Do Wages Rise with Job Seniority? A Reassessment

Joseph G. Altonji
Department of Economics
Yale University
and NBER

Nicolas Williams
Department of Economics
University of Cincinnati

We thank Lanny Arvan, Paul Devereux, Randall Filer, Daniel Hamermesh, Bruce Meyer, Gary Solon, participants in seminars at the 1995 Econometric Society Winter Meetings, 1997 Society of Labor Economics Annual Meetings, the Bureau of Labor Statistics, the University of Michigan, the National Bureau of Economic Research, Northwestern University and Ohio State University, participants in the Ashenfelter Festschrift conference at Princeton University and four anonymous referees for helpful comments. Without implying any endorsement of our analysis and conclusions, we give special thanks to Robert Topel for comments on a previous draft of the paper and for graciously providing us with a set of computer programs that greatly aided our research and to Paul Devereux for assisting us with the “full PSID sample” analyzed in the paper. We also thank Tecla Loup, Kate McGonagle, and Robert Shoeni for assistance with the PSID data. Our research was supported by the Institute for Policy Research, Northwestern University and the National Science Foundation. We are responsible for the shortcomings of the paper. Finally, Altonji thanks Orley Ashenfelter for providing support and inspiration over many, many years.
Do Wages Rise with Job Seniority? A Reassessment

Abstract

We provide new estimates of the return to job seniority using data similar to that used by Abraham and Farber (1987), Altonji and Shakotko (1987) and Topel (1991) as well as a more recent PSID sample. We consider the pluses and minus of the studies’ treatment of economy trends, the dating convention for tenure and wages, the handling of wage observations that might span multiple jobs, and estimation approaches. The evidence from the data used by Altonji and Shakotko and Topel points to an effect of ten years of tenure on the log wage equal to .11, which is above AS's preferred estimate of .066 but far below Topel's estimate. However, this estimate is probably biased upward by the wage measure used in all three studies. We also present evidence for more recent years.

Joseph Altonji
Department of Economics
Yale University
New Haven, CT 06520-8269
Joseph.Altonji@yale.edu

Nicolas Williams
Department of Economics
University of Cincinnati
Cincinnati, OH 45221-0371
Nicolas.Williams@uc.edu
1. Introduction

Whether or not seniority has a large effect on wage growth has been the subject of continuing controversy. At stake is the empirical relevance of theories emphasizing a role for worker financed firm specific capital in wage growth and turnover behavior, as well as models of wages that emphasize the use of deferred compensation as an incentive, insurance, or sorting mechanism (see Carmichael, 1989; Hutchens, 1989; Malcomson, 1999; Gibbons and Waldman, 1999; and Farber, 1999). The size of the return to seniority is also important in assessing the costs of dislocation from work, a subject of much policy discussion and research.\(^1\) Perhaps most importantly, the strong relationship between seniority and wage rates in a cross section of workers is a prominent feature of the earnings distribution that needs to be understood. However, nonrandom selection in who acquires seniority and in what types of jobs makes estimation of the return to seniority difficult.

In the 1970s, several researchers, with Mincer and Jovanovic (1981) as one prominent example, concluded that there is a large return to seniority on the basis of the strong positive relationship between tenure and wage rates in cross sectional or pooled cross section-time series data. Several papers in the mid-1980s, with Altonji and Shakotko (1987) (hereafter, AS) and Abraham and Farber (1987) (hereafter, AF) as widely cited examples, challenged this conclusion, and the literature appeared to be moving towards a new consensus that returns to seniority are relatively small in the U.S.\(^2\) However, an influential paper by Topel (1991) argues that AS and AF reach the wrong conclusions because of inappropriate methods and/or data. He argues that the returns to tenure are large—on the order of what one obtains from a simple OLS regression.

\(^2\) See also Topel (1986), Marshall and Zarkin (1986), and Williams (1991).
Topel's results have been widely cited and appear to have been accepted by many researchers. For example, Polachek and Siebert (1993) state, "Apparently the dramatic results of Altonji and Shakotko are in part due to mismeasuring tenure...Thus the specific capital model appears to survive the challenge." Devine and Kiefer (1991) summarize the results from the various studies, including AS, AF, and Topel and state "The findings have gone full circle and beyond—the most recent results suggest that the early OLS results attributed too small a share of wage growth to tenure and too much to labor market experience." Other researchers, such as Felli and Harris (1996), cite the three studies and state that “Whether wages increase with tenure...is an open question...”.

In this paper, we first reexamine the evidence and then explore whether the return to seniority has changed over time. Starting from a replication of Topel's sample and main results, we explore the consequences of alternative treatments of secular trends, the timing of the tenure and wage data, the measurement of tenure, differences in the estimators, and the samples used. In section 2 we present the basic model used by the three studies as well as the econometric methods used. In Section 3 we discuss the replication. Section 4 uses a representative sample from the PSID to show we can explain about 67 percent of the difference in the trend in the CPS based wage index used by Topel to control for economy wide wage growth and the trend estimated using the PSID. The explanation of the difference arises from (1) Topel’s use of an index for 1968-1983 with PSID wage data that refer to 1967-1982, and (2) our use of a larger control set in the PSID. The remainder reflects unexplained differences between the CPS and PSID and the effect of sample selection rules and missing data on the replication sample. The paper contains an extended discussion of the implications of attrition on the basis of fixed and time varying person specific and job specific error components for how one should detrend the data. It also draws on recent literature comparing wage trends in the CPS to trends in other data. The bottom line is while there is no perfect solution to the trend estimation problem, the appropriate trend is much closer to the trend AS estimated than the trend that Topel used. Topel's treatment of the secular trend leads to a substantial positive bias in the AS estimator and a smaller positive bias in his estimator. Our discussion of the pluses and minuses of alternative ways to handle time trends in panel data is of independent interest.

In Section 5 we discuss an equally thorny set of issues surrounding AS’s and AF’s use of the
year t average hourly wage with year t tenure and Topel’s use of the average hourly wage in year t-1 with year t tenure after excluding jobs with seniority less than one. Problems arise because average wage observations at the beginning and end of jobs will be mixtures of more than one job. Simply adjusting the two tenure measures to reflect the location of the survey date within the year seems appropriate and narrows the impact of the choice on AS’s estimator by a modest amount. Both procedures for handling tenure in conjunction with the average annual wage have advantages and disadvantages that are hard to weigh. However, the results based on the wage rate at the time of the survey are much closer to those based on AS’s procedure.

In Section 6 we briefly review the impact of measurement error on the two studies. In Section 7 we discuss differences between AS’s IV1 estimator and Topel’s estimator and revisit Topel's test of whether his estimator is sensitive to bias from individual heterogeneity. AS’s instrumental variables estimator usually leads to a lower estimate of the return to seniority than the two-step first difference estimator (2SFD) proposed by Topel. This gap narrows when we apply a rough bias correction to IV1. While the estimated tenure effects from both estimators are biased down by job match heterogeneity, 2SFD is substantially upward biased by individual heterogeneity.

In Section 8 we summarize our findings and draw conclusions based on estimators and data used by AS and Topel. Our main conclusion is that the returns to seniority are modest, and much closer to the results of AS and AF than Topel. While the increase in the log wage from ten years of seniority is probably larger than AS's preferred estimate of 0.066, it is far below Topel's estimate of 0.246 and the OLS estimate of .300. For the replication data we conclude that 10 years of tenure raises the log wage rate by about .11, and this value is probably biased upward by problems with the hourly wage measure used by AS, AF and Topel. In contrast to Devine and Kiefer’s summary of the literature mentioned above, we find that OLS is subject to a large upward bias and should not be used to estimate the return to tenure.

The paper continues in Section 9, where we revisit Topel’s finding that relaxing certain restrictions in the AF estimator leads to large OLS-like seniority returns. We show that his conclusions are very sensitive to the linear functional form that he (and AF) used.

In section 10 we present estimates based on a new PSID extract for 1975-2001. We do so for
three reasons. First, the tenure and wage data are better for these years, particularly from 1981 on. Second, it is likely, given dramatic changes in the returns to schooling, experience, and ability, that the returns to tenure and the relative biases in the estimators have changed as well. Third, the question of whether changes in the stability of jobs and the nature of the employment relationship in the 80s has lead to a decline in the return to tenure is of independent interest. The results suggest that the return to tenure may have increased, but it is still modest. For 1988-2001 the estimates for our preferred wage measure point to a return to ten years of tenure of about .09, but are higher for the wage measure used in the earlier studies. In section 11 we summarize our conclusions about the value of seniority.

2. Background to AS and Topel

2.1 The Wage Model

Many studies of the returns to seniority, including AS, AF, and Topel, use the basic wage model

\[
W_{ijt} = \beta_0 + \beta_1 X_{ijt} + \beta_2 T_{ijt} + \varepsilon_{ijt},
\]

where \(W_{ijt}\) is the log real wage of person \(i\) in job \(j\) in period \(t\), \(X_{ijt}\) is total labor market experience, and \(T_{ijt}\) is tenure with the employer. For expositional purposes and to facilitate some of the theoretical analysis we include a linear time trend in the wage equation, but in most of the empirical work we do not restrict the trend. We sometimes suppress subscripts where the meaning is clear. All variables are deviations from sample means. The equation abstracts from a set of control variables and from nonlinear terms in experience and tenure that all three studies include. This makes it easier to compare the estimators and analyze biases.

The error term is decomposed as

\[
\varepsilon_{ijt} = \mu_i + \phi_{ij} + \eta_{ijt} + u_{ijt},
\]

where \(\mu_i\) is a fixed individual specific error component, \(\phi_{ij}\) is a fixed job match specific error component, \(\eta_{ijt}\) is a time varying job match specific component, and \(u_{ijt}\) is the sum of measurement error...
in the wage and a person specific component that affects wages at all employers. AS, AF, and Topel all ignore \(u_{it} \) on the grounds that it is unlikely to be related to turnover behavior. AS assume movements in \(\eta_{ijt} \) are small or transitory and thus unlikely to have a strong relationship with turnover behavior. Topel argues that his analysis will be insensitive to \(\eta \) if it is a random walk and shows that the data are consistent with this.\(^3\)

The key parameters of interest are \(\beta_1 \) and \(\beta_2 \), where \(\beta_1 \) is the partial effect of experience on the wage, and \(\beta_2 \) is the partial effect of tenure. That is, \(\beta_1 \) is the causal effect of one more year of labor market experience on wages, holding tenure as well as job match quality \(\phi_{ij} \) and the other error components constant. Since \(\phi_{ij} \) is held fixed, \(\beta_1 \) does not include the return to job shopping over a career. \(\beta_2 \) is the causal effect on the wage of one more year of tenure, holding years of experience, job match quality, and the other error components constant. Therefore, \(\beta_2 T_{ijt} \) is the wage loss the worker would suffer if he or she were to move to a new job with the same values for the error components.

Many studies have used OLS to estimate these parameters, and they consistently find large returns to seniority. For example, AS and Topel report that 10 years of seniority raises the log wage by .267 and .300 respectively. However, using OLS to estimate \(\beta_1 \) and \(\beta_2 \) is inappropriate because both experience and tenure are likely to be correlated with the unobserved individual and job match heterogeneity. For example, tenure will be positively correlated with \(\mu_i \) in the likely event that individuals with low productivity (low \(\mu_i \)) have high quit and layoff propensities.\(^4\) Individual heterogeneity associated with \(\mu_i \) will bias OLS estimates of the wage-tenure profile upward.

