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Abstract

These notes are prepared for a Ph.D. level course in international trade.
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Chapter 1

An introduction into deductive

reasoning

1.1 Inductive and deductive reasoning

Inductive or empirical reasoning is the type of reasoning that moves from specific ob-

servations to broader generalizations and theories. Deductive reasoning is the type of

reasoning that moves from axioms to theorems and then applies the predictions of the

theory to the specific observations.

Inductive reasoning has failed in several occasions in economics. According to Prescott

(see Prescott (1998)) “The reason that these inductive attempts have failed ... is that the

existence of policy invariant laws governing the evolution of an economic system is in-

consistent with dynamic economic theory. This point is made forcefully in Lucas’ famous

critique of econometric policy evaluation.”

Theories developed using deductive reasoning must give assertions that can be fal-

sified by an observation or a physical experiment. The consensus is that if one cannot
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potentially find an observation that can falsify a theory then that theory is not scientific

(Popper).

A general methodology of approaching a question using deductive reasoning is the

following:

1) Observe a set of empirical (stylized) facts that your theory has to address and/or

are relevant to the questions that you want to tackle,

2) Build a theory,

3) Test the theory with the data and then use your theory to answer the relevant ques-

tions,

4) Refine the theory, going through step 1

1.2 Employing and testing a model

A vague definition of two methodologies: calibration and estimation

Calibration is the process of picking the parameters of the model to obtain a match

between the observed distributions of independent variables of the model and some key

dimensions of the data. More formally, calibration is the process of establishing the re-

lationship between a measuring device and the units of measure. In other words, if you

think about the model as a “measuring device” calibrating it means to parameterize it to

deliver sensible quantitative predictions.

Estimation is the process of picking the parameters of the model to minimize a func-

tion of the errors of the predictions of the model compared to some pre-specified targets.

It is the approximate determination of the parameters of the model according to some

pre-specified metric of differences between the model and the data to be explained.

It is generally considered a good practice to stick to the following principles (see

Prescott (1998) and the discussion in Kydland and Prescott (1994)) when constructing

2



quantitative models:

1. When modifying a standard model to address a question, the modification contin-

ues to display the key facts that the standard model was capturing.

2. The introduction of additional features in the model is supported by other evidence

for these particular additional features.

3. The model is essentially a measurement instrument. Thus, simply estimating the

magnitude of that instrument rather than calibrating the model can influence the ability

of the model to be used as a measuring instrument. In addition the model’s selection

(or in particular, parametric specification) has to depend on the specific question to be

addressed, rather than the answer we would like to derive. For example, “if the question

is of the type, how much of fact X can be accounted for by Y, then choosing the parameter

values in such a way as to make the amount accounted for as large as possible according

to some metric makes no sense.”

4. Researchers can challenge existing results by introducing new quantitatively rele-

vant features in the model, that alter the predictions of the model in key dimensions.

1.3 International Trade: The Macro Facts

Chapter 2 of Eaton and Kortum (2011) manuscript
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Chapter 2

An introduction to modeling

2.1 The Heckscher-Ohlin model

The Heckscher-Ohlin (H-O) model of international trade is a general equilibrium model

that predicts that patterns of trade and production are based on the relative factor endow-

ments of trading partners. It is a perfect competition model. In its benchmark version it

assumes two countries with identical homothetic preferences and constant return to scale

technologies (identical across countries) for two goods but different endowments for the

two factors of production. The model’s main prediction is that countries will export the

good that uses intensively their relatively abundant factor and import the good that does

not. We will present a very simple version of this model. Country i’s representative con-

sumer’s problem is

max a1 log ci
1 + a2 log ci

2

s.t. p1ci
1 + p2ci

2 ≤ ri k̄i + wi l̄i

4



The production technologies of good ω in the two countries are identical and given by

yi
ω = zω

(
ki

ω

)bω
(

li
ω

)1−bω

, i, ω = 1, 2

and where 0 < b2 < b1 < 1. This implies that good 1 is more capital intensive than

good 2. Assume for simplicity that k̄1/l̄1 > k̄2/l̄2. This implies that country 1 is capital

abundant relative to country 2. Finally, goods, labor, and capital markets clear. One of the

common assumptions for the H-O model is that there is no factor intensity reversal which

in our example is always the case given the Cobb-Douglas production function (one good

is always more capital intensive than the other, with the capital intensity given by bω).

2.1.1 Autarky equilibrium

We first solve for the autarky equilibrium for country i. This is easy especially if we

consider the social planner problem, but we will compute the competitive equilibrium

instead. The Inada conditions for the consumer’s utility function imply that both goods

will be produced in equilibrium. Thus, we just have to take FOC for the consumer and

look at cost minimization for the firm. For the consumer we have

max a1 log ci
1 + a2 log ci

2

s.t. pi
1ci

1 + pi
2ci

2 ≤ ri k̄i + wi l̄i

5



which implies

a1 = λi pi
1ci

1 (2.1)

a2 = λi pi
2ci

2 (2.2)

pi
1ci

1 + pi
2ci

2 = ri k̄i + wi l̄i (2.3)

This gives

pi
2ci

2 =
a2

a1
pi

1ci
1 . (2.4)

The firm’s cost minimization problem

min riki
ω + wili

ω

s.t. yi
ω ≤ zω

(
ki

ω

)bω
(

li
ω

)1−bω

implies the following equation, under the assumption that both countries produce both

goods,
bω

(1− bω)
li
ωwi = riki

ω . (2.5)

We can also use the goods market clearing to obtain

ci
ω = zω

(
ki

ω

)bω
(

li
ω

)1−bω

=⇒

ci
ω = zωli

ω

(
bω

1− bω

wi

ri

)bω

. (2.6)

Zero profits in equilibrium, pi
ωzω

(
ki

ω

)bω
(
li
ω

)1−bω = riki
ω + wili

ω, combined with (2.5),

6



give us

pi
ω =

riki
ω

bωzω
riki

ω

wi
(1−bω)

bω

(
bω

(1−bω)
wi

ri

)bω

=

(
wi)1−bω

(
ri)bω

zω (1− bω)
1−bω (bω)

bω

We can also derive the labor used in each sector. From the consumer’s FOCs, together

with the expressions for pi
ω and ci

ω derived above, we obtain:

aω = λi pi
ωci

ω =⇒

(1− bω)
aω

λi = wili
ω

this implies that

li
1
(1− b2) a2

(1− b1) a1
= li

2

We can use the labor market clearing condition and get

li
2 + li

1 = l̄i =⇒

li
1
(1− b2) a2

(1− b1) a1
+ li

1 = l̄i =⇒

li
1 =

(1− b1) a1

(1− b2) a2 + (1− b1) a1
l̄i . (2.7)

The results are similar for capital and thus,

ki
1 =

b1a1

b1a1 + b2a2
k̄i ,

7



This implies
l̄i

k̄i =
ri

wi
∑ω (1− bω) aω

∑ω bωaω
(2.8)

Thus, in a labor abundant country capital is relatively more expensive as we would ex-

pect. We can finally use the goods’ market clearing conditions combined with the optimal

choices for li
ω, ki

ω to get the values for ci
ω’s as a function solely of parameters and endow-

ments,

ci
ω = zω

(
bωaω

∑ω′ bω′aω′
k̄i
)bω

(
(1− bω) aω

∑ω′ (1− bω′) aω′
l̄i
)1−bω

. (2.9)

.

2.1.2 Free Trade Equilibrium

In the two country example, free trade implies that the price of each good is the same in

both countries. Therefore, we will denote free trade prices without a country superscript.

In the two country case it is important to distinguish among three conceptually different

cases: in the first case both countries produce both goods, in the second case one country

produces both goods and the other produces only one good, and in the last case each

country produces only one good.

We first define the free trade equilibrium. A free trade equilibrium is a vector of allo-

cations for consumers
(
ĉi

ω, i, ω = 1, 2
)
, allocations for the firm

(
k̂i

ω, l̂i
ω, i, ω = 1, 2

)
, and

prices
(
ŵi

ω, r̂ω, p̂ω, i, ω = 1, 2
)

such that

1. Given prices consumer’s allocation maximizes her utility for i = 1, 2

2. Given prices the allocations of the firms solve the cost minimization problem in

8



i = 1, 2,

bω pωzω

(
ki

ω

)bω−1 (
li
ω

)1−bω

≤ ri , with equality if yi
ω > 0

(1− bω) pωzω

(
ki

ω

)bω
(

li
ω

)−bω

≤ wi , with equality if yi
ω > 0

3. Markets clear

∑
i

ĉi
ω = ∑

i
ŷi

ω, ω = 1, 2

∑
ω

k̂i
ω = k̄i for each i = 1, 2

∑
ω

l̂i
ω = l̄i for each i = 1, 2 .

2.1.3 No specialization

We analyze the three cases separately. First, let’s think of the case in which both countries

produce both goods.

max a1 log ci
1 + a2 log ci

2

s.t. p1ci
1 + p2ci

2 ≤ ri k̄i + wi l̄i

a1 = λi p1ci
1 (2.10)

a2 = λi p2ci
2 (2.11)

p1ci
1 + p2ci

2 = ri k̄i + wi l̄i (2.12)

9



This implies again that

p2ci
2 =

a2

a1
p1ci

1 (2.13)

When both countries produce both goods the firms cost minimization problem implies

the following two equalities,

bω pωzω

(
ki

ω

)bω−1 (
li
ω

)1−bω

= ri ,

(1− bω) pωzω

(
ki

ω

)bω
(

li
ω

)−bω

= wi ,

which in turn imply
bω

(
li
ω

)
wi

(1− bω) ri = ki
ω . (2.14)

Additionally, from zero profits,

pω =

(
ri)bω

(
wi)1−bω

zω (bω)
bω (1− bω)

1−bω
(2.15)

and, of course, technologies (by assumption) and prices (due to free trade) are the same

in the two countries. Notice that the equality (2.15) is true for i = 1, 2 this implies that

(
r1
)bω

(
w1
)1−bω

=
(
r2)bω

(
w2)1−bω

ω = 1, 2(
r1

r2

)bω

=

(
w2

w1

)1−bω

ω = 1, 2

Noticing that the above expression holds for ω = 1, 2 and replacing these two equa-

10



tions in one another we have

(
w2

w1

) (1−b2)b1
b2

−1+b1

= 1 =⇒

w2 = w1

and of course

r2 = r1 .

This shows that we have factor price equalization (FPE) in the free trade equilibrium.

From the cost minimization of the firm we have

bω pωzω

(
ki

ω

)bω
(

li
ω

)1−bω

= riki
ω =⇒

bω pωyi
ω = riki

ω =⇒

pωyi
ω =

riki
ω

bω
.

Summing up over i and using FPE we have

pω

(
∑

i
yi

ω

)
=

r
bω

(
∑

i
ki

ω

)
. (2.16)

The equations (2.10) and (2.11) imply

aω

λ1 +
aω

λ2 = pω

(
c1

ω + c2
ω

)
(2.17)

11



Using goods market clearing, ∑i ci
ω = ∑i yi

ω, we have

∑
i

aω

λi = pω

(
c1

ω + c2
ω

)
= pω ∑

i
yi

ω =
r

bω
∑

i
ki

ω =⇒

bωaω ∑
i

1
λi = r ∑

i
ki

ω =⇒

(
∑

i

1
λi

)
∑
ω

bωaω = r ∑
ω

∑
i

ki
ω =⇒

∑
i

1
λi =

r
(
k̄1 + k̄2)

∑ω bωaω
(2.18)

and in a similar manner

∑
i

1
λi =

w
(
l̄1 + l̄2)

∑ω (1− bω) aω
. (2.19)

Using (2.18) and (2.19) we can determine the w/r ratio

l̄1 + l̄2

k̄1 + k̄2
=

r
w

∑ω (1− bω) aω

∑ω bωaω
. (2.20)

Assuming that one country is more capital abundant than the other (say k̄1/l̄1 > k̄2/l̄2),

the equilibrium factor price ratio r/w under free trade lies in between the autarky factor

prices of the two countries (determined in equation 2.8).

Using the relationships for the capital labor ratio (2.14) together with the above ex-

pression and factor market clearing conditions we can derive the equilibrium labor used

from each country in each sector. Using the capital labor ratios for both goods and for

12



both countries we get:

w
r

[(
l̄i − li

2

) b1

(1− b1)
+
(

li
2

) b2

(1− b2)

]
= k̄i

li
2

l̄i =
(1− b2) (1− b1)

b2 − b1

(
r
w

k̄i

l̄i −
b1

(1− b1)

)
li
2

l̄i =
(1− b2) (1− b1)

b1 − b2

(
b1

(1− b1)
− ∑ω bωaω

∑ω (1− bω) aω

l̄1 + l̄2

k̄1 + k̄2

k̄i

l̄i

)

You may notice two things in this expression. First, if initial endowments of the two

countries are inside a relative range, there is diversification since li
j > 0. If the endow-

ments of a country for a given good are not in this range, then a country specializes in the

other good (this range of endowments that implies diversification in production is com-

monly referred to as the cone of diversification). Second, conditional on diversification

labor abundant countries use relatively more labor in the labor intensive sector.

What is the share of consumption for each country? We can use the FOC from the

consumer’s problem to obtain

p1ci
1

(
1 +

a2

a1

)
= rk̄i + wl̄i =⇒

ci
1 =

rk̄i + wl̄i

p1

(
1 + a2

a1

) =⇒

ci
1 =

1
(1− bω)

wl̄i

p1

(
1 + a2

a1

) (2.21)

where in the last equivalence we used equation (2.14). Obtaining the rest of the alloca-

tions and prices is straightforward. In fact, you can show that if the production function

exhibits CRS and the capital-labor ratio for both countries is fixed (in a given sector), total

13



production can be represented by1

yω = zω

(
∑

i
ki

ω

)bω
(

∑
i

li
ω

)1−bω

.

We can determine ∑i ki
ω, ∑i li

ω by combining expression (2.18) with (2.16), (2.17) and using

the market clearing condition. This gives

bωaω

∑ω bωaω
=

∑i ki
ω

∑i k̄i , (2.22)

and similarly for labor.

2.1.4 Specialization

[HW]

1Assume that k1/l1 = k2/l2. We only have to prove that given this assumption

A
(

k1 + k2
)b (

l1 + l2
)1−b

= A
(

k1
)b (

l1
)1−b

+ A
(

k2
)b (

l2
)1−b

.

Using repeatedly the condition we have that

A

(
k1 + k2

l1 + l2

)b

= A

(
k1

l1

)b
l1

l1 + l2 + A
(

k2

l2

)b l2

l1 + l2 ⇐⇒(
k1 + k2

l1 + l2

)b

=

(
k1

l1

)b

⇐⇒((
k2l1) /l2 + k2

l1 + l2

)
=

(
k1

l1

)
⇐⇒

k2

l2 =
k1

l1 ,

which holds by assumption completing the proof.
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2.1.5 The 4 big theorems.

In this final section for the H-O model we will state main theorems that hold in the bench-

mark model with two countries and two goods. Variants of these theorems hold under

less or more restrictive assumptions. Our approach will still be as parsimonious as possi-

ble.2

Theorem 1. Assume countries engage in free trade, there is no specialization (thus there is diver-

sification) in equilibrium and there is no factor intensity-reversal, then factor prices equalize across

countries.

Proof. See main text

Theorem 2. (Rybczynski) Assume that the economies remain always incompletely specialized.

An increase in the relative endowment of a factor will increase the ratio of production of the good

that uses the factor intensively.3

Proof. TBD

Theorem 3. (Stolper-Samuelson) Assume that the economies remain always incompletely spe-

cialized. An increase in the relative price of a good increases the real return to the factor used

intensively in the production of that good and reduces the real return to the other factor.

Proof. TBD

Theorem 4. (Hekchser-Ohlin) Each country will produce the good which uses its abundant factor

of production more intensively.

Proof. TBD

2For a detailed treament you can look at the books of Feenstra (2003) and Bhagwati, Panagariya, and
Srinivasan (1998).

3If prices were fixed a stronger version of the theorem can be proved.
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Chapter 3

Models with Constant Elasticity

Demand

Suppose there is a compact set S of countries. For now, we assume that S is discrete,

although having a continuum of countries does not change things much. Whenever it is

possible, we refer to an origin country as i and a destination country as j and order the

subindices such that Xij is the bilateral trade from i to j. We define as Xj the total spending

of country j. We further denote by Lj the population of country j and let each consumer

have a single labor unit that is inelastically supplied.

There are three common assumptions made about the market structure by trade theo-

rists. The first is that markets in every country are perfectly competitive, so the price of a

good is simply equal to its marginal cost. The second is that there is Bertrand competition

so that the price of a good depends on the marginal cost of the least cost producer as well,

potentially, on the cost of the second cheapest producer. The third is that production is

monopolistically competitive so that the firm does not perceive any immediate competitor

but it is affected by the overall level of competition. We will consider each below.
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We also assume throughout that labor is the only factor of production (we will add

intermediate inputs later on). We also assume that there are iceberg trade costs {τij}i,j∈S.

This means that in order from one unit of a good to arrive in destination j, destination i

must ship τij units. Iceberg trade costs are so called because a fraction τij − 1 “melts” on

its way from i to j, much as if you were towing an iceberg. We almost always assume that

τij ≥ 1 and usually assume that τii = 1 for all i ∈ S, i.e. trade with oneself is costless.

Furthermore, we sometimes assume that the following triangle inequality holds: for all

i, j, k ∈ S: τijτjk ≥ τik. The triangle inequality says that it is never cheaper to ship a good

via an intermediate location rather than sell directly to a destination.

3.1 Constant Elasticity Demand

We first introduce one of the most remarkably simple as well as versatile demand func-

tions that will be the basis of our analysis for the next two chapters, the Constant Elas-

ticity of Substitution (CES) demand function. Why do we do so? CES preferences have

a number of attractive properties: (1) they are homothetic; (2) they nest a number of spe-

cial demand systems (e.g. Cobb-Douglas); and (3) they are extremely tractable. Trade

economists often do not believe that CES preferences are a good representation of actual

preferences but are seduced into making frequent use of them due to their analytical con-

venience.

In particular, assume that the representative consumer in country j derives utility Uj

from a set of varieties Ω the consumption of goods shipped from all countries i ∈ S:

Uj =

(
∑

ω∈Ω
aij (ω)

1
σ qij (ω)

σ−1
σ

) σ
σ−1

, (3.1)

where σ ≥ 0 is the elasticity of substitution and aij (ω) is an exogenous preference shifter.
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A couple of things to note: first, qij (ω) is the quantity of a good shipped from i that ar-

rives in j (the amount shipped is τijqij (ω)); second, the fact that there is a representative

consumer is not particularly important: we can always assume that workers (with identi-

cal preferences) are the ones consuming the goods and Uj can be interpreted as the total

welfare of country j in this case (homotheticity is, of course, crucial for this property to be

true).

We now solve the representative consumer’s utility maximization problem. Given the

importance of CES in the class we will proceed to do the full derivation for any given

good ω ∈ Ω. Let the spending of country j be denoted Xj and let the price of a good (net

of trade costs) from country i in country j be pij. Then the utility maximization problem

is:

max
{qij(ω)}

ω∈Ω

(
∑
i∈Ω

aij (ω)
1
σ qij (ω)

σ−1
σ

) σ
σ−1

s.t. ∑
ω∈Ω

qij (ω) pij (ω) ≤ Xj,

where I ignore the constraint that qij (ω) > 0 (why is this okay?).

The Lagrangian is:

L :

(
∑

ω∈Ω
aij (ω)

1
σ qij (ω)

σ−1
σ

) σ
σ−1

− λ

(
∑

ω∈Ω
qij (ω) pij (ω)− Xj

)

First order conditions (FOCs) imply:

∂L
∂qij (ω)

= 0 ⇐⇒
(

∑
ω∈Ω

aij (ω)
1
σ qij (ω)

σ−1
σ

) 1
σ−1

aij (ω)
1
σ qij (ω)−

1
σ = λpij (ω)

∂L
∂λ

= 0 ⇐⇒ Xj = ∑
ω∈Ω

qij (ω) pij (ω)
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Using the FOCs for two different goods, ω and ω′:

aij (ω)

aij (ω′)
=

pσ
ij (ω)

pσ
ij (ω

′)

qij (ω)

qij (ω′)

Rearranging and multiplying both sides by pij (ω) yields:

qij
(
ω′
)

pij
(
ω′
)
=

1
aij (ω)

qij (ω) pij (ω)σ (ω) aij
(
ω′
)

p1−σ
ij

(
ω′
)

Summing over all ω′ ∈ Ω yields:

∑
ω′∈Ω

qij
(
ω′
)

pij
(
ω′
)
=

1
aij (ω)

qij (ω) pij (ω)σ ∑
ω′∈Ω

aij
(
ω′
)

pij
(
ω′
)1−σ ⇐⇒

Xj =
1

aij (ω)
qij (ω) pij (ω)σ P1−σ

j

where the last line used the second FOC and Pj ≡
(

∑ω′∈Ω aij (ω
′) pij (ω

′)1−σ
) 1

1−σ
is known

as the Dixit-Stiglitz price index. It is easy to show that Uj =
Xj
Pj

, i.e. dividing income by

the price index gives the total welfare of country j. Rearranging the last line yields the

CES demand function:

qij (ω) = aij (ω) p−σ
ij (ω) XjPσ−1

j , (3.2)

Equation (3.2) implies that the quantity consumed in j of a good produced in i will be

increasing with j′s preference for the good (aij), decreasing with the price of the good

(pij), increasing with j′s spending (Xj), and increasing with j′s price index.

Note that the value of total trade is simply equal to the price times quantity. In what

follows, let us denote the value of trade of good ω from country i to country j as Xij (ω) ≡
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pij (ω) qij (ω). Then we have:

Xij (ω) = aij (ω) p1−σ
ij (ω) XjPσ−1

j . (3.3)

The only thing left to construct bilateral trade is to solve for the optimal price and aggre-

gate across varieties, which we will do after a brief discussion of the gravity equation.

