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Abstract

This paper studies the theoretical properties and counterfactual predictions of a

large class of general equilibrium trade and economic geography models. We begin by

presenting a framework that combines aggregate supply and demand equations with

market clearing conditions. We prove that existence, uniqueness and – given observed

trade flows – the counterfactual predictions for trade flows, incomes, and real output

prices of any model within this framework depend only on the demand and supply

elasticities (the “gravity constants”). We propose a new strategy to estimate these

gravity constants using an instrumental variables approach that relies on the general

equilibrium structure of the model. Finally, we use these estimates to compute the

impact of a trade war between US and China.

1 Introduction

Over the past fifteen years, there has been a quantitative revolution in spatial economics.

The proliferation of general equilibrium gravity models incorporating flexible linkages across

many locations now gives researchers the ability to conduct a rich set of real world analyses.

However, the complex general equilibrium interactions and the variegated assumptions un-

derpinning different models has resulted in our understanding of the models’ properties to lag

behind. As a result, many important questions remain either partially or fully unresolved,

∗We thank Andy Atkeson, David Atkin, Lorenzo Caliendo, Arnaud Costinot, Jonathan Dingel, Dave Don-
aldson, Jonathan Eaton, Pablo Fajgelbaum, John Geanakoplos, Penny Goldberg, Sam Kortum, Xiangliang
Li, Giovanni Maggi, Kiminori Matsuyama, Francesc Ortega, Ralph Ossa, Nina Pavcnik, Steve Redding, An-
dres Rodriguez-Clare, Bob Staiger, Chris Tonetti, our editor Harald Uhlig, and four anonymous referees for
excellent comments and suggestions. A Matlab toolkit which is the companion to this paper is available on
Allen’s website. All errors are our own.
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including: When does an equilibrium exists and when is it unique? Do different models have

different counterfactual implications?

In this paper, we characterize the theoretical and empirical properties common to a large

class of gravity models spanning the fields of international trade and economic geography.

We first provide a “universal gravity” framework combining aggregate demand and supply

equations with standard market clearing conditions that incorporates many workhorse trade

and economic geography models.1 We show that existence and uniqueness of the equilibria

of all models under the auspices of our framework can be characterized solely based on

their aggregate demand and supply elasticities (the “gravity constants”). Moreover, the

counterfactual predictions for trade flows, incomes, and real output prices of these models

can be expressed solely as a function of the gravity constants and observed data. Hence,

the key theoretical properties and positive counterfactual predictions of all gravity models

depend ultimately on the value of two parameters – the elasticities of supply and demand. We

show how these gravity constants can be estimated using an instrumental variables approach

that relies on the general equilibrium structure of the model. Finally, we use these estimates

to compute the impact of a trade war between US and China.

To construct our framework, we consider a representative economy in which an aggregate

good is traded across locations subject to the following six economic conditions: 1) “iceberg”

type bilateral trade frictions; 2) a constant elasticity of substitution (CES) aggregate demand

function; 3) a CES aggregate supply function; 4) market clearing; 5) balanced trade; and 6)

a choice of the numeraire. Any model in which the equilibrium can be represented in a way

that satisfies these conditions is said to be contained within the universal gravity framework.

Moreover, these conditions impose sufficient structure to completely characterize all general

equilibrium interactions of trade flows, incomes, and real output prices. It turns out that

the aggregate demand elasticity from condition 2 and the aggregate supply elasticity from

condition 3 play a particularly important role in this characterization.

We first provide sufficient conditions for the existence, uniqueness, and interiority of

the equilibrium of the model that depend solely on the gravity constants. Existence occurs

everywhere except for a knife-edge constellation of parameters (corresponding e.g. to Leontief

preferences in an Armington trade model or when agglomeration forces are just strong enough

to create a “black hole” equilibrium in an economic geography model). An equilibrium is

1Examples of gravity trade models included in our framework are perfect competition models such as
Anderson (1979), Anderson and Van Wincoop (2003), Eaton and Kortum (2002),Dekle et al. (2008), Caliendo
and Parro (2010) monopolistic competition models such as Krugman (1980), Melitz (2003) as specified by
Chaney (2008), Arkolakis et al. (2008), Di Giovanni and Levchenko (2008), , and the Bertrand competition
model of Bernard et al. (2003). Economic geography models incorporated in our framework include Allen
and Arkolakis (2014) and Redding (2016). See Table 1 for the mapping from work-horse trade and economic
geography models into the universal gravity framework.
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unique as long as the demand elasticity is (weakly) negative and the supply elasticity is

(weakly) positive (or vice versa and both elasticities are greater than one in magnitude);

moreover, if the inequalities are strict, an iterative algorithm is guaranteed to converge to

the the unique equilibrium from any interior starting point. Multiplicity may occur if demand

and supply elasticities are both negative (for example, in an economic geography model if

agglomeration forces are sufficiently strong) or if demand and supply elasticities are both

positive (for example, in a trade model if goods are complementary). We also show that

these sufficient conditions can be extended further if trade frictions are “quasi” symmetric –

a common assumption in the literature and provide conditions under which an equilibrium

exists and an iterative algorithm is guaranteed to converge to the equilibrium.

We then examine how a shock to bilateral trade frictions affects equilibrium trade flows,

incomes, and real output prices. To do so, we derive an analytical expression for the coun-

terfactual elasticities of these endogenous variables to changes in all bilateral trade frictions

that elucidates the networks effects of trade. In particular, we show how can this expres-

sion be written as series of terms expressing how a shock propagates through the trading

network, e.g. the direct effect of a shock, the effect of the shock on all locations’ trading

partners, the effect on all locations’ trading partners’ trading partners, etc. Importantly, we

show that this expression depends only on observed trade flows and the gravity constants,

demonstrating that conditional on these two model parameters, the positive macro-economic

implications for all gravity models are the same.2 Moreover, we analytically prove that when

trade frictions are “quasi” symmetric, the impact of a trade friction shock on the real output

prices and real expenditure in directly affected locations will always exceed the impact on

other indirectly-affected locations.

We proceed by estimating the gravity constants using a novel procedure that can be

applied to any model contained within the universal gravity framework. We show that the

supply and demand elasticities can be estimated by regressing a location’s fixed effect (re-

covered from a gravity equation) on its own expenditure share (the coefficient of which is the

supply elasticity) and its income (the coefficient of which is the demand elasticity). Identi-

fying the elasticities requires a set of instruments that are correlated with own expenditure

share and income, but uncorrelated with unobserved supply shifters (such as productivity)

in the residual. We construct such instruments using the general equilibrium structure of the

model by calculating the equilibrium own expenditure shares and incomes of a hypothetical

world where no such unobserved supply shifters exist and bilateral trade frictions are only

2While the implications for real output prices are the same for all gravity models, the mapping from real
output prices to welfare will in general depend on the particular model. As a result, the normative (welfare)
implications will vary across different models, as we discuss in detail below.
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a function of distance. Using this procedure, we estimate a demand elasticity in line with

previous estimates from the trade literature (e.g. Simonovska and Waugh (2014)) and a

supply elasticity that is larger than is typically (implicitly) calibrated to in trade models but

appears reasonable given estimates from the economic geography literature.

Finally, we use the estimated gravity constants along with the expression for comparative

statics to evaluate the effect of a trade war between the U.S. and China on the real expendi-

ture of all countries in the world. Given our large estimated supply elasticity, we find modest

declines in real output prices but large declines in real expenditure. Third country effects

are also substantial, with important trading partners of China (e.g. Vietnam and Japan)

and the U.S. (e.g. Canada and Mexico) being especially adversely affected.

This paper is related to a number of strands of literature in the fields of international

trade, economic geography, and general equilibrium theory. There is a small but growing

literature examining the structure of general equilibrium models of trade and economic geog-

raphy. In particular, Arkolakis et al. (2012a) provide conditions under which a model yields

a closed form expression for changes in welfare as a function of changes in openness, while

in a recent paper Adao et al. (2017) show how to conduct counterfactual predictions in neo-

classical trade models without imposing gravity. In contrast, our paper incorporates models

with elastic aggregate supply curves, thereby allowing analysis of both economic geography

models and trade models with intermediate “round-about” production. A key characteristic

of the class of models we study is that the “gravity constants” are the same across all loca-

tions; while strong, this assumption imposes sufficient structure to completely characterize

all general equilibrium interactions while retaining tractability even in the presence of a large

number of locations.3

In terms of the theoretical properties of the equilibrium, Alvarez and Lucas (2007) use the

gross substitutes property to establish sufficient conditions for uniqueness for gravity trade

models. We instead generalize results from the study of nonlinear integral equations (see

e.g. Karlin and Nirenberg (1967); Zabreyko et al. (1975); Polyanin and Manzhirov (2008)) to

systems of nonlinear integral equations. As a result, the sufficient conditions we provide are

strictly weaker than those derived by Alvarez and Lucas (2007). In particular, our conditions

allows the supply elasticity to be larger in magnitude than the demand elasticity (in which

case gross substitutes may not hold), which is what we find when we estimate the elasticities.

In previous work, Allen and Arkolakis (2014) provide sufficient conditions for existence and

3In contrast, the literature on Computable General Equilibrium models typically focuses on models with
a large number of elasticities (e.g. location or region specific) but only a small number of regions; for a
review of these models see Menezes et al. (2006). Although outside the purview of this paper, it would be
perhaps be interesting future work to determine whether some of the tools developed below could be applied
to those models.
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uniqueness for economic geography models. Unlike those results, our conditions do not

require symmetric trade frictions nor do we require finite trade frictions between all locations.

Unlike both Alvarez and Lucas (2007) and Allen and Arkolakis (2014), our theoretical results

cover both trade and economic geography models simultaneously.