\(^3\) We ignore \(\eta \) in most of the comparison between the estimators. However, modifying AS’s estimator in a way that should make it less sensitive to \(\eta \) if it is a random walk does not have a large effect on the results. Adding heterogeneity in the experience slope \(\beta_1 \) that is uncorrelated with turnover will not affect any of the estimators. We rule out person specific or job match specific heterogeneity in \(\beta_2 \), which is likely to be negatively related to \(T_{ijt} \), and a positive source of bias in all three estimators. Topel presents evidence that this heterogeneity is not important for his analysis. We have not revisited this issue. In constrast Abowd, Kramarz and Margolis (1999) show that there are differences in tenure slopes among a set of French firms. Farber (1999) argues that models stressing heterogeneity in tenure slopes deserve more attention in the literature.

\(^4\) See AS for evidence that estimates of \(\mu_i \) and \(\phi_{ij} \) enter logit models for both quits and layoffs with negative signs. One of AF’s key findings is that completed job tenure has a strong positive association with the level of wages on a job.
To better understand the biases from unobserved individual and match heterogeneity, we follow Topel and specify auxiliary regressions between the unobserved components and experience and tenure. For the fixed job match error component ϕ_{ij} let the auxiliary regression be

\[\phi_{ij} = b_1 X_{ijt} + b_2 T_{ijt} + \xi_{ijt}. \]

Consider the likely signs of b_1 and b_2. First, b_1 is likely to be positive because matching models and conventional search models (e.g., Burdett, 1978) imply that job shopping over a career will induce a positive correlation between X_{ijt} and ϕ_{ij}. Second, the sign of b_2 is ambiguous. On the one hand, workers will be less likely to quit high wage jobs than low wage jobs. Furthermore, if firms share in the returns to a good match, ϕ_{ij} will be negatively correlated with the layoff probability. Both of these considerations suggest that tenure is positively correlated with ϕ_{ij} and b_2 is positive. However, Topel emphasizes that the selection induced by voluntary job changes will lead low tenure values to be associated with large values of ϕ_{ij}, so b_2 could be negative.

The problem of individual heterogeneity may be analyzed similarly with the auxiliary regression

\[\mu_i = c_1 X_{ijt} + c_2 T_{ijt} + \omega_{ijt}. \]

With additional assumptions, one can show that $c_1 < 0$ and $c_2 > 0$. First, both AS and Topel assume that

\[\text{Cov}(\mu_i, X_{ijt}) = 0. \]

This implies that worker quality is independent of year of birth once one conditions on controls, and also that high and low wage workers have similar labor force attachment — at least for a sample of white male heads of households. AS investigate the second assumption and find that their results are

5 The existence of differences in match quality across firm-worker pairs (see Johnson, 1978; and Jovanovic, 1979), the presence of noncompetitive elements in the wage structure, and differences across firms in the optimal compensation level for a given type all imply that individual workers face a distribution of wages. See Groshen (1991), Jacobson, LaLonde and Sullivan (1993a, b) and Abowd, Kramarz, and Margolis (1999) for evidence of firm specific wage components.
insensitive to using potential experience as an instrument for actual experience.

Second, consider the auxiliary regression

$$T_{ijt} = d_1 \mu_i + d_2 X_{ijt} + v_{ijt}$$ \hspace{1cm} (2.5)

where $d_1 > 0$, $d_2 > 0$, and v_{ijt} is uncorrelated with μ_i and X_{ijt} by definition of an auxiliary regression. Given that $\text{Cov}(\mu_i, X_{ijt}) = 0$, it follows from (2.5) that d_2 is the coefficient γ_{XT} from a least squares regression of T_{ijt} on X_{ijt}. A little algebra establishes that c_1 and c_2 in (2.4) are

$$c_1 = -\gamma_{XT} c_2 < 0; \hspace{0.5cm} c_2 = \frac{\text{Var}(\mu_i)}{d_1^2 \text{Var}(\mu_i) + \text{Var}(v_{ij})} > 0.$$ \hspace{1cm} (2.6)

Using these results we now discuss the OLS estimator as well as AS’s and Topel’s estimators of the wage model (2.1). We consider AF’s approach in Section 9.

2.2 The OLS Estimator

Using equations (2.1) to (2.4) it is easy to show that the biases in the OLS estimators of β_1 and β_2 are

$$\beta_1^{\text{OLS}} - \beta_1 = b_1 + c_1$$

$$\beta_2^{\text{OLS}} - \beta_2 = b_2 + c_2 .$$

Unfortunately, neither bias can be signed. The bias in experience is ambiguous because the job match (b_1) and individual heterogeneity (c_1) terms are of opposite signs. Similarly, the bias in tenure is ambiguous because the job match heterogeneity (b_2) may either offset or re-enforce the upward bias in β_2^{OLS} from individual heterogeneity (c_2). However, if c_2 is large and positive and b_2 is either positive or small and negative, then the net bias in β_2^{OLS} will be positive, and the estimated effect of seniority on wages will be overstated in OLS wage regressions.

2.3 Altonji and Shakotko’s IV1 Estimator

Altonji and Shakotko propose an instrumental variables estimator to address the problems of individual and job match heterogeneity in the wage equation. Let $D T_{ij} = T_{ij} - \overline{T}$ denote the deviation of tenure from the mean of the sample observations on tenure for job match ij. Abstracting
from η_{ijt}, this variable is a valid instrument because it is orthogonal to the error components μ_i and ϕ_{ij} which are fixed within the job. We refer to the estimator that uses DT_{ijt}, X_{ijt} and t as instruments as the IV1 estimator. Using this estimator, AS find that 10 years of tenure leads to a wage increase of 2.7 percent, about 1/10th of their OLS estimate.

The IV1 estimator is free of bias from μ_i. However, the likely positive correlation between X_{ijt} and ϕ_{ij} leads to positive bias in β_1^{IV1} and negative bias in β_2^{IV1}. One can show that the bias in β_2^{IV1} induced by ϕ_{ij} is $-\beta_1 \frac{\gamma_{XT}}{1-\gamma_{XT}} (b_1 + b_2)$, where γ_{XT} is the least squares coefficient in the regression of T on X. AS (page 450) propose a modification of the IV1 estimator to correct for this bias that is based on the fact that ϕ_{ij} is orthogonal to DT_{ijt}, and the correlation between t and ϕ_{ij} arises only because t is correlated with X_{ijt}, which means that only an estimate of $E(\phi_{ij}|X_{ijt})$ is required. They estimate $E(\phi_{ij}|X_{ijt})$ as the product of (1) an assumed value of the average change in ϕ_{ij} per quit and (2) the expected number of times a person will quit by experience level X_{ijt} based on a logit model of quits as a function of a cubic in experience. Using the modified estimator, IV1*, AS obtain .066 as their preferred estimate of the effect of ten years of tenure.

Unfortunately, AS’s modification of IV1 ignores the fact that the gain from quits is likely to vary with the experience level and it ignores offsetting job match losses associated with layoffs. We make only a limited use of this bias correction below.

2.4 Topel's Two-Step First Difference (2SFD) Estimator

Prior to estimation, Topel (1991) detrends the data by subtracting an index of aggregate real wage growth from wages. The wage index is from an early draft of Murphy and Welch (1992), who created it using CPS cross sections. In our discussion below, it is useful to keep in mind that this detrending procedure is similar to regressing the Murphy-Welch index on a time trend using the sample composition to weight the various years, and then using the coefficient estimate $\hat{\beta}_0$ to detrend the data. After detrending, the estimation of β_1 and β_2 proceeds in two steps. The first step estimates the combined effect of the linear experience and tenure terms ($\beta = \beta_1 + \beta_2$) by applying OLS to a within job wage growth equation for stayers:

$$w_{gt} - w_{gt-1} - \beta_0 = \beta + \varepsilon_{gt} - \varepsilon_{gt-1} + \beta_0 - \hat{\beta}_0.$$
Because current experience is the sum of the initial experience on the job X_{0ijt} and T_{ijt}, in a second step may estimate the linear experience coefficient (β_1) by applying OLS to

$$\bar{W}_{ijt} - \hat{\beta}_1 T_{ijt} = X_{0ijt}\beta_1 + e_{ijt},$$

where $e_{ijt} = e_{ijt} + T_{ijt}(\beta_0 - \hat{\beta}_0) + T_{ijt}(\beta - \hat{\beta})$ and $\hat{\beta}$ is the OLS estimate from (2.8). Finally, the linear tenure slope (β_2) is estimated as $\hat{\beta} - \hat{\beta}_1$. We refer to this procedure as the two-step first difference (2SFD) estimator. When the specification of the tenure and experience effects is linear and an outside estimate of β_0 is used, Topel shows that the IV1 estimator is approximately equivalent to using (2.8) to estimate β and estimating (2.9) by instrumental variables with X as an instrument for X_{0ijt}. The approaches are identical in the linear case if one replaces (2.8) with an equation for deviations from job means.

Since μ_i and ϕ_{ij} are included in e_{ijt}, and both may be correlated with X_{0ijt}, the 2SFD estimator will produce biased results. Specifically, Topel shows that job matching produces a downward bias in the estimator of β_2 equal to $-\hat{b}_1 - \gamma_{X_{0ijt}}(\hat{b}_1 + \hat{b}_2)$, where $\gamma_{X_{0ijt}}$ is the least squares coefficient in the regression of T on X_{0ijt}.

Given values of the coefficients in equations (2.3) and (2.4), we can compare the “job matching” bias in the IV1 and 2SFD estimators. For example, Topel reports that because in his sample $\gamma_{X_{0ijt}}$ is about -0.25 and $\gamma_{X_{T}}$ is .5, the downward bias in the tenure coefficient β_2 is larger for the IV1 estimator than the 2SFD estimator provided that $b_1 + b_2$ is positive. Evidence from Topel and Ward (1992) suggests that $b_1 + b_2$ is positive. However, because Topel's estimate of $b_1 + b_2$ is only .0020 (page 159), his empirical results and the expressions for bias above imply that the difference between the IV1 and 2SFD estimators due to bias from ϕ_{ij} is $(-.5/(1-.5) - (.25)) \times .0020 = -.0015$. Multiplying by 10, this implies that difference between the estimators in the effects of job heterogeneity contributes only -.015 to the difference between IV1 and 2SFD in the estimated value of 10 years of seniority.

The overall bias in 2SFD for β_2 also depends on the importance of bias from μ_i. Some algebra establishes that the bias term $\gamma_{X_{0ij}}$ in Topel's equation (13) is equal to $\gamma_{X_{0ij}} = -c_2 \frac{\text{Var}(T|X)}{\text{Var}(T)}$, where c_2 is
the coefficient in the auxiliary regression (2.4) for \(\mu_i \) above, and \(\text{Var}(T|X) \) is the variance of \(T_{ijt} \) conditional on \(X_{ijt} \).\(^6\) In the replicated sample we use below, \(\text{Var}(T|X)/\text{Var}(T) = .676 \), so the bias from individual heterogeneity in the 2SFD estimator of the linear tenure coefficient is about \(\% \) the size of the bias in OLS from this source.