3.2 The gravity setup

It is helpful to provide a brief motivation of why we are interested in writing down a flex-

ible model in the first place. “Classical” trade theories (Ricardo, Heckscher-Ohlin), while

extremely useful in highlighting the economic forces behind trade, are very difficult to

generalize to a set-up with many trading partners and bilateral trade costs. Because the

real world clearly has both of these, the classical theories do not provide much guidance

in doing empirical work. Because of this difficulty, those doing empirical work in trade

began using a statistical (i.e. a-theoretic) model known as the gravity equation due to its

similarity the Newton’s law of gravitation. The gravity equation states that total trade

flows from country i to country j, Xij, are proportional to the product of the origin coun-

try’s GDP Yi and destination country’s GDP Yj and inversely proportional to the distance

between the two countries, Dij:1

Xij = α
Yi ×Yj

Dij
. (3.4)

For a variety of reasons (which we will go into later on in the course), this gravity equation

is often estimated in a more general form, which we refer to as the generalized gravity

1This is actually in contrast to Newton’s law of gravitation, where the force of gravity is inversely propor-
tional to the square of the distance.
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equation:

Xij = Kijγiδj, (3.5)

where Kij is a measure of the resistance of trade between i and j, γi measures the origin

“size” and δj measures the destination “size” (note that each country has two different

measures of size)..

The gravity equation (3.4) and its generalization (3.5) have proven to be enormously

successful at explaining a large fraction of the variation in observed bilateral trade flows;

indeed, it is probably not too much of an exaggeration to say that the gravity equation

is one of the most successful empirical relationships in all of economics. Because it was

originally proposed as a statistical relationship, however, the absence of a theory justifying

the relationship made it very difficult to ask any meaningful counterfactual questions; e.g.

“what would happen to trade between i and j if the tariff was lowered between i and k?”

3.3 Armington model

The Armington model (Armington, 1969) is based on the premise that each country pro-

duces a different good and consumers would like to consume at least some of each coun-

try’s goods. This assumption is of course ad hoc, and it completely ignores the “classical”

trade forces such as increased specialization due to comparative advantage. However,

as we will see, the model (when combined with Constant Elasticity of Substitution (CES)

preferences as in (Anderson, 1979)) provides a nice characterization of trade flows be-

tween many countries.2

The Armington model (as formulated by (Anderson, 1979)) was important because

2Actually, in the main text, Anderson (1979) considers Cobb-Douglass preferences and writes that “there
is little point in the exercise” of generalizing to CES preferences, doing so only in an appendix. Despite his
reluctance to do so, the paper has been cited thousands of times as the example of an Armington model with
CES preferences.
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it provided the first theoretical foundation for the gravity relationship. It is also a great

place to start our course, as one of the great surprises of the international trade literature

over the past fifteen years has been how robust the results first present in the Armington

model are across different quantitative trade models. By now, as we will discuss in this

chapter, models that yield the gravity relationship (3.5) are ubiquitous and much of the

rest of what follows will focus on analyzing their common properties.

3.3.1 The model

We now turn to the details of the Armington models and in particular to the supply side

of this model, given CES demand.

The Armington assumption is that each country i ∈ S produces a distinct variety of

a good. Because countries map one-to-one to varieties, we index the varieties by their

country names (this will not be true for Bertrand and monopolistic competition when we

have to keep track both of varieties and countries).

Suppose that the market for each country/good is perfectly competitive, so that the

price of a good is simply the marginal cost. Suppose each worker can produce Ai units

of her country’s good and let wi be the wage of a worker. Then the marginal cost of

production is simply wi
Ai

. This implies that the price at the factory door (i.e. without

shipping costs) is pi = wi
Ai

. What about with trade costs? Recall that with the iceberg

formulation, τij ≥ 1 units have to be shipped in order for one unit to arrive. This means

that τij ≥ 1 units have to be produced in country i in order for one unit to be consumed in

country j. Hence the price in country j of consuming one unit from country i is:

pij = τij
wi

Ai
. (3.6)
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Note that this implies that:
pij

pi
= τij, (3.7)

i.e. the ratio of the price in any destination relative to the price at the factory door is

simply equal to the iceberg trade cost. Equation (3.7) is called a no-arbitrage equation, as

it means that there is no way for an individual to profit by buying a good in country i and

sell in country j (or vice versa). Note, however, that there may still be profitable trading

opportunities between triplets of countries even if equation (3.7) holds when the triangle

inequality is not satisfied.

3.3.2 Gravity

Assuming that each country produces a different good ω, and substituting equation (3.6)

into equation (3.3) yields a gravity equation for bilateral trade flows:

Xij = aijτ
1−σ
ij

(
wi

Ai

)1−σ

XjPσ−1
j . (3.8)

To the extent that trade costs are increasing in distance, the value of bilateral trade flows

will decline as long as σ > 1.

We can actually use equation to get a little close to the true gravity equation. The total

income in a country is equal to its total sales:

Yi = ∑
j

Xij = ∑
j

aijτ
1−σ
ij

(
wi

Ai

)1−σ

XjPσ−1
j ⇐⇒

(
wi

Ai

)1−σ

= Yi/ ∑
j

aijτ
1−σ
ij XjPσ−1

j
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Replacing this expression in the equation (3.8) yields:

Xij = aijτ
1−σ
ij

(
Yi

Π1−σ
i

)(
Xj

P1−σ
j

)
, (3.9)

where Π1−σ
i ≡ ∑j aijτ

1−σ
ij XjPσ−1

j bears a striking resemblance to the price index [insert

foreshadowing here]. Equation (3.9) which shows that the bilateral trade spending is

related to the product of the GDPs of the two countries (gravity!!), the distance/tradecost

and a GE component.

Equation (3.9) is actually about as close as we will ever get to the original gravity

equation. This is because all of our theories say that bilateral trade flows depend on more

than just the bilateral trade costs and the incomes of the exporter and importer; what also

matters is so-called “bilateral resistance”: intuitively, the greater the cost of exporting in

general, the smaller the Π1−σ
i ; conversely, the greater the cost of importing in general, the

smaller the P1−σ
i . This means that trade between any two countries depends not only on

the incomes of those two countries but also the “cost” of trading between those countries

relative to trading with all other countries. This point was made in the enormously famous

and influential paper “Gravity with Gravitas: A Solution of the Border Puzzle” (Anderson

and Van Wincoop, 2003).

3.3.3 Welfare

We will now show that welfare in relationship to trade is given by a simple equation

involving the trade to GDP ratio and parameters of the model (but no other equilibrium

variables). We will be revisiting this relationship multiple times in these notes. To begin
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define λij as the fraction of expenditure in j spent on goods arriving from location i:

λij ≡
Xij

∑k Xkj
.

From equation (3.8) we have:

λij =
aijτ

1−σ
ij

(
wi
Ai

)1−σ

∑k akjτ
1−σ
kj

(
wk
Ak

)1−σ
⇐⇒

λij = aijτ
1−σ
ij Aσ−1

i

(
wi

Pj

)1−σ

(3.10)

since P1−σ
j ≡ ∑k akjτ

1−σ
kj

(
wk
Ak

)1−σ
. Remember from the CES derivations above that the

utility of the representative agent is the real wage, i.e. Wj =
Xj
Pj

. Assume that τjj = 1. Then

by choosing i = j, equation (3.10) implies that welfare can be written as:

Uj =
Xj

wj
λ

1
1−σ

jj a
1

σ−1
jj Aj, (3.11)

i.e. welfare depends only on changes in the trade to GDP ratio, λjj, with an elasticity of

−1/ (σ− 1) which is the inverse of the trade elasticity.

3.4 Monopolistic Competition with Homogeneous Firms and CES

demand

With the Armington model, we saw how we could justify the gravity relationship in trade

using the ad-hoc assumption that every country produces a unique good as well as the

assumption that consumers have a “love of variety” (i.e. they want to consume at least a

little bit of every one of the goods). In this section, we will dispense of the first assumption
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by introducing firms into the model. However, we will continue to rely heavily on the

second assumption by assuming that each firm produces a unique variety and consumers

would like to consume at least a little bit of every variety.

The model considered today was introduced by Krugman (1980) and was an impor-

tant part of the reason he won a Nobel prize. A key feature of the Krugman (1980) model

is that there are increasing returns to scale, i.e. the average cost of production is lower the

more that is produced. All else equal, this will lead to gains from trade, since by taking

advantage of demand from multiple countries, firms can lower their average costs. To

succinctly model the increasing returns from scale, we suppose that a firm has to incur

a fixed entry cost f e
i in order to produce. (The e might seem like unnecessary notation;

however, we keep it here because in future models there will be both an entry cost and

a fixed cost of serving a particular destination). We assume the fixed cost of entry (like

the marginal cost) is paid to domestic workers so that f e
i is the number of workers em-

ployed in the entry sector (think of them as the workers who build the firm). Some of the

results toward the end of this section are based on the subsequent analysis of Arkolakis,

Demidova, Klenow, and Rodrı́guez-Clare (2008).

3.4.1 Setup

The main departure from the perfect competition paradigm is that in monopolistic com-

petition each differentiated variety is produced (potentially) by a different firm, where

there is a measure Ni of firms in country i. This number of firms is determined in equilib-

rium by allowing firms to enter after incurring a fixed cost of entry in terms of domestic

labor, f e
i .
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3.4.2 Consumers

As in the Armington model, we assume that consumers have CES preferences over vari-

eties. Hence a representative consumer in country j ∈ S gets utility Uj from the consump-

tion of goods shipped by all other firms in all other countries, where:

Uj =

(
∑
i∈S

ˆ
Ωi

qij (ω)
σ−1

σ dω

) σ
σ−1

, (3.12)

where qj (ω) is the quantity consumed in country j of variety ω. Note that for simplicity, I

no longer include a preference shifter (although one could easily be incorporated) so that

consumers treat all firms in all countries equally.

The consumer’s utility maximization problem is very similar to the Armington model

(which shouldn’t be particularly surprising, given preferences are virtually the same). In

particular, a consumer in country j ∈ S optimal quantity demanded of good ω ∈ Ω is:

qij (ω) = pij (ω)−σ XjPσ−1
j ,

where:

Pj ≡
(

∑
i∈S

ˆ
Ωi

pij (ω)1−σ dω

) 1
1−σ

(3.13)

is the Dixit-Stiglitz price index.

The amount spent on variety ω is simply the product of the quantity and the price:

xij (ω) = pij (ω)1−σ XjPσ−1
j . (3.14)

Note that we derived a very similar expression in the Armington model, from which the

gravity equation followed almost immediately. In this model however, this is the amount

spent on the goods from a particular firm, so we now need to aggregate across all firms in
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country i to determine bilateral trade flows between i and j, i.e.:

Xij ≡
ˆ

Ωi

xij (ω) dω = XjPσ−1
j

ˆ
Ωi

pij (ω)1−σ dω. (3.15)

3.4.3 Firms

All firms in country i have a common productivity, zi, and produce one unit of the good

using 1
zi

units of labor. The optimization problem faced by a firm ω from country i is:

max
{pj(ω)}j∈S

∑
j∈S

(
pj (ω) qj (ω)− wi

τij

zi
qj (ω)

)
− wi f e

i s.t. qj (ω) = pj (ω)−σ XjPσ−1
j

We can substitute the constraint into the maximand and write the equivalent uncon-

strained problem of choosing the price to sell to each location as:

max
{pj(ω)}j∈S

∑
j∈S

(
p1−σ

j (ω) XjPσ−1
j − wi

τij

zi
p−σ

j (ω) XjPσ−1
j

)
− wi f e

i

Note that the constant marginal cost assumption implies that the country can treat each

destination as a separate optimization problem (this will come in helpful in models we

will see later on).3 Profit maximization implies that optimal pricing for a firm selling from

country i to country j is

pij (zi) =
σ

σ− 1
τijwi

zi
, (3.16)

3Notice that here we haven’t introduced fixed costs of exporting. Introducing these costs will change the
analysis in that we may have countries for which all the firms chose not to export depending on values of
the fixed costs and other variables. More extreme predictions can be delivered if the production cost fi is
only a cost to produce domestically and independent of the exporting cost. However, in order to create a true
extensive margin of firms (i.e. more firms exporting when trade costs decrease) requires heterogeneity either
in the productivities of firms (as we will do later on in the notes) or in the fixed costs of selling to a market
(see Romer (1994)).
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and since all firm decision will depend on parameter’s and firm productivity we drop the

ω notation from here on. We will make the notation a bit cumbersome by carrying around

the zi’s in order to allow for direct comparison of our results with the heterogeneous firms

example that will be studied later on.

3.4.4 Gravity

Because every firm is charging the same price, we can substitute the price equation (3.16)

into the gravity equation (3.15) to yield:

Xij = XjPσ−1
j

ˆ
Ωi

(
σ

σ− 1
wi

zi
τij

)1−σ

dω ⇐⇒

Xij =

(
σ

σ− 1

)1−σ

τ1−σ
ij

(
wi

zi

)1−σ

NiXjPσ−1
j (3.17)

where Ni ≡
´

Ωi
dω is the measure of firms producing in country i. Comparing this equa-

tion to the one derived for the Armington model with monopolistic, we see that the two

expressions are nearly identical - the only difference here is that we have to keep track of

the mass of firms Mi and all trade flows are smaller (if σ > 1) as a result of the markups.

3.4.5 Welfare

It turns out welfare can be written similarly to the Armington model. First, note that

substituting equation (3.16) for the equilibrium price charged into the price index equation

(3.13) yields:

P1−σ
j ≡

(
σ

σ− 1

)1−σ

∑
k

τ1−σ
kj

(
wk

zk

)1−σ

Nk.

As above, define λij ≡
Xij

∑k Xkj
to be the fraction of expenditure of country j on goods

sent from country i. Then using equation (3.17), we can write λij as a function of the price

29



index in j:

λij =

(
σ

σ−1

)1−σ
τ1−σ

ij

(
wi
zi

)1−σ
NiXjPσ−1

j

∑k
(

σ
σ−1

)1−σ
τ1−σ

kj

(
wk
zk

)1−σ
NkXjPσ−1

j

=
τ1−σ

ij

(
wi
zi

)1−σ
Ni

∑k τ1−σ
kj

(
wk
zk

)1−σ
Nk

=

(
σ

σ− 1

)1−σ τ1−σ
ij

(
wi
zi

)1−σ
Ni

P1−σ
j

. (3.18)

This equation can be rewritten as

Pj =

(
σ

σ− 1

)
τij

(
wi

zi

)
N

1
1−σ

i λ
1

σ−1
ij . (3.19)

Since equation (3.19) holds for any i and j, we can focus on the particular case where i = j.

Then assuming τjj = 1, we can write equation (3.19) as:

Pj =

(
σ

σ− 1

)(
wj

zj

)
N

1
1−σ

j λ
1

σ−1
jj ⇐⇒

wj

Pj
=

(
σ− 1

σ

)
zjN

1
σ−1
j λ

1
1−σ

jj , (3.20)

i.e. the real wage is declining in λjj or equivalently, increasing in trade openness. Note,

however, that unlike the Armington model, firms are making positive profits, so that

the real wage no longer captures the welfare of a location. To deal with this issue, we

introduce a free entry condition.
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3.5 Ricardian model

The Ricardian model is a model of perfect competition where countries produce the same

goods using different technologies. The Ricardian model predicts that countries may spe-

cialize in the production of certain ranges of goods.

3.5.1 The two goods case

We consider the simple version of the model with two countries and two goods. In order

to get as much intuition as possible we will first consider the case where both countries

specialize in the production of one good.

The production technologies in the two countries i = 1, 2 are different for the two

goods ω = 1, 2 and given by

yi (ω) = zi (ω) li (ω) , i, ω = 1, 2 .

Assume that country 1 has absolute advantage in the production of both goods

z2 (1) < z1 (1) ,

z2 (2) < z1 (2) .

Assume that country 1 has comparative advantage in the production of good 1 and coun-

try 2 in good 2
z1 (2)
z2 (2)

<
z1 (1)
z2 (1)

. (3.21)
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Assume Cobb-Douglas preferences. The consumer’s problem is

max a (1) log ci (1) + a (2) log ci (2)

s.t. p (1) ci (1) + p (2) ci (2) ≤ wi l̄i.

Consumer optimization implies that

p (2) ci (2) =
a (2)
a (1)

p (1) ci (1) (3.22)

p (1) ci (1) + p (2) ci (2) = wi l̄i (3.23)

3.5.2 Autarky

Using firms cost minimization and the Inada conditions (that ensure that the consumer

actually wants to consume both goods) from the consumer problem we directly obtain

that

pi (1) zi (1) = wi = pi (2) zi (2) .

Using the goods market clearing

ci (ω) = yi (ω) for ω = 1, 2 ,

together with labor market clearing

li (ω) = a (ω) l̄i ,

we get labor allocated to each good. Using the production function and goods market
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clearing we can obtain the rest of the allocations.

3.5.3 Free trade

Under free trade international prices equalize. Relative productivity patterns will deter-

mine specialization. There can be three possible specialization patterns, two where one

country specializes and the other diversifies and one where both countries specialize.

Proposition 1. [Specialization]Under the assumptions stated, at least one country specializes in

the free trade equilibrium.

Proof. If not then the firm’s cost minimization together with the consumer FOCs would

imply
z1 (2)
z2 (2)

=
z1 (1)
z2 (1)

,

a contradiction.

In the three different equilibria that can emerge the countries export what they have

comparative advantage on (specialization into exporting). Under free trade this relative

price has to be in the range (given the Inada conditions in consumption):

z1 (2)
z2 (2)

≤ p (2)
p (1)

≤ z1 (1)
z2 (1)

To consider an example of how the wages are determined notice that for the country that

is under incomplete specialization equations cost minimization implies

p (1) zi (1)
p (2) zi (2)

=
wi

wi =⇒ p (1)
p (2)

=
zi (2)
zi (1)

,

i.e. this country sets the relative price of the two goods. Now assume that country 1 is
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incompletely specialized which means that country 2 specializes in good 2 and normalize

w1 = 1. Because of free trade and perfect competition it must be the case that the cost of

producing good 2 in both countries is the same, i.e.

w1

z1 (2)
=

w2

z2 (2)
=⇒ w2 =

z2 (2)
z1 (2)

< 1 = w1 .

Notice that using the wages and the zero profit conditions for country 1 we now get

p (1) z1 (1) = 1 and p (2) z1 (2) = 1

z1 (1)
z1 (2)

=
p (2)
p (1)

.

Finally using the budget constraints of the individual we can determine the levels of con-

sumption and verify that the equilibrium is consistent with our initial assumption for the

patterns of specialization (i.e. indeed country 2 exports good 2 and country 1 exports

good 1)

3.6 Problem Sets

1. Dixit-Stiglitz Preferences. Suppose that a consumer has wealth W, consumes from a

set of differentiated varieties ω ∈ Ω, and solves the following CES maximization

problem:

max
{q(ω)}

U =

(ˆ
Ω

q (ω)
σ−1

σ dω

) σ
σ−1

s.t.
ˆ

Ω
p (ω) q (ω) dω ≤ X, (3.24)

where σ > 0, q (ω) is the quantity consumed of variety ω and p (ω) the price of

variety ω.
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(a) Find a price index P such that in equilibrium U = W
P .

(b) Derive the optimal q (ω) as a function of W, P and p (ω).

(c) Show that σ is the elasticity of substitution, i.e. for any ω, ω′ ∈ Ω, σ =

d ln
(

q(ω)

q(ω′)

)
d ln
(

∂U/∂q(ω′)
∂U/∂q(ω)

) .

(d) What happens as σ→ ∞? σ→ 1? σ→ 0?
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Chapter 4

Models with CES demand and

production heterogeneity

The purpose of this chapter is to develop a general model for production heterogene-

ity in which different assumptions on technology and competition will give us different

workhorse frameworks important for the quantitative analysis of trade. Our analysis of

the general framework is based on the exposition of (Eaton and Kortum (2011)) and ear-

lier results of (Kortum (1997)) and (Eaton and Kortum (2002)). We start with a simple

extension of the Ricardian model with intra-sector heterogeneity.

4.1 Introduction to heterogeneity: The Ricardian model with a

continuum of goods

The model of Dornbusch, Fischer, and Samuelson (1977) is based on the Ricardian model

where trade and specialization patterns are determined by different productivities.1 There

1The notes in this chapter are partially based on Eaton and Kortum (2011).
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is absolute advantage due to higher productivity in producing certain goods, but also

comparative advantage due to lower opportunity cost of producing some goods. The

main drawback of the simple Ricardian model, similar to that of the Heckscher-Ohlin

model, is in the complexity of solving for the patterns of specialization for a large number

of industries.

Breakthrough: Dornbusch, Fischer, and Samuelson (1977) used a continuum of sectors.

The characterization of the equilibrium ended up being very easy.

• Perfect competition

• 2 countries (H, F)

• Continuum of goods ω ∈ [0, 1]

• CRS technology (labor only)

• Cobb-Douglas Preferences with equal share in each good

• Iceberg trade costs τHF, τFH

We normalize the domestic wage to 1. We want to characterize the set of goods pro-

duced and exported from each country. Without loss of generality we will characterize

production and exporting for country F. We first need to compare the price of a good

ω potentially offered by country H to country F to the corresponding price of the good

produced by F in order to determine the set of goods produced by country F in equi-

librium. For this purpose, we will order the goods in a decreasing order of domestic to

foreign productivity and define ω as the good with the lowest productivity produced in

the foreign country. Thus, the foreign country produces goods [ω, 1] while the domestic

[0, ω̄]. When trade costs exist then the two sets will overlap, ω̄ > ω, but if τHF = τFH then

ω̄ = ω. A simple condition that determines which are the goods that will be produced by
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country F dictates that the price of these goods in country F has to be lower than the price

of imported goods, i.e.

wF

zF (ω)
<

τHF

zH (ω)
=⇒ A (ω) ≡ zH (ω)

zF (ω)
>

τHF

wF
.

Therefore, we can define

A (ω) =
wF

τHF
. (4.1)

which determines that only products that will be produced by country F.

To find the set of goods that F will be exporting we need to determine set of goods

produced by country H. Using a similar logic this simply entails finding the ω that satis-

fies

A (ω̄) = τFHwF (4.2)

and [0, ω̄] is the set of goods produced by the home country. Thus, F produces goods

[ω, 1] and exports [ω̄, 1] since the domestic does not produce any of the goods in that last

set.

In order to get sensible relationships from the model, DFS parametrize zF(ω)
zH(ω)

by using

a monotonic function. In this last case we can invert A and get the exact range of goods

produced by each country, i.e. effectively determine ω and ω̄ as a function of parameters

and wF. Subsequently, we can solve for the equilibrium wage, using the labor market

clearing

LH = ω (wF)wFLF + ω̄ (wF) LH .

4.1.1 Where DFS stop and EK start

Eaton and Kortum (2002) (henceforth EK) treat productivities zi (ω) as an independent

realization of a random variable Zi independently distributed according to the same dis-
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tribution Fi for each good ω in country i. Given the continuum of goods (using a LLN

argument) we can determine with certainty the fraction of goods produced by each coun-

try. This way EK are able to overcome the complications faced by the standard Ricardian

framework and go much further in developing an analytical quantitative trade frame-

work.