Our analytical characterization of the counterfactual predictions is related to the “exact

hat algebra” methodology pioneered by Dekle et al. (2008) and extended in Costinot and

Rodriguez-Clare (2013) (and many others). Unlike that approach, we characterize the elas-

ticity of endogenous variables to trade shocks (i.e. we examine local shocks instead of global

shocks). There are several advantages of our local approach: first, all possible counterfactuals

can be calculated simultaneously through a single matrix inversion. Second, our analytical

characterization holds for local shocks around the observed equilibria even if there are other

possible equilibria (in which case we are unaware of a procedure that ensures the solution to

the “exact hat” approach that corresponds to the observed equilibria). Third, the local an-

alytical expression admits a simple economic interpretation as a shock propagating through

the trading network. In this regard, our paper is related to the recent working paper by

Bosker and Westbrock (2016) which examines how shocks propagate through global produc-

tion networks. Fourth, our analytical derivation allows us to characterize the relative size of

the elasticity of real output prices and real output in different locations from a trade friction

shock, providing (to our knowledge) one of the first analytical results about the relative size

of the direct and indirect impacts of a trade friction shock in a model with many locations

and arbitrary bilateral frictions.4

Our estimation strategy uses equilibrium income and own expenditure shares from a hy-

pothetical economy as instruments to identify the demand and supply elasticities. Following

Eaton and Kortum (2002), we use the fixed effects of a gravity equation as the dependent

variable in an instrumental variables regression (although we use the regression to estimate

the supply elasticity along with the demand elasticity). One advantage of our approach is the

simplicity of calculating our instruments using bilateral distances and observed geographic

variables; in this regard, we owe credit to Frankel and Romer (1999) who instrument for

trade with geography (albeit not in a general equilibrium context).

The idea of using the general equilibrium structure of the gravity model to recover key

parameters is originally due to Anderson and Van Wincoop (2003). Following this, several

papers have sought to improve the typical gravity equation estimation by accounting for

equilibrium conditions. For example, Anderson and Yotov (2010) pursues an estimation

strategy imposing that the equilibrium “adding up constraints” of the multilateral resistance

terms are satisfied, whereas Fally (2015) proposes the use of a Poisson Pseudo-Maximum-

4Mossay and Tabuchi (2015) prove a similar result in a three country world.
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Likelihood estimator whose fixed effects ensure that such constraints are satisfied, and Egger

and Nigai (2015) develops a two-step model consistent approach that overcomes bias arising

from general equilibrium forces and unobserved trade frictions. Unlike these papers, here

our focus is on recovering the demand and supply elasticities rather than estimating trade

friction coefficients in a model consistent manner.

Recent work by Anderson et al. (2016) explores the relationship between trade and growth

examined by Frankel and Romer (1999) in a structural context. They recover the demand

(trade) elasticity from a regression of income on a multilateral resistance term, where endo-

geneity concerns are addressed by calculating multilateral resistance based on international

linkages only. Our estimation strategy, in contrast, recovers both the demand and supply

elasticities from a gravity regression and overcomes endogeneity concerns using an instru-

mental variables approach based on the general equilibrium structure of the model.

Finally, we should note that the brief literature review above is by no means complete

and refer the interested reader to the excellent review articles by Baldwin and Taglioni

(2006), Head and Mayer (2013), Costinot and Rodriguez-Clare (2013) and Redding and

Rossi-Hansberg (2017), where the latter two focus especially on quantitative spatial models.

The remainder of the paper is organized as follows. In the next section, we present the

universal framework and discuss how it nests existing general equilibrium gravity models. In

Section 3, we present the theoretical results for existence and uniqueness. In Section 4, we

present the results concerning the counterfactual predictions of the model. In Section 5, we

estimate the gravity constants. In Section 6 we calculate the effects of a U.S. - China trade

war. Section 7 concludes.

2 A universal gravity framework

Before turning to the universal gravity framework, we present two variants of the simple

Armington gravity model to provide a concrete example of the type of models that fall

within our framework. Suppose there are N locations each producing a a differentiated good

and in what follows we define the set S ≡ {1, ..., N}. The only factor of production is labor,

where we denote the allocation of labor in location i ∈ S as Li and assume the total world

labor endowment is
∑

i∈S Li = L̄. Shipping the good from i ∈ S to final destination j incurs

an iceberg trade friction, where τij ≥ 1 units must be shipped in order for one unit to arrive.

Consumers have CES preferences with elasticity of substitution σ ≥ 0.

In the first variant, which we call the “trade” model, suppose that the labor endowed

to a location is exogenous and perfectly inelastic, as in Anderson (1979) and Anderson and

Van Wincoop (2003). Suppose too that there is roundabout production, as in Eaton and
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Kortum (2002), that combines labor and an intermediate input in a Cobb-Douglas fashion.

Thus, the quantity of output produced in location i is Qi = (AiLi)
ζ I1−ζ

i , with ζ ∈ (0, 1]

the labor share, Ai is the labor productivity in location i ∈ S and Ii is an intermediate

input equal to a CES aggregate of the differentiated varieties in all locations with the same

elasticity of substitution σ as final demand. In this case, the output price in location i is

pi = (wi/Ai)
ζ P 1−ζ

i , where wi is the wage and Pj ≡
(∑

k∈S (pjτkj)
1−σ) 1

1−σ is both the CES

price index for the consumer and the price per unit of intermediate input.

In the second variant, the“economic geography”model, we suppose instead that the labor

supplied to a location is perfectly elastic so that welfare is equalized across locations, as in

Allen and Arkolakis (2014).5 Welfare in this model is the product of the real expenditure of

labor and the amenity value of living in a location, denoted by , and . welfare equalization

implies wi
Pi
ui =

wj
Pj
uj for all i, j ∈ S. We further assume that productivities and amenities are

subject to spillovers: Ai = ĀiL
a
i and ui = ūiL

b
i . In this variant of the model, the quantity of

output produced in location i is Qi = ĀiL
1+a
i and the output price is pi = wi/

(
ĀiL

a
i

)
.6

In both variants of the model, CES consumer preferences for the goods from each location

yields a gravity equation that characterizes the aggregate demand in location j for the

differentiated variety from location i:

Xij =
(piτij)

1−σ∑
k∈S (pjτkj)

1−σEj, for all j, (1)

where Ej =
∑

j∈S Xji is the expenditure in location j.

More subtly, both variants of the model also feature an aggregate supply for the quantity

of output produced in each location. In the trade variant of the model – despite the labor

supply being perfectly inelastic – we can use the fact that a constant share of revenue is paid

to both workers and intermediates to write the output of location i as:

Qi = AiLi

(
pi
Pi

) 1−ζ
ζ

. (2)

Similarly, in the economic geography variant of the model we can use the welfare equalization

condition to write:

Qi = κĀ
b−1
a+b

i ū
− 1+a
a+b

i

(
pi
Pi

)− 1+a
a+b

, (3)

5In addition, this formulation incorporates many prominent economic geography models, e.g. Helpman
(1998); Donaldson and Hornbeck (2012); Bartelme (2014); Redding (2016).

6It is straightforward to add round-about production into the economic geography variant of the model
(see Table 1); we omit to do so here to keep our illustrative examples as simple as possible.
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where κ ≡
(
L̄/

(∑
i∈S
(
Āiūi

)− 1
a+b

(
pi
Pi

)− 1
a+b

))1+a

is an (endogenous) scalar that depends

on the aggregate labor endowment L̄ and we refer to pi
Pi

as the real output price in location

i ∈ S.7 Finally, in both variants, we close the model by requiring that the value of total

output equals total sales (market clearing), i.e.

Yi ≡ piQi =
∑
j∈S

Xij, (4)

and that total expenditure equals total output (balanced trade), i.e.:

Ei = piQi. (5)

Substituting the CES demand (equation 1) and supply equations (equations 2 or 3) into

the market clearing and balanced trade conditions yields the following identical system of

equilibrium equations for both variants of the model. In particular,

p1+φ
i Ci

(
pi
Pi

)ψ
=
∑
j∈S

τ−φij P
φ
j pjCj

(
pj
Pj

)ψ
∀i ∈ S (6)

P−φi =
∑
j∈S

τ−φji p
−φ
j ∀i ∈ S, (7)

where in the trade variant of the model ψ ≡ 1−ζ
ζ

and Ci ≡ AiLi, in the economic geography

variant of the model ψ ≡ −1+a
a+b

and Ci ≡ Ā
b−1
a+b

i ū
− 1+a
a+b

i , and in both models φ ≡ σ − 1. Note

in both models the constants {Ci}i∈S are exogenous model location-specific fundamentals,

which we refer to as supply shifters in what follows, and φ, ψ are global parameters. Given

supply shifters, trade frictions, and the two parameters, one can use equations (6) and (7) to

solve for output prices pi and prices indices Pi (up-to-scale). One can then use a normalization

that total world income is equal to one, i.e.
∑

i∈S Yi = 1 and the gravity equation (equation

1) to calculate trade flows Xij. Given trade flows, income Yi can then be recovered from

market clearing (equation 4). Note that although the endogenous scalar κ from the economic

geography model does not enter the equilibrium system of equations (and hence does not

affect trade flows or incomes), it does affect the level of output, a point we return to below.

7In these two examples – as in most of the analysis that follows – we focus on interior equilibria where
production is positive in all locations. In the Online Appendix B.2 we generalize our setup to allow for the
possibility of non-interior solutions where production is zero in some locations, which allows e.g. for the
case that welfare in unpopulated locations may be lower than populated locations. In Theorem 1 below, we
provide sufficient conditions under which all equilibria are guaranteed to be interior.
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This example highlights the close relationship between trade and geography models and

suggests the possibility for a unified analysis of the properties of such spatial gravity models.

In what follows, we present a framework comprising six simple economic conditions about

aggregate trade flows of a representative good between many locations. We show that the

equilibrium of any model that satisfies these conditions can be represented by the solution

to equations (6) and (7).