Topel finds that ten years of tenure leads to a log wage increase of .246. This implies a percentage increase in the wage level of 28 percent. Recognizing the potential bias from individual heterogeneity, he investigates by instrumenting \(X_0 \) in (2.9) with \(X \) and finds that the effect of ten years of tenure on the log wage only declines slightly to about .22. This is substantially larger than AS's IV1 and IV1* estimates of .027 and .066.\(^7\)

Topel makes a serious effort to explain the discrepancy between his findings and those of AS and AF. He argues that AS's tenure estimates are biased down due to (1) the greater effect of unobservable job heterogeneity on the IV1 estimator as compared to the 2SFD estimator, (2) measurement error in the tenure data, and (3) the use of an exogenous time trend. In contrast, Topel argues that the difference between his estimates and those of AF arises because AF use an inappropriate methodology. He concludes that the return to seniority is large and that the OLS estimates may even be downward biased. Most of the remainder of this paper revisits the issue of why the studies obtained such different results and discusses the relative merits of their approaches.

3. Replication of Topel's Basic Results

We begin by replicating Topel's basic findings. We started with a working data set covering the 1968-1983 PSID survey years that Topel used. Topel graciously provided a complete and well-documented set of programs for the May 1988 draft of his paper, which used a data set covering the

\(^6\) The parameter \(\gamma_{X0\mu} = \text{Cov}(X_0, \mu)/\text{Var}(X_0) \). \(\text{Cov}(X_0, \mu) = \text{Cov}(X-T, \mu) = -\text{Cov}(T, \mu) = -d_1 \text{Var}(\mu) \). \(\text{Var}(X_0) = \text{Var}(X-T) = \text{Var}(X) - 2\gamma_{XT} \text{Var}(X) + \text{Var}(T) \approx \text{Var}(T) \) in Topel's sample because \(\gamma_{XT} \) is .5. Thus, \(\gamma_{X0\mu} \approx -d_1 \text{Var}(\mu)/\text{Var}(T) \). Using this result, equation (2.6) for \(c_2 \) and the fact that (2.5) implies that \(\text{Var}(T|X) = d_1^2 \text{Var}(\mu) + \text{Var}(v_{ijt}) \) leads to the expression for \(\gamma_{X0\mu} \) in the text.

\(^7\) We infer the value of .22 from Topel’s report on page 164 that the estimate is about 3 percent lower when \(X \) is used as an instrument for \(X_0 \) in (2.9).
1968-1981 survey years only. 8 We updated the programs to use the additional sample years.

The replication sample has 8,585 within job wage change and 10,529 wage level observations which is quite close to Topel’s sample size. 9 In Table 1 we report the sample means of the variables used in the analysis. Column 1 is reproduced from Table A1 in Topel. Column 2 reports the sample means for the replication sample. The remaining columns refer to other samples that we will discuss below. The means of education, marital status, union membership, residence in an SMSA, and a disability affecting work match almost exactly. There is a substantial discrepancy in the mean of Topel’s earnings measure, which we call EARN_MW68, but this appears to be due to a difference in the base of the price deflator used rather than to differences in the samples. 10 However, we doubt if this is important because the mean of the change in EARN_MW68 in the replication sample is identical to Topel's reported value of .026. The means of experience are close—20.02 versus 19.74. The one somewhat worrisome difference is that the mean of tenure is 9.98 in Topel's sample and 10.63 in our replication, a difference of .65 years.

In Table 2 we directly compare estimates reported by Topel to those obtained using our replicated sample. (Cells are empty for estimates that are not reported in his study.) In columns 1 and 4

8 The 1968-1983 extract was supplied to Topel by Altonji and Nachum Sicherman. The wage data refer to the 1967-1982 calendar years. It is a superset of an extract for the 1968-1981 surveys created by AS and used by AF. We were able to replicate a number of the results in the earlier draft.

9 Topel reports 13,138 observations in the text (page 154). However, he also reports a sample of 8,683 within job wage change observations in the note to his Table 2, and 10,685 observations in the note to his Table 3. The latter values are probably the actual sample sizes, because the ratio of the within job wage changes to wage level observations of .8126 corresponds closely to the ratio of .8154 (8585/10529) in the replicated sample. We do not know the source of the discrepancies between Topel’s sample and our replication. In the second paragraph on page 174, Topel states that he deleted some additional jobs in which there were ambiguities about starting and ending dates. An earlier draft of his paper makes the same statement, and we implemented the checks in the programs that Topel supplied to us corresponding to that draft. It is possible that some additional checks were put into place when Topel extended the sample to take advantage of the data from 1982 and 1983. He states that "these deletions had very minor effects on the results and none on the conclusions."

10 As will be discussed further below, EARN is the log of real annual earnings divided by annual hours, while EARN_MW68 is equal to EARN minus the log of the real wage index constructed by Murphy and Welch for the years 1968 to 1983.
we report the OLS estimates.11 Our replicated estimate of the effect of 5 years of tenure is .1881, which is substantially below Topel's estimate of .2313. However, at ten years of tenure the estimates are .2732 versus .3002, and are quite close at the higher levels of tenure. In columns 2 and 5 we report the IV1 estimates when we include an exogenous time trend. The estimates for the replication sample are almost identical to Topel's. In columns 3 and 6 we present the 2SFD estimator. The replicated results yield almost exactly the same effect at five and ten years, and a slightly lower effect at 15 and 20 years. We have also replicated many other results reported in Topel's paper. The comparison between columns 2 and 5, and between 3 and 6 is typical of what we found. We conclude that our replication sample is close enough to Topel's to give reliable information.

4. Controlling for Economy Wide Time Trends and Changes in Sample Composition

4.1 Introduction

Empirical studies often must control for the effects of secular change. AS, AF, and many other studies include a time trend or year dummies in their wage models to control for economy-wide changes in real wages. Topel argues for an alternative approach that deflates wages by subtracting the log of a real wage index created from CPS data by Murphy and Welch (1992). In the tables below we refer to the PSID wage measure as EARN, the index as MW68 and the trend-adjusted real wage measure as EARN_MW68. In Section 4.2 we replicate Topel’s finding that the much lower trend in MW68 leads to a large increase in the tenure effect, particularly for the IV1 estimator. In Section 4.3 we analyze the reasons for the difference in the trend in MW68 and trend estimates based on the PSID. In Section 4.4 we discuss potential sources of bias from treating the time trend as exogenous in a wage equation and then discuss fixing the problem by instrumenting the time trend. Section 4.5 reviews evidence on possible bias in wage trends based on the CPS, and section 4.6 sums up.

4.2 Sensitivity of the Results to Treatment of the Time Trend

In Panel A of Table 3 we report results for the OLS, IV1 and 2SFD estimators for two different

11 Unless otherwise noted, we report White standard errors that account for individual specific heteroscedasticity and serial correlation in the error terms as well as for the fact that the 2SFD estimator is a two-step estimator.
treatments of the time trend. The models include 4th-order polynomials in tenure and experience, as well as the other control variables used by Topel. Due to space constraints we only report estimates of the effect of ten years of tenure based on the models. In columns 1A-3A we use EARN_MW68 as the dependent variable and exclude year dummies from the equation. The IV1 and 2SFD estimators both imply a return to ten years of tenure of about .25. The implied effect of 20 years of tenure is larger for the IV1 estimator than for the two-step estimator (.39 versus .29, not reported).

In columns 5A-7A we instead use EARN as the dependent variable, adding year dummies to control for the time trend. The annual growth in year dummies is .0090 in the case of OLS and .0084 in the case of IV1. The OLS estimator is virtually unchanged as compared to when EARN_MW68 is used. However, the IV1 estimate declines by half—from .235 to .123. There is also a small decline in the 2SFD estimator. Topel reports very similar results in his Table 6.

Clearly, in the replication sample, the method used to detrend matters. What does theory predict about the consequences of the time trend used? In the case of OLS, the consequences should be small because both the simple and partial correlations between t and X_ijt, and t and T_ijt are small. This is what we find in columns 1A and 5A of Table 3. In appendix 1 we show that the change in the IV1 estimate of the tenure effect should be approximately -2.27 times the difference in the trend in MW68

12 Estimates of the return to 2, 5, and 20 years of T and 10 and 30 years of exp are .062 (.011), .122 (.020), .278 (.051), .329 (.056) and .436 (.070), respectively, for model 2B, .098 (.013), .183 (.024), .240 (.032), .353 (.081) and .420 (.078) for model 3B, .046 (.010), .079 (.019), .064 (.041) .344 (.056) and .593 (.059) for 6B, .097 (.013), .178 (.024), .210 (.032), .336 (.080) and .391 (.078) for 7B, .029 (.008), .0443 (.014), .037 (.040), .349 (.041) and .575 (.048) for 6C, and .062 (.010), .111 (.018), .144 (.030), .345 (.070), and .374 (.066) for 7C. The detailed results and coefficients estimates for all models in the paper are available from the authors. Note that the AS and Topel papers use different functional forms but this explains little of the differences in the results of the two studies.

13 The linear trends that we report are based on regressions of either the MW index or the year dummy estimates on a linear trend and a constant. In all cases we use year weights that reflect the distribution of observations across years in the replication sample underlying panel A of Table 3. We do this because the mix of observations across years has an effect on the linear trend estimate.

14 Equation (2.9) reveals that the 2SFD estimator requires an estimate of the time trend or year dummies. We use the OLS or IV tenure exogenous estimates of the year dummies corresponding to the particular panel when implementing the 2SFD estimators. So here we use the year dummy estimates from the specification in column 5A.
index and the trend in the year dummies. In the replication sample the OLS estimate of the trend in the year dummies is .00835 and the trend in the Murphy-Welch index is .00281. This implies that the IV1 estimate of the effect of ten years of seniority will decline by about $2.27 \times (0.00835 - 0.00281) \times 10$ or 0.1259 when one replaces Earn_MW68 with Earn and adds year dummies (or a linear time trend) to the model. The actual decline in Table 3, Panel A is 0.1124.

In appendix 1 we also show the difference in the 2SFD estimates should be about -.79 times the difference in the trends, so the effect of ten years of seniority will decline by about $.79 \times (0.00835 - 0.00281) \times 10$ or 0.0438 when one replaces Earn_MW68 with Earn and adds year dummies (or a linear time trend) to the model. The actual difference using the estimates in column 3A and column 6A is a somewhat smaller 0.0252, perhaps because the analytical formula in the appendix ignores nonlinearity in the specification of tenure and experience.

In sum, we confirm that controlling for economy-wide real wage changes using the MW68 real wage index vis a vis estimating year effects with the PSID sample has no effect on OLS, makes a substantial difference in the IV1 estimator, and has a modest effect on the 2SFD estimator. These results are generally consistent with the theoretically predicted effects. We now turn to the more difficult question of which of the two procedures is preferred.

4.3 Sources of the Difference in CPS based and the PSID Time Trends

It is helpful to begin by decomposing the difference in the time trend between the CPS index and that obtained using the PSID replication sample into four sources: (1) Topel’s dating of the MW index; (2) differences between the CPS and a representative PSID sample; (3) the effect of controlling for union and marital status; and (4) differences between the representative PSID sample and the replication sample.