Assume that the random variable Zi follows the Frechet distribution2:

Pr (Zi ≤ z) = exp
[
−Aiz−θ

]
.

The parameter Ai > 0 governs country’s overall level of efficiency (absolute advantage)

(with more productive countries having higher Ai’s). The parameter θ > 1 governs vari-

ation in productivity across different goods (comparative advantage) (higher θ less dis-

persed).

Now we will split the [0, 1] interval by thinking of ω̄ as the probability that the relative

productivity of F to H is less than Ã, where Ã can either be defined by (4.2). Therefore,

in order to determine ω̄ which is defined as the share of goods that the domestic country

produces we simply compute the probability that the domestic country is the cheapest

provider of the good across all the range of productivities. For example using (4.2) for the

2See the appendix for the properties of the Frechet distribution and the next chapter for a deriva-
tion from first principles.
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definition of Ã we can derive

ω̄ = λHH

= Pr
[

zF

zH
≤ Ã

]
= Pr

[
zF ≤ ÃzH

]
=

ˆ +∞

0
exp

[
−AF

(
Ãz
)−θ
]

︸ ︷︷ ︸
Pr(z(ω)≤ÃzH(ω))

dFH (z)︸ ︷︷ ︸
density of zH(ω)

=

ˆ +∞

0
exp

[
−AF

(
Ãz
)−θ
]

θAH (z)−θ−1 exp
[
−AH (z)−θ

]
dz

=
AH

AH + AF Ã−θ

Country H is spending (1− ω̄)wH LH on imports (given Cobb-Douglas) which implies

XFH =
AF (wFτHF)

−θ

AH + AF (wFτHF)
−θ

wH LH

Notice that this relationship is similar to the one derived with the assumption of the

Armington aggregator, equation (3.10), but with an exponent−θ for the elasticity of trade

with respect to trade costs. A lower value of θ generates more heterogeneity. This means

that the comparative advantage exerts a stronger force for trade against resistance impose

by the geographic barrier τin. In other words with low θ there are many outliers that

overcome differences in geographic barriers (and prices overall) so that changes in w’s

and τ’s are not so important for determining trade.
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4.2 A theory of technology starting from first principles

We start with a very general technological framework under the following assumptions.

Time is continuous and there is a continuum of goods with measure µ (Ω). Ideas for good

ω (ways to produce the same good with different efficiency) arrive at location i at date t

at a Poisson rate with intensity

āRi (ω, t)

where we think of ā as research productivity and R as research effort. The quality of ideas

is a realization from a random variable Q drawn independently from a Pareto distribution

with θ > 1, so that

Pr [Q > q] =
(

q/q
¯

)−θ
, q ≥ q

¯

where q
¯

is a lower bound of productivities. Note that the probability of an idea being big-

ger than q conditional on ideas being bigger than a threshold, is also Pareto (see appendix

for the properties of the Pareto distribution).

The above assumptions together imply that the arrival rate of an idea of efficiency

Q ≥ q is

āRi (ω, t)
(

q/q
¯

)−θ
.

(normalize this with q
¯
→ 0, ā → +∞ such that āq

¯
−θ → 1 in order to consider all the ideas

in (0,+∞)). We also assume that there is no forgetting of ideas. Thus, we can summarize

the history of ideas for good ω by

Ai (ω, t) =
ˆ t

−∞
Ri (ω, τ) dτ.

The number of ideas with efficiency Q > q′ is therefore distributed Poisson with a param-

eter Ai (ω, t) (q′)−θ (using the previous normalization).
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The unit cost for a location i of producing good ω with an efficiency of q is c = wi/q.

Given all the above, the expected number of techniques providing unit cost less than c is

distributed Poisson with parameter

Φi (ω, t) cθ

where

Φi (ω, t) = Ai (ω, t)w−θ
i .

But notice that this delivers back unit costs that are conditionally Pareto distributed

Pr
[
C ≤ c′|C ≤ c

]
= Pr

[
Q ≥ w

c′
= q′|Q ≥ w

c
= q

]
=

A (ω, t) (q′)−θ

A (ω, t) (q)−θ
=

(
q
q′

)θ

=

(
c′

c

)θ

.

In what follows set

Φ = Φi (ω, t) .

4.2.1 Order Statistics and Various Moments

The generality of this approach still allow for a number of order statistics and key mo-

ments to be computed. We start by computing the distribution of the order statistics in

the model.

Definition 1. C(k) is the k’th lowest unit cost technology for producing a particular good.

Given this definition we have the main theorem for the joint distribution of the order

statistics C(k)

42



Theorem 5. The joint density C(k), C(k+1) is

g
(

C(k) = ck, C(k+1) = ck+1

)
≡ gk,k+1 (ck, ck+1)

=
θ2

(k− 1)!
Φk+1cθk−1

k cθ−1
k+1 exp

(
−Φcθ

k+1

)

for 0 < ck ≤ ck+1 < ∞ while the marginal density of C(k) is:

gk (ck) =
θ

(k− 1)!
Φkcθk−1

k exp
(
−Φcθ

k

)

for 0 < ck < +∞

Proof. We start by looking at costs C ≤ c̄. The distribution of a cost C conditional on C ≤ c̄

is:

F (c|c̄) =
( c

c̄

)θ
c ≤ c̄

F (c|c̄) = 1 c > c̄

The probability that a cost is less than ck is F (ck|c̄). Thus, if we have n techniques with

unit cost less than c̄, where ck ≤ ck+1 ≤ c̄, the probability that the k’th lowest cost is less

than ck while the remaining are greater than ck+1 is given by the multinomial:

Pr
[
C(k) ≤ ck, C(k+1) ≥ ck+1|n

]
=

 n

k

 F (ck|c̄)k (1− F (ck+1|c̄))n−k

Taking the negative of the cross derivative of this expression with respect to ck, ck+1 gives

gk,k+1 (ck, ck+1|c̄, n) =
n!F (ck|c̄)k−1 [1− F (ck+1|c̄)]n−k−1 F′ (ck|c̄) F′ (ck+1|c̄)

(k− 1)! (n− k− 1)!
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for ck+1 ≥ ck and n ≥ k + 1. For n < k + 1 we can define gk,k+1 (ck, ck+1|c̄, n) = 0. We also

know that n is drawn from a Poisson distribution with parameter Φc̄θ , the expectation of

this joint distribution unconditional on n is:

gk,k+1 (ck, ck+1|c̄) =
∞

∑
n=0

exp
(
−Φc̄θ

) (
Φc̄θ

)n

n!︸ ︷︷ ︸
prob n ideas arrived for

a particular good

gk,k+1 (ck, ck+1|c̄, n)︸ ︷︷ ︸
conditional on n prob C(k)=ck ,

C(k+1)=ck+1

=

=
∞

∑
n=k+1

exp
(
−Φc̄θ

) (
Φc̄θ

)n

n!
n!F (ck|c̄)k−1 [1− F (ck+1|c̄)]n−k−1 F′ (ck|c̄) F′ (ck+1|c̄)

(k− 1)! (n− k− 1)!

=

(
Φc̄θ

)k+1 exp
(
−Φc̄θ F (ck+1|c̄)

)
F (ck|c̄)k−1 F′ (ck|c̄) F′ (ck+1|c̄)

(k− 1)!
∞

∑
m=0

exp
(
−Φc̄θ

) (
Φc̄θ

)m exp
(
−Φc̄θ F (ck+1|c̄)

)
[1− F (ck+|c̄)]m

m!

=

(
Φc̄θ

)k+1 exp
(
−Φc̄θ F (ck+1|c̄)

)
F (ck|c̄)k−1 F′ (ck|c̄) F′ (ck+1|c̄)

(k− 1)!
1

Substituting using the expression F (c|c̄) we have that

gk,k+1 (ck, ck+1|c̄) =
θ2

(k− 1)!
Φk+1cθk−1

k cθ−1
k+1 exp

(
−Φcθ

k+1

)

Now by letting c̄ → ∞ we can integrate for the entire range of c ≥ ck and derive the

marginal density by making use of the above expression. We have that

gk(ck) =

ˆ ∞

ck

gk,k+1(ck, ck+1)dck+1

=
θ2

(k− 1)!
Φk+1cθk−1

k

ˆ ∞

ck

cθ−1
k+1e−Φcθ

k+1 dck+1.
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Now by making the substitution u = cθ
k+1,

ˆ ∞

ck

cθ−1
k+1e−Φcθ

k+1 dck+1 = θ−1
ˆ ∞

cθ
k

e−Φudu

= θ−1Φ−1e−Φcθ
k .

Therefore

gk(ck) =
θ2

(k− 1)!
Φk+1cθk−1

k

(
θ−1Φ−1e−Φcθ

k

)
=

θ

(k− 1)!
Φkcθk−1

k e−Φcθ
k , (4.3)

as asserted.

This result will be the base for a series of lemmas to be discussed later on. First, by

noticing that F′k (ck) = gk(ck) we can directly compute the probability Pr
[
C(k) ≤ c̃k

]
:

Lemma 1. The distribution of the k′th lowest cost C(k) is:

Pr
[
C(k) ≤ c̃k

]
= Fk (c̃k) = 1−

k−1

∑
υ=0

(
Φc̃θ

k

)υ

υ!
e−Φc̃θ

υ (4.4)

This Lemma implies that the distribution of the lowest cost (k = 1) is the Frechet dis-

tribution

F1 (c̃1) = 1− exp
(
−Φc̃θ

1

)
Now in this context we will assume that ideas are randomly assigned to goods across

the continuum. Given that there is a large number of goods (say of measure µ (Ω)) in the

continuum we can drop the ω notation by simply denoting Ai (ω, t) = Ai (t) /µ (Ω) to be

the average number of ideas available for a good, in location i at time t. Given the above,

the measure of goods with cost less than c is Φi (t) /µ (Ω) cθ and the distribution of the
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lowest cost C(1) (the frontier idea) is

F1 (c1) = 1− exp
(
− (Φi (t) /µ (Ω)) c̃θ

1

)

Thus a set of µ (Ω) F1 (c1) ideas can be produced at a cost less than c1. We will proceed

under this convention in the rest of this chapter.

Using the following proposition and the assumption of the CES demand we can di-

rectly derive the price index

Proposition 2. For each order k, the b’th moment (b > −θk) is

E
[(

C(k)
)b
]
=
(

Φ−1/θ
)b Γ [(θk + b) /θ]

(k− 1)!
,

where Γ (α) =
´ +∞

0 yα−1e−ydy.

Proof. First consider k = 1, where suppressing notation we denote by the marginal den-

sity of C(k),

gk (c) =
θ

(k− 1)!
Φkcθk−1

k exp
[
−Φcθ

k

]

E
[(

C(1)
)b
]
=

ˆ +∞

0
cbg1 (c) dc

=

ˆ +∞

0
Φθcθ+b−1 exp

[
−Φcθ

]
dc

changing the variable of integration to υ = Φcθ and applying the definition of the gamma
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function, we get

E
[(

C(1)
)b
]
=

ˆ +∞

0
(υ/Φ)b/θ exp [−υ] dυ

= (Φ)−b/θ Γ
[

θ + b
θ

]
(4.5)

well defined for θ + b > 0. For general k we have

E
[(

C(k)
)b
]
=

ˆ +∞

0
cbgk (c) dc

=

ˆ +∞

0
cb θ

(k− 1)!
Φkcθk−1 exp

[
−Φcθ

]
dc

=
Φk−1

(k− 1)!

ˆ +∞

0
cb+θk−θθΦcθ−1 exp

[
−Φcθ

]
dc

=
Φk−1

(k− 1)!
E
[(

C(1)
)b+θ(k−1)

]
(4.6)

Using the general technology framework we developed above and different assump-

tions on the competition structure we will be able to derive main quantitative models that

are widely used in the recent international trade literature. We now provide a number of

illustrations of this general framework that arise from explicilty specifying the competi-

tion and market structure.

4.3 Application I: Perfect competition (Eaton-Kortum)

A main factor inhibiting the use of “classical trade theory” in empirical gravity models

was the perceived intractability of such a problem. The traditional Ricardian comparative

advantage framework relied on two countries and two goods; many attempts to gener-
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alize the framework quickly led to a nightmare of corner solutions. While Dornbusch,

Fischer, and Samuelson (1977) provided a tractable framework for a continuum of va-

rieties with two countries, it was thought to be impossible to extend the framework to

many countries and arbitrary trade costs (both which are necessary to deliver a gravity-

like equation). (The closest generalization to many countries was the local comparative

static analysis of Wilson (1980)).

This is where Eaton and Kortum (2002) enters. Using a model that bears a resem-

blance to a discrete-choice framework (a la McFADDEN (1974)), they show how to derive

gravity expressions for trade flows in a world with many countries, arbitrary trade costs

(i.e. arbitrary geography), where trade is only driven by technological differences across

countries (i.e. comparative advantage). The Eaton and Kortum (2002) framework not only

shattered the age-old belief that there couldn’t be a Ricardian gravity model, the model

developed turns out to be remarkably elegant. It is also surprising that despite looking

very different from the models we have considered thus far, the Eaton and Kortum (2002)

trade expression remains formally isomorphic to those models.

4.3.1 Model Setup

Let us now turn to the set-up of the model.

The World

In this model, there a finite number of countries i ∈ S ≡ {1, ..., N}; (unlike previous mod-

els, there are technical difficulties in extending the model to a continuum of countries).

There are a continuum of goods Ω. However, unlike in the Krugman (1980) and Melitz

(2003) models which follow, every country is able to produce every good. Countries, how-

ever, vary (exogenously) in their productivity of each good; in particular, let zi (ω) denote
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country i’s efficiency at producing good ω ∈ Ω.

The Eaton and Kortum (2002) has no concept of a firm. Instead, it is assumed that all

goods ω ∈ Ω are produced using the same bundle of inputs with a constant returns to

scale technology. Let the cost of a bundle of inputs in country i ∈ S be ci so that the cost

of producing one unit of ω ∈ Ω in country i ∈ S is ci
zi(ω)

.

Finally, like the previous models we considered, suppose there is an iceberg trade cost

τij ≥ 1 of trading a good from i ∈ S to j ∈ S.

Supply

Each good is assumed to be sold in perfectly competitive markets, so that the price a

consumer in country j ∈ S would pay if she were to purchase good ω ∈ Ω from country

i ∈ S is:

pij (ω) =
ci

zi (ω)
τij. (4.7)

However, consumers in country j ∈ S are assumed to only purchase good ω ∈ Ω from the

country who can provide it at the lowest price, so the price a consumer in j ∈ N actually

pays for good ω ∈ Ω is:

pj (ω) ≡ min
i∈S

pij (ω) = min
i∈S

ci

zi (ω)
τij. (4.8)

The basic idea behind the Eaton and Kortum (2002) is already present in equation (4.8): a

country j ∈ S will be more likely to purchase good ω ∈ Ω from country i ∈ S if (1) it has

a lower unit cost ci; (2) it has a higher good productivity zi (ω); and/or (3) it has a lower

trade cost τij.

One of the major innovations of the Eaton and Kortum (2002) model is that the pro-
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ductivity zi (ω) is treated as a random variable drawn independently and identically for

each ω ∈ Ω. Define Fi to be the cumulative distribution function of the productivity in

country i ∈ S. That is, for each i ∈ S, for all ω ∈ Ω:

Fi (z) ≡ Pr {zi (ω) ≤ z}

Eaton and Kortum (2002) assume that Fi (z) is Fréchet distributed so that for all z ≥ 0:

Fi (z) = exp
{
−Tiz−θ

}
, (4.9)

where Ti > 0 is a measure of the aggregate productivity of country i (note that a larger

value of Ti decreases Fi (z) for any z ≥ 0, i.e. it increases the probability of larger values

of z and θ > 1 (which is assumed to be constant across countries) governs the distribu-

tion of productivities across goods within countries (as θ increases, the heterogeneity of

productivity across goods declines).

Why make this particular distributional assumption for productivities? In a micro-

foundation that is related to the general technological framework we have discussed

above Kortum (1997) showed that if the technology of producing goods is determined by

the best “idea” of how to produce, then the limiting distribution is indeed Fréchet, where

Ti reflects the country’s stock of ideas. More generally, consider the random variable:

Mn = max {X1, ...., Xn} ,

where Xi are i.i.d. The Fisher–Tippett–Gnedenko theorem states that the only (normal-

ized) distribution of Mn as n → ∞ is an extreme value distribution, of which Fréchet

is one of three types (Type II). Note that a conditional logit model assumes that the er-
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ror term is Gumbel (Type I) extreme value distributed. If random variable x is Gumbel

distributed, ln x is distributed Fréchet; hence, loosely speaking, the Fréchet distribution

works better for models that are log linear (like the gravity equation), whereas the Gumbel

distribution works better for models that are linear.

Demand

As in previous models, consumers have CES preferences so that the representative agent

in country j has utility:

Uj =

(ˆ
Ω

qj (ω)
σ−1

σ dω

) σ
σ−1

,

where qj (ω) is the quantity that country j consumes of good ω. Note that unlike the

Krugman (1980) model, not every good produced in every country will be sold to country

j. Indeed, good ω ∈ Ω will be produced by all countries but county j will only purchase

it from one country. However, like the previous models considered, the CES preferences

will yield a Dixit-Stiglitz price index:

Pj ≡
(ˆ

Ω
pj (ω)1−σ dω

) 1
1−σ

(4.10)

4.3.2 Equilibrium

We now consider the equilibrium of the model. Instead of relying on the CES demand

equation as in the previous models, we use a probabilistic formulation in order to solve

the model.

Prices

In perfect competition only the lowest cost producer of a good will supply that particular

good. Thus, we want to derive the distribution of the minimum price over a set of prices
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offered by producers in different countries

pj = min
{

p1j, ..., pNj
}

In order to find this distribution we take advantage of the properties of extreme value

distributions for productivity z. Everything turns out to work beautifully!

First, let us consider the probability that country i ∈ S is able to offer country j ∈ S

good ω ∈ Ω for a price less than p. Because the technology is i.i.d across goods, this

probability will be the same for all goods ω ∈ Ω. Define:

Gij (p) ≡ Pr
{

pij (ω) ≤ p
}

Using the perfect competition price equation (4.7) and the functional form of the Fréchet

distribution (4.9), we have:

Gij (p) ≡ Pr
{

pij (ω) ≤ p
}
⇐⇒

Gij (p) = Pr
{

ci

zi (ω)
τij ≤ p

}
⇐⇒

Gij (p) = Pr
{

ci

p
τij ≤ zi (ω)

}
⇐⇒

Gij (p) = 1− Pr
{

zi (ω) ≤ ci

p
τij

}
⇐⇒

Gij (p) = 1− Fi

(
ci

p
τij

)
⇐⇒

Gij (p) = 1− exp

{
−Ti

(
ci

p
τij

)−θ
}

(4.11)

Consider now the probability that country j ∈ S pays a price less than p for good ω ∈ Ω.

Again, because the technology is i.i.d across goods, this probability will be the same for
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all goods ω ∈ Ω. Define:

Gj (p) ≡ Pr
{

pj (ω) ≤ p
}

Because country j ∈ S buys from the least cost provider, using equation (4.8) and some

basic tools of probability, we can write:

Gj (p) = Pr
{

min
i∈S

pij (ω) ≤ p
}
⇐⇒

= 1− Pr
{

min
i∈S

pij (ω) ≥ p
}
⇐⇒

= 1− Pr
{
∩i∈S

(
pij (ω) ≥ p

)}
⇐⇒

= 1−∏
i∈S

(
1− Gij (p)

)
(4.12)

Substituting equation (4.11) into equation (4.12) yields:

Gj (p) = 1−∏
i∈S

(
1− Gij (p)

)
⇐⇒

= 1−∏
i∈S

exp

{
−Ti

(
ci

p
τij

)−θ
}
⇐⇒

= 1− exp

{
−pθ ∑

i∈S
Ti
(
ciτij

)−θ

}
⇐⇒

= 1− exp
{
−pθΦj

}
, (4.13)

where Φj ≡ ∑i∈S Ti
(
ciτij

)−θ . Equation (4.13) tells us what the distribution of prices will

be across goods for country j. This, in turn, will allow us to calculate the price index in
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country j, Pj. Starting with the definition of the price index from equation (4.11), we have:

Pj ≡
(ˆ

Ω
pj (ω)1−σ dω

) 1
1−σ

⇐⇒

P1−σ
j =

ˆ ∞

0
p1−σdGj (p) ⇐⇒

P1−σ
j =

ˆ ∞

0
p1−σ

(
d

dp

(
1− exp

{
−pθΦj

}))
dp ⇐⇒

P1−σ
j = θΦj

ˆ ∞

0
pθ−σ exp

{
−pθΦj

}
dp.

Define x ≡ pθΦj so that with a change of variables we have:

P1−σ
j =

ˆ ∞

0

(
x

Φj

) 1−σ
θ

exp {−x} dx ⇐⇒

P1−σ
j = Φ−

1−σ
θ

j

ˆ ∞

0
x

1−σ
θ exp {−x} dx ⇐⇒

P1−σ
j = Φ−

1−σ
θ

j Γ
(

θ + 1− σ

θ

)
⇐⇒

Pj = Φ−
1
θ

j Γ
(

θ + 1− σ

θ

) 1
1−σ

,

where Γ (t) ≡
´ ∞

0 xt−1e−xdx is the Gamma function.

Hence, the equilibrium price index in country j ∈ N can be written as:

Pj = C

(
∑
i∈S

Ti
(
ciτij

)−θ

)− 1
θ

, (4.14)

where C ≡ Γ
(

θ+1−σ
θ

) 1
1−σ . [Class questions: What does this mean if trade is costless? When

trade is infinitely costly?]
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4.3.3 Gravity

Now suppose we are interested in determining the probability that i ∈ S is the least cost

provider of good ω ∈ Ω to destination j ∈ S. Because all goods receive i.i.d. draws and

there are a continuum of varieties, by the law of large numbers, this probability will be

equal to the fraction of goods i sells to j. Define:

πij ≡ Pr
{

pij (ω) ≤ min
k∈S\j

pkj (ω)

}
⇐⇒

=

ˆ ∞

0
Pr
{

min
k∈S\j

pkj (ω) ≥ p
}

dGij (p) ⇐⇒

=

ˆ ∞

0
Pr
{
∩k∈S\j

(
pkj (ω) ≥ p

)}
dGij (p) ⇐⇒

=

ˆ ∞

0
∏

k∈S\i

(
1− Gkj (p)

)
dGij (p) (4.15)

Substituting the distribution of price offers from equation (4.11) into equation (4.15) yields:

πij =

ˆ ∞

0
∏

k∈S\j

(
1− Gkj (p)

)
dGij (p) ⇐⇒

=

ˆ ∞

0
∏

k∈S\j

(
exp

{
−Tk

(
ck

p
τkj

)−θ
})(

d
dp

(
1− exp

{
−Ti

(
ci

p
τij

)−θ
}))

dp ⇐⇒

= Ti
(
ciτij

)−θ
ˆ ∞

0
θpθ−1

(
exp

{
−pθΦj

})
dp ⇐⇒

=
Ti
(
ciτij

)−θ

Φj

(
− exp

{
−pθΦj

}
|∞0
)

=
Ti
(
ciτij

)−θ

Φj
(4.16)

Hence, the fraction of goods exported from i to j just depends on i′s share in j′s Φj. Note

that more productive countries, countries with lower unit costs, and countries with lower

bilateral trade costs (all relative to other countries) will comprise a larger fraction of the
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goods sold to j.