To proceed with out universal gravity framework, it is helpful to first introduce some

terminology. Define the output Qi ≥ 0 to be the quantity of the representative good produced

in location i ∈ S; the quantity traded Qij ≥ 0 be the quantity of the representative good

in location i ∈ S that is consumed in location j ∈ S; the output price pi ≥ 0 to be the

(factory gate) price per unit of the representative good in location i ∈ S; the bilateral price

pij ≥ 0 to be the cost of the representative good from location i ∈ S in location j ∈ S; the

income Yi ≡ piQi to be the total value of the representative good in location i ∈ S; the

trade flows Xij ≡ pijQij to be the value of the good in i ∈ S sold to j ∈ S; the expenditure

Ei ≡
∑

j∈S Xji to be the total value of imports in i ∈ S; the real expenditure Wi ≡ Ei/Pi is

a measure of expenditure in location i ∈ S, where Pi is a price index defined below; and the

real output price to be pi/Pi.

We say that an equilibrium is interior if output and output prices are strictly positive

in all locations, i.e. Qi > 0 and pi > 0 for all i ∈ S. In what follows, we focus our attention

to interior equilibria and disregard the trivial equilibrium where Qi = 0 for all i ∈ S. We

provide sufficient conditions to ensure all equilibria are interior below and examine non-

interior solutions in depth in Online Appendix B.2. Clearly, because of the presence of

complementarities there is a possibility of multiple interior equilibria. This is true in the

economic geography model because of labor mobility and agglomeration externalities or

even in the trade model when complementarities in consumption are large (low σ).

We first start with a condition that describes the relationship between the output price

in location i and the bilateral price:

Condition 1. The bilateral price is equal to the product of the output price and a bilateral

scalar:

pij = piτij, (8)

where, as above, {τij}i,j∈S ∈ R++ are referred to as trade frictions.8

Given prices, the next condition can be used to derive aggregate demand.

8R++ is defined as R++ ∪ {∞}. If τij =∞, then there is no trade between i and j.
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Condition 2. (CES Aggregate Demand). There exists an exogenous (negative of the)

demand elasticity φ ∈ R such that the expenditure in location j ∈ S can be written as:

Ej =

(∑
i∈S

p−φij

)− 1
φ

Wj, (9)

where Wj is the real expenditure and the associated price index is Pj ≡
(∑

i∈S p
−φ
ij

)− 1
φ
. By

Shephard’s lemma, condition 2 (or, for short, C.2 thereafter) implies that the trade flows

from i ∈ S to j ∈ S can be written as::

Xij =
p−φij∑
k∈S p

−φ
kj

Ej. (10)

We refer to equation (10) as the aggregate demand of the universal gravity model. The

aggregate demand equation (10) combined with C.1 yields a gravity equation equivalent to

equation (2) in Anderson and Van Wincoop (2004), Condition R3’ in Arkolakis et al. (2012a)

and the CES factor demand specification considered in Adao et al. (2017). Accordingly, we

note that the demand elasticity φ is often referred to as the“trade elasticity” in the literature.

It is important to emphasize that real expenditure Wi = Ei
Pi

and real output prices
pi
Pi

are distinct concepts from welfare, as neither necessarily correspond to the welfare of

the underlying factor of production (such as labor) of a particular model. In the models

above, for example, the welfare of a worker corresponds to her real wage, which is equal

to the marginal product of a worker divided by the price index. Because of the presence

of roundabout production (in the trade model) or externalities (in the economic geography

model), a workers marginal product is not equal to the price per unit (gross) output. 9

We furthermore assume that output in a location is potentially endogenous and specify

the following supply-side equation:

Condition 3. (CES Aggregate Supply) There exists exogenous supply shifters {Ci} ∈ RN
++,

an exogenous aggregate supply elasticity ψ ∈ R, and an endogenous scalar κ > 0 such that

output in each location i ∈ S can be written as: (11)

Qi = κCi

(
pi
Pi

)ψ
. (11)

In what follows, we refer to equation (11) as the aggregate supply of the universal gravity

9The relationship between real output prices and welfare for a number of seminal models are summarized
in the last column of Table 1 and discussed in detail in Online Appendix B.11.
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model and the pair of demand and supply elasticities (−φ, ψ) as the gravity constants.

In general, the value of the endogenous scalar κ will depend on the particular model; for

example, as we saw above, in the trade model κ = 1, whereas in the economic geography

model κ is endogenously determined. Without taking a particular stance on the underlying

model (and the implied value of κ), the scale of output is unspecified. However, we show

below that we can still identify the equilibrium trade flows, incomes, and real output prices

– including their level – without knowledge of κ.

Finally, to close the model, we impose two standard conditions and choose our numeraire:

Condition 4. (Output market clearing). For all i ∈ S, Qi =
∑

j∈S τijQij.

Note that by multiplying both sides of C.4 by the output price we have that income is

equal to total sales as in equation (4) in our example economy.10

Condition 5. (Balanced trade). For all i ∈ S, Ei = piQi.

Balanced trade is a standard assumption in (static) gravity models, despite trade imbal-

ances being a common occurrence empirically. When we combine the general equilibrium

structure of the model with data to characterize the counterfactual implications of gravity

models, we relax C.5 to allow for exogenous trade deficits.

Our final condition is a normalization:

Condition 6. World income equals to one:∑
i

Yi = 1. (12)

In the absence of a normalization, the level of prices are undetermined because equations

(6) and (7) are homogeneous of degree 0 in {pi, Pi}i∈S. Moreover, without specifying κ in

equation (11), the level of output is also unknown. The choice of normalizing world income

to one in C.6 addresses both these issues simultaneously by pining down the product of the

level of these two unknown scalars. As a result, we can determine the equilibrium level (i.e.

including scale) of nominal incomes and trade flows. However, the cost of doing is that both

the level of output (in quantities) and prices remain unknown. As a result, the primary focus

in the following analysis is on three endogenous model outcomes for which we can pin down

the levels: incomes, trade flows, and real output prices {pi/Pi}i∈S (which are invariant to

the both κ and the scale of prices and hence determined including scale).

10As Anderson and Van Wincoop (2004) show, one can combine C.1, C.2, and C.4 to derive a gravity

equation of the form Xij =
(

τij
ΠiPj

)−φ
YiEj , where Π−φi ≡ ∑j∈S

(
τij
Pj

)−φ
Ej and P−φj ≡ ∑i∈S

(
τij
Πi

)−φ
Yi

are outward and inward multilateral resistance terms, respectively.
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Given any gravity constants {φ, ψ}, supply shifters, {Ci}i∈S, and bilateral trade frictions

{τij}i,j∈S, we define an equilibrium of the universal gravity framework to be a set of endoge-

nous outcomes determined up-to-scale, namely: outputs {Qi}i∈S, quantities traded {Qij}i,j∈S
, output prices {pi}i∈S, bilateral prices {pij}i,j∈S, price indices {Pi}i∈S, and real expendi-

tures, as well as a set of endogenous outcomes for which the scale is known, namely: incomes

{Yi}i∈S, expenditures {Ei}i∈S, trade flows {Xij}i,j∈S and real output prices {pi/Pi}i∈S that

together satisfy C.2-C.6.

As Table 1 summarizes, many well-known trade and economic geography models are

contained within the universal gravity framework. On the demand side, it is well known

(see e.g. Arkolakis et al. (2012b) and Adao et al. (2017)) that many trade models imply

an aggregate CES demand system as specified in C.2.11 For example, in the Armington

perfect competition model, a CES demand combined with linear production functions implies

φ = σ − 1, in the Eaton and Kortum (2002) model, a Ricardian model with endogenous

comparative advantage across goods and Frechet distributed productivities across sectors

with elasticity θ implies that φ = θ. Similarly, a class of monopolistic models with CES

or non-CES demand, linear production function, and Pareto distributed productivities with

elasticity θ, summarized in Arkolakis et al. (2012b), also implies φ = θ. Economic geography

models delivering gravity equations for trade flows such as Allen and Arkolakis (2014) and

Redding (2016) also satisfy C.2.

As discussed in the example above, labor mobility across locations generates a CES

aggregate supply satisfying C.3, with a supply elasticity of ψ = −1+a
a+b

. In this case, the supply

elasticity depends on the strength of the agglomeration / dispersion forces summarized by

a + b. Assuming a > −1, if dispersion forces dominate (a + b < 0), the supply elasticity is

positive, whereas when agglomeration forces dominate (a + b > 0), the supply elasticity is

negative.

Perhaps more surprising, trade models incorporating “round-about” trade with interme-

diates goods also exhibit an aggregate CES supply, even though workers are immobile across

locations. As discussed in the example above, the supply elasticity is ψ = 1−ζ
ζ

and hence

positive and increasing in the share of intermediates in the production. In the next two

sections, we show that any trade and economic geography models sharing the same gravity

constants will also share the same theoretical properties and counterfactual implications.

What types of models are not contained within the universal gravity framework? C.2

and C.3 are violated by models that do not exhibit constant demand and supply elasticities,

11The class of trade models considered by Arkolakis et al. (2012a) (under their CES demand assumption
R3’) are a strict subset of the models which fall within the universal gravity framework, corresponding to
the case of ψ = 0.
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which include Novy (2010), Head et al. (2014), Melitz and Redding (2014), Fajgelbaum and

Khandelwal (2013) and Adao et al. (2017). Models with multiple factors of production with

non-constant factor intensities will generally not admit a single aggregate good representa-

tion and hence are also not contained within the universal gravity framework (although the

tools developed below can often be extended to analyze such models depending on the par-

ticular functional forms). C.5 is violated both by dynamic models in which the trade deficits

are endogenously determined and by models incorporating additional sources of revenue (like

tariffs); hence these models are not contained within the universal gravity framework. How-

ever, we show in Online Appendix B.8 how the results below can be applied to a simple

Armington trade model with tariffs.12

3 Existence, uniqueness, and interiority of equilibria

We proceed by deriving a number of theoretical properties of the equilibria of all models

contained within the universal gravity framework.

To begin, we note that we can combine C.1 through C.5 to write the equilibrium output

prices and price indices (to-scale) as the solution to equations (6) and (7). These equations are

sufficient to recover the equilibrium level of real output prices and – given the normalization

in C.6 – the equilibrium level of incomes, expenditures, and trade flows as well as all other

endogenous variables up-to-scale.13 As a result, equations (6) and (7) (together with the

normalization in C.6) are sufficient to characterize the equilibrium of the universal gravity

framework.

