors) of the proportionality factors for these
categories are 0.82 (0.19), 0.87 (0.22), 0.92 (0.03), 1.07 (0.04), 0.59 (0.08), and 0.90 (6.08) respectively, in the high school graduation case. For
college attendance, the coefficients and (standard errors) are 0.80 (0.01) , 1.01 (0.04), 0.95 ( 0.15), 0.43 ( 0.17), 1.44 (0.03), and 1.04 (1.59),
respectively.



Table 9

The Amount of Selection on Unobservables Relative to Selection on Observables
Required to Attribute the Entire Catholic School Effect to Selection Bias5

(Huber-White Standard Errors in Parentheses)

Model: Yi = 1(X0
iγ + αCHi + �i), estimated as a probit

Estimates of bα from univariate probit on the Catholic 8th Grade Subsample, with γ freely estimated, Full Set of Controls3
Outcome:

bE(X0
ibγ|CHi=1)− bE(X0

ibγ|CHi=0)dV ar(X0
ibγ) dV ar (b�) E(�i | CHi = 1)

Cov(�i, gCHi)

V ar(gCHi)
bα Implied

−E(�i | CHi = 0) Ratio
if Cond. 4 Holds

(1) (2) (3) (4) (5) (6)

HS Graduation
(N=859)bγ in col. 1 from public
8th grade sample1 (1) 0.30 1.00 0.30 0.37 1.03 2.78

bγ in col. 1 from Cath. (0.31)
8th grade, freely estimated1 (2) 0.20 ... 0.20 0.24 ... 4.29

bγ in col. 1 from Cath.
8th grade, α = 01 (3) 0.24 ... 0.24 0.29 ... 3.55

College Attendance
(N=834)bγ in col. 1 from public
8th grade sample1 (4) 0.42 ... 0.42 0.51 0.67 1.30

(0.16)bγ in col. 1 from Cath.
8th grade, freely estimated1 (5) 0.27 ... 0.27 0.33 ... 2.03

bγ in col. 1 from Cath.
8th grade, α = 01 (6) 0.39 ... 0.39 0.47 ... 1.43

Notes:

(1) In rows (1) and (4) the bγ used to evaluate bE(X0
ibγ|CHi=1)− bE(X0

ibγ|CHi=0)dV ar(X0
ibγ) in column (1) is estimated using the public school sample. In rows (2) and (5)bγ is estimated using the Catholic school sample, and and in rows (3) and (6) bγ is estimated from the catholic school sample under the restriction α = 0.

(2) See Table 3 notes 1 and 2 for a description of the controls.
(3) Condition 4 states that the standardized selection on unobservables is equal to the standardized selection on observables.

i.e. E(�i|CHi=1)−E(�i|CHi=0)
V ar(�i)

=
E(X0

iγ|CHi=1)−E(X0
iγ|CHi=0)

V ar(X0
iγ)

.

(4) “Implied Ratio” in column 6 is the ratio of standardized selection on unobservables to observables under the hypothesis that
there is no catholic school effect.
(5) NELS:88 3rd follow-up sampling weights used in the computations.



Table 10

Selection Bias Estimates Using Differences byCH in Means of the Index of Observables
from the Outcome Equations4

(Huber-White Standard Errors in Parentheses), Full Control Set

Model: Yi = X0
iγ + αCHi + �i, estimated by OLS

Estimates of bα taken from the Catholic 8th Grade Subsample with γ freely estimated
Outcome:

bE(X0
ibγ|CHi=1)− bE(X0

ibγ|CHi=0)dV ar(X0
ibγ) dV ar (b�) E(�i | CHi = 1)

Cov(�i, gCHi)

V ar(gCHi)
bα Impliedbγ from public. 8th grade sample1 −E(�i | CHi = 0) Ratio

if (Cond 4) Holds
10th Grade 0.029 28.52 0.83 1.00 -1.32 -1.33
Reading Score (0.56)
(N=888)

10th Grade 0.023 19.71 0.45 0.54 -0.11 -0.20
Math Score (0.45)
(N=878)

12th Grade 0.091 36.00 3.28 3.94 0.33 0.08
Reading Score (0.62)
(N=739)

12th Grade 0.038 24.01 0.91 1.09 1.14 1.04
Math Score (0.46)
(N=739)

Notes:
(1) Estimates formed using the full control set, and bγ estimated from the public 8th grade sample.
(2) Condition 4, used in constructing column 3 is that the standardized selection on unobservables is equal to the standardized

selection on observables, i.e. E(�i|CHi=1)−E(�i|CHi=0)
V ar(�i)

=
E(X0

iγ|CHi=1)−E(X0
iγ|CHi=0)

V ar(X0
iγ)

.