Note that πij is the fraction of goods that j ∈ S purchases from i ∈ S; it may not be

the fraction of j′s income that is spent on goods from country i. However, it turns out

that with the Fréchet distribution, the distribution of prices of goods that country j actually

purchases from any country i ∈ S will be the same. To see this, note that the probability

country i ∈ S is able to offer good ω ∈ Ω for a price lower than p̃ conditional on i having

the lowest price is simply the product of inverse of the probability that i has the lowest

cost good and the probability that j receives a price offer lower that p̃:

Pr
{

pij (ω) ≤ p̃|pij (ω) ≤ min
k∈S\i

pkj (ω)

}
=

1
πij

ˆ p̃

0
Pr
{

min
k∈S\i

pkj (ω) ≥ p
}

dGij (p) ⇐⇒

=
1

πij

ˆ p̃

0
∏

k∈S\i

(
1− Gkj (p)

)
dGij (p) ⇐⇒

=
1

πij

Ti
(
ciτij

)−θ

Φj

(
− exp

{
−pθΦj

}
| p̃0
)

=
1

πij

Ti
(
ciτij

)−θ

Φj

(
1− exp

{
− p̃θΦj

})
= Gj ( p̃) .

Intuitively, what is happening is that origins with better comparative advantage (lower

trade costs, better productivity, etc.) in selling to j will exploit its advantage by selling

a greater number of goods to j exactly up to the point where the distribution of prices it

offers to j is the same as j’s overall price distribution.

While this result depends heavily on the Fréchet distribution, it greatly simplifies the

process of determining trade flows. Since the distribution of prices offered to an importing

country j ∈ S is independent of the origin, country j′s average expenditure per good does

not depend on the source of the good. As a result, the fraction of goods purchased from a
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particular origin (πij) is equal to the fraction of j′s income spent on goods from country i,

λij ≡
Xij
Yj

i.e.

λij =
Ti
(
ciτij

)−θ

Φj
. (4.17)

This implies that the total expenditure of j on goods from country i is:

Xij = πijEj,

where from equation (4.16) we have:

Xij =
Ti
(
ciτij

)−θ

Φj
Ej (4.18)

Supposing that ci = wi and substituting in equation (4.14) for the price index yields:

Xij = C−θτ−θ
ij w−θ

i TiEjPθ
j . (4.19)

Hence, the Eaton and Kortum (2002) model yields a nearly identical gravity equation to

the Armington model of Anderson (1979), except that the relevant elasticity is θ instead

of σ− 1.

As in previous models, we can also push the gravity equation a little bit further. Note

that in general equilibrium, the total income of a country will equal the amount it sells to

all other countries:

Yi = ∑
j∈S

Xij (4.20)
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Substituting gravity equation (4.19) into equation (4.20) yields:

Yi = ∑
j∈S

C−θτ−θ
ij w−θ

i TiEjPθ
j ⇐⇒

Yi = C−θw−θ
i Ti ∑

j∈S
τ−θ

ij EjPθ
j ⇐⇒

C−θw−θ
i Ti =

Yi

∑j∈S τ−θ
ij EjPθ

j

(4.21)

Now substituting equation (4.21) back into the gravity equation (4.19) yields:

Xij = C−θτ−θ
ij w−θ

i TiEjPθ
j ⇐⇒

Xij = τ−θ
ij ×

Yi

Π−θ
i

×
Ej

P−θ
j

, (4.22)

where

Πi ≡
(

∑
k∈S

τ−θ
ik

Ek

P−θ
k

)− 1
θ

.

We will see soon that if trade costs are symmetric, Pi = Πi.

Why is the trade elasticity different in this model? Recall that in the Armington and

Krugman (1980) models, how responsive trade flows were to trade costs depended on

how demand for a good was affected by the good’s price, which was determined by con-

sumer’s elasticity of substitution. In this model, however, changes in trade costs affect the

extensive margin, i.e. which goods an origin country trades with a destination country. As

the bilateral trade costs rise, the origin country is the least cost provider in fewer goods;

the greater the θ, the less heterogeneity in a country’s productivity across different goods,

so there are a greater number of goods for which it is no longer the least cost provider.

Hence, the Eaton and Kortum (2002) model is similar to the Melitz (2003) model in that

the elasticity of trade to trade costs ultimately depends on the density of producers/firms
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that are indifferent between exporting and not exporting: the greater the heterogeneity in

productivity, the lower the density of these marginal producers.

4.3.4 Welfare

From the CES preferences, the welfare of a worker in country i ∈ S can be written as:

Wi ≡
wi

Pi
. (4.23)

Recall from above that λij ≡
Xij
Ej

is the fraction of j′s expenditure spent on i. From gravity

equation (4.19) we then have that:

λij = C−θτ−θ
ij w−θ

i TiPθ
j ,

which, given τii = 1, implies:

λii = C−θW−θ
i Ti ⇐⇒

Wi = C−1λ
− 1

θ
ii T

1
θ

i . (4.24)

Hence, as in the Krugman (1980) model, welfare can be expressed as a function of tech-

nology and the openness of a country. Indeed, as far as I am aware, Eaton and Kortum

(2002) were the first to derive this expression, although the expression is usually known as

the “ACR” equation after Arkolakis, Costinot, and Rodrı́guez-Clare (2012), who derived

the conditions under which it holds more generally (we will see more of this in several

weeks).
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4.3.5 Discussion of EK

The Eaton and Kortum model is a key defining point in the new trade literature not only

because it has provided a simple framework to model comparative advantage but also

because it has provided a set of probabilistic tools to think about the determination of

trade and allocation of resources without having to worry about mathematical intricacies

(e.g. corner solutions in the standard Ricardian setup etc.). These tools have been use

henceforth for a variety of applications that we will discuss in many of the remaining

chapters. Still, the structure we developed above can be useful with different forms of

competition as is illustrated by Bernard, Eaton, Jensen, and Kortum (2003) and Melitz

(2003) that model other forms of competition (Bertrand and monopolistic, respectively)

and also work that brings models of trade closer to the trade data in many dimensions.

4.4 Application II: Bertrand competition (Bernand, Eaton, Jensen,

Kortum)

• Consider the case where different producers have access to different technologies. If

we assume Bertrand competition, the cost distribution will be given by the frontier

producer (k = 1 in the expression 4.4) but prices are related to the distribution of

the second lowest cost (k = 2). Since the lowest cost supplier is the one that will sell

the good, the probability that a good is supplied from i to j is the same as in perfect

competition, equation (4.17).
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4.4.1 Supply side

The price of a good ω in market j is:

pj (ω) = min
{

C2j (ω) , m̄C1j (ω)
}

where we will define Cij (ω) to be the cost of the i’th minimum cost producer of good ω in

country j, and m̄ = σ/ (σ− 1) is the optimal markup that a monopolist firm would charge

(assuming CES preferences with a demand elasticity σ). Given heterogeneity among tech-

nological costs for firms we will derive the distribution of costs and markups in each given

country.

Efficiency, markups, and measured productivity

Define again C(k) as the k’th lowest unit cost technology for producing a particular

good. We have the following Lemma

Lemma 2. The distribution of C(k+1) conditional on C(k) = ck is:

Pr
[
C(k+1) ≤ ck+1|C(k) = ck

]
= 1− exp

[
−Φ

(
cθ

k+1 − cθ
k

)]
, cθ

k+1 ≥ cθ
k ≥ 0 (4.25)

Proof. Using Bayes’ rule we have

Pr
[
C(k+1) ≤ ck+1|C(k) = ck

]
=

ˆ ck+1

ck

gk,k+1 (ck, c)
gk (ck)

dc

=

ˆ ck+1

ck

θΦcθ−1 exp
[
−Φcθ + Φcθ

k

]
dc

= 1− exp
[
−Φ

(
cθ

k+1 − cθ
k

)]
.
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The above relationship also implies that (define m′ = ck+1/ck)

Pr

[
C(k+1)

ck
≤ ck+1

ck
|C(k) = ck

]
= Pr

[
C(k+1)

C(k)
≤ m′|C(k) = ck

]

= 1− exp
[
−Φcθ

k

((
m′
)θ − 1

)]

The distribution of the ratio M′ = C(2)/C(1) given C(1) = c1 is:

Pr
[

M′ ≤ m′|C(1) = c1

]
= 1− exp

[
−Φcθ

1

((
m′
)θ − 1

)]
.

We have that the lower c1, the more likely a high markup. Thus, in this context low-

cost producers are more likely to charge a high markup and their measured (revenue)

productivity is more likely to appear as higher. In this model, revenue productivity is

associated one-to-one with the markup that the firm charges, since it equals

[
M (ω)wiτijq (ω) /z (ω)

]︸ ︷︷ ︸
revenue

/ l (ω)︸ ︷︷ ︸
labor used

=
[
M (ω)wiτijq (ω) /z (ω)

]
/ [q (ω) /z (ω)] = M (ω)wiτij.

Notice that from this expression is straightforward that market structures/demand func-

tions which imply costant markup imply no revenue productivity variation across firms.

Notice that the markup with Bertrand competition that BEJK consider is

M (ω) = min

{
C(2) (ω)

C(1) (ω)
, m̄

}
(4.26)

We start by characterizing the distribution of the ratio M′ = C(2)/C(1). Conditional on the
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second lowest cost in market j being C(2)
i = c2, we have

Pr
[

M′ ≤ m′|C(2)
j = c2

]
= Pr

[
c2/m′ ≤ C(1)

j ≤ c2|C(2)
j = c2

]
=

´ c2
c2/m′ gj (c1, c2) dc1´ c2

0 gj (c1, c2) dc1

=
cθ

2 − (c2/m′)θ

cθ
2

= 1−
(
m′
)−θ . (4.27)

This derivation implies that the distribution of this M′ does not depend on c2 and is also

Pareto.3 Thus, the unconditional distribution is also Pareto.4 Given the markup func-

tion for the case of Betrand competition, equation (4.26), we have proved the following

proposition:

3Using again the results of the theorem we can derive the distribution of m for each k. Notice that

Pr
[
C(k) ≤ ck|C(k+1) = ck+1

]
=

ˆ ck

0
gk,k+1 (c, ck+1) /gk+1 (ck+1) dc

=

ˆ ck

0

θ2

(k−1)! Φk+1cθk−1cθ−1
k+1 exp

(
−Φcθ

k+1

)
θ

(k)! Φk+1cθ(k+1)−1
k+1 e−Φcθ

k+1

dc

=

(
ck

ck+1

)θk
(4.28)

and simply replacing for ck = ck+1
m in expression (4.28) (and given that C(k+1) = ck+1) we can get

Pr

[
C(k+1)

C(k)
≤ m|C(k+1) = ck+1

]
= 1− Pr

[
C(k) ≤ ck+1

m
|C(k+1) = ck+1

]
= 1−m−θk

4An alternative derivation of the distribution of the markups can be obtained for m < m̄. To compute the
unconditional distribution of productivities for m < m̄ we have that

Pr [M ≤ m] =

ˆ +∞

0

(
1− exp

[
−Φcθ

1

(
mθ − 1

)])
Φθcθ−1

1 exp
(
−Φcθ

1

)
dc1

= − exp
(
−Φcθ

1

)∣∣∣+∞

0
+ exp

(
−Φcθ

1

)∣∣∣+∞

0
= 1− 1/mθ
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Proposition 3. Under Bertrand competition the distribution of the markup M is:

Pr [M ≤ m] = FM (m) =

 1−m−θ if m < m̄

1 if m ≥ m̄
.

With probability m̄−θ the markup is m̄. The distribution of the markup is independent of C(2).

4.4.2 Gravity

Lengthy derivations can be used (see the online appendix of BEJK) to show that the joint

distribution of the lowest and the second lowest cost of supplying a country, conditional

on a certain country being the supplier, is independent of the country of origin, and is

given by equation (4.28) for k = 1. Therefore, the market share of country i in j equals to

the probability that country i is the supplier and thus

λij =
Ai
(
wiτij

)−θ

∑N
k=1 Ak

(
wkτkj

)−θ
=

Φij

Φj
(4.29)

It is worth noting that the profits of firms depend on both their cost but also their competi-

tor’s cost. An interesting implication of the model is that the share of profit to aggregate

revenue is constant and equals to 1/ (θ + 1) . The proof of this can be found in the online

appendix of BEJK.
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4.4.3 Welfare

Using the derivations for the distribution of markups, we can also derive a price index for

this case. We have

P1−σ
j =

ˆ ∞

1
E
[

p1−σ
j |M = m

]
θm−θ−1dm

=

ˆ m̄

1
E
[(

C(2)
j

)1−σ
]

θm−(θ+1)dm︸ ︷︷ ︸
marginal cost pricing

+

ˆ +∞

m̄
E
[(

m̄C(2)
j /m

)1−σ
]

θm−(θ+1)dm︸ ︷︷ ︸
Dixit-Stiglitz pricing

= E
[(

C(2)
j

)1−σ
] [(

1− m̄−θ
)
+ m̄−θ θ

1 + θ − σ

]

where in the second equality we used the fact that the distribution of markups is indepen-

dent of the second lowest cost, equation (4.27). We have already calculated E
[(

C(2)
i

)1−σ
]

in equation (4.6). Thus, the price index under Bertrand competition is

Pi = γBCΦ−1/θ
i

γBC =

[(
1− m̄−θ

)
+ m̄−θ θ

1 + θ − σ

]1/(1−σ) [
Γ
(

2θ + 1− σ

θ

)]
1/(1−σ)

and given the gravity expression the welfare as a function of trade is the same as in the

case of Perfect competition

4.4.4 Discussion of BEJK

• Develop a firm level model and explicitly tests its predictions with firm-level data.

• Model a framework where firms markups are variable and depending on compe-

tition. Alternative models of variable markups can be developed in monopolistic

competition by allowing for a preference structure that departs from the CES aggre-
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gator (see section 8.4).

• Develop a methodology of simulating an artificial economy with heterogeneous

firms and finding the parameters of this economy that brings the predictions of the

model closer to the data.

• Acknowledges the fact that “measured productivity” when measured as nominal

output over employment is constant in models with constant markups. It developes

a model that can deliver variable markups, thus measured productivity differentials.

4.5 Application III: Monopolistic competition with CES (Chaney-

Melitz)

The Krugman (1980) model, while micro-founding the gravity equation based on a story

of equilibrium firm entry, made the simplifying assumption that all firms were ex-ante

identical. With the advent of digitized data on firm-level trading partners, however, it

became clear that there existed an enormous heterogeneity in firm’s exporting behavior

Bernard, Jensen, Redding, and Schott (2007) provides an excellent overview of the em-

pirical patterns concerning firms in international trade, of which we mention just a few.

First, the vast majority of firms do not export; in the U.S. in 2000, only 4% of firms were

exporters. Second, amongst those 4% of firms that did export, 96% of the value of exports

came from just 10% of exporters. Third, comparing the firms that export to those that

do not, the exporting firms tend to be larger, more productive, more skill- and capital-

intensive, and to pay higher wages. These differences are apparent even before exporting

begins, suggesting that more productive firms choose to export (rather than the act of

exporting increasing the productivity of firms).

In response to these new empirical findings, Melitz (2003) developed an extension
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of the Krugman (1980) where firms varied (exogenously) in their productivities and self

selected into exporting. This model has proven enormously successful for a number of

reasons: first, it is able to capture many (but not all) of the empirical facts mentioned

above, most notably that larger firms will be more likely to export; second, the model

has proven incredibly flexible, generating a huge number of “extensions” to capture ad-

ditional empirical patterns; and third, the model generates a new (potential) source for

gains from trade: if falling trade costs leads higher productivity firms to grow and lower

productivity firms to shrink, this reallocation of factors of production will increase the av-

erage productivity of a country. While there is some debate about whether this is actually

an additional gain from trade (as we will see in a few weeks), the idea that greater trade

can make a country more productive by increasing competition has made the (rare) leap

from academic to political discourse; for example the U.S. trade representative web page

lists as one of its major “benefits of trade” the fact that “trade expansion benefits families

and businesses by supporting more productive, higher paying jobs in our export sectors.”

4.5.1 Model Set-up

Let us now turn to the set-up of the model.

The world

As in the previous models, there is a compact set S of countries, where I will keep the

notation that i is an origin country and a j is a destination country. Each country i ∈ S

is be populated by an exogenous measure Li of workers/consumers where each worker

supplies her unit of labor inelastically. Suppose that labor is the only factor of production.
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Supply

As in the Krugman (1980) model, suppose that there is a continuum Ω of possible varieties

that the world can produce, and suppose that every firm in the world produces a distinct

variety ω ∈ Ω. Let the set of varieties produced by firms located in country i ∈ S be

denoted by Ωi ⊂ Ω. (Note that Ωi is an equilibrium object, as it will depend on the

number of firms that are actively producing).

Instead of the fixed entry cost in Krugman (1980) model, suppose that there is a mass

Mi of firms from country i ∈ S and that firms must incur a fixed cost fij > 0 to export to

each destination j ∈ S.5

The major innovation of the Melitz (2003) model is that firms are heterogeneous. To

model this, we suppose that each firm in i ∈ S has a productivity ϕ drawn from some

cumulative distribution function Gi (ϕ), i.e. it costs a firm with productivity ϕ exactly

1
ϕ units of labor to produce a single unit of its differentiated variety. In what follows,

we will sometimes identify each firm by its productivity (since all firms with the same

productivity within a particular country will act the same way) and sometimes identify

each firm by its variety ω (since every firm produces a unique variety).

Finally, as in previous models, we suppose that all firms within a country are subject

to iceberg trade costs {τij}i,j∈S.

Demand As in the Krugman (1980) model, we assume that consumers have CES pref-

erences over varieties. Hence a representative consumer in country j ∈ S gets utility Uj

from the consumption of goods shipped by all other firms in all other countries, where:

5In Melitz (2003), it was assumed that there was an additional entry cost f e
i that determined the equilib-

rium mass of firms Mi. In the Chaney (2008) version of the model, Mi was assumed (for simplicity) to be
proportional to the income in the origin. The Chaney (2008) version of the model has become more widely
used because it allows for arbitrary bilateral trade costs (the original Melitz (2003) model imposed symmetry).
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Uj =

(
∑
i∈S

ˆ
Ωij

(
qij (ω)

) σ−1
σ dω

) σ
σ−1

, (4.30)

where qij (ω) is the quantity consumed in country j of variety ω.

4.5.2 Equilibrium

We now consider the equilibrium of the model.

Optimal demand

The consumer’s utility maximization problem is identical to that of Krugman (1980): A

consumer in country j ∈ S optimal quantity demanded of good ω ∈ Ω is:

qij (ω) = pij (ω)−σ YjPσ−1
j , (4.31)

where:

Pj ≡
(

∑
i∈S

ˆ
Ωi

pij (ω)1−σ dω

) 1
1−σ

(4.32)

is the Dixit-Stiglitz price index.

The amount spent on variety ω is simply the product of the quantity and the price:

xij (ω) = pij (ω)1−σ YjPσ−1
j . (4.33)

To determine total trade flows, we need to aggregate across all firms in country i:

Xij ≡
ˆ

Ωi

xij (ω) dω = YjPσ−1
j

ˆ
Ωi

pij (ω)1−σ dω. (4.34)

Unlike the Krugman (1980) model, firms with different productivities will charge different
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prices, so the integral in equation (4.34) becomes more complicated.

Optimal supply

We now determine the equilibrium prices that a firm with productivity ϕ sets (where we

now identify firms by their productivity). The optimization problem is:

max
{qij(ϕ)}j∈S

∑
j∈S

(
pij (ϕ) qij (ϕ)− wi

ϕ
τijqij (ϕ)− fij

)
s.t. qij (ϕ) = pij (ϕ)−σ YjPσ−1

j .

Substituting the constraint into the maximand yields:

max
{qij(ϕ)}j∈S

∑
j∈S

(
pij (ϕ)1−σ YjPσ−1

j − wi

ϕ
τij pij (ϕ)−σ YjPσ−1

j − fij

)

The first order condition implies that a firm from i ∈ S with productivity ϕ, conditional

on selling to destination j, will charge a price:

pij (ϕ) =
σ

σ− 1
wi

ϕ
τij (4.35)

Combining the optimal price (equation (4.35)) and the optimal demand (equation (4.31))

gives the total revenue of a firm (conditional on exporting) to be:

xij (ϕ) ≡ pij (ϕ) qij (ϕ) =

(
σ

σ− 1
wi

ϕ
τij

)1−σ

YjPσ−1
j (4.36)
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and variable profits conditional on entering (note that we now define πij (ϕ) as profits

without the fixed costs):

πij (ϕ) ≡
(

pij (ϕ)− wi

ϕ
τij

)
qij (ϕ)

=

(
σ

σ− 1
wi

ϕ
τij −

wi

ϕ
τij

)(
σ

σ− 1
wi

ϕ
τij

)−σ

YjPσ−1
j

=
1
σ

(
σ

σ− 1

)1−σ (wi

ϕ
τij

)1−σ

YjPσ−1
j

=
1
σ

xij (ϕ) (4.37)

Note that both revenue and profits are increasing in a firm’s productivity. [Class question:

Why is this?]

Aggregation

We now discuss how to use the optimal behavior on the part of each firm to construct the

aggregate variables necessary to generate a gravity equation. Let µij (ϕ) be the (equilib-

rium) probability density function of the productivities of firms from country i that sell to

country j and let Mij be the (equilibrium) measure of firms exporting from i to j.