Before proceeding, we impose two mild conditions on bilateral trade frictions {τij}i,j∈S :

Assumption 1. The following parameter restrictions hold:

i) τii <∞ for all i ∈ S.
ii) The graph of the matrix of trade frictions {τij}i,j∈S is strongly connected.

The first part of the assumption imposes strictly positive diagonal elements of the matrix

of bilateral trade frictions. The second part of the assumption – strong connectivity –

12 It is important to note that while the universal gravity framework can admit tariffs, how tariffs affect
the model implications will in general depend on the micro-economic foundations of a model. In particular,
the Armington model presented in Online Appendix B.8 abstracts from two additional complications that
may arise with the introduction of tariffs. First, the elasticity of trade to tariffs may be different than the
elasticity of trade to trade frictions depending on the model; second, if one does not impose that tariffs
are uniform for all trade flows between country pairs, the construction of (good-varying) optimal tariffs will
depend on the particular micro-economic structure of the model; see Costinot et al. (2016) for a detailed
discussion of these issues.

13See Online Appendix B.1 for these derivations.
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requires that there is a sequential path of finite bilateral trade frictions that can link any

two locations i and j for any i 6= j. This condition has been applied previously in general

equilibrium analysis as a condition for existence in McKenzie (1959, 1961), Arrow et al.

(1971), invertibility by Cheng (1985); Berry et al. (2013), and uniqueness by Arrow et al.

(1971), Allen (2012). In our case these two assumptions are the weakest assumptions on the

matrix of trade frictions we can accommodate in order to analyze existence and uniqueness

of interior equilibrium.

We mention briefly (but do not need to assume) a third condition. We say that trade

frictions are quasi-symmetric if there exist a pair of strictly positive vectors
(
τAi , τ

B
i

)
∈ R2N

++

such that for any i, j ∈ S, we can write τij = τ̃ijτ
A
i τ

B
j , where τ̃ij = τ̃ji. Quasi-symmetry is a

common assumption in the literature (see for example Anderson and Van Wincoop (2003),

Eaton and Kortum (2002), Waugh (2010), Allen and Arkolakis (2014)), and we prove in

Online Appendix B.3 that C.1, C.2, C.4, and C.5 taken together imply that the origin and

destination-specific terms in the bilateral trade flow expression are equal up to scale, i.e.

p−φi ∝ p1+ψ
i P φ−ψ

i Ci, which in turn implies that equilibrium trade flows will be symmetric,

i.e. Xij = Xji for all i, j ∈ S. The only way the trade can be balanced when trade frictions

are quasi-symmetric is to make trade flows bilaterally balanced. As a result, equations (6)

and (7) simplify to a single set of equilibrium equations, which allows allows us to relax the

conditions on the following theorem regarding existence and uniqueness:

Theorem 1. Consider any model contained within the universal gravity framework satisfying

Assumption 1. Then:

(i) If 1 + ψ + φ 6= 0, then there exists an interior equilibrium.

(ii) If φ ≥ −1, and ψ ≥ 0 then all equilibria are interior.

(iii) If {φ ≥ 0, ψ ≥ 0} or {φ ≤ −1, ψ ≤ −1} (or, if trade frictions are quasi-symmetric

and either
{
φ ≥ −1

2
, ψ ≥ −1

2

}
or
{
φ ≤ −1

2
, ψ ≤ −1

2

}
) then there is a unique interior equi-

librium.

(iv) If {φ > 0, ψ > 0} or {φ < −1, ψ < −1} (or, if trade frictions are quasi-symmetric

and either
{
φ > −1

2
, ψ > −1

2

}
or
{
φ < −1

2
, ψ < −1

2

}
).

Proof. See Appendix A.1 for parts (i) and (iii) and Online Appendix B.2 for part (ii).

A key advantage of Theorem 1 is that despite the large dimensionality of the parameter

space (N supply shifters {Ci}i∈S and N2 trade frictions {τij}i,j∈S), the conditions are only

stated in terms of the two gravity constants. Of course, since we provide sufficient conditions,

there may be certain parameter constellations such as particular geographies of trade frictions
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where uniqueness may still occur even if the conditions of Theorem 1 are not satisfied.14,15

The sufficient conditions for existence, interiority, and uniqueness from Theorem 1 are

illustrated in Figure 1. In the case of existence, standard existence theorems (see e.g. Mas-

Colell et al. (1995)) guarantee existence for endowment economies when preferences are

strictly convex. This is also true in the universal gravity framework: existence of an interior

equilibrium may fail only when 1 + ψ + φ = 0, which corresponds to the Armington trade

model (without intermediate goods) where σ = 0, i.e. with Leontief preferences that are not

strictly convex. Moreover, in the economic geography example above, an interior equilibrium

does not exist in the knife-edge case where σ = 1+a
a+b

, as agglomeration forces lead to the

concentration of all economic activity in one location (see Allen and Arkolakis (2014)).

As long as the partial elasticity of aggregate demand with respect to own output price is

greater than negative 1 and the partial elasticity of supply with respect to the real output

price is positive, all equilibria are interior. For example, in the economic geography model

above, if these conditions are satisfied, one can show that the welfare of an uninhabited

location approaches infinity as its population approaches zero, ensuring that all locations

will be populated in equilibrium.

An equilibrium is unique as long as the partial elasticity of aggregate demand to output

prices is negative (i.e. φ ≥ 0) and the partial elasticity of aggregate supply is positive (i.e.

ψ ≥ 0). There is also a unique interior equilibrium the demand elasticity is positive and the

supply elasticity is negative and both elasticities have magnitudes greater than one, although

such parameter constellations are less economically meaningful (and there may also exist

non-interior equilibria). Multiplicity of interior equilibria may arise in cases when supply

and demand elasticities are both positive (which occurs e.g. in trade models when goods are

complements) or when supply and demand elasticities are both negative (which occurs e.g. in

economic geography models when agglomeration forces are stronger than dispersion forces).

Such examples of multiplicity are easy to construct - Appendix B.7 provides examples of

multiplicity in a two location world where either the demand elasticity is negative (in which

14Alvarez and Lucas (2007) provide an alternative approach based on the gross substitute property to
provide conditions for uniqueness of the Eaton and Kortum (2002) model. In Online Appendix B.6, we
show that the gross substitutes property directly applied to our system may fail if the supply elasticity ψ
is larger in magnitude than the demand elasticity φ, i.e. in ranges ψ > φ ≥ 0 or ψ < φ ≤ −1. Theorem
1 provides strictly weaker sufficient conditions in that regard. Such parameter constellations are consistent
with economic geography models with weak dispersion forces or trade models with large intermediate goods
shares. Importantly, in Section 5, we estimate that ψ > φ > 0 empirically.

15Theorem 1 generalizes Theorem 2 of Allen and Arkolakis (2014) in three ways: 1) it allows for asymmetric
trade frictions; 2) it allows for infinite trade frictions between certain locations; and 3) it applies to a larger
class of general equilibrium spatial model, including notably trade models with inelastic labor supplies (i.e.
models in which ψ = 0). Theorem 1 also provides a theoretical innovation, as it shows how to extend the
mathematical argument of Karlin and Nirenberg (1967) to multi-equation systems of non-linear integral
equations.
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case the relative demand and supply curves are both upward sloping) or the supply elasticity

is negative (in which case the relative demand and supply curves are both downward sloping).

Finally, quasi-symmetric trade frictions allow us to extend the range of gravity constants for

which uniqueness is guaranteed, but do not qualitatively change the intuition for the results.

4 The network effects of a trade shock

We now turn to how the universal gravity framework can be used to make predictions of how

a change in trade frictions alter equilibrium trade flows, incomes, and real output prices in

each location.16

To begin, we define two N × 1 vectors (which, with some abuse of language, we will

call “curves”): define the supply curve Qs to be the set of supply equations (11) from C.3

(multiplied by output prices and divided by κ); and define the demand curve Qd to be the

set of market clearing (demand) equations combining C.1, C.2, C.4, and C.5, i.e.:

Qs (p,P) ≡
(
pi × Ci

(
pi
Pi

)ψ)
i∈S

(13)

Qd (p,P; τ ) ≡
(∑
j∈S

τ−φij p
−φ
i P φ

j pjCj

(
pj
Pj

)ψ)
i∈S

, (14)

where p ≡ (pi)i∈S and P ≡
([∑

j τ
−φ
ji p

−φ
j

]− 1
φ

)
i∈S

are N × 1 vectors and τ ≡ (τij)i,j∈S is an

N2 × 1 vector. Note that we express both the supply and demand curves in value terms,

which will prove helpful in deriving the comparative statics in terms of observed trade flows.

In equilibrium, supply is equal to demand, i.e. Qs (p,P) = Qd (p,P; τ ). We fully

differentiate this equation, along with the definition of the price index, to yield the following

system of 2N linear equations relating a small change in trade costs, D ln τ , to a small change

in output prices and price indices, D ln p and D ln P, respectively:
(
DlnpQs 0

0 I

)
︸ ︷︷ ︸

≡S

−
(
DlnpQd DlnPQd −DlnPQs

Dlnp ln P 0

)
︸ ︷︷ ︸

≡D


(
D ln p

D ln P

)
=

(
Dln τQd

Dln τ ln P

)
︸ ︷︷ ︸

≡T

D ln τ ,

where S (the supply matrix ) and D (the demand matrix ) are 2N × 2N matrices capturing

16In what follows, we focus on the policy shocks that alter bilateral trade frictions {τij}i,j∈S . In Online
Appendix B.8, we show how one can apply similar tools to characterize the theoretical properties and conduct
counterfactuals in an Armington trade model with tariffs.
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the marginal effects of a change in the output price on the supply and demand curves (where

the demand matrix also captures the net effect of a change in the price index), respectively,

and T is a 2N ×N2 matrix capturing the marginal effects of a change in trade costs on the

demand curve and price index.