(3) “Implied Ratio” in column 6 is the ratio of standardized selection on unobservables to observables under the hypothesis that
there is no catholic school effect.
(4) NELS:88 1st follow-up and 2nd follow-up panel weights used for the 10th and 12th grade models, respectively.



Table 11

Selection Bias Estimates Using Differences byCH in Means of the Index of Observables
from the Outcome Equations, Urban Minority Subsample2,5

(Huber-White Standard Errors in Parentheses)

Model: Yi = 1(X0
iγ + αCHi + �i), estimated as a probit

Estimates of bα taken from the Urban Minority Subsample with γ freely estimated
Outcome:

bE(X0
ibγ|CHi=1)− bE(X0

ibγ|CHi=0)dV ar(X0
ibγ) dV ar (b�) E(�i | CHi = 1)

Cov(�i, gCHi)

V ar(gCHi)
bα Implied

−E(�i | CHi = 0) Ratio4
if (Cond 4) Holds3

(1) (2) (3) (4) (5) (6)
HS Graduation
(N=698)bγ in col. 1 from public
8th grade UM sample1 (1) 0.56 1.00 0.56 0.67 1.59 2.37

(0.67)bγ in col. 1 from full UM.
sample, freely estimated1 (2) 0.56 ... 0.56 0.68 ... 2.34

bγ in col. 1 from full UM
sample, α = 01 (3) 0.73 ... 0.73 0.88 ... 1.81

College Attendance
(N=698)bγ in col. 1 from public
8th grade UM sample1 (4) 0.72 1.00 0.72 0.87 0.68 0.78

(0.30)bγ in col. 1 from full UM.
sample, freely estimated1 (5) 0.54 ... 0.54 0.65 ... 1.05

bγ in col. 1 from full UM
sample, , α = 01 (6) 0.58 ... 0.58 0.69 ... 0.99

Notes:

(1) In rows (1) and (4) the bγ used to evaluate bE(X0
ibγ|CHi=1)− bE(X0

ibγ|CHi=0)dV ar(X0
ibγ) in column (1) is estimated using the public school urban minority sample.

In rows (2) and (5) bγ is estimated using the full urban minority sample, and in rows (3) and (6) bγ is estimated from the full urban minority sample under
the restriction α = 0.
(2) Full Set of Control Variables.with city size and Black excluded. See Table 3, notes 1 and 2.
(3) Condition 4 states that the standardized selection on unobservables is equal to the standardized selection on observables,

i.e. that E(�i|CHi=1)−E(�i|CHi=0)
V ar(�i)

=
E(X0

iγ|CHi=1)−E(X0
iγ|CHi=0)

V ar(X0
iγ)

.

(4) “Implied Ratio” in column (6) is column (5)/column (4). It corresponds to the ratio of standardized selection on unobservables to observables that is
consistent with the hypothesis that there is no Catholic school effect.
(5) NELS:88 3rd follow-up sampling weights used in the computations.



Table 12

Selection Bias Estimates Using Differences byCH in Means of the Index of Observables
from the Outcome Equations, Urban Minority Subsample2,5

(Huber-White Standard Errors in Parentheses) Full Control Set

Model: Yi = X0
iγ + αCHi + �i, estimated by OLS

Estimates of bα Taken from the Urban Minority Subsample
Outcome:

bE(X0
ibγ|CHi=1)− bE(X0

ibγ|CHi=0)dV ar(X0
ibγ) dV ar (b�) E(�i | CHi = 1)

Cov(�i, gCHi)

V ar( gCHi)
bα Implied

−E(�i | CHi = 0) Ratio4
if (Cond 4) Holds3

10th Grade 0.097 28.62 2.78 3.34 -0.92 -0.28
Reading Score (1.21)
(N=734)

10th Grade 0.074 19.36 1.44 1.73 -0.65 -0.38
Math Score (1.21)
(N=733)

12th Grade 0.090 30.58 2.76 3.31 -0.19 -0.06
Reading Score (1.39)
(N=733)

12th Grade 0.058 20.25 1.17 1.40 1.25 0.89
Math Score (1.09)
(N=561)

Notes:
(1) Estimates formed using the full control set, and bγ estimated from the urban minority public 8th grade sample.
(2) Full Set of Control Variables.with city size and Black excluded. See Table 3, notes 1 and 2.
(3) Condition 4 states that the standardized selection on unobservables is equal to the standardized selection on observables,

i.e. that E(�i|CHi=1)−E(�i|CHi=0)
V ar(�i)

=
E(X0

iγ|CHi=1)−E(X0
iγ|CHi=0)

V ar(X0
iγ)

.

(4) “Implied Ratio” in column (6) is column (5)/column (4). It is the ratio of standardized selection on unobservables to observables under the
hypothesis that there is no catholic school effect.
(5) NELS:88 1st follow-up and 2nd follow-up panel weights used for the 10th and 12th grade models, respectively.