Then we can write the average prices charged by all firms in i ∈ S selling to j ∈ S as:

ˆ
Ωi

pij (ω)1−σ dω =

ˆ ∞

0
Mij

(
σ

σ− 1
wi

ϕ
τij

)1−σ

µij (ϕ) dϕ ⇐⇒

=

(
σ

σ− 1
wiτij

)1−σ

Mij

ˆ ∞

0
ϕσ−1µij (ϕ) dϕ ⇐⇒

= Mij

(
σ

σ− 1
wiτij

)1−σ (
ϕ̃ij
)σ−1 ,

where ϕ̃ij ≡
(´ ∞

0 ϕσ−1µij (ϕ) dϕ
) 1

σ−1 captures the “average” productivity of producers
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from i selling to j. This allows us to write the gravity equation (4.34) as:

Xij =

(
σ

σ− 1

)1−σ

τ1−σ
ij w1−σ

i Mij
(

ϕ̃ij
)σ−1 YjPσ−1

j . (4.38)

Equation (4.38) resembles the gravity equation from Krugman (1980), except that we now

have to keep track of both the number of firms selling to j (Mij) and their average pro-

ductivity ϕ̃ij. Note that as the average productivity of entrants increases, the trade flows

increase. [Class question: what is the intuition for this?].

Selection into exporting

In order to determine the equilibrium number of entrants Mij and the average productiv-

ity of entrants ϕ̃ij, we have to consider the export decisions of firms. A firm from country

i ∈ S with productivity ϕ conditional on producing will export to j if and only if:

πij (ϕ) ≥ fij

From equations (4.36) and (4.37) we can write this as:

1
σ

(
σ

σ− 1
wi

ϕ
τij

)1−σ

YjPσ−1
j ≥ fij ⇐⇒

ϕ ≥ ϕ∗ij ≡
(

σ fij
(

σ
σ−1 wiτij

)σ−1

YjPσ−1
j

) 1
σ−1

. (4.39)

Hence, only firms that are sufficiently productive will find it profitable to incur the fixed

cost of exporting to destination j. This means that the model matches the empirical fact

that larger and more productive firms select into exporting.

Together, equations (4.39) and (4.47) allow us to determine the “average” productivity

of producers selling from i to j:
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ϕ̃ij =

 1

1− Gi

(
ϕ∗ij

) ˆ ∞

ϕ∗ij

ϕσ−1dGi (ϕ)

 1
σ−1

. (4.40)

and the density of firms selling from i to j:

Mij =
(

1− Gi

(
ϕ∗ij

))
Mi, (4.41)

so that the gravity equation (4.38) becomes:

Xij =

(
σ

σ− 1

)1−σ

τ1−σ
ij w1−σ

i Mi

(ˆ ∞

ϕ∗ij

ϕσ−1dGi (ϕ)

)
YjPσ−1

j . (4.42)

4.5.3 The Pareto Distribution

In this section, we show that when the distribution of firm productivities is a Pareto dis-

tribution, the model above simplifies nicely. This insight is due to Chaney (2008). The

assumption that the distribution of firm’s productivities is Pareto can actually be micro-

founded as follows: Let µ (Ω) ⊂ (0,+∞) is the set of available varieties. Let Ii the mea-

sure of ideas that fall randomly into goods. In some sense Ii/µ (Ω) ideas correspond to

each good. In the probabilistic context we described above, the monopolistic competition

model arises in a very natural way. Let the distribution of the lowest cost for a good to be

Frechet such that

F1 (c1) = 1− exp
(
− Ii

µ (Ω)
cθ

1

)
.

The measure of firms with unit cost less than C(1) ≤ c1, is µ (Ω) F1 (c1) . Taking the limit

of this expression for the number of potential varieties µ (Ω) → +∞ we can show that

the distribution of the best producer’s cost of a variety is Pareto. More details are given in

appendix (13.1).
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Suppose that ϕ ∈ [1, ∞) and:

Gi (ϕ) = 1− ϕ−θi , (4.43)

where θi is the shape parameter of the distribution. We assume that θi > σ− 1 (this paramet-

ric assumption is necessary in order for trade flows to be finite). Note that as θi increases,

the probability that the productivity is below any given ϕ increases, i.e. the heterogeneity

of producers is decreasing in θi.

If the productivities are Pareto distributed, then we can write:

ˆ ∞

ϕ∗ij

ϕσ−1dGi (ϕ) =

ˆ ∞

ϕ∗ij

ϕσ−1

(
d
(
1− ϕ−θi

)
dϕ

)
dϕ ⇐⇒

= θi

ˆ ∞

ϕ∗ij

ϕσ−θi−2dϕ ⇐⇒

=
θi

θi + 1− σ

(
ϕ∗ij

)σ−θi−1

Recall from equation (4.39) above that we can write the export threshold ϕ∗ij as a func-

tion of the fixed cost of export so that:

ˆ ∞

ϕ∗ij

ϕσ−1dGi (ϕ) =
θi

θi + 1− σ

(
ϕ∗ij

)σ−θi−1
⇐⇒

=
θi

θi + 1− σ

(
σ fij

(
σ

σ−1 wiτij
)σ−1

YjPσ−1
j

) σ−θi−1
σ−1

(4.44)
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Substituting expression (4.44) into the gravity equation (4.42) above then yields:

Xij =

(
σ

σ− 1

)1−σ

τ1−σ
ij w1−σ

i Mi

(ˆ ∞

ϕ∗ij

ϕσ−1dGi (ϕ)

)
YjPσ−1

j ⇐⇒

Xij =

(
σ

σ− 1

)1−σ

τ1−σ
ij w1−σ

i Mi

 θi

θi + 1− σ

(
σ fij

(
σ

σ−1 wiτij
)σ−1

YjPσ−1
j

) σ−θi−1
σ−1

YjPσ−1
j ⇐⇒

Xij = C1
(
τijwi

)−θi f
σ−θi−1

σ−1
ij Mi

(
YjPσ−1

j

) θi
σ−1

(4.45)

where C1 ≡ σ
σ−θi−1

σ−1
(

σ
σ−1

)−θi
(

θi
θi+1−σ

)
.

4.5.4 Trade with firm heterogeneity

Armed with the gravity equation (4.45) we have calculated, we now turn to the implica-

tions of a trade model with heterogeneous firms.

Extensive and intensive margins of trade

Equation (4.45) bears a resemblance to the gravity equation derived by Krugman (1980),

but the elasticity of trade flows with respect to variable trade costs is related to the Pareto

shape parameter instead of the elasticity of substitution! Since we have assumed that

θi > σ− 1, this means that trade flows have become more responsive to changes in trade

costs than in the Krugman (1980) model.

What gives? Intuitively, as trade costs fall two things happen: first, the firms already

producing will export more (this is known as the intensive margin); second, smaller firms

who were not exporting previously will begin to export (this is known as the extensive

margin). Both of these effects will tend to increase trade; since the Krugman (1980) model

only had the first effect, the model with heterogeneous firms will predict larger responses
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of trade flows to changes in trade costs.

We can actually determine the elasticity of both margins of trade separately to see the

relative importance of both effects. (This was the central point of Chaney (2008)To do so,

recall the Leibnez rule:

∂

∂z

ˆ b(z)

a(z)
f (x, z) dx =

ˆ b(z)

a(z)

∂ f (x, z)
∂z

dx + f (b (z) , z)
∂b (z)

∂z
− f (a (z) , z)

∂a (z)
∂z

Combining the original gravity equation (4.34) with the threshold exporting decision

(4.39) we have:

Xij = Mi

ˆ ∞

ϕ∗ij

xij (ϕ) dGi (ϕ)

Hence we can write the elasticity of trade flows with respect to variable trade costs as:

−
∂ ln Xij

∂ ln τij
= −

∂Xij

∂τij

τij

Xij
= −

´ ∞
ϕ∗ij

∂
∂τij

xij (ϕ) τijdGi (ϕ)´ ∞
ϕ∗ij

xij (ϕ) dGi (ϕ)
+

xij

(
ϕ∗ij

)
τij

∂ϕ∗ij
∂τij

dGi

(
ϕ∗ij

)
´ ∞

ϕ∗ij
xij (ϕ) dGi (ϕ)

,

where the first term reflects the effect of a change in trade costs on the intensive mar-

gin and the second term reflects the change on the extensive margin. From the revenue

equation (4.36) we have:

∂

∂τij
xij (ϕ) =

∂

∂τij

(
σ

σ− 1
wi

ϕ
τij

)1−σ

YjPσ−1
j = (1− σ)

xij (ϕ)

τij
.

so that:

−

´ ∞
ϕ∗ij

∂
∂τij

xij (ϕ) τijdGi (ϕ)´ ∞
ϕ∗ij

xij (ϕ) dGi (ϕ)
= σ− 1,

i.e. a decline in trade costs will cause all firms currently producing to increase their pro-

duction with an elasticity of σ − 1 (this is the original Krugman (1980) effect). [Class

question: Why is the intensive margin increasing with σ?]

76



From equation (4.39) governing the threshold productivity:

∂ϕ∗ij
∂τij

=
∂

∂τij

(
σ fij

(
σ

σ−1 wiτij
)σ−1

YjPσ−1
j

) 1
σ−1

=
ϕ∗ij
τij

so that:

xij

(
ϕ∗ij

)
τij

∂ϕ∗ij
∂τij

dGi (ϕ)´ ∞
ϕ∗ij

xij (ϕ) dGi (ϕ)
=

xij

(
ϕ∗ij

)
ϕ∗ijdGi

(
ϕ∗ij

)
´ ∞

ϕ∗ij
xij (ϕ) dGi (ϕ)

⇐⇒

=

(
σ

σ−1 wiτij
)1−σ YjPσ−1

j

(
ϕ∗ij

)σ−1−θi

(
σ

σ−1 wiτij
)1−σ YjPσ−1

j

´ ∞
ϕ∗ij

ϕσ−2−θi dϕ
⇐⇒

=

(
ϕ∗ij

)σ−1−θi

1
θi−σ+1

(
ϕ∗ij

)σ−1−θi
⇐⇒

= θi − σ + 1,

i.e. on the extensive margin, a decline in trade costs will induce less productive firms to

enter the market. When the elasticity of substitution is low (i.e. σ is low), even the less

productive firms will be able to capture relatively large market share, so that the difference

in size between the entering firms and the existing firms is small, meaning that the effect

on the extensive margin will be larger. With a Pareto distribution, the extensive margin

dominates the intensive margin.

Free entry and the allocation of factors across firms

Up until now, we have taken the mass of producing firms Mi to be exogenous. We now

consider what would happen if it was endogenously determined by a free entry condition

(much as in Krugman (1980)). Suppose now that firms have to incur an entry cost f e
i > 0
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prior to learning their productivity. Then the free entry condition will require that the

expected profits are equal to the entry cost:

f e
i = Eϕ

[
∑
j∈S

max
{

πij (ϕ)− fij, 0
}]

(4.46)

Since more productive firms are (weakly) more profitable in every market, this implies

there will be an equilibrium productivity threshold ϕ∗i where firms, upon drawing a pro-

ductivity, will choose to produce only if their productivity exceeds ϕ∗i . This implies that

we can write re-write equation (4.46) as:

f e
i =

ˆ ∞

ϕ∗
∑
j∈S

max
{

πij (ϕ)− fij, 0
}

dGi (ϕ) ⇐⇒

f e
i = ∑

j∈S

ˆ ∞

max
{

ϕ∗i ,ϕ∗ij
} (πij (ϕ)− fij

)
dGi (ϕ) , (4.47)

i.e. the fixed entry cost is simply equal to the sum across all destinations of the profits

in those destinations for firms who are sufficiently productive to both pay the fixed entry

and export costs.

What would happen to the profits of firms of different productivities if we were to

lower the variable trade cost τij for some j ∈ S? First, consider a firm whose productivity

is greater than the threshold productivity necessary to export to j, i.e. ϕ ≥ ϕ∗ij. From

equation (4.37), its profits are:

πij (ϕ) =
1
σ

(
σ

σ− 1
wi

ϕ
τij

)1−σ

YjPσ−1
j − fij,

so that holding all else equal, its total profits must increase. Furthermore, the more pro-

ductive this firm is, the greater the increase in its profits since − ∂2πij(ϕ)
∂τij∂ϕ > 0. If the total

profits for all firms ϕ ≥ ϕ∗ij are increasing, then the expected profits of entering the market
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will also increase; because of the free entry condition, this will induce a greater number

of firms to enter the market, increasing the demand for local labor and driving up wages.

As a result, the profits of firms with ϕ < ϕ∗ij will go down (as will the firms with produc-

tivities ϕ < ϕ∗ij + ε), so that in equilibrium only the profits of the most productive firms

productivities will increase. In addition, as the wages increase, the minimum productiv-

ity required to produce anything at all (i.e. ϕ∗i ) will increase, forcing the least productive

firms in the model to exit. Hence, the model implies that greater openness to trade will

increase the average productivity of producing firms and will allocate labor toward the

more productive firms.

4.5.5 Next steps

The Melitz (2003) model provides the backbone for many (most?) of the major trade

papers written in the past ten years. While we will not have time to discuss its many

extensions in detail, we should note a few. Helpman, Melitz, and Yeaple (2004) endog-

enizes a firm’s decision whether to export or to pursue foreign direct investment (FDI).

Melitz and Ottaviano (2008) derive a version of the model with linear demand (instead of

CES) to analyze how mark-ups endogenously respond to trade liberalizations. Helpman,

Melitz, and Rubinstein (2008) discuss how the model (with a bounded distribution of

productivity) can be used to explain the zero trade flows observed in bilateral trade data

and what it suggests for the estimation of empirical gravity models. Helpman, Itskhoki,

and Redding (2010) incorporate labor market frictions into a Melitz (2003) framework.

Arkolakis (2010b) extends the Melitz (2003) framework to incorporate market penetration

costs. Eaton, Kortum, and Kramarz (2011) use the Melitz (2003) framework to structurally

estimate the exporting behavior of French firms.
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4.6 Summary

• Established a macroeconomic framework where the concept of the firm had a mean-

ing while the model was tractable and amenable to a variety of exercises. In this

framework it is possible to think about trade liberalization and firms in GE.

• Explicitly modeled the importance of reallocation of production through the death

of the least productive firms.

The Melitz (2003) model provides the backbone for many of the major trade papers writ-

ten in the past years. Here we note just a few. Helpman, Melitz, and Yeaple (2004) endo-

genizes a firm’s decision whether to export or to pursue foreign direct investment (FDI).

Melitz and Ottaviano (2008) derive a version of the model with linear demand (instead of

CES) to analyze how mark-ups endogenously respond to trade liberalizations. Helpman,

Melitz, and Rubinstein (2008) discuss how the model (with a bounded distribution of

productivity) can be used to explain the zero trade flows observed in bilateral trade data

and what it suggests for the estimation of empirical gravity models. Helpman, Itskhoki,

and Redding (2010) incorporate labor market frictions into a Melitz (2003) framework.

Arkolakis (2010b) extends the Melitz (2003) framework to incorporate market penetration

costs. Eaton, Kortum, and Kramarz (2011) us

The Eaton and Kortum (2002) model remains the primary framework for the study

of trade in perfectly competitive markets (especially agriculture). However, because of a

lack of a real concept of a firm, it has proven less popular than the Melitz (2003) model for

the study of firm-level data. In Bernard, Eaton, Jensen, and Kortum (2003), the authors

did extend the framework to one where there is Bertrand competition between firms. The

basic idea is straightforward: the price charged by the single firm that exports a variety is

the marginal cost of the second best firm. While this allows for endogenous (non-constant)
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markups, the extension required somewhat more complicated probability tools and has

turned out to be slightly less tractable than Melitz (2003) extensions such as Melitz and

Ottaviano (2008), where there are endogenous markups due to non-CES preferences.

4.7 Problem Sets

1. General properties of gravity trade models. Consider the model developed in section

4.3-4.5.

(a) Argue that in all these models profits are a constant fraction of production.

(b) Argue that in the model consider in Section (4.5) payments to fixed costs are a

constant fraction of production.

2. The Frechet distribution. For all n ∈ {1, ..., N}, suppose that the random variable

zn ≥ 0 is distributed according to the Frechet distribution, i.e.:

Pr{zn ≤ z} = exp
(
−Tnz−θ

)
,

where Ti > 0 and θ > 0 are known parameters. Define the random variable pn = cn
zn

.

Calculate:

πin ≡ Pr
{

pn ≤ min
k 6=n

pk

}

3. The Pareto distribution. Suppose that the random variable zn ∈ [bn, ∞) is distributed

according to the Pareto distribution, i.e.:

Pr{zn ≤ z} = 1−
(

bn

z

)−θ

,

where bn > 0 and zn > 0 are known parameters. What is the distribution of zn
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conditional on being greater than cn > bn?
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Chapter 5

Closing the model

In order to determine the solution of the endogenous variables of the models we con-

structed above in the general equilibrium. The individual goods markets are already as-

sumed to clear since we replaced the consumer demand directly in the sales of the firm

for each good.

In this section we will make use of three general assumption.Consider the

Aggregate profits are a constant share of revenues. Let Πj denote country j’s aggregate

profits gross of entry costs (if any). The first macro-level restriction states that Πj must be

a constant share of country j’s total revenues:

R1 For any country j, Πj/Yj = π̄ where π̄ ≥ 0.

Under perfect competition, R1 trivially holds since aggregate profits are equal to zero.

Under monopolistic competition with homogeneous firms, R12 also necessarily holds be-

cause of Dixit-Stiglitz preferences; see Krugman (1980). In more general environments,

however, R1 is a non-trivial restriction.

The second restriction
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R2 For any country pair,i, j, the share of spending on fixed exporting cost to bilateral sales

is constantγij = γ̄ where γ̄ ≥ 0.

The third restriction is that the value of imports of goods must be equal to the value of

exports of goods:

R3 For any country j ∑k Xkj = ∑k Xjk

In general, total income of the representative agent in country j may also depend on

the wages paid to foreign workers by country j’s firms as well as the wages paid by foreign

firms to country j’s workers. Thus, total expenditure in country j, Xj ≡ ∑i Xij, could be

different from country j’s total revenues, Yj ≡ ∑n
i=1 Xji. R3 rules out this possibility.

5.1 General Equilibrium

We now show how we can determine the wages, wi, and spending, Xi that solve for the

model’s general equilibrium (income, yi, can be written always as a straightforward func-

tion of spending in the cases we will analyze). It turns out that under the technologi-

cal distributions and demand structures that we introduced above, we can first solve for

wages and spending and all the rest of the variables can be written as simple functions

of these two variables. To create a formal mapping to the data, where trade deficits are a

commonplace, we can also allow for exogenous transfer payments to countries, Di, (fol-

lowing Dekle, Eaton, and Kortum (2008)) which in a static model will imply an equal

amount of trade deficit. Of course, these trade deficits have to sum up to zero across

countries, ∑i Di = 0.

In principle, to solve for wi, Xi we need to consider two sets of equations.
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i) the budget constraint of the representative consumer

∑
k

Xki = ∑
k

λkiXi = Xi ≡ wiLi + πi + Di , (5.1)

where πi is total profits earned by firms from country i net of fixed marketing costs (if

any), and

ii) the current account balance (there are no capital flows) and consists of exports,

imports and related payment to labor for fixed marketing costs but can be equivalently

written as total expenditure equals total income and transfers

0 = ∑
k 6=i

Xik︸ ︷︷ ︸
exports

−∑
k 6=i

Xki︸ ︷︷ ︸
imports

+ ∑
k 6=i

γkiXki −∑
k 6=i

γikXik︸ ︷︷ ︸
net foreign income

+ Di =⇒

0 = ∑
k

Xik −∑
k

Xki + ∑
k

γkiXki −∑
k

γikXik + Di =⇒

Xi = ∑
k

Xki = ∑
k

Xik + ∑
k

γkiXki −∑
k

γikXik + Di , (5.2)

where γij is the share of bilateral sales from i to j that accrues to labor for payments of

fixed marketing costs, and trade flows Xij. In our context, the current account balance is

effectively equivalent to the labor market clearing condition.

These set of equations can be used to solve for wi, Xi using an additional normaliza-

tion. Notice that is straightforward to show that with the CES demand we assume budget
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balance is equivalent to the CES price index. In particular,

∑
k

ˆ
Ωk

p1−σ
ki (ω) dω = P1−σ

i ⇐⇒

∑
k

´
Ωk

p1−σ
ki (ω) dω

P1−σ
i

Xi = Xi ⇐⇒

∑
k

λkiXi = Xi.

5.2 Solving for the Equilibrium when the Profit share is constant

From this general framework we need to specify the exact market structure to solve for

the equilibrium wages. With perfect competition, as in Sections 3.3,4.3, there are no fixed

marketing costs, γij = 0. Thus, these two sets of equations can be thought as one set of

equations with wages remaining to be solved as a non-linear equation on wages, given

equation (3.10). Another simple case is that of monopolistic competition with homoge-

neous firms, Section 3.4. In that case there are again no fixed marketing costs and all

income is ultimately accrued to labor due to free entry so that the budget constraint can

be written as Xi = wiLi + Di and given this relationship and (3.18), equation (5.2) can be

used to solve for all wages.

There are a number of cases where profits are not going to be zero in equilibrium

and thus we have to solve for those. But in all the cases considered above, it turns out

that profits are a constant fraction of country income, i.e. πi = π̄/ ∑k Xik. Notice that

in the case of Bertrand competition, Section 4.4, γki = 0 as well and since profits are

constant fraction of income, π̄ = 1/ (θ + 1) similarly wages can be solved using (3.18). To

proceed to characterize 5.2 with monopolistic competition and firm heterogeneity notice

that under the assumption of Pareto distributions and fixed marketing costs, it can be

shown that γij = (θ − σ + 1) / (σθ) ≡ γ and that πi is a constant share of output π̄ =
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(σ− 1) / (σθ) (independent of entry being endogenous or not).

With R1,R2 we can develop a very general framework to determine the equilibrium of

the endogenous variables. Start by assuming that γij = γ̄, equation (5.2) can be written

as1

∑
k

Xki = Xi = ∑
k

Xik + γ̄ ∑
k

Xki − γ̄ ∑
k

Xik + Di (5.3)

Now we can combine the above reformulation of the current account balance condition

with the budget constraint of the consumer equation (5.1) (equivalently the labor market

clearing), we obtain

wiLi + πi − γ̄ ∑
k

Xki = (1− γ̄)∑
k

Xik

and using again the budget constraint of the individual we can rewrite this equation as

wiLi + πi + Di = (1− γ̄)∑
k

Xik + γ̄

(
∑

k
Xik +

Di

1− γ̄

)
+ Di =⇒

wiLi + πi −
γ̄

1− γ̄
Di = ∑

k
Xik. (5.4)

Now note that with R1 we have

πi = π̄ ∑
k

Xik = π̄ ∑
k

λikXk . (5.5)

Combined with (5.4)

wiLi + πi −
γ̄

1− γ̄
Di =

πi

π̄
=⇒

π̄

1− π̄

[
wiLi −

γ̄

1− γ̄
Di

]
= πi (5.6)

1Notice that the following equation implies that R2 with Di = 0 implies R3.
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and thus we can write

wiLi + πi =
1

1− π̄
wiLi −

π̄

1− π̄

γ̄

1− γ̄
Di.