Given expressions (13) and (14), we can write all three matrices solely as a function of

the gravity constants and observables as follows:

S =

(
(1 + ψ) Y ,0

0 I

)
, D=

(
−φY + (1 + ψ) X (φ− ψ) X + ψY

E−1XT 0

)
, T =

(
−φ (X⊗ 1) ◦ (I⊗ 1)(
E−1XT ⊗ 1

)
◦ (1⊗ I)

)
,

(15)

where X is the (observed) N × N trade flow matrix whose 〈i, j〉th element is Xij, Y is the

N × N diagonal income matrix whose ith diagonal element is Yi, E is the N × N diagonal

income matrix whose ith diagonal element is Ei, I is the N × N identity matrix and 1

is an 1 × N matrix of ones,Ii is the standard i-th basis for RN , and where ⊗ represents

the Kronecker product and ◦ represents the element-wise multiplication (i.e. Hadamard

product). 17

A simple application of the implicit function theorem allows us to characterize the elastic-

ity of prices and price indices to any trade cost shock. Define the 2N×2N matrix A ≡ S−D

and, with a slight abuse of notation, let A−1
k,l denote the 〈k, l〉th element of the (pseudo) inverse

of A. Then:

Theorem 2. Consider any model contained in the universal gravity framework. Suppose

that X satisfies strong connectivity. If A has rank 2N − 1, then:

(i) The elasticities of output prices and output price indices are given by:

∂ ln pl
∂ ln τij

= −φXijA
−1
l,i +

Xij

Ej
A−1
l,N+j and

∂ lnPl
∂ ln τij

= −φXijA
−1
N+l,i +

Xij

Ej
A−1
N+l,N+j. (16)

(ii) If the largest absolute value of eigenvalues of S−1D is less than one, then A−1 has

the following series expansion:

A−1 =
∞∑
k=0

(
S−1D

)k
S−1,

17In what follows (apart from part (iii) of Theorem 2), we do not assume that C.5 holds in the data, i.e.
that income is necessarily equal to expenditure; rather, we allow for income and expenditure to differ by a
location-specific scalar, i.e. we allow for (exogenous) deficits.
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(iii) If trade frictions are quasi-symmetric and φ, ψ ≥ 0 then for all i, l ∈ S and j 6= i, l,

∂ ln (pi/Pi)

∂ ln τil
,
∂ ln (pl/Pl)

∂ ln τli
<
∂ ln (pj/Pj)

∂ ln τil
∂ ln (piQi/Pi)

∂ ln τil
,
∂ ln (plQl/Pl)

∂ ln τli
<
∂ ln (pjQj/Pj)

∂ ln τil
.

and the inequalities have the opposite sign (>) if (φ, ψ ≤ −1).

Proof. See Appendix A.2.

Recall from Section 3 that knowledge of the output prices and price indices up-to-scale is

sufficient to recover real output prices and – along with the normalization C.6 – is sufficient

to recover equilibrium trade flows, expenditures, and incomes.18 As a result, part (i) of

Theorem 2 states that given gravity constants and observed data, the (local) counterfactuals

of these variables for all models contained in the university gravity framework are the same.19

The second part of Theorem 2 provides a simple interpretation of the counterfactuals as

a shock propagating through the trade network. Consider a shock that decreases the trade

cost between i and j by a small amount ∂ ln τij and define (S−1D)
k
S−1 as the kth degree

effect of the shock. It turns out the kth degree effect is simply the effect of the k − 1th

degree shock on the output prices and price indices of all locations’ trading partners, holding

constant their trading partners’ prices and price indices. To see this, consider first the 0th

degree effect. Holding constant the prices and price indices in all other locations, the direct

effect of a decrease in ∂ ln τij is a shift of the demand curve upward in i by φXij × ∂ ln τij

and a decrease in the price index in j by
Xij
Ej
×∂ ln τij. To re-equilibriate supply and demand

(holding constant prices and price indices in all other locations), we then trace along the

18 Because of homogeneity of degree 0, we can without loss of generality normalize one price; moreover,
from Walras’ law, if 2N − 1 equilibrium conditions hold, then the last equation holds as well. As a result,
A will have at most 2N − 1 rank and A−1 can be calculated by simply eliminating one row and column
of A and then calculating its inverse. The values of the eliminated row can then be determined using the
normalization C.6. For example, if one removes the first row and column, ∂ ln p1

∂ ln τij
can be chosen to ensure

that
∑
i∈S

∂ lnYi
∂ ln τij

= 0 so that C.6 is satisfied.
19In Online Appendix B.9, we show how the “exact hat algebra” (Dekle et al. (2008), Costinot and

Rodriguez-Clare (2013)) can be applied to any model in the universal gravity framework to calculate the
effect of any (possibly large) trade shock. The key takeaway – that counterfactual predictions depend only
on observed data and the value of the gravity constants – remains true globally. However, if the uniqueness
conditions of Theorem 1 do not hold, we are unaware of any procedure that guarantees that the solution
found using the “exact hat algebra” approach corresponds to the counterfactual of the observed equilibrium.
Indeed, it is straightforward to construct a simple example where in the presence of multiple equilibria,
iterative algorithms used to solve the “exact hat algebra” system of equations will converge to qualitatively
different equilibria than what is observed in the data even for arbitrarily small shocks, implying arbitrar-
ily large counterfactual elasticities. In contrast, the elasticities in Theorem 2 will provide the correct local
counterfactual elasticities around the observed equilibrium even in the presence of multiple equilibria.
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supply curve to where supply equals demand by scaling the effect by S−1, for a total effect

of S−1∂ ln τ . Consider now the 1st degree effect. We first take the resulting changes in the

price and price index from the 0th degree effect and calculate how they shift the demand

curve (and alter the price index) in all i and j trading partners by multiplying the 0th degree

effect by the demand matrix, i.e. D (S−1∂ ln τ). To find how this changes the price and price

index in each trading partner, (holding constant the prices and price indices in the trading

partners’ trading partners), we then trace along the supply curve by again scaling the shock

by S−1, for a combined effect of S−1DS−1∂ ln τ . The process continues iteratively, with the

kth degree effect shifting the demand curve and price index according to the k− 1 shock and

then re-equilibriated supply and demand by tracing along the supply curve (holding constant

the prices and price indices in all trading partners), for an effect of (S−1D)
k
S−1∂ ln τ , as

claimed.20 The total change in prices and price indices is the infinite sum of all kth degree

shocks.

The third part of Theorem 2 says that the direct impact of a symmetric decline in trade

frictions ∂ ln τil and ∂ ln τli on real output prices (and real expenditure) in the directly affected

locations i and l will be larger than the impact of that shock in any other indirectly affected

location j 6= i, l. If the demand and supply elasticities are positive, then a decline in trade

frictions will cause the real output prices in the directly affected locations to rise more than

any indirectly affected location (the ordering is reversed if the demand and supply elasticities

are negative). This analytical result characterizes the relative impact of a trade friction shock

on different locations in a model with many locations and arbitrary bilateral frictions.21

5 Estimating the gravity constants

In the previous section, we saw that the impact of a trade friction shock on trade flows,

incomes, expenditures, and real output prices in any gravity model can be determined solely

from observed trade flow data and the value the demand and supply elasticities. In this

section, we show how these gravity constants can be estimated. We use data on international

trade flows, so for the remainder of the paper we refer to a location as a country.

20One can also derive the alternative representation A−1 = −∑∞k=0 D−1
(
SD−1

)k
, in which the ordering

is reversed: the kth degree effect is calculated by first shifting the supply curve by the k − 1 degree shock
and then tracing along the demand curve to re-equilibriate supply and demand.

21Mossay and Tabuchi (2015) prove a similar result in a three country world.
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5.1 Methodology

We first derive an equation that shows that the relationship between three observables –

relative trade shares, relative incomes, and relative own expenditure shares – are governed by

the two gravity constants. We then show how this relationship under minor assumptions can

be used as an estimating equation to recover the gravity constants. We begin by combining

C.1 and C.2 to express the expenditure share of country j on trade from i relative to its

expenditure on its own goods as a function of the trade frictions, the output prices in i and

j, and the aggregate demand elasticity:

Xij

Xjj

=

(
τjjpj
τijpi

)φ
.

We then use the relationship pi = Yi/Qi to re-write this expression in terms of incomes and

aggregate quantities and rely on C.3 to write the equilibrium output as a function of output

prices and the output price index:

Xij

Xjj

=

τjj
(
Yj
Cj

)(
pi
Pi

)ψ
τij

(
Yi
Ci

)(
pj
Pj

)ψ

φ

. (17)

We now define λjj ≡ Xjj/Ej to be the fraction of income country j spends on its own goods

(j’s “own expenditure share”). By combining C.1 and C.2, we note j’s own expenditure share

can be written as λjj =
(
τjj

pj
Pj

)−φ
, which allows us to write equation (17) (in log form) as:

ln
Xij

Xjj

= −φ ln
τij
τjj

+ φ ln
Yj
Yi

+ ψ ln
λjj
λii
− φ ln

Cj
Ci

+ φψ ln
τjj
τii
. (18)

Equation (18) shows that the demand elasticity φ is equal to the partial elasticity of trade

flows to relative incomes, whereas the supply elasticity ψ is equal to the partial elasticity of

trade flows to the relative own expenditure shares. Intuitively, the greater j’s income relative

to i (holding all else equal, especially the relative supply shifters ln
Cj
Ci

), the greater the price

in j relative to i and hence the more it would demand from i relative to j; the greater the

demand elasticity φ, the greater the effect of the price difference on expenditure. Conversely,

because the real output price is inversely related to a country’s own expenditure share, the

greater j’s own expenditure share relative to i, the lower the relative aggregate supply to j

and hence the more j will consume from i relative to j; the larger the supply elasticity ψ,

the more responsive supply will be to differences in own expenditure share.