Dating of the the Murphy-Welch Index

MW68 is equal to an early version of the Murphy and Welch index for the years 1968-1981 and the published version for 1982 and 1983. Topel used index values for 1968 to 1983 to detrend PSID earnings data for 1967 to 1982. This means, for example, that PSID earnings in 1970 were detrended using the CPS based index value for 1971. To examine the impact of this choice we regressed MW68
on a linear time trend, weighting to reflect the distribution across years of the observations in the replication sample. By comparing the estimated trend values in rows 1 and 2 of Table 4, we observe that using the 1968-1983 wage index values rather than 1967-1982 values understates the 67-82 trend by .0025. This understatement reflects the fact that growth in the published Murphy-Welch index between 1967 and 1982 is 4.8 percent higher than between 1968 and 1983. When we re-estimate the wage models using Earn minus the log of the published Murphy-Welch index for 1967-1982 (hereafter Earn_MW67), the IV1 estimate of the effect of 10 years of tenure declines from .235 based on EARN_MW68 to .177. (Table 3, column 2B). Thus, the gap between IV1 using an index to detrend wages and IV1 using year dummies is reduced by about half if one uses the values of the Murphy-Welch index for the calendar years corresponding to the PSID wage data.15 The 2SFD estimate declines to .222.

\textbf{PSID Sample Selection Criteria and Control Variables}

Next we look at the effect on the time trends of the explicit and implicit sample selection criteria underlying the replication sample. The replication sample only includes white males who were heads of households in 1981, 1982, and/or 1983, who held jobs in the private sector and who were not self employed and for whom it was possible to construct job indicators and a tenure measure in a given year. To investigate whether the head of household restriction matters we created a comparable sample from the PSID for the 1968-1983 survey years that is not limited to persons who were heads of household in 1981, 1982, and/or 1983 and is not selected based on the availability of tenure information. We then regressed Earn on our basic control set with marital status and union status excluded plus a quartic in experience and dummies for each calendar year using person weights.16 The trend in the year dummies is .0065 (Table 4, row 3). Thus, there is a discrepancy of .0012 in the trend in MW67_82 and the trend in a representative sample of household heads from the PSID.

15 Results are not sensitive to whether we use the early version or the published version of the Murphy-Welch wage index series.

16 We obtained weights for the SRC sample by dividing the person weights for an individual in all years by the weight for the individual in the 1968 survey. Note that individuals who marry into PSID sample families receive a weight of 0. These individuals receive a weight of one in the unweighted case.
Note that the CPS indices do not hold union status and marital status constant, while the wage models used to estimate the effect of tenure do. Adding controls for marital status and union status raises the trend estimate to .0081 (Table 4, row 4). The increase in part reflects the decline in unionization from 33.7 percent of the sample in 1967 to 23.4 percent in 1982. When we drop person weights, the estimate rises slightly to .0082 (row 5).

The PSID trend rises to .0108 when we restrict the PSID to observations that are in the replication sample (row 6). This change in sample represents the combined effect of restricting the sample to persons who were heads of household in 1981, 1982, and/or 1983 and the loss of additional cases because of missing data or ambiguities in the data used to identify employer changes and tenure. Further analysis shows that the trend is .0031 higher for the observations in the replication sample than the full sample. This value falls to .0019 when we add an interaction between a linear trend and an indicator for attrition. (The trend is .00106 lower for persons who attrit than for the full sample, although this difference is not statistically significant). Consequently, we conclude that about .0012 (.0031-.0019) of the trend difference between the full sample and the replication sample is associated with attrition.

Finally, we emphasize that the trend of .0090 (row 7) in the actual replication sample is smaller than the trend in the observations that are in both the replication sample and the full sample (row 6).

To sum up, we have a total difference of .0062 in the trend in MW68 and the trend in the year dummy estimates based on the replication sample (row 7 minus row 1). Using the correct years of the MW index accounts for 40.3% of this difference. Controlling for union and marital status accounts for 27.4% of the difference. This leaves a difference of .002 or 32.3% that is unaccounted for, of which .0012 is a difference between the trend in MW67 and the trend in the representative PSID sample of household heads (row 3 - row 2) and .0008 (row 7 - row 5) is the difference between the trend in the replication sample and a matched sample of the representative and the replication samples.

The results suggest that if one were to adjust the MW67 index up to account for head of household status, and changes in unionization and marital status it would not matter very much whether one controlled for the trend using year dummies or used the MW67 index after adjustment. This is especially true given that the trend falls to only .0084 in the replication sample once tenure is added to
the model. The results also suggest that one must be careful in applying a secular wage adjustment from outside of the sample if different sample selection rules are used. Part of the unexplained difference might reflect the interaction between differences in sample composition and heterogeneity in economy trends, but we also show that part is associated with lower wage growth rates among those who ultimately attrit from the PSID sample. In the next section, we discuss possible sources of bias in the PSID and in the CPS that may account for the two unexplained discrepancies.

4.4 Potential Sources of Bias in Treating Time as Exogenous

Using exogenous year dummies in the wage regressions may be problematic if these dummies are correlated with the unobservable error components detailed in (2.2). We consider three possibilities. First, time may be positively correlated with the job match component. This correlation would arise if time is correlated with average X_{ijt}, and average X_{ijt} is correlated with ϕ_{ijt}, then time is likely correlated with ϕ_{ijt}. This is not a major concern in the representative PSID sample nor the CPS, because after weighting both are representative of the U.S. population and the change in average experience with calendar time is minimal. In principle, it could be a more important issue in the replication sample. However, the simple correlation between t and ϕ_{ijt} is likely to be weak because the relationship between time and average experience is very weak.17

In any case, the covariance between t and ϕ_{ijt} will not lead to bias in the tenure and experience coefficients of the OLS and IV1 estimators. The covariance between t and ϕ_{ijt} arises because t is correlated with the amount of time a given cohort of workers has been in the labor market, not because of the passage of time per se. Consequently, the covariance is zero conditional on X_{ijt}, T_{ijt} and X_{ijt}, or T_{ijt} and X_{0ijt}. That is,

$$\text{Cov}(t, \phi_{ijt}|X_{ijt}) = \text{Cov}(t, \phi_{ijt}|T_{ijt}, X_{ijt}) = \text{Cov}(t, \phi_{ijt}|T_{ijt}, X_{0ijt}) = 0.$$

17In the replicated sample, the coefficient on X_{ijt} in the auxiliary regression of t on X_{ijt} is actually negative (-.0024) and is not statistically significant. The relationship is weak primarily because much of the variation in X_{ijt} is cross sectional but also because the PSID is a self-replicating sample. The male children in the original PSID families enter the regression sample when they set up separate households, and original members of the sample leave when they retire, die, or reach the age 60 cutoff used by AS and Topel. Furthermore, the sample includes men who marry members of original PSID sample households. The splitoffs and persons who marry into the PSID sample tend to enter the sample early in their careers, while the heads in 1968 were a cross section of the population.
It follows that whether or not \(t \) is positively correlated with \(\phi_{ij} \) has no effect on the probability limit of the OLS estimator or the IV1 estimator. However, inclusion of a time trend or year dummies in the second step of the 2SFD estimator is likely to have an effect because \(T_{ijt} \) is omitted from (2.9) and \(t \) is correlated with \(T_{ijt} \) conditional on \(X_{ijt} \).

A second objection to the use of exogenous year dummies in the wage regressions is that changes in sample composition may induce a positive correlation between time and unobservable individual heterogeneity (\(\mu_i \)). Beckett et al (1988) and Fitzgerald, Gottschalk, and Moffitt (1998) find that attrition is higher among low income individuals. Consequently, there is reason to believe that the trend in the full PSID sample could be biased up. We do not believe this is a significant problem in our case, because the replication sample is drawn from heads of household in 1981, 1982, and/or 1983. Sample attrition on the basis of \(\mu_i \) does not lead to an upward trend in \(\mu_i \) because persons who left the PSID prior to 1981 are excluded in all years.\(^{18} \)

In any event, one can deal with correlation between \(t \) and \(\mu_i \) by using the deviation of \(t \) from its mean for person \(i \) as an instrument for time. This variable is uncorrelated with \(\mu_i \) by construction and is uncorrelated with \(\phi_{ij} \) conditional on \(T_{ijt} \) and \(X_{ijt} \).\(^{19} \) In practice we replace the time trend with a vector of year dummies \(YD_t \) and use \(\bar{YD}_{i,t} \), the deviations of the elements of \(YD_t \) from their means for each individual, as instrumental variables for \(YD_t \). The instrumental variables estimate of the trend in the year effects is .0099 in the representative PSID sample, which compares to .0082 when we treated the year dummies as exogenous. The corresponding numbers for the PSID replication sample are .0114.

\(^{18}\) Some of the observations in the later years are contributed by persons who married into PSID families or who split off from the original households. The observations in the early years might be even be more select than those in the late years, because they are contributed by persons who remained in the sample until at least 1981. This does not apply to the samples from the 1975-2001 data analyzed in section 11, because we use the available data on persons who later become nonrespondents.

\(^{19}\) Biases in the tenure and experience coefficients from other factors could contaminate the time trend coefficient even if the time trend is unrelated to the error term. However, the correlations between \(t \) and \(X_{ijt} \) and \(T_{ijt} \) are too weak for this to be a serious issue in the replication sample, as evidenced by the fact that the estimated time trend is nearly the same for OLS and IV1 despite the large difference in the tenure and experience effects.
and .0090 (when tenure is excluded). Results in 6A and 6B of Table 3 show that the IV1 estimate of the return to 10 years of tenure declines from .123 when YD, is treated as exogenous to .078 when we instrument using $\frac{YD_a}{YD}$. The counterparts to the OLS (labelled IV T Exo) and the 2SFD estimators in columns 5B and 7B are very similar to those in columns 5A and 7A. We conclude that there is not much of an a priori case and little evidence that an upward trend in the mean of μ_i leads to an overestimate of the time trend in the replication sample. If anything, the evidence points to an underestimate.

This leaves a third problem, which is the potential for bias due to an attrition induced association between the job match component ϕ_{ij}, which is implicitly indexed by t, and the sum of the time varying components u_{it} and η_{ijt}. The fact that the growth in wages is more rapid in the full PSID sample for those who remain in the PSID sample till 1981 or later than for those who attrit prior to 1981 could be a symptom of such an association. Suppose attrition is negatively related to $\phi_{ij} + u_{it} + \eta_{ijt}$. Then $E(\phi_{ij} + u_{it} + \eta_{ijt})$ will rise with time since entry into the PSID sample. Because membership in the replication sample is conditional on surviving until at least 1981, years since entry will be correlated with time in the replication sample even after conditioning on experience. It will also be positively correlated with the deviation of time from the individual means.

The issues raised by sample selection on ϕ_{ij}, u_{it}, and η_{ijt} are broader than the issue of how to control for secular wage growth, and the implications for whether one should use the MW index or year dummies to control for economy wide changes are not clear cut. Even if the MW index is a perfect control for economy wide changes, the attrition induced trend in $u_{it} + \eta_{ijt}$ will lead wage growth within jobs to exceed $\beta_1 + \beta_2$, leading to an overestimate of the return to tenure. Very little of this effect would be offset by correlation between X_{0ijt} and ϕ_{ij} because X_{0ijt} has a very weak correlation with t in the replication sample. On the other hand, if one introduces year dummies into a wage level equation, year dummy coefficients will be biased by the fact that $E(\phi_{ij})$ and $E(u_{it} + \eta_{ijt})$ depend positively on t because of attrition, but this will reduce the effect of $E(u_{it} + \eta_{ijt})$ on within job wage growth and reduce the overestimate of the return to tenure. In summary, if attrition is mainly based on ϕ_{ij}, then simply removing β_0 using the MW index might minimize bias from $\phi_{ij} + u_{it} + \eta_{ijt}$. However, if attrition is
mainly due to $u_{it} + \eta_{ijt}$, then the year dummies may serve as a partial control for its effects on $E(u_{it} + \eta_{ijt})$. Thus it is not clear which approach to dealing with aggregate trends is more robust to sample selection based on $\phi_{ijt} + u_{it} + \eta_{ijt}$.