We can thus summarize the equilibrium in all the models above as a set of wages that

solves

wiLi + πi −
γ̄

1− γ̄
Di = ∑

k
Xik =⇒

wiLi −
γ̄

1− γ̄
Di = ∑

k
λik

(
wkLk +

[
1− π̄ − π̄

γ̄

1− γ̄

]
Dk

)
(5.7)

with λik defined depending on the model. Using equations (3.10), (4.17) λij is an explicit

function of wages, wi, and entry, Ni, alone. In the case of perfect competition the number

of entering varieties is fixed so that the only equation required for the solution is (3.10),

and the normalization, (4.17). Many papers assume monopolistic competition, including

the original papers of Krugman (1980) and Melitz (2003). To characterize the equilibrium

in those case we need to either assume that Ni is given, or solve for entry, Ni. We do the

latter next.

5.3 Endogenous Entry

Assume that new firms can freely choose to enter the economy and draw a productivity

from a distribution gi (z) upon paying an entry cost f e, in terms of labor units, where

the distribution gi (z) could be degenerate so that all the mass is in a single point. Two

restrictions are enough to guarantee that there is a simple solution for Ni.

We start from the free entry condtion, that indicates that the total profits of firms from
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j gross of entry fixed costs, Πj, equal to fixed costs of entry

Πj

Nj
= wj f e

j .

Using R1 together with the above equation we have

ζYj = Njwj f e
j ,

for some constant ζ.

Now use R3 implying Yj = Xj where the last equals to total labor income from the free

entry condition, Xj = wjLj. Therefore, we have

ζYj = Njwj f e
j =⇒

ζwjLj = Njwj f e
j =⇒

Nj =
Lj

f e
j

ζ, (5.8)

i.e. entry is linear in population and does not depend on trade costs.

Taking stock this result implies that the equilibrium can be solved using the set of

equations defined by (5.7) and one normalization (due to the redundancy of one equation

as a result of Walras law) and entry given by (5.8). In the case of the models of Krugman

(1980) and Melitz (2003) Ni is endogenously determined and we need to introduce the zero

profit condition. Assuming R3 in this case, as we have illustrated, implies that Ni is linear

in population and the same set of equations can be used to solved for wages. Finally, Xi

can be found by utilizing the solution for wages, equation (5.6) which expresses profits as

a function of wages, and the budget constraint of the representative consumer, equation

(5.1).
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5.4 Labor Mobility

To introduce economic geography in this general setup we assume that workers freely

move across regions. In equilibrium this results to welfare equalization across locations.

Because of the equivalence of the budget constraint with the price index we can simply

consider the same two equations for equilibrium as above. For simplicity we will consider

henceforth the case Di = 0. Using equation 5.7, given assumptions R1, R2, we have

Xi = ∑
k

λikXk (5.9)

Liwi = ∑
k

ˆ
Ωk

pik (ω) 1−σ

P1−σ
k

wkLk. (5.10)

Liwi = ∑
k

Ni

ˆ
z∗ik

(cwiτik/ (zAk))
1−σ

P1−σ
k

wkLkg (z) dz. (5.11)

with Armington

Liwi = ∑
k

wi
1−σ

P1−σ
k

τik
1−σ Aσ−1

i Lkw1−σ
k .

Liwσ
i = ∑

k
Wi

1−στis
1−σ Aσ−1

i Lswσ
s . (5.12)

The price index implies

P1−σ
i = ∑

k

ˆ
Ωk

pki (ω) 1−σdω (5.13)

P1−σ
i = ∑

k
Nk

ˆ
z∗ik

c1−σw1−σ
k τki

1−σzσ−1Aσ−1
k g (z) dz (5.14)

with Armington

w1−σ
i = ∑

k
W1−σ

i T1−σ
ki Aσ−1

k w1−σ
k . (5.15)
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When welfare is equalized so that Wi = W for all i ∈ S equations (5.9) and (5.13) are lin-

ear operators whose eigenfunctions are Liwσ
i and w1−σ

i and whose eigenvalues are Wσ−1,

respectively. Note that the kernels of the two equations are transposes of each other. A

spatial economy equilibrium is defined as wi, Li and W that solve equations (5.9), (5.13).

These two results allow us to prove the following theorem:

Theorem 6. Consider a geography model characterized by equations (5.9), (5.13). Then:

i) there exists a unique spatial equilibrium and this equilibrium is regular; and

ii) this equilibrium can be computed as the uniform limit of a simple iterative proce-

dure.

Proof. See Allen and Arkolakis (2014).

5.5 Problem Sets

1. Consider the monopolistic competition model with heterogeneous firms and Pareto

distribution, considered in section (4.5).

(a) Prove that the share of fixed costs and net profits are a constant fraction of the

overall firm revenues. Compute those fractions.

2. Show that when bilateral trade costs are symmetric a spatial equilibrium can be

written as a single non-linear integral equation, which will allow to provide a sim-

ple characterization of the equilibrium system. Prove this both for a trade and a

geography model.

3. Consider a geography model and assume that we are in a spatial equilibrium where

Wi = W for all countries. Prove that the solution of both equations (5.12) and (5.15)

results to the same eigenvalue.
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Chapter 6

Model Characterization

6.1 The Concept of a Model Isomorphism

It turns out that in the simple monopolistic competition framework with Pareto distri-

bution of productivities of firms, the assumption of endogenous entry has little bite (see

Arkolakis, Demidova, Klenow, and Rodrı́guez-Clare (2008)): the model with free entry is

mathematically equivalent to one with a predetermined number of entrants (essentially

the Chaney (2008) version of Melitz (2003)) where the number of entrants is proportion-

ate to the population. The only difference between the two models is that all the profits

are accrued to labor allocated for the production of the fixed cost of entry. In addition, the

model delivers the same predictions for trade and welfare gains from trade as all the other

gravity models we studied so far (Armington (1969), Eaton and Kortum (2002), Bernard,

Eaton, Jensen, and Kortum (2003)). To understand these results we need to formally de-

fine an analyse the concept of a model isomorphism.

Consider two models, E1= (α1,V1) E2= (α2,V2) where αi, i = 1, 2 are a combination

of model parameters (and fundamentals i.e preference and production structure) and Vi is
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a set of equilibrium outcomes. Formally, we define an isomorphism between two models

as a bijective mapping F between the parameters α1 ←→ α2 that leads to a bijective

mapping to the model outcomes (V1←→ V2) such that given α1
F←→ α2 we have that each

element vi
1 ∈ V1, vi

2 ∈V2 are such that vi
1 = f i (vi

2
)

where f ∈ F up to a normalization,

i.e. there exist parameter choices such that you can redefine the model outcomes in an

equivalent way. The second requirement is very general in the sense that the variables

of the one model are transformations of the variables of the other model. However, an

isomorphism is not a mathematical formalism in this case for two reasons. First, models

that are isomorphic, under certain environments yield the same policy prescriptions for

a given change in policy (in our case, for example, that could be a percentage change in

trade costs). Second, the mathematical and statistical apparatus that can be used for the

solution of one model can be, as a result, used for the other model as well.

Below we illustrate two examples of isomorphisms that are key in our analysis. The

first is a precise isomorphism, where f i = Ai i.e. the transformation involves only a con-

stant. The second, is a more general isomorphism where the transformation potentially

involves more than a constant transformation, but the policy prescriptions of the models

are the same.

6.1.1 An Exact Isomorphism

We will use the concept of the isomorphism to illustrate that a model with exogenous en-

try (as in Chaney (2008)) is isomorphic to a model with endogenous entry (as in Melitz

(2003), with the specification as done by Arkolakis, Demidova, Klenow, and Rodrı́guez-

Clare (2008)). These models are summarized in the analysis of Section 4.5 without ex-

plicitly specifying the labor market clearing condition or the zero profit condition in the

endogenous entry case. In the derivations below we assume that profits accrue to domes-
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tic consumers.

Assuming zero profits in expectation the expected profits of a firm must be equal to en-

try costs.1 Using the free entry condition and a Pareto distribution with shape parameter

θ > σ− 1, c.d.f. G (z; Ai) = 1− Aθ
i

zθ , and support [Ai,+∞) we have2

∑
k

ˆ
z∗ik

πik (z) dG (z; Ai) = wi f e =⇒

∑
k

ˆ
z∗ik

(
σ

σ−1
τikwi

z

)1−σ

P1−σ
k σ

wkLkθ
Aθ

i
zθ+1 dz−∑

k

ˆ
z∗ik

wk fikθ
Aθ

i
zθ+1 dz = wi f e =⇒

∑
k

wk fik
θ

θ − σ + 1
Aθ

i(
z∗ik
)θ
−∑

k
wk

Aθ
i(

z∗ik
)θ

fik = wi f e =⇒

∑
k

wk

wi
fik

Aθ
i(

z∗ik
)θ

σ− 1
θ − σ + 1

= f e. (6.1)

We now combine the free entry condition and a reformulation of the labor market

clearing condition to compute the equilibrium of the model. Notice that the equilibrium

number of entrants in country i, Ni, is determined by the following labor market clearing

1Essentially, we assume that there exists a perfect capital market, which requires firms to pay a fixed entry
cost before drawing a productivity realization. Consequently, we multiply the LHS by 1 − G

(
z∗ii, bi

)
, the

probability of obtaining the average profit, since firms with profits below this average necessarily exit the
market. Alternatively, we could have specified a more general case with intertemporal discounting, δ. In this
case the expected profits from entry should equal the discounted entry cost in the equilibrium.

2An implication of free entry is that in the equilibrium all the profits are accrued to labor for the production
of the entry cost.
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condition:

Ni

∑
k

ˆ
z∗ik

(
σ

σ−1
τikwi

z

)−σ

P1−σ
k

τik

z
wkLkθ

(
z∗ik
)θ

zθ+1

Aθ
i(

z∗ik
)θ

dz︸ ︷︷ ︸
labor used into production

+ f e

+ ∑
k

Nk
Aθ

i(
z∗ki

)θ
fki︸ ︷︷ ︸

labor for fixed costs

= Li =⇒ (6.2)

Ni

(
∑

k
(σ− 1)

wk

wi
fik

Aθ
i(

z∗ik
)θ

θ

θ − σ + 1
+ f e

)
+ ∑

k
Nk

Aθ
i(

z∗ki

)θ
fki = Li. (6.3)

Substituting out equation (6.1), we obtain

Ni (θ f e + f e) + ∑
k

Nk Aθ
i (z
∗
ki)
−θ fki = Li,

which, together with the price index, and the definition of z∗ij and the fact that all income

accrues to labor, Yj = wjLj,

P1−σ
i = ∑

k
Nk

ˆ
z∗ki

(
σ

σ− 1
τkiwk

z

)1−σ

θAθ
i z−θ−1dz =⇒

wiLi =
θσ

θ − σ + 1

(
∑

k
Nk Aθ

i (z
∗
ki)
−θ wi fki

)
,

implies that

Ni =
σ− 1
θσ f e Li , (6.4)

giving an explicit parametric form to equation 5.8.3

Notice that total export sales from country i to j are given by expression (4.45).4 Define

the fraction of total income of country j spent on goods from country i by λij. Using the

3With a slightly altered proof the same results hold under the assumption that fixed costs are paid in terms
of domestic labor.

4Average sales of firms from i conditional on operating in j are the same in the model with free entry and
the one with a predetermined number of entrants.
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definition of total sales from i to j and equations (4.39) and (6.4), we have that

λij =
Xij

∑k Xkj
=⇒

λij =
Li Aθ

i
(
τijwi

)−θ f 1−θ/(σ−1)
ij

∑k Lk Aθ
k

(
τkjwk

)−θ f 1−θ/(σ−1)
kj

. (6.5)

and the equilibrium wages can be simply determined using the labor market clearing con-

dition (5.7) given the fact that fixed marketing costs are a constant proportion of bilateral

sales, γ.

6.1.2 A Partial Isomorphism

Now consider all the models that we discussed above and assume that their parameters

are such that the models yield the same level of domestic share of spending λjj. As we will

argue at a later point this can be done with different ways in different models. However,

insofar as the model generate the welfare equation of the form Wj = Cjλ
−1/ε
jj where Cj, ε >

0 are model dependent constnats, the welfare gains from the expansion of trade are the

same and equal to Ŵj = λ̂−1/ε
jj ., as long as all the models are specified with the same

parameter ε. In other words, the model may even give different implications for overall

trade but they give isomorphism implications for the welfare gains from trade. This point

is made in detail in Arkolakis, Costinot, and Rodrı́guez-Clare (2012).

6.2 General Equilibrium: Existence and Uniqueness

Because the various setups that we have studied share a common gravity form, their

equilibrium analysis turns out to be simpler than it initially appears. The starting point

is gravity models that yield the relationship between aggregate bilateral trade flows and
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model variables and parameters equation (3.5),

Condition 1. For any countries, i and j ∈ S the value of aggregate bilateral flows is given

by

Xij = Kijγiδj, (6.6)

To consider these models in general equilibrium two conditions have to hold: labor mar-

ket clearing conditions and current account balance. The first condition implies that in-

come generated in a country has to equal to total sales to all destinations,

Condition 2. For any location i ∈ S,

Yi = ∑
j

Xij. (6.7)

In addition, current account, if there are no capital flows or transfer implies trade

balance,

Condition 3. For any location i ∈ S,

Yi = ∑
j

Xji. (6.8)

Notice, that in addition all these models have to satisfy Warlas law, so that one of our

equations is redudandant.5For that reason we add a normalization that world income

5To see this note that summing these two equations over all i 6= N and equating them we obtain
∑i 6=N ∑j Xij = ∑i 6=N ∑j Xji. By the definition of gross world income being total trade across all markets
we obtain trade balance for the Nth location which implies Warlas’ law.
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equals to one:6

∑
i

Yi = 1. (6.9)

Inspecting the above equations, it is clear that they do not impose sufficient structure

to solve the model since there is no restriction on the form that Yi can essentially take. To

these essential conditions of the model we add one more, that restricts furthermore the

class of models that we focus on. This additional restriction differs across gravity trade

and geography models.

Relationship between income and the shifters in gravity trade models. Our last

condition for a trade model postulates a log-linear parametric relationship between gross

income and the exporting and importing shifters:

Condition 4. For any location i ∈ S, Yi = Biγ
α
i δ

β
i , where we define α ∈ R and β ∈ R to be

the gravity constants and Bi > 0 is an (exogenous) location specific shifter.

We now provide sufficient conditions for establishing existence and uniqueness in

a general equilibrium gravity model. We start by formulating the equilibrium system

implied by our assumptions. Using equations (6.7) and (6.8) and substituting equations

Xij and Yi with (6.6) and C.4, respectively, yields:

Biγ
α−1
i δ

β
i = ∑

j
Kijδj (6.10)

and

Biγ
α
i δ

β−1
i = ∑

j
Kjiγj (6.11)

6This is a valid normalization as long as α 6= β. When α = β, a suitable alternative normalization is
∑i∈S γi = 1. None of the following results, unless explicitly noted, depend on the normalization chosen.
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and using C.4, the normalization equation (6.9) becomes:

∑
i

Biγ
α
i δ

β
i = 1. (6.12)

Thus, given model fundamentals Bi, Kij and gravity constants α, β, equilibrium is defined

as γi and δi for all i ∈ S such that equations (6.10), (6.11) and (6.12) are satisfied. In

the special case where α = β = 1, it is immediately evident from equations (6.10) that

(6.11) have a solution only if the matrices with elements Kij
Bi

and Kji
Bi

both have a largest

eigenvalue equal to one. Since this will not generally be true, in what follows we exclude

this case.

Based on this formulation we can prove the following theorem:

Theorem 7. Consider any general equilibrium gravity model. If α + β 6= 1, then:

i) The model has a positive solution and all possible solutions are positive;

ii) If α, β ≤ 0 or α, β ≥ 1, then the solution is unique.

Proof. See Allen, Arkolakis, and Takahashi (2014).

Our approach can also be naturally extended to allow for labor mobility as in eco-

nomic geography models. To do so, we slightly alter condition C.4 to allow for the gross

income in a location to depend additionally on an endogenous constant λ, which can be

interpreted as a monotonic transformation of welfare (which is equalized across locations

in economic geography models). It is straightforward to show that the economic geogra-

phy model of Allen and Arkolakis (2014) (which under certain parametric configurations

is isomorphic to the economic geography models of Helpman (1998), Redding (2012), and

?) satisfies the following condition

Condition 5. For any location i ∈ S, Yi =
1
λ Biγ

α
i δ

β
i , where λ > 0 is an endogenous variable
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and all other variables are as above. Furthermore, we require that λc = ∑i Ciγ
d
i δe

i for some

c, d, e ∈ R.

Given this alternative condition, we modify part (ii) of Theorem 7 slightly to prove the

following Corollary:

Corollary 1. Consider any economic geography model that satisfies conditions C.1, C.2, C.3, C.4,

and C.5. Then (i) there exists a solution as long as α + β 6= 1; and (ii) the equilibrium is unique if

α, β ≤ 0 or α, β > 1.

Proof. See Allen, Arkolakis, and Takahashi (2014).

Notice that the additional normalization is required to determine the level of the en-

dogenous variable λ. In the economic geograhy example we consider in the previous

section this endogenous variables corresponds to a monotonic transformation the overall

welfare level.

6.3 Analytical Characterization of the Gravity Model

Thus far, we have provided various microeconomic foundations for the gravity trade

model, defined the general equilibrium conditions, characterizes when an equilibrium

exists and when it is unique, and discussed some general equilibrium properties of grav-

ity trade models. Next, we are going to take our tools “out for a spin” and see what exactly

the general equilibrium properties imply for the Armington model. Remember that it is a

reasonably straightforward task to reinterpret the Armington model in other frameworks

(i.e. there exist formal isomorphisms), so the choice of the Armington model is not partic-

ularly important. While most of this class will be applying the tools we have developed

to a particular example, we think doing so both reinforces the power of the tools we have

and provides new insights into the mechanisms at play.
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It turns out that we can extend the range in which uniqueness is guaranteed if we

constrain our analysis to a particular class of trade frictions which are the focus of a large

empirical literature on estimating gravity trade models. We call these trade frictions quasi-

symmetric.

Definition 2. Quasi Symmetry: We say the trade frictions matrix K is quasi-symmetric if

there exists a symmetric N × N matrix K̃ and N × 1 vectors KA and KB such that for all

i, j ∈ S we have:

Kij = K̃ijKA
i KB

j , where K̃ij = K̃ji

Loosely speaking, quasi-symmetric trade frictions are those that are reducible to a

symmetric component and exporter- and importer-specific components. While restrictive,

it is important to note that the vast majority of papers which estimate gravity equations

assume that trade frictions are quasi-symmetric; for example Eaton and Kortum (2002)

and Waugh (2010) assume that trade costs are composed by a symmetric component that

depends on bilateral distance and on a destination or origin fixed effect.

When trade frictions are quasi-symmetric it can show that the system of equations

(6.10) and (6.11) can be dramatically simplified, and the uniqueness more sharply charac-

terized.

Theorem 8. Consider any general equilibrium gravity model with quasi-symmetric trade costs.

Then:

i) The balanced trade condition is equivalent to the origin and destination shifters being equal

up to scale, i.e.

γiKA
i = κδiKB

i (6.13)

for some κ > 0 that is part of the solution of the equilibrium.

ii) If α + β ≤ 0 or α + β ≥ 2, the model has a unique positive solution.
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Part (i) of the Theorem 8 is particularly useful since it allows to simplify the equilib-

rium system into a single non-linear equation:

γ
α+β−1
i = κβ−1 ∑

j
K̃ijB−1

i

(
KA

i

)1−β (
KB

i

)β
KA

j γj. (6.14)

For any gravity trade model where trade frictions are quasi symmetric, if trade is bal-

anced, the goods market clearing condition holds, and the generalized labor market clear-

ing condition holds, then the equilibrium origin fixed effects satisfy the following set of

non-linear equations:

γ̃i = λ ∑
j∈S

Fijγ̃
1

α+β−1
j , (6.15)

where γ̃i ≡ γ
α+β−1
i , λ ≡ κβ−1 > 0, and Fij ≡ Kij

(
KA

j

KB
j

)(
KA

i
KB

i

)−β
1
Bi

> 0. This implies that

there will always exist a solution and the solution will be unique if α+ β ≥ 2 or α+ β ≤ 0.

Notice that the normalization implies with quasisymmetry that

∑
i

Yi = 1 =⇒

∑
i

Biγ
α
i δ

β
i = 1 =⇒

∑
i

Biγ
α
i

(
γiKA

i

κKB
i

)β

= 1 =⇒

κ−β ∑
i

Bi

(
KA

i

KB
i

)β

γ
α+β
i = 1

so that the normalization can be used to pin down κ.

With economic geography this relationship holds but in addition, to determine the

level of λ ≡ κβ−1, we make use of the additional condition 5.
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Example: Armington model with quasi-symmetry Consider now an Armington model

with intermediate inputs, but now assume that trade costs are quasi-symmetric. From

part (i) of Theorem 8, we have γiKA
i = κδiKB

i , which implies:

(
wδ

i P1−δ
i

Ai

)1−σ

KA
i = κPσ−1

i wiLiKB
i ,

or equivalently:

Pi = w
1+(σ−1)δ
(1−σ)(2−δ)

i

(
κLi A1−σ

i
KB

i

KA
i

) 1
(1−σ)(2−δ)

. (6.16)

Equation (6.16) provides some intuition for the uniqueness condition presented in Theo-

rem 8: when σ < 1
2 , it is straightforward to show that the elasticity of the price index with

respect to the wage is less than one. This implies that the wealth effect may dominate the

substitution effect, so that the excess demand function need not be downward sloping.