Equation (18) forms the basis of our strategy for estimating the gravity elasticities φ
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and ψ. However, it also highlights two important challenges in estimation. First, equation

(18) suggests that for any observed set of trade flows {Xij} and any assumed set of gravity

elasticities {φ, ψ}, own trade frictions {τii}, and supply shifters {Ci}, there will exist a

unique set of trade frictions {τij}i 6=j for which the observed trade flows are the equilibrium

trade flows of the model.22 As a result, trade flow data alone will not provide sufficient

information to estimate the gravity elasticities. Second, equation (18) highlights that the

gravity elasticities are partial elasticities holding the (unobserved) relative supply shifters

{Ci} fixed. Because both income and own expenditure shares are correlated with supply

shifters through the equilibrium structure of the model, any estimation procedure must

contend with this correlation between observables and unobservables.

In order to address both concerns, we combine plausibly exogenous observed geographic

variation with the general equilibrium structure of the model to estimate the gravity elastic-

ities. We proceed in a two-stage procedure.23 First, we re-write equation (18) as:

ln
Xij

Xjj

= −φ ln
τij
τjj
− ln πi + ln πj,

where lnπi ≡ φ lnYi+ψ lnλii−φ lnCi+φψ ln τii is a country-specific fixed effect. We assume

relative trade frictions scaled by the trade elasticity can be written as a function of their

continent of origin c, continent of destination d, and the decile of distance between the origin

and destination countries, l:

−φ ln
τij
τjj

= βlcd + εij,

where εij is a residual assumed to be independent across origin-destination pairs. The

country-specific fixed effect can then be recovered from the following the following equa-

tion:

ln
Xij

Xjj

= βlcd − ln πi + ln πj + εij, (19)

where we estimate βlcd non-parametrically using a set of 360 dummy variables (10 distances

deciles × 6 origin continents × 6 destination continents). Let ln π̂i denote the estimated

fixed effect and define ν̂i ≡ ln π̂i − lnπi to be its estimation error.

22See Online Appendix B.10 for a formal proof of this result.
23While the two step procedure we follow resembles the procedure used in Eaton and Kortum (2002) to

recover the trade elasticity from observed wages, there are two important differences. First, our procedure
applies to a large class of trade and economic geography models and allows us to simultaneously estimate
both the demand (trade) elasticity and the supply elasticity (rather than assuming e.g. that the population
of a country is exogenous and calibrating the model to a particular intermediate good share). Second, our
procedure relies on the general equilibrium structure of the model to generate the identifying variation (rather
than e.g. instrumenting for wages with the local labor supply, which would be inappropriate for economic
geography models).
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In the second stage, we write the estimated fixed effect as a function of income and own

expenditure share:

ln π̂i = φ lnYi + ψ lnλii + νi, (20)

where νi ≡ −φ lnCi+φψ ln τii+ ν̂i is a residual that combines the unobserved supply shifter,

the unobserved own trade friction, and the estimation error from the first stage. As men-

tioned above, it is not appropriate to estimate equation (20) via ordinary least squares, as

variation in the supply shifter will affect income and the own expenditure share through the

equilibrium structure of the model, creating a correlation between the residual and the ob-

served covariates. Intuitively, the larger the supply shifter of a country, the greater its output

and hence the greater the trade flows for a given observed income; since the country-specific

fixed effect ln πi is decreasing in relative trade flows, the OLS estimate of φ will be biased

downwards.

To overcome this bias, we pursue an instrumental variables (IV) strategy, where we use

the general equilibrium structure of the model to construct a valid instrument. To do so,

we calculate the equilibrium trade flows of a hypothetical world where the bilateral trade

frictions and supply shifters depend only on observables. We then use the incomes and

relative own expenditure shares of this hypothetical world as instruments for the observed

incomes and own expenditure shares. These counterfactual variables are valid instruments

as long as (1) they are correlated with their observed counterparts (which we can verify);

and (2) the observable components of the bilateral trade frictions and supply shifters are

uncorrelated with unobserved supply shifters.

Because the first-stage estimation of (19) provides an unbiased estimate of −φ ln
τij
τjj

, we

use the estimated origin-continent-destination-continent-decile coefficients β̂lcd to create our

counterfactual measure of bilateral trade frictions (normalizing own trade frictions τjj = 1).

In the simplest version of our procedure, we then calculate the equilibrium income and own

expenditure share given these bilateral trade frictions, assuming that the supply shifter Ci

is equal in all countries. In this version of the procedure, the instrument is valid as long as

the the general equilibrium effects of distance on the origin fixed effects of a gravity equation

are uncorrelated with unobserved heterogeneity in supply shifters (or own trade frictions).

Because we calculate the equilibrium of the model in a counterfactual world where there is no

heterogeneity in supply shifters, it seems reasonable to assume that the resulting equilibrium

income and own expenditure shares that we use as instruments are uncorrelated with any real

world heterogeneity. However, our instrument would be invalid if there were a correlation

between unobserved supply shifters and the observed geography of a country (e.g. if countries

more remotely located were also less productive or less attractive places to reside).
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To mitigate such a concern (and to allow for more realistic variation across countries

in supply), we extend the approach to allow the supply shifter to vary across countries

depending on a vector of (exogenous) observables Xc
i , e.g. land controls like the amount

of fertile land, geographic controls like the distance to nearest coast, institutional controls

like the rule of law, historical controls like the population in 1400, and schooling and R&D

controls like average years of schooling. Given a set of supply shifters {Ci} that depend

only these observables and the set of trade frictions that depend only on our non-parametric

estimates from above, we re-calculate the equilibrium income and own expenditure share

in each country. We then use the equilibrium values from this hypothetical world as our

instruments, while and control directly for the observables Xc
i in equation (20). As a result,

the identifying variation from the instruments only arises through the general equilibrium

structure of the model.24 Intuitively, differences in observables like land area in neighboring

countries generates variation in the demand that a country faces for its production, as well

as variation in the price it faces for its consumption, even conditional on its own observables.

There are two things to note about the above procedure. First, to construct the hy-

pothetical equilibrium incomes and own expenditure shares requires assuming values of the

gravity constants φ and ψ for the hypothetical world. In what follows, we choose a demand

elasticity φ = 8.28 and a supply elasticity ψ = 3.76, which correspond to the (estimated)

demand elasticity estimated and (implicitly calibrated) supply elasticity in Eaton and Ko-

rtum (2002). We should note that while the particular choice of the these parameters will

affect the strength of the constructed instruments, they will not affect the consistency of our

estimates of the gravity constants under the maintained assumption that bilateral distances

are uncorrelated with the unobserved supply shifters conditional on observables.25

The second thing to note about the estimation procedure is more subtle. As mentioned in

Section 3 and discussed in detail in Online Appendix B.3, when bilateral trade frictions are

“quasi-symmetric” the equilibrium origin and destination shifters will be equal up to scale.

24Calculating the counterfactual equilibrium income and own expenditure share in each country when
the supply shifters depend on observables requires assuming a particular mapping between the observables
Xc
i and the supply shifter Ci. We assume that Ci = Xc

i β
c and note that the theory implies the following

equilibrium condition:

lnYi =
φ

φ− ψ lnCi +
1 + ψ

ψ − φ ln γi +
ψ

ψ − φ ln δi.

As a result, we choose the βc that arise from the OLS regression lnYi = φ
φ−ψX

c
i β

c + εi. Although our
estimates of βc may be biased due to the correlation between Xc

i and εi, this bias only affects the strength of
the instrument, because if each Xc

i is uncorrelated with the residual νi in equation (20) (i.e. Xc
i is exogenous),

then any linear combination of Xc
i will also be uncorrelated with the residual.

25In principle, we could search over different values of the gravity constants to find the constellation that
maximizes the power of our instruments. In practice, however, our estimates vary only a small amount across
different values of the gravity constants.
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In this case, there will be a perfect log linear relationship between the income of a country,

its own expenditure share and its supply shifter.26 As a result, if we were to impose quasi-

symmetric bilateral trade frictions in the hypothetical world, the equilibrium income and

expenditure shares generated would be perfectly collinear, preventing us from simultaneously

identifying the demand and supply elasticities in the second stage. Intuitively, identification

of the demand elasticity requires variation in a country’s supply curve (its destination fixed

effect), whereas identification of the supply elasticity requires variation in a country’s demand

curve (its origin fixed effect); when trade frictions are quasi-symmetric, however, the two co-

vary perfectly. Our choice to allow distance to affect trade frictions differently depending on

the continent of origin and continent of destination introduces the necessary asymmetries in

the trade frictions to allow the model constructed instruments to vary separately, allowing

for identification of both the supply and demand elasticities simultaneously. To address

concerns about the extent to which these asymmetries are sufficient to separately identify

the two, we report the Sanderson-Windmeijer F-test (see Sanderson and Windmeijer (2016))

in the results that follow.

5.2 Data

We now briefly describe the data we use to estimate the gravity constants.

Our trade data comes from the Global Trade Analysis Project (GTAP) Version 7 (Narayanan,

2008). This data provides bilateral trade flows between 94 countries for the year 2004. To

construct own trade flows, we subtract total exports from the total sales of domestic prod-

uct, i.e. Xii = Xi −
∑

j 6=iXij. We use the bilateral distances between countries from the

CEPII gravity data set of Head et al. (2010) to construct deciles of distance between two

countries. We rely on the data set of Nunn and Puga (2012) to provide a number of country

level characteristics that plausibly affect supply shifters, including “land controls” (land area

interacted with the fraction of fertile soil, desert, and tropical areas), “geographic controls”

(distance to the nearest coast and the fraction of country within 100 kilometers of an ice free

coast), “historical controls” (log population in 1400 and the percentage of the population of

European descent), “institutional controls” (the quality of the rule of law). Finally, following

Eaton and Kortum (2002), we also consider “schooling and R&D controls” including the av-

erage years of schooling from UNESCO (2015) and the R&D stocks from Coe et al. (2009),

where a dummy variable is included if the country is not in each respective data set.