4.5 Bias in Trends Based on the CPS wage series

Aside from the potential for differences in the trends that reflect differences in the underlying populations for the PSID sample and the CPS, there is the issue of whether the CPS should be treated as the “gold standard”. Abraham et al (1998) note that the growth in wages in the March CPS is lower than growth in wages as measured by the National Income and Product Accounts (NIPA) hourly wage series. They examine a number of possible explanations for the divergence, including the fact that the NIPA is job based while the CPS is person based, as well as differences in population coverage, earnings coverage, and in hours reporting. They show that much of the discrepancy results from a decline in the NIPA weekly hours measure relative to the CPS measure. They find some evidence that an increase in over reporting of hours in the CPS may account for a substantial share of the divergence between NIPA and the CPS hourly earnings measures. It is possible, of course, that there is also an increase in over reporting of hours in the PSID. In any event, we have re-estimated our models in Table 3 panels A and B using the NIPA wage series deflated by GNP implicit price deflator for personal consumption expenditures in place of the MW67 wage index. The IV1 estimate is .0621 using the NIPA index, which is below the estimate of .123 obtained using treating year dummies as exogenous and very close to the estimate obtained when the year dummies are instrumented using \bar{Y}_D.

Finally, it is possible that the average trend for the replication sample is greater than for CPS sample members. The PSID sample is restricted to heads of household while the CPS includes other males. This could make a difference if the trend in earnings has been higher for high income individuals, as most research on inequality suggests, because heads of household tend to have higher earnings. Also, the PSID largely excludes persons who immigrated to the U.S. after 1968, while the CPS includes them. Since recent immigrants earn less than natives, the immigration growth in the 70s likely depresses growth in the CPS index relative to the PSID, although we doubt if the effect is large.

In summary, it is quite possible that there is bias in trend estimates based on the CPS. It is also
possible that time trends for the populations that underlie the PSID and CPS samples differ. We have also shown for the period under study that the control set matters. These are reasons to prefer estimating the time trend within the PSID sample rather than imposing one from another data set.

4.6 Conclusions About Detrending Procedures

Only 32% of the discrepancy in trend estimates based on AS and Topel’s procedures remains if one uses the correct years of the MW index and accounts for the fact that union and marital status are controlled for in the earnings regressions. The percentage is even smaller if one compares the trend in MW68 to the trend in the year dummies obtained in the replication sample when seniority is in the regression. Using MW67 with an adjustment for an estimate of the part of the trend associated with changes in unionism and marital status will lead to results that are fairly close to those based on including year dummies in the wage regressions. There may be a case for instrumenting the year dummies using deviations from means as a way to deal with bias from attrition on the basis of fixed unobservables, and we do this below. Which detrending procedure is more robust to the potential for bias from attrition on the basis of time varying error components is an open question. It might be best to try to model such attrition, but we leave this to future research.

5. The Dating of the Tenure and Wage Measures

In the PSID, employer tenure, union status, and other job specific variables refer to the survey date (typically March, April or May), while the wage measure is annual earnings divided by annual hours in the previous calendar year. Consequently, AS use the wage measure from the survey in year t and tenure and union status from the survey in t-1. In contrast, Topel takes both the wage and the tenure and union status measures from the year t survey. He excludes observations if T_{ijt} < 1 because "wages refer to average hourly wages in the year preceding the survey."

The key issue, of course, is not the particular surveys that the tenure information come from but the consistency between the tenure measures and the wage measure as well as the impact of the rules on sample composition. Both dating procedures could lead to bias, for several reasons. The first has to do with the fact that all the estimation methods suggest that the return to seniority declines sharply after the first year or two. If April 1 is the average survey date, then Topel’s tenure measure is overstated by .75
years on average while AS’s is understated by about .25 years. Adding a constant to the tenure variable affects the interpretation of the coefficients.

Second, both studies use some wage observations that are likely to be mixtures of the wage on the old and new job if a job change occurred during the year. First observations on jobs have the same problem in both studies. If one ignores measurement error in tenure and assumes that the interview date is uniformly distributed between an early and late date, that tenure is uniformly distributed conditional on being less than 1, and that there is no time between jobs, then measured wage growth in the first year on the job will overstate actual growth by roughly

\[g \cdot \int_{t_{\text{min}}}^{t_{\text{max}}} \left((0.5 \cdot t_I) \cdot t_I / (T_{\text{max}} - T_{\text{min}}) \right) \, dt_I \]

where \(g \) is the average growth in wages between jobs, and \(t_{\text{min}}, t_{\text{max}} \) and \(t_I \) are the earliest, latest and actual interview dates (measured as fraction of the year that has gone by). Tabulations of the changes in the survey wage rate (see below) across jobs in Altonji and Williams (1998) suggest that \(g \) is only about .0383 for all separations. Interviews in the PSID are heavily concentrated in March, April, and May. If one assumes that interview dates are uniformly distributed between March 1st \((t_{\text{min}}=2/12) \) and May 30th \((t_{\text{max}}=5/12) \), and one sets \(g \) to 3 times the mean value of .0383, then the bias is the estimate of growth during the first year on the job is .005186. This is probably close to an upper bound and suggests that the fact that observations are a mixture across jobs is a relatively minor problem given the estimation methodologies both studies use.

AS’s dating convention also leads to potential problems with the last observation on a job. Under the assumptions above, a formula similar to (5.1) holds with \(t_I \) replaced by \((1-t_I)\) in the integral. In this case, the bias in growth for last observations on jobs is .029. Since these account for 18.5% of the wage growth observations, this could lead average wage growth to be overstated by .0054, which is substantial. However, the value we have used for \(g \) is probably substantially overstated.
Finally and perhaps most importantly, the decision about dating and whether to eliminate t-1 observations if $T_{ijt} < 1$ has an important effect on the mix of observations. Excluding wage observations from t-1 if T_{ijt} at the survey in t is less than 1 eliminates some short jobs all together and limits observations on some relatively short jobs to only one observation on the earnings level and none on earnings growth. Because short jobs tend to pay less and exhibit lower growth rates (conditional on the low tenure), we suspect that the restriction increases in estimates of the returns to seniority. However, it is hard to say precisely what the effect would be.

We start the examination of the impact of the dating conventions by using Topel’s dating convention and simply subtracting .75 from the value of tenure. We report the “Dating corrected” estimates of the effect of 10 years of tenure in rows 2 and 4 of Panel A and B of Table 3. As expected this reduces IV1 and 2SFD estimates somewhat—by about .02 and .04 respectively.

In Panel C of Table 3 we report results for the various estimators following AS’s practice of using year t wages with year t tenure and including observations with $T_{ijt} < 1$. There are 1,889 wage level observations and 965 wage growth observations in this sample that are not in the sample for Panels A and B. For these additional observations, the means of EARN and the growth in EARN are 1.33 and .0085 respectively, which are well below the overall means for these variables reported in Table 2. The mean of tenure is 2.85. There are also 144 wage observations and 0 wage growth observations that are in Panels A and B but not in Panel C.

Columns 1C-4C report results that use EARN_MW67 as the wage measure and exclude year dummies. Comparison of columns 2B and 2C shows that AS’s dating rule and inclusion of low tenure observations leads to a decline in the IV1 estimate of the effect of ten years of tenure from .177 to .096. In the 2SFD case the effect declines from .222 to .123 (columns 3B and 3C). In row 6 of Panel C we report estimates of the effect of 10 years of tenure that adjust for the fact that AS’s dating rule

20 Furthermore, requiring that tenure and wages be measured in the same year means that the first wage observation on some individuals (eg., those from the 1968 survey) are lost if tenure is less than 1 in the first year we observe. For example, if tenure at the survey in 1968 is estimated to be .5, one cannot infer a value of tenure for 1967, because a job change occurred in 1967. The same problem affects the initial observation on persons who enter the sample in other years. In practice, we are able to infer tenure in most cases.
understates tenure by about .25 years. (These are obtained by re-estimating after adding .25 to tenure and to experience without changing the sample.) As expected, these estimates of the effect of 10 years of tenure are slightly larger than the unadjusted estimates in row 5. Comparing the adjusted IV1 estimates in column 2B row 4 and column 2C row 6 leaves a difference of .056 in the effect of timing that cannot be accounted for simply by mismeasurement of average tenure. The corresponding value for 2SFD is .048.

In columns 5C-8C of Panel B we report estimates using year dummies to control for secular wage growth and $\bar{\bar{D}}_n$ as instruments for the dummies. The IV-Tenure Exogenous, IV1 and 2SFD estimates of the effect of 10 years of “Dating corrected” tenure on wages are .297, .039 and .136 respectively. Comparing the dating corrected estimates in row 4 of Panel B with those in row 6 of Panel C suggests that the IV-Tenure exogenous estimate is actually larger using AS’s dating procedure than Topel’s, while the IV1 and 2SFD fall by between .02 and .04.

In Panel D we report estimates for a sample in which we (1) use information on the survey date to create a measure of average tenure over the year, (2) use the tenure and date of survey information to eliminate 2046 observations that involve jobs that began between January 1st and the date of the survey on the grounds that these could be a mixture of earnings from different jobs and (3) eliminate 700 observations that correspond to the last wage observation on the ground that they could be mixtures across jobs.21 Eliminating last observations comes at the cost of eliminating a number of wage growth observations on short jobs. The results are similar to those in Panel C.

As should be clear by now, there is no perfect solution to the problem posed by the fact that the average hourly wage over the year may be a mixture from different jobs. For this reason, in Table 5 we report results using, WAGE, an alternative wage measure that refers to the same point in time as the tenure measure. WAGE is the log of the reported hourly wage at the survey date for persons paid by the hour and is based on the salary per week, per month, or per year reported by salary workers. Observations with $T_{ijt} < 1$ are included because the reported wage refers to the job held at the survey,

21 The results are very similar if we simply add .25 to the tenure measure rather than use the survey date information to adjust tenure at the survey date to the average value.
which is when tenure is measured. WAGE is unavailable prior to 1970 and is limited to hourly workers prior to 1976.22

When we use year dummies with the instruments \overline{YD}_n to account for secular change (columns 4-6) the IV1 estimate of the effect of ten years of tenure is .0402, which is almost exactly the same as the dating corrected estimate based on AS’s dating convention in Table 3, Panel C, column 6C. The 2SFD estimate is .0995, which is below the dating corrected estimate based on Topel's dating convention as well as the corrected estimate of .1359 based on AS’s convention.

In sum, the results suggest that adjusting the tenure measures so that they correspond to the middle of the year in which the wage is measured clearly should be done and reduces the discrepancy between Topel’s and AS’s dating convention. Once this is done and we control for secular wage growth using year dummies with instruments, the IV1 results fall in the narrow range of .012 to .055 (Table 3 columns 6B, 6C, and 6D) and are close to the estimate of .04 in Table 5. The IV1 estimator uniformly suggests a small effect of tenure on wages. The 2SFD estimates are much more sensitive to the dating of tenure and wages as measured by EARN, although regardless of the procedure used they are far below the OLS estimates.