In addition, combining equation (6.16) with equation (6.14), assuming δ = 1, and

noting that welfare Wi =
wi
Pi

yields the following equation:

κWσσ̃
i Lσ̃

i = ∑
j

Kij A
(σ−1)σ̃
i Aσσ̃

j Lσ̃
j W−(σ−1)σ̃

j , (6.17)

where σ̃ ≡ σ−1
2σ−1 .7 Equation (6.17) holds for both trade models (where labor is fixed) and

economic geography models (where labor is mobile); in the former case, Li is treated as

exogenous parameter and Wi solved for; in the latter case Li is treated as endogenous and

7When there are only two countries (so that trade costs are necessarily quasi-symmetric), we can use
equation (6.17) to derive a single non-linear equation that yields the relative welfare in the two countries

K22

(
W1
W2

)σσ̃

− K11

(
W1
W2

)(1−σ)σ̃

+ K21

(
W1
W2

)σ̃

= K12.

Comparative statics for welfare with respect to changes in Kij can be characterized using the implicit function
theorem in this case.
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Wi is assumed to be constant across locations. Hence, Theorem 8 highlights the funda-

mental similarity between trade and economic geography models.

We now discuss the equilibrium when there are just two countries. Note that when

there are only two countries, all possible trade costs are quasi-symmetric. Define the

kernel Fij ≡ Kij

(
KA

j

KB
j

KB
i

KA
i

) σ
2σ−1

Aσσ̃
j A(σ−1)σ̃

i Lσ̃
j L−σ̃

i (note that the kernel now includes all the

exogenous variables in the model). Then the equilibrium conditions from equation (6.17)

can then be written (for an arbitrary number of countries) as:

Wσσ̃
i = ∑

j∈S
FijW

(1−σ)σ̃
j .

With two countries, this becomes:

Wσσ̃
1 = F11W(1−σ)σ̃

1 + F12W(1−σ)σ̃
2

Wσσ̃
2 = F22W(1−σ)σ̃

2 + F21W(1−σ)σ̃
1

Dividing the first equation by the second yields:

(
W1

W2

)σσ̃

=
F11W(1−σ)σ̃

1 + F12W(1−σ)σ̃
2

F22W(1−σ)σ̃
2 + F21W(1−σ)σ̃

1

⇐⇒

(
W1

W2

)σσ̃ (
F22W(1−σ)σ̃

2 + F21W(1−σ)σ̃
1

)
= F11W(1−σ)σ̃

1 + F12W(1−σ)σ̃
2 ⇐⇒(

W1

W2

)σσ̃
(

F22 + F21

(
W1

W2

)(1−σ)σ̃
)

= F11

(
W1

W2

)(1−σ)σ̃

+ F12 ⇐⇒

F22

(
W1

W2

)σσ̃

− F11

(
W1

W2

)(1−σ)σ̃

+ F21

(
W1

W2

)σ̃

= F12 (6.18)

Equation (6.18) shows that with two countries, the equilibrium relative welfare in the two
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regions is just the root of a polynomial equation! Furthermore, note that if if σ > 1
2 ,

then ∂
∂(W1/W2)

(
F22

(
W1
W2

)σσ̃
− F11

(
W1
W2

)(1−σ)σ̃
+ F21

(
W1
W2

)σ̃
− F12

)
> 0 so that the implicit

function theorem implies:

∂

∂F11

(
W1

W2

)
> 0,

∂

∂F21

(
W1

W2

)
< 0,

∂

∂F12

(
W1

W2

)
> 0,

∂

∂F22

(
W1

W2

)
< 0.

[Class question: what is the intuition for these comparative statics?]

6.4 Computing the Equilibrium (Alvarez-Lucas)

Using the methodology of Alvarez and Lucas (2007) it can be proven that the model with

this gravity structure has a unique equilibrium. To show existence Alvarez and Lucas

(2007) define the analog of an excess demand function, which in our context and with

zero exogenous deficits is given by,

fi (w) =
1
wi

∑
j

Li Aθ
i
(
τijwi

)−θ f 1−θ/(σ−1)
ij

∑k Lk Aθ
k

(
τkjwk

)−θ f 1−θ/(σ−1)
kj

wjLj − wiLi

 ,

where w is the vector of wages, and they show that it satisfies the standard properties of

an excess demand function.8 To show uniqueness, the gross substitute property has to be

proven

∂ fi (w)

∂wk
> 0 for all i 6= k

∂ fi (w)

∂wi
> 0 for all i

and uniqueness follows from Propositon 17.F.3 of Mas-Colell, Whinston, and Green (1995).

8These properties are continuity, homogeneity of degree zero, Warlas’ law, boundness from below and
infinite excess demand if one wage is 0. See Mas-Colell, Whinston, and Green (1995), Chapter 17.
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To compute the equilibrium, notice that for some κ ∈ (0, 1] we can define a mapping

Ti (w) = wi [1 + κ fi (w) /Li] (6.19)

Now if we start with wages that satisfy ∑i wiLi = 1, we have

∑
i

Ti (w) Li = ∑
i

wiLi + ∑
i

wiκ f (w)

= 1 + κ ∑
i

∑
j

Li Ai
(
τijwi

)−θ f 1−θ/(σ−1)
ij

∑k Lk Ak
(
τkjwk

)−θ f 1−θ/(σ−1)
kj

wjLj − wiLi


= 1− κ ∑

j
wjLj + κ ∑

j
wjLj = 1

so that Ti (w) is mapping w such that it maps ∑i wiLi = 1 to itself. By starting with an

initial guess of the wages, and updating according to (6.19) the system is guaranteed to

converge to the solution Ti (w) = wi (see Alvarez and Lucas (2007)).

6.5 Conducting Counterfactuals: The Dekle-Eaton-Kortum Pro-

cedure

Dekle, Eaton, and Kortum (2008) have established a methodology for calculating counter-

factual changes in the equilibrium variables with respect to changes in the iceberg costs

or technology parameters. The merit of this approach is that it does not require prior

information on the level of technology Ai and bilateral trade costs τij, but rather only per-

centage changes in the magnitudes of these parameters. The idea is to use data for the

endogenous variables λij, yj to calibrate the model in the initial equilibrium, and exploit

the fact that the level of technology Ai and bilateral trade costs τij are perfectly identified
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given the values for λij, yj.

The procedure can be applied to most of the frameworks above, and in fact delivers

robust predictions for changes in trade and welfare as argued by Arkolakis, Costinot,

and Rodrı́guez-Clare (2012), under the simple assumption that the elasticity of trade with

respect to wages and trade costs is the same.

Denote the ratio of the variables in the new and the old equilibrium, e.g. ŵj = w′j/wj.

We use labor in country j as our numeraire, wj = 1. We will make crucial use of the fact

that either profits are a constant fraction of income or that labor income is the only source

of income in the models above so that we also obtain that ŷi = ŵi for all i = 1, ..., n.

Under the assumption that the elasticity of trade with respect to wages and trade costs

is the same, and equal to ε, the shares of expenditures on goods from country i in country

j in the initial and new equilibrium, respectively, are given by

λij =
χij · Ni ·

(
wiτij

)ε

∑n
i′=1 χi′ jNi′ ·

(
wi′τi′ j

)ε (6.20)

where χij is some parameter of the model, other than τij (e.g. bilateral fixed marketing

costs). Thus, for example, ε = −θ in the Eaton and Kortum (2002) model whereas ε =

− (σ− 1) in the Armington (1969) setup. Notice that an essential simplifying assumption

is that Ni is a constant and does not depend on technology or bilateral trade costs.

Combining this observation with the above two equations we obtain

λ̂ij =

(
ŵiτ̂ij

)ε

∑n
i′=1 λi′ j

(
ŵi′ τ̂i′ j

)ε (6.21)

From the previous expression and the fact that ŵjτ̂jj = 1 by our choice of numeraire we

have that

λ̂jj =
1

∑n
i′=1λi′ j

(
ŵi′ τ̂i′ j

)ε .
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For the models illustrated above, we can use the trade balance condition as argued by

Arkolakis, Costinot, and Rodrı́guez-Clare (2012) so that in the new equilibrium:

w′i L
′
i =

n

∑
j′=1

λ′ijw
′
jL
′
j =⇒

ŵj L̂jwjLj =
n

∑
j′=1

ŵj′ L̂j′ λ̂ij′λij′wj′Lj′ (6.22)

If population is exogenous, equations (6.21) and (6.22) constitute a system on ŵj with

the additional normalization of one wage. The equilibrium changes in wages, wi, and

market shares, λij, can be computed given expression (6.21) and (6.22), which completes

the argument.

6.6 Problem Sets

1. Isomorphisms. Define Xij to be the value of trade flows from i to j. Consider the

following generalized gravity equation:

Xij = Kijγiδj, (6.23)

where Kij is a bilateral trade friction, γi is an origin fixed effect, and δj is a destination

fixed effect.

(a) For each of the following trade models, show how equilibrium trade flows can

be expressed as equation (6.23). That is, write down the mapping between the

generalize gravity equation and model fundamentals.

i. Armington model (Anderson ’79).

ii. Monopolistic competition with free entry (Krugman ’80).
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iii. Perfect competition with heterogeneous technologies (Eaton and Kortum

’02).

iv. Heterogeneous firms (with Pareto distribution) (Melitz ’03 / Chaney ’08).

(b) Suppose we only observe trade flows in the data. Can we empirically distin-

guish between the above models? If not, what other data would you need to

observe in order to distinguish between the models?

2. Uniqueness. Consider the system defined by equations (6.22) and (6.21) the solution

of which is a vector of wage changes ŵi given a set of changes in trade costs, τ̂ij,

population L̂j, an elasticity, ε, and initial levels for population and wages. Show

what are the conditions on the parameters of that system, χij, τij, and ε, so that the

solution of that system,, exists and is unique.
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Chapter 7

Gains from Trade

7.1 Trade Liberalization and Firm Heterogeneity

There is a common perception that the gains from trade are larger than what quantitative

general-equilibrium models of trade can explain. A recurring goal in the trade literature

has been to find new channels through which such models can generate larger gains.

Recently, authors such as Melitz (2003) have postulated additional gains from the “selec-

tion” effect compared to the extensive margin effect already postulated by Romer (1994).

Arkolakis, Demidova, Klenow, and Rodrı́guez-Clare (2008) show that some of the key

quantitative frameworks in international trade deliver (Krugman, Eaton and Kortum, the

Chaney version of Melitz and Arkolakis) welfare expressions that are closely comparable.

Arkolakis, Costinot, and Rodrı́guez-Clare (2012) show that for a wide class of perfect and

monopolistic competition models of trade welfare gains from trade can be written as a

function of two sufficient statistics: the share of spending that goes to domestic goods, λjj,

and the elasticity of trade parameter, ε. Their result imply that changes in welfare can be
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written as

Ŵj = λ̂1/ε
jj (7.1)

7.1.1 Trade Liberalization and Welfare gains (Arkolakis-Costinot-Rodriguez-

Clare)

To understand the intuition for the main result of Arkolakis, Costinot, and Rodrı́guez-

Clare (2012) we start the analysis from the simplest setup, the Armington model. The

model is essentially identical to the model presented in section 3.3 assuming that the

endowment is labor so that the price of the endowment is wage and that there are no

preference shocks so that αij = 1 , ∀i, j.

We will obtain the result for the case of monopolistic competition where we assume that

exporting and importing country wages matter for marketing fixed costs through a Cobb-

Douglas function, fijw
µ
i w1−µ

j , µ ∈ [0, 1] . Denoting z∗ij the cutoff productivity determining

the entry of firms from country i in country j; Ωij the set of goods that country j buys from

country i can be written as

Ωij =

ω ∈ Ω|zij (ω) > z∗ij ≡
σ

σ
σ−1

σ− 1

(
wiτij

Pj

) fijw
µ
i w1−µ

j

Xj

 1
σ−1
 . (7.2)

where we assume that the production of fixed marketing costs fij is using a mix of domes-

tic and foreign labor with respective shares µ, 1− µ. In what follows we assume Xj = wjLj

which is guaranteed under perfect competition and free entry.

Real wage is given by Wj = wj/Pj, in that model where the price index is

P1−σ
j = ∑

i
Ni

ˆ
z∗ij

(
σ̃wiτij

z

)1−σ

g (z) dz.
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Taking logs of the real wage and differentiating we obtain a formula for predicting welfare

gains from trade after changes in trade costs,

d ln Wj = d ln wj −∑
i

λij

[
d ln wi + d ln τij +

d ln Ni

1− σ
+

γij

1− σ
d ln z∗ij

]
(7.3)

where

γij =

(
z∗ij
)σ−1

g
(

z∗ij
)

´
z∗ij

zσ−1g (z) dz
,

and

z∗ij ≡
σ

σ
σ−1

σ− 1

(
wiτij

Pj

) fijw
µ
i w1−µ

j

Xj

 1
σ−1

(7.4)

At this point it worths to pause to understand where the gains from trade are coming

from. Notice that in the case of Armington preferences, d ln Ni = 0 and also, effectively,

d ln z∗ij = 0 so that

d ln Wj = −
n

∑
i=1

λij
[
d ln wi + d ln τij

]
, (7.5)

i.e. in the Armington model welfare gains from trade arise only because of improvement

in terms of trade. Instead, in the monopolistic competition models, as expression 7.3

reveals there is an additional variety and entry effect. Do this extra terms imply larger

gains from trade? It turns out that under some conditions, the answer is no, and we will

investigate this below.

Using the definition of z∗ij, equation (7.4), in (7.3), the wage normalization, wj = 1, and

rearranging, small changes in real income are now given by

d ln Wj = −∑
i

λij

1− σ− γj

[(
1− σ− γij

) (
d ln wi + d ln τij

)
+ d ln Ni −

γij

1− σ
µ (d ln wi)

]
,

(7.6)

where γj ≡ ∑i λijγij.

112



With Dixit-Stiglitz preferences, we get that market shares are given by

Xij =
Ni
´ ∞

z∗ij

[
wiτij

]1−σ zσ−1gi (z) dz

∑n
i′=1Ni′

´ ∞
z∗i′ j

[
wi′τi′ j

]1−σ zσ−1gi′ (z) dzXj

(7.7)

where the density gi (z) of goods with productivity z in Ωij is simply given by the marginal

density of g. Considering the ratio λij/λjj = Xij/Xjj and differentiating and using the def-

inition of z∗ij, equation (7.2),

d ln λij − d ln λjj = d ln Ni − d ln Nj + (1− σ)
(
d ln wi + d ln τij

)
− γijd ln z∗ij + γjjd ln z∗jj

(7.8)

=
(
1− σ− γij

)
d ln cij +

γij

1− σ
µd ln wi −

(
γij − γjj

)
d ln z∗jj + d ln Ni − d ln Nj.

(7.9)

Combining the expression (7.6) and (7.8) reveals that

d ln Wj = −∑
i

(
λij

1− σ− γj

) [
d ln λij − d ln λjj +

(
γij − γjj

)
d ln z∗jj + d ln Nj

]
=

d ln λjj −
(
γj − γjj

)
d ln z∗jj − d ln Nj

1− σ− γj
(7.10)

using the fact that

∑n
i=1 λij = 1 =⇒ ∑n

i=1 λijd ln λij = 0.

Three are the macro-level restrictions that are used to derive the result in a general perfect

competition or monopolistically competitive setup, such as the ones studies in Chapters

3.4 and 4. We have already talked about R1 and R3. Below we introduce one more restric-

tion.

The import demand system is CES. The last macro-level restriction is concerned with
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the partial equilibrium effects of variable trade costs on aggregate trade flows. Define

the import demand system as the mapping from (w, N, τ) into X ≡
{

Xij
}

, where w≡{wi}

is the vector of wages, N = {Ni} is the vector of measures of goods that can be pro-

duced in each country, and τ ≡
{

τij
}

is the matrix of variable trade costs. This mapping

is determined by utility and profit maximization given preferences, technological con-

straints, and market structure. It excludes, however, labor market clearing conditions

as well as free entry conditions (if any) which determine the equilibrium values of w

and N. The third macro-level restriction imposes restrictions on the partial elasticities,

εii′
j ≡ ∂ ln

(
Xij/Xjj

)/
∂ ln τi′ j, of that system:

R4 The import demand system is such that for any importer j and any pair of exporters i 6= j and

i′ 6= j, εii′
j = ε < 0 if i = i′, and zero otherwise.

Each elasticity εii′
j captures the percentage change in the relative imports from country

i in country j associated with a change in the variable trade costs between country i′ and

j holding wages and the measure of goods that can be produced in each country fixed.

Noting that ∂ ln z∗ij
/

∂ ln τij = ∂ ln z∗jj
/

∂ ln τij− 1 and ∂ ln z∗ij
/

∂ ln τi′ j = ∂ ln z∗jj
/

∂ ln τi′ j

if i′ 6= i, we can define the import demand system as the following partial derivative,

∂ ln
(
Xij/Xjj

)
∂ ln τi′ j

= εii′
j =


1− σ− γij −

(
γij − γjj

) ( ∂ ln z∗jj
∂ ln τij

)
for i′ = i

−
(
γij − γjj

) ( ∂ ln z∗jj
∂ ln τi′ j

)
for i′ 6= i

, (7.11)

where γij ≡ d ln
´ ∞

z∗ij
z1−σgi (z) dz

/
d ln z∗ij.

R4 implies γij = γjj and 1− σ− γj = ε for all i, j, we obtain from (7.10) that d ln Wj =(
d ln λjj − d ln Nj

)
/ε, using the fact that ∑n

i=1 λijd ln λij = 0. To conclude, we simply note

that free entry and R1 and R3, using the results of Section 5.3, imply d ln Nj = d ln Yj = 0.

Combining the two previous observations and integrating, we finally obtain expression

114



(7.1) which is model invariant, as long as ε is chosen to be the same.

Going back to our various derivations in the previous chapters we note that all the

models deliver similar expressions for welfare gains from trade as a function of λii, and

thus the trade share of GDP. In particular, the expressions for the Armington and Krug-

man models in Chapter 3.4 is similar to the one derived in other models with heteroge-

neous firms such as the ones of Eaton and Kortum (2002), the Chaney (2008) version of

Melitz (2003) and Arkolakis (2010b) in Chapter 4. The only difference is that in the latter

cases σ− 1 is replaced by the parameter that determines the heterogeneity of the produc-

tivities of the firms or productivities of sectors.

7.1.2 Ex-ante Gains (Atkeson Burstein 2010)

Before proceeding it is worth discussing in detail an important result from Atkeson and

Burstein (2010). In the Armington model, expression 7.5 can be written under symmetry

d ln Wj = −
(
1− λjj

)
d ln τ.

This expression is quite intuitive. Gains from trade, to a first-order, depend on the per-

centage change in trade costs, and the exposure of the country to trade. It turns out, that a

similar condition can be derived in monopolistic competition under symmetry (see Atke-

son and Burstein (2010)). To see that, you need to differentiate the free entry condition

under µ = 1

∑
j

fij

ˆ
z∗ij

(
z

z∗ij

)σ−1

g(z)dz−∑
j

fij

ˆ
z∗ij

g(z)dz = f e

Differentiation yields
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∑
j


fij
´

z∗ij

(
z

z∗ij

)σ−1

g(z)dz

∑j fij
´

z∗ij

(
z

z∗ij

)σ−1

g(z)dz

 d ln z∗ij = 0 =⇒

∑
j

vijd ln z∗ij = 0

where vij is the export share of i.

Using the definition of z∗ij

z∗ij =
σ

σ
σ−1

σ− 1

(
wj

Pj

wi

wj
τij

)(
fijwj

Xj

wi

wj

) 1
σ−1

=⇒

d ln z∗ij = d ln
(

wj

Pj

)
+ d ln τij +

σ

σ− 1
d ln

(
wi

wj

)
so that

∑
j

vijd ln z∗ij = ∑
j

vij

(
d ln

(
wj

Pj

)
+ d ln τij +

σ

σ− 1
d ln

(
wi

wj

))
= 0

Imposing symmetry (Wj = W, wj = w, fij = f , τij = τ for i 6= j) and using the fact that

∑j vij = 1

d ln Wj = −∑
j 6=i

vijd ln τ = −(1− vjj)d ln τ

Next, we show that vjj = λjj under symmetry. Using the definitions of vij and z∗ij and

imposing symmetry
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vjj =

f jj
´

z∗jj

(
z

z∗jj

)σ−1

g(z)dz

∑j fij
´

z∗ij

(
z

z∗ij

)σ−1

g(z)dz

=

´
z∗jj
(z)σ−1 g(z)dz

∑j

(
z∗ii
z∗ij

)σ−1 ´
z∗ij

zσ−1g(z)dz

=

´
z∗jj

zσ−1g(z)dz

∑j 6=i
( 1

τ

)σ−1 ´
z∗ij

zσ−1g(z)dz +
´

z∗ii
zσ−1g(z)dz

Using the definition of λij and imposing symmetry

λjj =
Nj
´

z∗jj
(wj)

1−σzσ−1g(z)dz

∑i Ni
´

z∗ij
(wiτij)1−σzσ−1g(z)dz

=

´
z∗jj

zσ−1g(z)dz

∑j 6=i
( 1

τ

)σ−1 ´
z∗ij

zσ−1g(z)dz +
´

z∗ii
zσ−1g(z)dz

= vjj

Thus

d ln Wj = −(1− λjj)d ln τ

as noted.

7.1.3 Discussion: gains from trade and the trade heterogeneity

One question that arises from the above analysis is how restrictive is the assumptions R1-

R4 imposed above. The most crucial of those assumptions is assumption R4. By making

this assumption one essentially makes assumption on the distribution of firm productivi-
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ties in the models with firm heterogeneity, essentially restricting oneselve to models with

Pareto distribution of productivities. Melitz and Redding (2014) have studied the implica-

tions of models with firm-level heterogeneity that violate this assumption. To understand

the role of firm heterogeneity, notice that as pointed out in footnote 17 of the Arkolakis

(2010a), in the general Melitz model (for general distribution and without symmetry) a

small “foreign shock” has an effect on welfare capture by

d ln Wi =
d ln Ni − d ln λii

σ− 1− γ(ϕii)
, (7.12)

where γ(ϕ) ≡ −d ln
(´ ∞

ϕ xσ−1dGi(x)
)

/d ln ϕ, Ni denotes entry in country i, and ϕii are

the domestic productivity cut-offs. 1With a Pareto distribution (that essentially imposes

assumption R4) γ(ϕ) = σ− 1− θ and entry is not affected by trade costs (d ln Ni = 0), so

that d ln W = −d ln λ/θ. Whereas the elasticity of trade trade with a Pareto distribution is

θ as discussed above, the next question that naturally arises is what is the elasticity with

general distribution, and how can we measure it in a sensible way to incorporate it to our

analysis.