26In particular, (1 + 2φ) lnEi = (2φ) lnCi + (1− 2ψ) lnλii + C.
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5.3 Estimation results

Table 2 presents the results of our estimation of equation (18). The first column presents

the ordinary least squares regression; we estimate a positive supply elasticity and negative

demand elasticity, consistent with the discussion above that the OLS estimate of the de-

mand elasticity is biased downward. Column 2 presents the instrumental variable estimation

where the counterfactual income and own expenditure shares comprising our instrument are

constructed assuming equal supply shifters. After correcting for the bias arising from the

correlation between the unobserved supply shifters and observed incomes and own expendi-

ture shares, we find positive supply and demand elasticities, although the demand elasticity

is not statistically significant. Columns 3 through 7 sequentially allows the supply shifter

in the construction of the instrument to vary across countries depending on an increasing

number of observables (while including these same observables as controls in both the first

and second stages of the IV estimation of equation (18)). Including these observables both

increases the strength of the instruments and reduces the concern that the instruments are

correlated with unobserved supply shifters. Reassuringly, our estimated demand and supply

elasticities vary only slightly with the inclusion of additional controls.27

In our preferred specification (column 7), we estimate a demand elasticity of φ = 3.72

(95% confidence interval [1.14,6.29] and a supply elasticity ψ = 68.49 (95% confidence in-

terval [5.38,131.60]).28 Hence, our demand elasticity estimate is somewhat lower than the

preferred estimate of Eaton and Kortum (2002) of 8.28 (although similar to their estimate

using variation in wages of 3.6), as well as similar to estimates of trade elasticity around

4 in Anderson and Van Wincoop (2004), Simonovska and Waugh (2014), and Donaldson

(forthcoming). Unlike these papers, however, we also estimate the supply elasticity. Our

point estimate, while noisily estimated, is substantially larger than and statistically different

(at the 5% level) from the supply elasticity to which Eaton and Kortum (2002) implicitly

calibrate. Moreover, our estimated value is consistent with recent estimates of labor mobility

from the migration literature. To see this, consider an economic geography framework with

intermediate goods, agglomeration forces, and Frechet distributed preferences over location

(see the last row of Table 1). If we match the labor share in production of 0.21 in Eaton and

Kortum (2002) and the agglomeration force of α = 0.10 in Rosenthal and Strange (2004),

then our point estimate of ψ is consistent with a migration elasticity (Fréchet shape param-

27Figure 4 in the online appendix shows that our instrumental variables of counterfactual income and own
expenditure shares are positively correlated with their observed counterparts, even after differencing out the
observables in the supply shifters.

28While the p-value of the Sanderson-Windmeijer F-test is statistically significant in the first stage for in-
come, it is only marginally statistically significant for expenditure shares, suggesting that the wide confidence
interval for the supply elasticity may be due in part to a weak instrument.
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eter) of 1.4. This is similar to estimates from the migration literature using observed labor

flows and about one-third to one-half the size of within-country estimates.29

6 The impact of a U.S.-China trade war

We now apply the estimates from Section 5 to evaluate the impact of a trade war between

the U.S. and China. We model the trade war as an increase in the trade frictions between

the U.S. and China (holding constant all other trade frictions). We then characterize how

such a trade war propagates through the trade network using the methodology developed in

Section 4.30

There are two 0th degree effects of the trade war: first, the U.S. and China export less

to each other, causing the output prices in both countries to fall; second, the the cost of

importing increases, causing the price index in both countries to rise. Both effects cause the

real output price to decline, with a greater decline in China because both its export and

import shares with the U.S. are relatively larger.

The top panel of Figure 2 depicts the 1st degree effect on the real output price in all

countries. The effect in the U.S. and China is positive, as the degree 0 decline in output

price reduces the cost of own expenditure (causing the price index to fall in both countries).

In other countries, however, the degree 1 effect is negative, as the U.S. and China demand

less of their goods, causing their trading partner’s output prices to fall. The most negatively

affected countries are those who export the most to the U.S. and China.

Summing across all degree shocks yields the total elasticity of real output prices in each

country to the trade war shock, which the bottom panel of Figure 2 depicts.31 Not surpris-

ingly, the two countries hurt most by a trade war are the U.S. and China. Moreover, while

all countries are made worse off, the countries who are closely linked through the trading

network with the U.S. and China (e.g. Canada, Mexico, Vietnam, and Japan) are hurt more

than those countries that are less connected (e.g. India). All told, we estimate that a 10%

29Ortega and Peri (2013) estimates an migration elasticity to destination country income of 0.6 using
international migration flows and an estimate of 1.8 for the sub-sample of migration flows within the European
Union, albeit not using a log-linear gravity specification. Within countries (aud with log-linear gravity
specifications), Monte et al. (2015) estimate a migration elasticity of 4.4 in the U.S.; Tombe et al. (2015)
estimate a migration elasticity of 2.54 in China, and Morten and Oliveira (2014) estimate a migration
elasticity of 3.4 in Brazil.

30In the counterfactuals that follow, we accommodate the deficits observed in the data by assuming that the
observed ratio of expenditure to income for each country remains remains constant and impose an aggregate
market clearing condition that total income is equal to total expenditure. The results are qualitatively similar
if we instead solve for the (unique) set of balanced trade flows that match the observed import shares and
treat these balanced trade flows as the data.

31Figures 5 through 9 in the Online Appendix depict the impact of the degrees 0, 1, 2, and higher on the
relative prices, relative output, income, the relative price index, and real output prices in each country.
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increase in bilateral trade frictions is associated with a decline in real output price of 0.04%

in the U.S. and 0.14% in China. These modest changes in the real output price are due to

the large supply elasticity, causing the aggregate output to reallocate away from the U.S.

and China in response to the trade war. The converse of this result, however, is that the

reallocation of the aggregate output results in large changes to total real expenditure: for

example, in the Armington trade model interpretation, a 10% increase in bilateral trade

frictions causes the total real expenditure to fall by 2.7% in the U.S. and by 9.8% in China.32

There are two potential concerns about these estimated effects. First, because the elas-

ticities correspond to an infinitesimal shock, one may worry that the effects of a large trade

war may differ. To address this concern, we calculate the effect of a 50% increase in bilateral

trade frictions using the methodology discussed in Online Appendix B.9. The correlation be-

tween the local elasticities and global changes exceeds 0.99, indicating that the local relative

effect of the trade war is virtually the same as the global effect.33 However, the local effect

does overstate the global effect of such a shock, as we find that log first differences implied by

the global shock are roughly 80% the size of those implied by the local elasticities. Second,

the effects of the trade war above were calculated given the gravity constants estimated in

Section 5; one may be concerned that the effects of the trade wars may differ substantially

across alternative values of these elasticities. To address this concern, we calculate the effects

of a trade war for a large number of different combinations of supply and demand elastici-

ties.34 Across all constellations in the 95% confidence interval of the two estimated gravity

constants, the calculated elasticities are quite similar, with a 10% increase in bilateral trade

frictions associated with a decline in real output price between 0.03% and 0.05% in the U.S.

and 0.07% and 0.26% in China. Of course, as Section 4 emphasizes, the particular value of

the gravity constants may substantially affect the impact of counterfactuals more generally.

7 Conclusion

In this paper, we provide a framework that unifies a large set of trade and geography models.

We show that the properties of models within this framework depend crucially on the value

of two gravity constants: the aggregate supply and demand elasticities. Sufficient conditions

for the existence and uniqueness of the equilibria depend solely on the gravity constants.

Moreover, given observed trade flows, these gravity constants are sufficient to determine the

32Recall from Section 2 that while the changes in real output prices are identified from the value of trade
flows alone, without specifying κ in equation (11), the change in total real expenditure is only identified up
to scale. In Armington trade models with intermediates, however, this is not a problem, as κ = 1.

33See Figure 10 in the Online Appendix.
34See Figure 11 in the Online Appendix.
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effect of a trade friction shock on trade flows, incomes, and real output price without needing

to specify a particular underlying model.

We then develop a novel instrumental variables approach for estimating the gravity con-

stants using the general equilibrium structure of the framework. Using our estimates, we

find potentially large losses may arise due to a trade war between U.S. and China occur.

By providing a universal framework for understanding the general equilibrium forces in

trade and geography models, we hope that this paper provides a step toward unifying the

quantitative general equilibrium approach with the gravity regression analysis common in the

empirical trade and geography literature. Toward this end, we have developed a toolkit that

operationalizes all the theoretical results presented in this paper.35 We also hope the tools

developed here can be extended to understand other general equilibrium spatial systems,

such as those incorporating additional types of spatial linkages beyond trade frictions.

35The toolkit is available for download on Allen’s website.
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Figure 1: Existence and uniqueness

φ

ψψ

−1

−1

−1

2

−1

2

Quasi-symmetry

General Case

Interior equilibria

Notes : This figure shows the regions in (φ, ψ) space for which the gravity equilibrium is
unique and interior. Existence can be guaranteed throughout the entire region except for
the case 1 + φ+ ψ = 0.
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Figure 2: The network effect of a U.S.-China trade war

(a) Degree 1 Effect

Elasticity of real output prices
(-.0001981,.007504]
(-.0002542,-.0001981]
(-.0003201,-.0002542]
(-.0003927,-.0003201]
(-.00049,-.0003927]
(-.0005711,-.00049]
(-.0006885,-.0005711]
(-.001015,-.0006885]
(-.0013961,-.001015]
[-.0058131,-.0013961]
No data

(b) Total Effect

Elasticity of real output prices
(-.0008107,-.0004488]
(-.0009023,-.0008107]
(-.0009692,-.0009023]
(-.0010659,-.0009692]
(-.001103,-.0010659]
(-.0012468,-.001103]
(-.0014063,-.0012468]
(-.0016849,-.0014063]
(-.0022785,-.0016849]
[-.0142055,-.0022785]
No data

Notes : This figure depicts the elasticity of real output prices to an increase in the bilateral
trade frictions between the U.S. and China (a “trade war”) in all countries. The top panel
depicts the “Degree 1” effect, which is the effect of the direct shock on the U.S. and China on
all countries through the trade network, holding constant the output prices and quantities
of their trading partners fixed. The bottom panel shows the total effect of the trade war on
the real output price in each country.
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A Proofs

A.1 Proof of Theorem 1

Proof. Part i) The proof proceeds as follows. First we transform the equilibrium conditions to the
associated non-linear integral equations form. However, we cannot directly apply the fixed point
theorem for the non-linear integral equations since the system does not map to a compact space.
Therefore we need to “scale” the system so that we can apply the fixed point, which implies that
there exists a fixed point for the scaled system. Finally we construct a fixed point for the original
non-linear integral equations. In this subsection, we show how to set up in the associated integral
equation form, and apply the fixed point theorem. The other technical parts are proven in Online
Appendix B.4. Note that our result proposition is a natural generalization of Karlin and Nirenberg
(1967) to a system of non-linear integral equations.