6. Measurement Error in Tenure

As noted earlier, Topel considers measurement error in the AS tenure measure to be a major factor leading to the differences in the conclusions of the two studies. Topel (Table 6) reports that the estimated effect of tenure rises from .074 at ten years of tenure to .122 when he uses the IV1 estimator with an exogenous time trend and replaces AS's tenure measure with his tenure measure, a ratio of .61. The difference at 20 years of tenure is .052 versus .161. AS performed several experiments to check on

22 We account for the fact that it is capped at $9.98 per hour prior to 1978 by replacing capped values for the years 1970-1977 with predicted values based on a regression of the log of the reported wage on a constant and EARN. The regression is estimated using the sample of individuals in 1978 for whom the reported wage exceeds $9.98.
the seriousness of error in their tenure measure. They found that eliminating the effects of bracketing of tenure values in the early years and unusual changes in tenure or smoothing the tenure variable increased their basic estimate from .027 to about .044, also a ratio of .61. They concluded on the basis of these calculations and other results that measurement error is important but has little effect on their substantive conclusions.

AS’s and Topel’s results about effects of measurement error are easily reconciled. As the numbers provided above suggest, the bias from measurement error is similar in the two samples in percentage terms. The difference between the studies in the absolute magnitude of the bias from measurement error reflects the fact that Topel’s use of period t tenure information with period t-1 wage information leads to a larger value in the IV1 estimator. A similar bias in percentage terms leads to a larger bias in absolute terms.

7. Differences in the Estimators

Our results show that when the trend in the PSID is handled using year dummies and earnings

\[\text{23 AS used a complicated procedure to identify job matches and separations and to measure T. They included programming checks to make sure that tenure refers to the employer rather than the job and to try to guard against cases in which persons left an employer and then returned. However, for their main results they did not smooth tenure during the years 1968-1974 when it is bracketed and did not require tenure to increase by 1 for each year on the job. These were bad decisions. See Brown and Light (1992) on the quality of the PSID tenure data.} \]

\[\text{24 As a final check on measurement error bias and as a general specification test, they computed the mean of predicted wage growth by level of tenure in the previous year for job stayers, quits, and layoffs (using the cell means of tenure) and compared the predictions to actual growth. Random measurement error in tenure should have little effect on these sample means. The IV1 estimator performs well in these prediction tests. The OLS estimator performs miserably, with a pattern of errors that suggests that the OLS estimator has a strong positive bias.} \]

\[\text{25 We also re-analyzed the issue of measurement error using the AS sample after imposing the constraint that tenure within a job increases by 1 per year and eliminating all jobs in which the implied starting value of tenure is negative and eliminate all jobs that start in the sample and have an implied starting value of tenure that is greater than 1.25. In this data set we find that the absolute value of the effect of measurement error on IV1 rises when one uses a treatment of the time trend or the dating of wages and tenure that leads to a large IV1 estimate. For example, when we estimate that model with EARN_MW68 rather than a time trend in the AS sample, the estimated effect of 10 years of tenure is .0936 using AS's tenure measure and .172 using the smoothed tenure measure.} \]
and tenure are taken from the same year, 2SFD is consistently larger than the IV1 estimator, although both are much smaller than OLS. In the replication sample the gap between IV1 and the 2SFD estimator is about .10 at ten years of tenure and .15 at twenty years of tenure (not reported). As discussed in sections 2.3 and 2.4, both the IV1 and 2SFD estimators are biased down by job match heterogeneity, and the 2SFD estimator is biased up by individual heterogeneity. In this section we investigate the relative importance of these biases in the two estimators.

As noted above, the downward bias from correlation with the job component ϕ_{ij} is likely to be larger for IV1 than for the 2SFD estimator. The IV1* estimator is an attempt to correct IV1 for the effects of ϕ_{ij} under alternative assumptions about the gain from quits. We follow AS and compute the IV1* estimator, which incorporates a crude adjustment for the correlation between X_{ijt} and ϕ_{ij}. We assume a job match gain per quit of .05, which is consistent with AS's data. Because we ignore layoffs, which tend to reduce the growth in N_{ij} with X_{ijt}, we overstate the relationship between ϕ_{ij} with X_{ijt} and overstate the size of the bias. The IV1* estimate of the effect of ten years of tenure is .12, while the comparable IV1 and 2SFD estimates are .039 and .136 (Table 3, Panel C, columns 6C and 7C.) We conclude that the IV1 estimator is biased downward by job match heterogeneity, although we wish to stress that the adjustment in the IV1* estimator is not rigorous.

As noted in Section 2.4, 2SFD estimator is also biased down by job match heterogeneity, although to a slightly lesser degree than the IV1 estimator. It is bias upward bias from individual heterogeneity. In section 2.4 we showed that this upward bias in the 2SFD estimator is about 2/3 of the bias in tenure in the OLS or IV-exogenous tenure estimators. If the upward bias is small then 2SFD estimator might be more accurate than IV1. As noted previously, Topel investigated this issue by instrumenting X_0 with X in the second step of his estimator, and concluded that unobserved individual heterogeneity did not substantially bias his estimates upward.

In columns 4 and 8 of all panels of Table 3 we revisit this and use X as an instrument for X_0 for alternative treatments of the time trend and the dating of wages and tenure. In column 4A, we replicate Topel’s result that this instrumentation seems to have little effect on his estimates. However, this result only holds for when we use EARN_MW68 and year t-1 wages and year t tenure. When we simply use the more appropriate EARN_MW67 in the same sample, the dating corrected estimate of the value of
In AW (1997), Table A4 we explore whether the fact that IV1 uses deviations from means of tenure and 2SFD uses first differences explain the larger IV1 results and conclude that it does not. As Topel notes, consideration of the effects of the time varying error component η_{ijt} might lead one to prefer the use of first differences, particularly if it is a random walk. On the other hand, the use of deviations from job means might be less sensitive to minor misdating of job start and end dates.

When we use the dating convention of AS the effect of 10 years of tenure is -.003 (Col. 4C), which compares to .133 (col. 3C) using the 2SFD estimator with X0 exogenous. When we replace EARN_MW67 with EARN, use endogenous year dummies and instrument X0 with X, the effect of ten years of tenure is -.0004, which compares to .136 using the 2SFD with X0 is treated as exogenous. In both cases, these effects lie below the IV1 estimates. Bias from individual heterogeneity appears to be important in the PSID.26

Taken together, the evidence suggests the downward bias in the 2SFD estimator from job match heterogeneity is more than offset by an upward bias from individual heterogeneity. However, the difference between the IV1 and IV1* estimators and the 2SFD estimator is small compared to the difference between these estimators and OLS.

8. Conclusions about AS and Topel's Analyses

The three main sources of the difference between AS and Topel's results are the detrending procedure, the choice about dating of tenure and wages, and the estimators. Most of the difference due to the detrending procedure disappears when one uses the correct years for the MW wage index and takes into account the effect of controlling for union and marital status on the trend. Regarding the estimators, 2SFD leads to higher estimates in the replication sample. When the trend in the PSID is

26 In AW (1997), Table A4 we explore whether the fact that IV1 uses deviations from means of tenure and 2SFD uses first differences explain the larger IV1 results and conclude that it does not. As Topel notes, consideration of the effects of the time varying error component η_{ijt} might lead one to prefer the use of first differences, particularly if it is a random walk. On the other hand, the use of deviations from job means might be less sensitive to minor misdating of job start and end dates.
properly accounted, Topel's testing procedure suggests that the upward bias from individual heterogeneity in his estimator is substantial. On the other hand, the IV1 estimator is biased downward by job match heterogeneity to a larger degree than the 2SFD estimator. Taken together this suggests that the effect of 10 years of tenure lies above the IV1 estimate, but not as high as the 2SFD results. We think the weight of the evidence for the samples and wage data used by AS and Topel points to an intermediate value for the effect of ten years of tenure of perhaps .11. This is above AS's IV1* estimate of .066 but far below Topel’s results. However, our results in table 5, column 5 and 6 for the reported wage measure at the survey date, which is preferred to average hourly earnings over the year, imply a return to 10 years of tenure of only about .06.

9. Topel’s Analysis of the Abraham and Farber estimator

Abraham and Farber (1987) add an estimate of the expected completed tenure T_{ij}^* of each job to the basic wage equation in (2.1) as a control for heterogeneity and obtain estimates of the return to tenure by estimating the equation.

\[(9.1) \quad W_{ijt} = \beta_0 + \beta_1 X_{0ijt} + (\beta_1 + \beta_2) T_{ijt}^* + \psi T_{ijt}^{**} + \epsilon_{ijt}\]

OLS estimation of (9.1) leads to estimates of the returns to seniority well below estimates that exclude T_{ij}^*. Partly on the basis of this evidence AF conclude that the returns to tenure are relatively small. Topel notes that (9.1) is equivalent to estimating

\[(9.2) \quad W_{ijt} = \beta_0 + \beta_1 X_{0ijt} + (\beta_1 + \beta_2) (T_{ijt}^* - \overline{T}_{ij}) + (\beta_1 + \beta_2)(\overline{T}_{ij}) + \psi T_{ijt}^{**} + \epsilon_{ijt}\]

by OLS with the coefficients on \overline{T}_{ij} and $T_{ijt}^* - \overline{T}_{ij}$ restricted to be same, where \overline{T}_{ij} is the average observed tenure on job j. He notes that \overline{T}_{ij} may be correlated with the unobservables conditional on T^* in a sample that includes incomplete longitudinal histories. Imposing the parameter restrictions implicit in (9.1) on (9.2) will lead this bias to be transmitted to the coefficient on $T_{ijt}^* - \overline{T}_{ij}$. When Topel estimates (9.2) he strongly rejects the restrictions implicit in (9.1) and obtains estimates of the tenure parameter that are similar to the OLS value that he obtains when using the linear specification of the
tenure effect. Note that the OLS estimate of .138 he reports in his Table 7 for the linear specification is far below the OLS estimate of .302 that Topel reports in his Table 3 when he uses a 4th order polynomial for tenure.

As it turns out, Topel’s findings are somewhat sensitive to his use of the period t-1 wage with period t tenure. More importantly, when one relaxes the linear specification of the tenure effect in (9.1) and (9.2) by using parameter estimates from a within job wage growth equation to remove the nonlinear tenure and experience effects prior to estimation of these two equations, the OLS estimates rise dramatically, but the estimates of the tenure effect based on (9.2) rise only slightly. The use of an estimate of job duration to control for heterogeneity yields an estimate of the return to ten years of tenure between .06 and .13 even if one uses the unrestricted version of AF estimator that Topel advocates. These values are between ¼ and ½ of the OLS estimates for the Topel's 4th order polynomial specification. The details are in AW (1997).

10. Results for a More Recent Sample

Given dramatic changes in the returns to schooling and experience documented by Murphy and Welch (1992) and others it is likely that the returns to tenure have changed. Furthermore, the quality of the tenure data and the data on the survey wage (WAGE) are better after 1975 and there are further improvements in the tenure data in the 80s. Finally, growth of temporary employment and contract work and reductions in job security suggest a change in the nature of the employment relationship that may have led to a change both in the return to tenure and in consequences of individual heterogeneity and job match heterogeneity. For all of these reasons, we examine a more recent period.

In Table 6 we present estimates for 1975-1982 (panel A), 1975-1987 (panel B), 1988-2001 (Panel C) and for the combined sample from 1975-2001 (panel D).27 In columns 1-3 of Table 6 we

27 We used extensions of the algorithms developed in Altonji and Williams (1997) and Devereux (1996) to create the experience and tenure measures. Our computer programs and data are available on request. Complications arise from the institution of biannual surveys that began in 1997. From 1975-1996, the WAGE and the EARN samples use data that originate from the same calendar year. This continues in 1997, 1999, and 2001 for the WAGE sample. In the EARN sample, earnings refer to the previous calendar year and so the post 1996 observations refer to 1998 and 2000. The tenure and experience are adjusted to account for this fact.
present results using WAGE as the dependent variable. The specifications are the same as those in Table 5 and all use \overline{YD}_{t} as instruments for YD_t. The IV-Tenure Exogenous estimates in column 1 suggest little change, as the return to ten years of tenure is .262 for 1975-1982, .285 for 1975-1987, and .268 from 1988-2001. In contrast, the IV1 estimate of the value of ten years of tenure in column 2 is -.003 and insignificant in the first period, .097 for 1975-1987, and .061 for 1988-2001. As was noted earlier, these estimates are probably downward biased by job shopping. They are consistent with a modest increase in the return to tenure in the early to mid 80s, perhaps followed by a small decrease in the 1990s, although the difference between 1975-1987 and 1988-2001 is not statistically significant. The 2SFD estimates of the effect of ten years of tenure in column 3 are .145 for 1975-1987 and .150 for 1988-2001. These estimates are larger than the estimate of .100 in Table 5 column 6 that uses WAGE in the replication sample for 1975-1982. However, the 2SFD estimates are biased upward by individual heterogeneity. We take a value of .09, which lies between the IV1 and 2SFD estimates for 1988-2001, as our point estimate of the return to ten years of tenure based on this wage measure for the most recent period.

Using EARN as the dependent variable in columns 4-6 we find larger tenure effects. It should be kept in mind that data on EARN from the 2001 PSID wave refers to 2000. When tenure is treated as exogenous (column 4) the estimate of the effect of ten years of tenure is about .39 and varies little across periods. The IV1 estimate rises from .042 (.036) for 1975-1982 to .117 (.025) for both 1975-1987 and 1988-2001. The 2SFD estimate rises from .213 (.038) to .223 (.031) for 1975-1987 to .271 (.033) for the later period. We would take .16 or .17 as our preferred estimate based EARN for 1988-2001. As we have already discussed, these estimates are subject to the problem that EARN may be a mixture of wages from two jobs, and the results based on the survey wage rate should be preferred a priori.\(^{28}\)\(^{29}\)

\(^{28}\) There are minor differences in the samples for the two wage measures that stem primarily from the fact that persons must be employed or on temporary layoff to have a survey wage. These differences do not appear to explain the larger tenure estimates using EARN.

\(^{29}\) The IV1 estimator produces larger estimates for the 1975-2001 period than for either subperiod and is not simply an average of the results for the two subperiods. When we pool the observations across subperiods but construct the values of DT_{ijt} separately for each subperiod, we obtain results that are intermediate between those for the subperiods. Consequently, the IV1 estimator puts more weight on long jobs when we use the 1975-2001 period. This raises the
There is a large literature showing that much of the rise in inequality has been within education/experience cells, and there is some evidence that the return to aptitude and achievement measures have risen over time. There is also evidence that the relationship between unobserved personal characteristics and wages has changed. This would imply that the market price on the individual heterogeneity component μ_i and/or the variance in the distribution of μ_i has increased. Secular increases or decreases in the distribution of the job match heterogeneity component or its relationship with experience and tenure will affect all three estimators.

One way to isolate the change in the return to tenure and experience from the above changes is to compute the combined return to ten years of experience and tenure using the within job wage change equation (2.8) for different periods because these estimates are not affected by μ_i. We use the estimated year dummies obtained from the IV-Exogenous tenure estimator to remove the effect of secular growth. The within job estimates for WAGE imply a combined return to ten years of tenure and experience of .480 (.052) for 1975-1982, .504 (.041) for 1975-1987, and .474 (.057) for 1988-2001. The corresponding results for EARN are .506 (.063), .593 (.052) and .533 (.085). Thus, the point estimates suggest that the sum of the effects of tenure and experience increased during the early to mid 80s and then declined, but the changes are small relative to standard errors.

11. Conclusion

Our main conclusion is that the data used by both AS and Topel imply a return to ten years of tenure of about .11, which is much closer to AS’s preferred estimate of .066 and to AF’s results than Topel's estimate of .245 or the OLS estimates. Use of the survey wage rate in place of average hourly earnings leads one to revise this estimate back downward to about .06. The OLS type estimators lead to...

30 See the surveys by Levy and Murnane (1992) and Katz and Autor (1999).

31 We normalize μ_i to have a mean of 0 in the sample, but if the mean of μ_i is higher for stayers than movers, an increase in the factor loading relating wages to μ_i could lead to an increase in the estimate of within job wage growth that has nothing to do with the return to experience or seniority.
a large overestimate of the return to tenure and should not be used.

Broad changes in earnings distributions and in the employment relationship motivate our examination of more recent data. Perhaps surprisingly, the return to tenure is probably larger over the 1975-1987 and 1988-2001 periods than over the period analyzed by earlier studies, but our estimate of the size of the return is sensitive to the choice of wage measure. For the later periods we are able to perform a more complete analysis using the survey wage rate, which is the preferred wage measure because it refers to a point in time and thus does not average wages across jobs. Focussing on 1988-2001, using this measure we obtain a return of .061 using IV1, which is probably downward biased, and a return of .150 using 2SFD, which is probably upward biased. We would choose an intermediate value of .09 as our estimate based on this wage measure. We would revise this estimate upward to perhaps .14 because the IV1 and 2SFD estimates are both substantially higher for the average hourly earnings measure of wages, although there are problems with that measure. This value is far below estimates that treat tenure as exogenous, and is on high side for most recent work on the return to seniority.32

Appendix 1: The Effect of Bias in the Time Trend on the IV1 and 2SFD Estimators

For simplicity, treat year to year variation in the aggregate wage change as part of the error and focus on the linear trend component. Redefine the wage measure W_{ijt} as the real wage net of the Murphy-Welch wage index and rewrite (2.1) as

$$W_{ijt} = \beta_0^* t + \beta_1 X_{ijt} + \beta_2 T_{ijt} + \epsilon_{ijt}$$

where β_0^* is the difference between the actual time trend (β_0) and the coefficient ($\hat{\beta}_0$) from a regression of the Murphy-Welch wage index on t. In the linear case the IV1 estimators of $\beta = \beta_1 + \beta_2$ and β_1 are

$$\beta_{IV1} = (DT'DT)^{-1} DT'DW$$

and

$$\beta_{IV1}^1 = (X'X0)^{-1}X'(Y-\hat{\beta}^IV_0)$$

where we use obvious matrix notation and DT and DW are vectors of deviations from job means of T_{ijt} and W_{ijt}. From the first equation it is easy to show that

$$\lim_4 \beta_{IV1} = \lim_4 \beta_{2SFD} = \beta_1 + \beta_2 + \beta_0^*$$

From the second equation it is easy to show that bias in the experience coefficient is

$$\hat{\beta}_{IV1}^1 - \beta_1 = b_1 + \frac{\gamma_{XT} X_{ijt} [b_1 + b_2]}{1 - \gamma_{XT}} - \frac{\gamma_{XT} X_{ijt} \beta_0^*}{1 - \gamma_{XT}} + \frac{\gamma_{XT} X_{ijt} \beta_0^*}{1 - \gamma_{XT}}$$

where γ_{Xi} is the coefficient in the auxiliary regression of t on X_{ijt}. Since $\hat{\beta}_{2}^{IV1} = \hat{\beta}_{IV1}^{IV1} - \hat{\beta}_{1}^{IV1}$, the bias in the tenure coefficient contributed by the terms involving β_0^* is

$$\beta_0^* + \frac{\gamma_{XT} X_{ijt} \beta_0^*}{1 - \gamma_{XT}} - \frac{\gamma_{XT} X_{ijt} \beta_0^*}{1 - \gamma_{XT}}$$

We can evaluate the bias from using the wrong time trend by substituting the estimates γ_{XT}, γ_{Xi}, and β_0^* obtained from using the replication sample. In that sample, γ_{XT} is about .56 and γ_{Xi} is only -.0024 so the bias implied by the above expression is about -2.27β_0^*. A similar analysis of the 2SFD estimator implies that using the wrong time trend biases β_2 by

$$\beta_0^* + \frac{\gamma_{XT} X_{ijt} \beta_0^*}{1 - \gamma_{XT}} - \gamma_{X0} \beta_0^*$$

33 The expression for β^{IV1} is simply the mean wage growth within jobs after adjusting for the Murphy-Welch trend estimate. This is $\beta_1 + \beta_2 + (\hat{\beta}_0 - \beta_0)$
References

Table 1: Summary Statistics, PSID, 1968-1983

<table>
<thead>
<tr>
<th>Topel (1991) Sample</th>
<th>Replicated Topel Sample</th>
<th>Samples Using Year t Wage, Year t Tenure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tenure < 1 Excluded</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Earn_MW68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.131 (0.497)</td>
<td>1.538 (0.436)</td>
<td>1.492 (0.464)</td>
</tr>
<tr>
<td>ΔEarn_MW68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.026 (0.230)</td>
<td>0.026 (0.243)</td>
<td>0.024 (0.243)</td>
</tr>
<tr>
<td>Earn_MW67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.525 (0.435)</td>
<td>1.479 (0.463)</td>
<td>1.559 (0.422)</td>
</tr>
<tr>
<td>ΔEarn_MW67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022 (0.229)</td>
<td>0.018 (0.243)</td>
<td>0.014 (0.225)</td>
</tr>
<tr>
<td>Earn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.645 (0.437)</td>
<td>1.600 (0.464)</td>
<td>1.678 (0.425)</td>
</tr>
<tr>
<td>ΔEarn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.030 (0.230)</td>
<td>0.028 (0.244)</td>
<td>0.022 (0.226)</td>
</tr>
<tr>
<td>Experience</td>
<td>20.021 (11.045)</td>
<td>19.736 (10.565)</td>
</tr>
<tr>
<td>Educi</td>
<td>12.645 (2.809)</td>
<td>12.689 (2.807)</td>
</tr>
<tr>
<td>Mrdnow</td>
<td>0.925 (0.263)</td>
<td>0.929 (0.260)</td>
</tr>
<tr>
<td>Unm</td>
<td>0.344 (0.473)</td>
<td>0.342 (0.473)</td>
</tr>
<tr>
<td>SMSA</td>
<td>0.644 (0.478)</td>
<td>0.635 (0.481)</td>
</tr>
<tr>
<td>Dsabh</td>
<td>0.074 (0.262)</td>
<td>0.071 (0.257)</td>
</tr>
<tr>
<td>Wage Change Observations</td>
<td>8683</td>
<td>8585</td>
</tr>
<tr>
<td>Wage Level</td>
<td>Observations</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10529</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12274</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9528</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Standard deviations in parentheses. Topel (1991) reports the number of wage change observations in the notes to his Table 2 (page 157) and the number of wage level observations in the notes to Table 3 (page 158). Samples are created from the Panel Study of Income Dynamics, survey years 1968 through 1983.
Table 2: OLS, IV1 and 2SFD on PSID Topel Replication Sample, 1968-1983.
Dependent Variable is Earn_MW68.