Define z as follows:

z ≡
(

(xi)i
(yi)i

)
≡

(p1+ψ+φ
i P−ψi

)
i(

P−φi

)
i

 .

Then the system of equations (6) and (7) of the general equilibrium gravity model is re-written in
vector form: (

(xi)i
(yi)i

)
=

(∑
jKijC

−1
i Cjx

a11
j ya12j∑

jKjix
a21
j ya22j

)
, (21)

where A = (aij)i,j is given by

A =

(
1+ψ

1+ψ+φ − 1+φ
1+ψ+φ

− φ
1+ψ+φ

ψ
1+ψ+φ

)
.

Also the kernel, Kij , is given by Kij = τ−φij . Notice that we cannot directly apply Browser’s
fixed point theorem for equation (21) since there are no trivial compact domain for equation (21).
Therefore consider the following “scaled” version of equation (21).

z =

(
(xi)i
(yi)i

)
=


∑
j KijC

−1
i Cjx

a11
j y

a12
j∑

i,j KijC
−1
i Cjx

a11
j y

a12
j∑

j Kjix
a21
j y

a22
j∑

i,j Kjix
a21
j y

a22
j

 ≡ F (z) , (22)

and F is defined over the following compact setC:

C =
{
x ∈ ∆

(
RN+
)

;xi ∈ [x, x]∀i
}
×
{
y ∈ ∆

(
RN+
)

; yi ∈
[
y, y
]
∀i
}
, (23)

where the bounds for x and y are respectively given as follow:

x̄ ≡ max
i,j

KijC
−1
i Cj∑

i,jKijC
−1
i Cj

x ≡ min
i,j

KijC
−1
i Cj∑

i,jKijC
−1
i Cj

y ≡ max
i,j

Kji∑
i,jKji

y = min
i,j

Kji∑
i,jKji

.

It is trivial to show that F maps from C to C and continuous over the following compact set C, so
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that we can apply Brouwer’s fixed point and there exists an fixed point z∗ ∈ C.
There are two technical points needed to be proven; first, there exists a fixed point for the

original (un-scaled) system (21); second, the equilibrium z∗ is strictly positive. These two claims
are proven in Lemma 1 and Lemma 2 in Online Appendix B.4, respectively.

Part (iii) It suffices to show that there exists a unique interior solution for equation (21).
Suppose that there are two strictly positive solutions (xi, yi) and (x̂i, ŷi) such that there does not
exist t, s > 0 satisfying

(xi, yi) = (tx̂i, sŷi) .

Namely, two solutions are “linearly independent.” First note that for any i ∈ S, we can evaluate
one of equation (21).

xi
x̂i

=
1

x̂i

∑
j∈S

KijC
−1
i Cj

(
xj
x̂j

)α11
(
yj
ŷj

)α12

(x̂j)
α11 (ŷj)

α12 (24)

6 max
j∈S

(
xj
x̂j

)α11

max
j∈S

(
yj
ŷj

)α12

. (25)

Taking the maximum of the left hand side,

max
i∈S

xi
x̂i

6 max
j∈S

(
xj
x̂j

)α11

max
j∈S

(
yj
ŷj

)α12

. (26)

Lemma 3 in Online Appendix B.4 shows that the inequality is actually strict. Analogously, we
obtain

min
i∈S

xi
x̂i

> min
j∈S

(
xj
x̂j

)α11

min
j∈S

(
yj
ŷj

)α12

. (27)

Dividing equation (26) by equation (27), it is shown that

1 6 µx ≡
maxi∈S

xi
x̂i

mini∈S
xi
x̂i

<
maxj∈S

(
xj
x̂j

)α11

minj∈S

(
xj
x̂j

)α11
×

maxj∈S

(
yj
ŷj

)α12

minj∈S

(
yj
ŷj

)a12 = µ|α11|
x × µ|α12|

y ,

where

µy ≡
maxi∈S

yi
ŷi

mini∈S
yi
ŷi

.

The same argument is applied to obtain the following inequality

1 6 µy ≡
maxi∈S

yi
ŷi

mini∈S
yi
ŷi

<
maxj∈S

(
xj
x̂j

)α21

minj∈S

(
xj
x̂j

)α21
×

maxj∈S

(
yj
ŷj

)α22

minj∈S

(
yj
ŷj

)α22
= µ|α21|

x × µ|α22|
y .

Taking logs in the two inequalities and exploiting the restriction we can write(
lnµx
lnµy

)
<

(
|α11| |α12|
|α21| |α22|

)
︸ ︷︷ ︸

=|A|

(
lnµx
lnµy

)
, (28)
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which from the Collatz–Wielandt formula, equation (28) implies that the largest eigenvalue of |A|
is greater than one:

ρ (|A|) > 1.

However, we prove in Lemma 4 in Online Appendix B.4 that the sufficient condition in part (ii) of
Theorem 1 guarantees that the largest absolute eigenvalue is 1. As a result, this is a contradiction.

Quasi-symmetry) When the bilateral trade frictions satisfy quasi-symmetry, then we can
reduce the system toN dimensional integral system (see Online Appendix B.3). Then the same
logic used above can be applied to show there exists a unique strictly positive solution. As mentioned
above, this result follows directly from Karlin and Nirenberg (1967) and is summarized in Theorem
2.19 of Zabreyko et al. (1975). The same argument for (iv) is used for convergence.

A.2 Proof of Theorem 2

Proof. Part (i) Equation (16) is a direct application of the implicit function theorem. Define a
function F : R2N → R2N as follows.

Fi

(
(ln pi)

N
i=1 , (lnPi)

N
i=1

)
= κCip

1+ψ
i P−ψi − κ

∑
k

τ−φik p−φi CkP
φ−ψ
k p1+ψ

k

FN−1+i

(
(ln pi)

N
i=1 , (lnPi)

N
i=1

)
= P−φi −

∑
k

τ−φki p
−φ
k

Applying the implicit function theorem for F, we obtain the comparative static (16). As in Dekle
et al. (2008), the matrix A and T can be expressed in terms of observables.

Part (ii) Notice that A is written as follows:

A = S
(
I− S−1D

)
,

where S and D are defined by equation (15). If the largest absolute eigenvalue for S−1D is less

than 1, then A−1 is expressed as
∑∞

k=0

(
S−1D

)k
S−1. Note that we could have similarly written

A = −
(
I− SD−1

)
D, so that if the largest eigenvalue for SD−1 is less than 1, A−1 can be expressed

as −∑∞k=0 D−1
(
SD−1

)k
, as noted in footnote 20.

Part (iii) When quasi-symmetric assumption is imposed, destination effects are proportional
to the associated origin effects. Therefore as shown in Online Appendix B.3, the equilibrium is
characterized by the following single non-linear system of equations:

p
1+ψ−ψ 1+ψ+φ

ψ−φ
i

(
τAi
τBi

)−ψ φ
ψ−φ

(Ci)
φ

ψ−φ︸ ︷︷ ︸
=Yi/κ

=
∑
j∈S

τ̃−φij p−φi
(
τAi
)−φ (

τAj
)−φ

p−φj︸ ︷︷ ︸
=Xij/κ

(29)

As before, define zi for all i ∈ S as follows:

zi (p; τ) = κp
1+ψ−ψ 1+ψ+φ

ψ−φ
i

(
τAi
τBi

)−ψ φ
ψ−φ

(Ci)
φ

ψ−φ − κ
∑
j∈S

τ̃−φij p−φi
(
τAi
)−φ (

τAj
)−φ

p−φj .
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Then apply the implicit function theorem to (29),

∂ ln p

∂ ln τil
= −2

 ∂z

∂ ln p︸ ︷︷ ︸
N×N


−1

∂z

∂ ln τil︸ ︷︷ ︸
N×1

. (30)

Note that numerical number 2 shows up to preserve quasi-symmetry of trade frictions. As in the
general trade friction case, ∂z

∂ ln p is expressed as observables:

∂z

∂ ln p
=

[
φ

1 + ψ + φ

φ− ψ

] [
Y +

φ− ψ
1 + ψ + φ

X

]
,

where Y = diag (Yi) and X = (Xij)i,j∈S . Define A as follows:

A = Y +
φ− ψ

1 + ψ + φ
X.

From Lemma 5, A has positive diagonal elements and is dominant of its rows. Equation (30) is

∂ ln pi
∂ ln τil

= −2
φ− ψ

1 + ψ + φ
A−1
ii Xil,

∂ ln pj
∂ ln τil

= −2
φ− ψ

1 + ψ + φ
A−1
ji Xil.

Since the price index is log-linear w.r.t. the associated output price, we have

∂ lnPi
∂ ln τil

=
1 + ψ + φ

ψ − φ
∂ ln pi
∂ ln τil

.

Therefore, the real output price is

∂ ln (pi/Pi)

∂ ln τil
=

(
2φ+ 1

φ− ψ

)
∂ ln pi
∂ ln τil

= −2
2φ+ 1

1 + ψ + φ
A−1
ii Xil.

Then the ordering of the real output price follows from part (iii) of Theorem 2 , A−1
ii > A−1

ji for
j ∈ S − i. The result for real expenditure then follows immediately from C.5 and equation (11), as
Ei/Pi ∝ Ci (pi/Pi)

1+ψ:

∂ ln (piQi/Pi)

∂ ln τil
= −2

2φ+ 1

1 + ψ + φ
(1 + ψ)A−1

ii Xil +
∂ lnκ

∂ ln τil︸ ︷︷ ︸
common

.

By the same argument, the ordering of
(
∂ ln(piQi/Pi)

∂ ln τil

)
follows.
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