<table>
<thead>
<tr>
<th>Replicated Topel Sample</th>
<th>Topel (1991)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3)</td>
</tr>
<tr>
<td>Linear Tenure Coefficient</td>
<td>0.0530 (0.0081)</td>
</tr>
<tr>
<td>Linear Experience Coefficient</td>
<td>0.0409 (0.0123)</td>
</tr>
<tr>
<td>2 Years of Tenure</td>
<td>0.0923 (0.0127)</td>
</tr>
<tr>
<td>5 Years of Tenure</td>
<td>0.1881 (0.0219)</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>0.2732 (0.0250)</td>
</tr>
<tr>
<td>15 Years of Tenure</td>
<td>0.3145 (0.0262)</td>
</tr>
<tr>
<td>20 Years of Tenure</td>
<td>0.3495 (0.0287)</td>
</tr>
<tr>
<td>5 Years of Experience</td>
<td>0.1777 (0.0406)</td>
</tr>
<tr>
<td>10 Years of Experience</td>
<td>0.3045 (0.0530)</td>
</tr>
<tr>
<td>30 Years of Experience</td>
<td>0.4205 (0.0524)</td>
</tr>
</tbody>
</table>

Notes: White standard errors in parentheses for the OLS and IV1 estimators. Standard errors for the 2SFD estimator account for the fact that it is a 2-step estimator and for person specific heteroscedasticity and serial correlation in the error terms. Columns 1 through 3 use the replicated Topel sample, while columns 4 through 6 contain estimates reported by Topel (1991). The specifications in column 1 and 3 do not contain a time trend. The specification in column 2 contains an exogenous time trend. Columns 4 and 6 are taken from Table 3 of Topel. Column 5 is taken from Table 6, column 2 of Topel. All specifications include a quartic in tenure, a quartic in experience, years of education, and dummies for marital status, union membership variable, current disability, residence in an SMSA, residence in a city with a population of more than 500,000 and eight Census regions.
Table 3: The Effects of Time Trend and Dating of the Wage and Tenure, PSID Topel Replication Sample, 1968-1983

Panel A: Year t-1 wage, Year t tenure, Tenure < 1 excluded

<table>
<thead>
<tr>
<th></th>
<th>Earn_MW68</th>
<th>Earn, Year Dummies Exogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV1</td>
</tr>
<tr>
<td></td>
<td>(1A)</td>
<td>(2A)</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>1</td>
<td>0.273</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Dating Corrected</td>
<td>2</td>
<td>0.243</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Year t-1 Wage, Year t Tenure, Tenure < 1 excluded

<table>
<thead>
<tr>
<th></th>
<th>Earn_MW67</th>
<th>Earn, Year Dummies Endogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV1</td>
</tr>
<tr>
<td></td>
<td>(1B)</td>
<td>(2B)</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>3</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Dating Corrected</td>
<td>4</td>
<td>0.245</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel C: Year t Wage, Year t Tenure, Tenure <1 included

<table>
<thead>
<tr>
<th></th>
<th>Earn_MW67</th>
<th>Earn, Year Dummies Endogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV1</td>
</tr>
<tr>
<td></td>
<td>(1C)</td>
<td>(2C)</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>5</td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Dating Corrected</td>
<td>6</td>
<td>0.293</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel D: Year t Wage, Year t Average Tenure, Omit Last Observation on Job and First Year Mixtures

<table>
<thead>
<tr>
<th></th>
<th>Earn_MW67</th>
<th>Earn, Year Dummies Endogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV1</td>
</tr>
<tr>
<td></td>
<td>(1D)</td>
<td>(2D)</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>7</td>
<td>0.210</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Dating Corrected</td>
<td>8</td>
<td>0.220</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes to Table 3: The rows labeled “10 years of Tenure” are estimates of the effect of 10 years of tenure based on the wage model estimates. The rows labeled “Dating Corrected 10 Years of Tenure” adjust for discrepancy between the dating of the average hourly wage measure and tenure. See section 5 in the text for details. The wage specification is as described in the notes to Table 2. The sample sizes are 10529 for columns 1, 2, 5, 6 and for the second step of the 2SFD estimator (equation 2.9) in columns 3, 4, 7, 8 in panels A and B. The sample for the first stage of the 2SFD model (2.8) in columns 3, 4, 7, 8 contains 8585 wage change observations. The sample sizes are 12274 for columns 1C, 2C, 5C and 6C and for the second step of the 2SFD estimator in columns 3C, 4C, 7C, and 8C. The sample for the first stage of the 2SFD model in columns 3C, 4C, 7C, and 8C contains 9481 wage change observations. The sample sizes are 9528 for columns 1D, 2D, 5D, and 6D and for the second step of the 2SFD estimator in columns 3D, 4D, 7D, and 8D. The sample for the first stage of the 2SFD model in columns 3D, 4D, 7D, and 8D contains 7921 wage change observations. Standard errors in parentheses -- see Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Trend Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topel Replication Sample</td>
<td></td>
</tr>
<tr>
<td>Earn_MW68, CPS wage index from 1968 to 1983 used to deflate earnings</td>
<td>(1) .0028</td>
</tr>
<tr>
<td>Earn_MW67, CPS wage index from 1967 to 1982 used to deflate earnings</td>
<td>(2) .0053</td>
</tr>
<tr>
<td>Representative PSID Sample</td>
<td></td>
</tr>
<tr>
<td>Earn, Without holding union and marital status constant, Weighted</td>
<td>(3) .0065</td>
</tr>
<tr>
<td>Earn, Holding union and marital status constant, Weighted</td>
<td>(4) .0081</td>
</tr>
<tr>
<td>Earn, Holding union and marital status constant, Unweighted</td>
<td>(5) .0082</td>
</tr>
<tr>
<td>Earn, Holding union and marital status constant, Matched to Replication Sample, Unweighted</td>
<td>(6) .0108</td>
</tr>
<tr>
<td>Topel Replication Sample</td>
<td></td>
</tr>
<tr>
<td>Earn, Holding union and marital status constant, Year Dummies Exogenous</td>
<td>(7) .0090</td>
</tr>
<tr>
<td>Earn, Holding union and marital status constant, Year Dummies Endogenous</td>
<td>(8) .0114</td>
</tr>
</tbody>
</table>

Notes: Rows 1 and 2 come from a regression of the Murphy-Welch real wage index onto a constant and time trend, using year weights that reflect the distribution of observations across years in the replication sample. The estimates in rows 3-7 are obtained by first regressing log earnings onto a quartic in experience, other controls, and year dummies modeled as exogenous. The estimated year dummies are then regressed onto a constant and a time trend using year weights that reflect the distribution of observations across years in the replication sample. The estimate in row 8 is similar, except that the year dummies in the first step are instrumented using deviations from individual means for each year dummy.
Table 5: Log Hourly Wage Regressions, PSID Topel Replication Sample, 1968-1983

<table>
<thead>
<tr>
<th>IV, Tenure Exogenous</th>
<th>IV1</th>
<th>2SFD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>2 Years of Tenure</td>
<td>0.0652</td>
<td>0.0279</td>
</tr>
<tr>
<td></td>
<td>(0.0109)</td>
<td>(0.0079)</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>0.2038</td>
<td>0.0402</td>
</tr>
<tr>
<td></td>
<td>(0.0228)</td>
<td>(0.0223)</td>
</tr>
<tr>
<td>20 Years of Tenure</td>
<td>0.2580</td>
<td>0.0290</td>
</tr>
<tr>
<td></td>
<td>(0.0295)</td>
<td>(0.0421)</td>
</tr>
<tr>
<td>10 Years of Experience</td>
<td>0.2603</td>
<td>0.3185</td>
</tr>
<tr>
<td></td>
<td>(0.0416)</td>
<td>(0.0427)</td>
</tr>
<tr>
<td>30 Years of Experience</td>
<td>0.3793</td>
<td>0.5349</td>
</tr>
<tr>
<td></td>
<td>(0.0448)</td>
<td>(0.0508)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses – see Table 2. The specification is as described in the notes to Table 2. The mean of Wage is 1.41 and the mean of ΔWage is 0.015. The first stage of the 2SFD estimator uses 6309 within job first differences, while the IV with tenure exogenous, IV1, and second stage of the 2SFD estimator uses 8872 observations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV, Tenure Exogenous</td>
<td>IV1</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>0.2617</td>
<td>-0.0028</td>
</tr>
<tr>
<td></td>
<td>(0.0251)</td>
<td>(0.0376)</td>
</tr>
<tr>
<td>30 Years of Experience</td>
<td>0.4562</td>
<td>0.7527</td>
</tr>
<tr>
<td></td>
<td>(0.0527)</td>
<td>(0.0879)</td>
</tr>
</tbody>
</table>

| | IV, Tenure Exogenous | IV1 | 2SFD |
|--------------------|--------------------------|--------------------------|
| 10 Years of Tenure | 0.2854 | 0.0965 | 0.1446 |
| | (0.0216) | (0.0245) | (0.0245) |
| 30 Years of Experience | 0.5076 | 0.5911 | 0.4708 |
| | (0.0454) | (0.0582) | (0.0524) |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV, Tenure Exogenous</td>
<td>IV1</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>0.2675</td>
<td>0.0610</td>
</tr>
<tr>
<td></td>
<td>(0.0244)</td>
<td>(0.0219)</td>
</tr>
<tr>
<td>30 Years of Experience</td>
<td>0.4147</td>
<td>0.6039</td>
</tr>
<tr>
<td></td>
<td>(0.0634)</td>
<td>(0.0686)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV, Tenure Exogenous</td>
<td>IV1</td>
</tr>
<tr>
<td>10 Years of Tenure</td>
<td>0.2787</td>
<td>0.1121</td>
</tr>
<tr>
<td></td>
<td>(0.0173)</td>
<td>(0.0163)</td>
</tr>
<tr>
<td>30 Years of Experience</td>
<td>0.4638</td>
<td>0.6063</td>
</tr>
<tr>
<td></td>
<td>(0.0397)</td>
<td>(0.0423)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses – see Table 2. The specification is as described in the notes to Table 2, except that the eight Census region dummies have been replaced by three area dummies. In all panels, the dependent variable is the log wage in columns 1-3, and log earnings in columns 4-6. All panels include year dummies that have been instrumented using deviations from individual means for each year dummy. The log wage samples for 1975-1982, 1975-1987, 1988-2001, and 1975-2001 contain 5833, 10369, 11262, and 21631 observations. The samples for the first stage of the Topel estimator in column 3 contain 3825, 6995, 7535, and 15174 wage change observations. The log earnings samples for 1975-1982, 1975-1987, 1988-2001, and 1975-2001 contain 6830, 11819, 10683, and 22501 observations. The samples for the first stage of the Topel estimator in column 6 contain 4731, 8355, 6749, and 15762 wage change observations. The sample periods are the calendar year that the wage and earnings data refer to, rather than the years of the PSID survey. For example, the log earnings in 1991 are from the 1992 survey, and log wage in 1991 is from the 1991 survey.