To do so, we follow Atkeson and Burstein (2010) and Melitz and Redding (2014) and

consider symmetric countries and a symmetric trade liberalization. Letting λ denote the

share of expenditure on domestic goods, the result in the previous subsection implies that

d ln W = (1− λ)d ln τ.

The elasticity of trade considered above is ε(λ) ≡ d ln((1 − λ)/λ)/d ln τ. Following

Arkolakis, Costinot, Donaldson, and Rodrı́guez-Clare (2012) we can use this definition

1This definition of γ (ϕ) implies that σ− 1− γ (ϕii) is the elasticity of the market share of the firm at the
domestic cut-off with respect to the domestic productivity cut-off in country i.

118



to change variables in the expression for d ln W and obtain

d ln W =
(1− λ)d ln((1− λ)/λ)

ε(λ)
= −d ln λ

ε(λ)
.

We thus see, that the welfare gains formula holds for small changes even for arbitrary

distributions.

7.2 Global Gains

We use expression (7.6). Set µ = 0 and consider changes in variable trade costs only so

that d ln fij = 0. Using R1, R3 as above, as well as R4, we have d ln Ni = 0 and thus the

total gains from trade are

∑
j

Xjd ln Wj = ∑n
j=1 Xj ∑

j
d ln wj −∑n

j=1 Xj ∑
j

d ln Pj (7.13)

= ∑n
j=1 ∑n

i=1Xjid ln wj −∑n
j=1 Xj∑n

i=1λij
(
d ln wi + d ln τij

)
(7.14)

= ∑n
j=1 ∑n

i=1
(
Xjid ln wj − Xijd ln wi

)
−

n

∑
j=1

n

∑
i=1

Xijd ln τij.

The first double summation term in the RHS is zero by splitting it into two terms inter-

changing i and j. Thus, total welfare changes are given by

∑
j

Xj

∑j′ Xj′
d ln Wj = −

n

∑
j=1

n

∑
i=1

λij
Xj

∑j′ Xj′
d ln τij.

This expression for global gains is derived by Atkeson and Burstein (2010); Fan, Lai, and

Qi (2013). It straightforward to note that the relevant expression for the Armington and

the Eaton Kortum model is expression (7.13) so that the same conclusion holds for perfect
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competition. In fact, the result does not even rely on labor mobility either so that it holds

under a geography environment as well.

7.3 Problem Sets

1. Pareto distribution. Prove that in the Melitz model studied in section (4.5) the Pareto

distribution implies that R1-R4 hold.
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Chapter 8

Extensions: Modeling the Demand

Side

We now discuss a number of ways that the simple model can be extended by with as-

sumptions that have implications for the effective demand of the firm. We will discuss a

nested CES structure, endogenous marketing costs, multi-product firms, and other pref-

erences structure different than the constant elasticity demand.

8.1 Extension I: The Nested CES demand structure

We can consider a nested CES structure

ˆ
Ω

(
N

∑
k=1

xk (ω)
ε−1

ε

) σ−1
σ

ε
ε−1

dω


σ

σ−1
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that delivers the demand

xi (ω) =

(
pi (ω)

P (ω)

)−ε (P (ω)

P

)−σ

X ,

with

P (ω) =

[
N

∑
k=1

pk (ω)1−ε dω

]1/(1−ε)

,

P =

[ˆ
Ω

P (ω)1−σ dω

]1/(1−σ)

.

and X being the overall spending. Serving the market incurs an entry cost Fi ≥ 0.

Serving a market incurs an entry cost

a) ε→ ∞, F = 0 EK, Bertrand BEJK

b) ε = σ, F > 0 monopolistic competition Melitz-Chaney

c) ε > σ, F ≥ 0 (with either F > 0 or ε→ ∞) and Cournot, Atkeson and Burstein.

8.2 Extension II: Market penetration costs

The CES benchmark proved extremely useful for many applications. Its main weakness

is in predicting the behavior of small firms-goods as Eaton, Kortum, and Kramarz (2011).

These firms-goods tend to be a very large part of trade in a trade liberalization and as

time evolves. To address this fact, a simple extension presented in Arkolakis (2010b) does

the job by modeling the fixed entry costs as cost of reaching individual consumers into

individual destinations.

Each good is produced by at most a single firm and firms differ ex-ante only in their

productivities z and their country of origin i = 1, ..., N. We denote the destination coun-
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try by j. The preferences for consumer l are given by the standard symmetric constant

elasticity of substitution (CES) objective function:

Ul =

(ˆ
ω∈Ωl

x (ω)
σ−1

σ dω

) σ−1
σ

,

where σ ∈ (1,+∞) is the elasticity of substitution. When a good produced with a produc-

tivity z from country i is included in the choice set of consumer l, Ωl , the demand of this

consumer is given by,

xij (z) = yj
pij (z)

−σ

P1−σ
j

, (8.1)

where pij (z) is the price charged in country j, yj the income per capita of the consumer,

and Pj a price aggregate of the goods in the choice set of the consumer. An unrealistic as-

sumption of the CES framework introduced by Dixit and Stiglitz is that all the consumers

have access to the same set of goods Ωl . This formulation departs from the standard

formulation of trade models with CES preferences by proposing a formulation where Ωl

can be different for different consumers. In order to be able to fully characterize the gen-

eral equilibrium of the model, we assume that consumers are reached independently by

different firms and that each firm pays a cost to reach a fraction n of the consumers. In

equilibrium, all firms z from country i will reach the same fraction of consumers in coun-

try j and thus their ‘effective’ sales will be:1

tij(z) = nij (z) Lj︸ ︷︷ ︸
consumers
reached in j

yj
pij (z)

1−σ

P1−σ
j︸ ︷︷ ︸

sales per-consumer

where Lj is the measure of the population of country j. In order to give foundations to

1Given the existence of a continuum of firms and consumers I am making use of the Law of Large Num-
bers. This implies that nij(z) from a probability becomes a fraction. The application of the Law of Large
Numbers also implies that Pj is now a function of nij(z)’s and has a given value for all consumers.
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the market penetration cost function as an explicit function of nij(z) we depart from the

standard formulation where there is a uniform fixed marketing cost to enter the market

and sell to all the consumers there. Instead, we consider an alternative formulation that

intends to broadly capture the marketing costs incurred by the firm in order to increase

their sales in a particular market. The marketing costs are modeled as increasing access

costs that the firms pay in order to access an increasing number of customers in each given

country. Due to market saturation, reaching additional consumers becomes increasingly

difficult once a relatively large fraction of them has already been reached. Based on a

derivation of a marketing technology from first principles the cost function of reaching a

fraction n of a population of L consumers in Arkolakis (2010b) is derived to be

f (n) =


Lα

ψ
1−(1−n)1−β

1−β if β ∈ [0, 1) ∪ (1,+∞)

Lα

ψ log (1− n) if β = 1
.

1/ψ denotes the productivity of search effort and a ∈ [0, 1] regulates returns to scale of

marketing costs with respect to the population size of the destination country. The pa-

rameter β determines how steeply the cost to reach additional consumers is rising. How-

ever, for any parametrization of β the marginal cost to reach the very first consumers in a

given market j is always positive (the derivative is always bigger than zero). Thus, only

firms with productivity above some threshold z∗ij will have high enough revenues from

the very first consumers to find it profitable to enter the market.2 The case where β = 1

corresponds to the benchmark random search case of Butters (1977) and Grossman and

Shapiro (1984). If β = 0 the function implies a linear cost to reach additional consumers,

which in turn is isomorphic to the case of Melitz (2003)-Chaney (2008) given that firms

reach either all the consumers in a market or none.
2With no additional heterogeneity across firms this implies a hierarchy of exporting destinations
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The production side of the firm is standard. Labor is the only factor of production. The

firm z uses a production function that exhibits constant returns to scale and productivity

z. It incurs an iceberg transportation cost τij to ship a good from country i to country

j. This implies that the optimal price of the firm is a constant markup σ/(σ − 1) over

the unit cost of producing and shipping the good, wjτij/z. The equilibrium of the model

retains many of the desirable properties of the benchmark quantitative framework for

considering bilateral trade flows develop by Eaton and Kortum (2002) and particularly the

gravity structure. It also allows for endogenous decision of exporting and non-exporting

of firms as in Melitz (2003).

How can this additional feature of endogenous market penetration costs help the

model to address facts on exporters? The following version of the proposition proved in

Arkolakis (2010b) computes the responses of firm’s sales in a trade liberalization episode:

Proposition 4. [Elasticity of trade flows and firm size]

The partial elasticity of a firm’s sales in market j with respect to variable trade costs, ε ij (z) =∣∣∂ ln tij (z) /∂ ln τij
∣∣, is decreasing with firm productivity, z, i.e. dε ij (z) /dz < 0 for all z ≥ z∗ij.

Proof. Compute the partial elasticity of trade flows tij (z) with respect to a change in τij,

namely
∣∣∂ ln tij (z) /∂ ln τij

∣∣ = |ζ (z)| × ∣∣∣∂ ln z∗ij/∂ ln τij

∣∣∣, where

ζ (z) = (σ− 1)︸ ︷︷ ︸
intensive margin
of per-consumer

sales elasticity

+
σ− 1

β

( z
z∗ij

)(σ−1)/β

− 1

−1

︸ ︷︷ ︸
extensive margin of
consumers elasticity

.

Notice that ζ (z) ≥ 0 for z ≥ z∗ij. ζ (z) is also decreasing in z and thus decreasing in initial

export sales. In fact, as β→ 0 then ζ (z)→ (σ− 1) for all z ≥ z∗ij.

The proposition implies that trade liberalization benefits relatively more the smaller

125



exporters in a market. The parameter β governs both the heterogeneity of exporters cross-

sectional sales and also the heterogeneity of the growth rates of sales after a trade liberal-

ization.

8.3 Extension III: Multiproduct firms

We now turn to an extension of the basic CES setup that can accomodate multiproduct

firms. This extension is suggested by Arkolakis and Muendler (2010) and is modeling

the idea of “core-competency” within the standard heterogeneous firms setup of Melitz

(2003).

A conventional “variety” offered by a firm ω from source country i to destination j is

the product composite

xij(ω) ≡

Gij(ω)

∑
g=1

xijg(ω)
σ−1

σ

 σ
σ−1

,

where Gij(ω) is the number of products that firm ω sells in country d and xijg(ω) is the

quantity of product g that consumers consume. The consumer’s utility at destination j is

a CES aggregation over these bundles

Uj =

(
N

∑
i=1

ˆ
ω∈Ωij

xij(ω)
σ−1

σ dω

) σ
σ−1

for σ > 1, (8.2)

where Ωij is the set of firms that ship from source country i to destination j. For simplicity

we assume that the elasticity of substitution across a firm’s products is the same as the

elasticity of substitution between varieties of different firms.3

3 Arkolakis and Muendler (2010) generalize the model to consumer preferences with two nests. The inner
nest contains the products of a firm, which are substitutes with an elasticity of ε. The outer nest aggregates
those firm-level product lines over firms and source countries, where the product lines are substitutes with
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The consumer’s first-order conditions of utility maximization imply a product de-

mand

xijg(ω) =

(
pijg(ω)

)−σ

P1−σ
j

Xj, (8.3)

where pijg is the price of variety ω product g in market j and we denote by Xj the total

spending of consumers in country j. The corresponding price index is defined as

Pj≡

 N

∑
k=1

ˆ
ω∈Ωkj

Gkj(ω)

∑
g=1

pkjg(ω)−(σ−1) dω

− 1
σ−1

. (8.4)

A firm of type z chooses the number of products Gij(z) to sell to a given market j.

The firm makes each product g ∈
{

1, 2, . . . , Gij(z)
}

with a linear production technology,

employing local labor with efficiency zg. When exported, a product incurs a standard

iceberg trade cost so that τij > 1 units must be shipped from i for one unit to arrive at

destination j. We normalize τii = 1 for domestic sales. Note that this iceberg trade cost is

common to all firms and to all firm-products shipping from i to j.

Without loss of generality we order each firm’s products in terms of their efficiency so

that z1 ≥ z2 ≥ . . . ≥ zGij . A firm will enter export market j with the most efficient product

first and then expand its scope moving up the marginal-cost ladder product by product.

Under this convention we write the efficiency of the g-th product of a firm z as

zg ≡
z

h(g)
with h′(g) > 0. (8.5)

We normalize h(1) = 1 so that z1 = z. We think of the function h(g) : [0,+∞) → [1,+∞)

as a continuous and differentiable function but we will consider its values at discrete

points g = 1, 2, . . . , Gij as appropriate.

a different elasticity σ 6= ε. general case of ε 6= σ generates similar predictions at the firm-level and at the
aggregate bilateral country level.
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Related to the marginal-cost schedule h(g) we define firm z’s product efficiency index

as

H(Gij) ≡
( Gij

∑
g=1

h(g)−(σ−1)

)− 1
σ−1

. (8.6)

This efficiency index will play an important role in the firm’s optimality conditions for

scope choice.

As the firm widens its exporter scope, it also faces a product-destination specific in-

cremental local entry cost fij(g) that is zero at zero scope and strictly positive otherwise:

fij(0) = 0 and fij(g) > 0 for all g = 1, 2, . . . , Gij, (8.7)

where fij(g) is a continuous function in [1,+∞).

The incremental local entry cost fij(g) accommodates fixed costs of marketing (e.g.

with 0 < fii(g) < fij(g)). In a market, the incremental local entry costs fij(g) may increase

or decrease with exporter scope. But a firm’s local entry costs

Fij
(
Gij
)
=

Gij

∑
g=1

fij(g)

necessarily increase with exporter scope Gij in country j because fij(g) > 0. We assume

that the incremental local entry costs fij(g) are paid in terms of importer (destination

country) wages so that Fij(Gij) is homogeneous of degree one in wj. Combined with the

preceding varying firm-product efficiencies, this local entry cost structure allows us to

endogenize the exporter scope choice at each destination j.

A firm with a productivity z from country i faces the following optimization problem

for selling to destination market j

πij(z) = max
Gij,pijg

Gij

∑
g=1

(
pijg − τij

wi

z/h(g)

) (
pijg
)

P1−σ
j

−σ

Xj − Fij(Gij).
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The firm’s first-order conditions with respect to individual prices pijg imply product prices

pijg(z) = m̄ τij wi h(g)/z (8.8)

with an identical markup over marginal cost m̄ ≡ σ/(σ−1) > 1 for σ > 1. A firm’s choice

of optimal prices implies optimal product sales for product g

pijg(z)xijg(z) =
(

Pj

m̄ τij wi

z
h(g)

)σ−1

Xj. (8.9)

Summing (8.9) over the firm’s products at destination j, firm z’s optimal total exports to

destination j are

tij(z) =
Gij(z)

∑
g=1

pijg(z) xijg(z) =
(

Pj

m̄ τij wi
z
)σ−1

Xj H(Gij(z))−(σ−1), (8.10)

where H(Gij) is a firm’s product efficiency index from (8.6). Expression (8.10) reveals

that firm sales in country j are strictly increasing in productivity z given that the term

H(Gij(z))−(σ−1) weakly increases in Gij(z) and Gij(z) weakly increasing in z.

Given constant markups over marginal cost, profits at a destination j for a firm z sell-

ing Gij are

πij(z) =
(

Pj

m̄ τij wi
z
)σ−1 Xj

σ
H
(
Gij
)−(σ−1) − Fij

(
Gij
)

.

The following assumption is required for the firm optimization to be well defined:

f̃ ′ij(G) > 0 (8.11)

where f̃ij(G) ≡ fij(G) h(G)σ−1

Under this assumption, the optimal choice for Gij(z) is the largest G ∈ {0, 1, . . .} such

that operating profits from that product equal (or still exceed) the incremental local entry
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costs: (
Pj

m̄
τij wi

z
h(G)

)σ−1 Xj

σ
≥ fij(G) ⇐⇒

π
g=1
ij (z) ≡

(
Pj z

m̄ τij wi

)σ−1 Xj

σ
≥ fij(G) h(G)σ−1 ≡ f̃ij(G). (8.12)

Operating profits from the core product are π
g=1
ij (z), and operating profits from each ad-

ditional product g are π
g=1
ij (z)/h(g)σ−1.

Assumption 8.11 is comparable to a second-order condition (for perfectly divisible

scope in the continuum version of the model, Assumption 8.11 is equivalent to the sec-

ond order condition). When Assumption 8.11 holds we will say that a firm faces overall

diseconomies of scope.

We can express the condition for optimal scope more intuitively and evaluate the op-

timal scope of different firms. Firm z exports from i to j iff πij(z) ≥ 0. At the break-even

point πij(z) = 0, the firm is indifferent between selling its first product to market j and

remaining absent. Equivalently, reformulating the break-even condition and using the

above expression for minimum profitable scope, the productivity threshold z∗ij for export-

ing from i to j is given by

(
z∗ij
)σ−1

≡
σ fij(1)

Xj

(
m̄ τij wi

Pj

)σ−1

. (8.13)

In general, using (8.13), we can define the productivity threshold z∗,Gij such that firms

with z ≥ z∗,Gij sell at least Gij products as

(
z∗,Gij

)σ−1
=

f̃ij(G)

fij(1)

(
z∗ij
)σ−1

, (8.14)

under the convention that z∗ij ≡ z∗,1ij . Note that if Assumption 8.11 holds then z∗ij < z∗,2ij <

z∗,3ij < . . . so that more productive firms introduce more products in a given market. So
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Gij(z) is a step-function that weakly increases in z.

Using the above definitions, we can rewrite individual product sales (8.9) and total

sales (8.10) as

pijg(z)xijg(z) = σ fij(1)

(
z

z∗ij

)σ−1

h(g)−(σ−1)

= σ f̃ij
[
Gij(z)

] ( z
z∗,Gij

)σ−1

h(g)−(σ−1) (8.15)

and

tij(z) = σ fij(1)

(
z

z∗ij

)σ−1

H
[
Gij(z)

]−(σ−1) . (8.16)

The following proposition summarizes the findings.

Proposition 5. If Assumption 8.11 holds, then for all i, j ∈ {1, . . . , N}

• exporter scope Gij(z) is positive and weakly increases in z for z ≥ z∗ij;

• total firm exports tij(z) are positive and strictly increase in z for z ≥ z∗ij.

Proof. The first statement follows directly from the discussion above. The second state-
ment follows because H(Gij(z))−(σ−1) strictly increases in Gij(z) and Gij(z) weakly in-
creases in z so that tij(z) strictly increases in z by (8.16).

There are two key differences to the Melitz (2003) setup. The first is the term H(Gij(z))−(σ−1)

that reflects multi-product choice within the firm. Adding new products make this term

higher, but with core-competency these new products are less and less important for over-

all sales. The second difference with the Melitz setup is the fixed cost term Fij
(
Gij
)

that

jointly with H determines the products optimization. These two features properly esti-

mated from the data can be used to evaluate the prediction of this setup for a number of

facts on multi-product exporters. We will come back to this point when we talk about the

estimation of firm-level models.
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8.3.1 Gravity and Welfare

The market shares in this model are given by

λij =
Ni Ai(wiτij)

−θ fij(1)−θ̃ F̄ij

∑k Nk Ak(wkτkj)−θ fkj(1)−θ̃ F̄kj

where fij(1)−θ̃ F̄ij = ∑∞
G=1 fij(G)−(θ̃−1)h(G)−θ and θ̃ = θ

σ−1 . The key new insight is that

changes in the entry cost will have a different effect on overall trade than in the Melitz

(2003) setup insofar they affect the entry costs for different products differently. Condi-

tional on overall trade flows though, the welfare gains from trade are given by an expres-

sion that is similar to the Melitz (2003) setup. Thus, the difference is in the counterfactual

predictions with respect to changes in trade costs.

8.4 Extension IV: General Symmetric Separable Utility Function

8.4.1 Monopolistic Competition with Homogeneous Firms (Krugman 79)

We now retain the monopolistic competition structure and all the notation from the pre-

vious section but consider a general symmetric separable utility function as in Krugman

(1979).

8.4.1.1 Consumer’s problem

The problem of the representative consumer from country j is

max

(
N

∑
i=1

ˆ
Ωi

u
(
xj (ω)

)
dω

)
,

s.t.
N

∑
i=1

ˆ
Ωi

pj (ω) xj (ω) dω = wj,
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with u′ > 0 and u′′ < 0. We assume a particular regularity condition on the utility

function that will allow us to focus on the empirically relevant cases, and in particular

− ∂ ln u′ (x)
∂ ln x

= −
xj (ω) u′′

(
xj (ω)

)
u′
(
xj (ω)

) > 0 . (8.17)

This condition implies

u′
(
xj (ω)

)
= λj pj (ω) (8.18)

where λj is the Lagrange multiplier of the consumer in country j. The demand function

implied by this solution is given by

xj
(

pj (ω)
)
= u′−1 (λj pj (ω)

)
(8.19)

We focus on demand functions that have the choke price property, i.e. there exists a p∗j so

that given λj xj
(

pj
)
= 0 for all p ≥ p∗j . It is straightforward to show that this property

requires u′ (0) < +∞ and that p∗j = u′ (0) /λj and thus

xj

(
pj, p∗j

)
= xj

(
pj (ω)

p∗j

)
= u′−1

(
u′ (0)

pj (ω)

p∗j

)
.

8.4.1.2 Firm’s Problem

We can now incorporate this demand as a constraint to the firm’s problem. In particular,

a firm from country i with productivity z = zi choses price in country j to maximize

πij (z) =
(

p (ω)− τij
wi

z

)
u′−1 (λj p (ω)

)
(8.20)
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The first order condition of this problem is given by (making use of the inverse function

theorem and of expressions 8.18 and 8.19)

u′−1 (λj pj (ω)
)
+
(

p (ω)− τij
wi

z

)
u′−1 (λj p (ω)

)′
λj = 0 =⇒

p =
1(

1 + ũ
(
xj (ω)

)) τijwi

z
,

where

ũ
(
xj (ω)

)
=

xj (ω) u′′
(
xj (ω)

)
u′
(
xj (ω)

)
or alternatively we can simply write the price as a function of the elasticity of demand

p =
− d ln x

d ln p

− d ln x
d ln p − 1

τijwi

z

and the markup can be written as

µ

(
pj (ω)

p∗j

)
=

− d ln x
d ln p

− d ln x
d ln p − 1

(8.21)

A number of important points can be made for this expression.

First, notice that expression (8.21) depends on the demand elasticity. Thus, how the

markup changes with firm size depends on how the demand elasticity changes with size.

By simply inspecting the derivative of the markup function it is obvious that if demand

is log-convave, i.e. d ln2 x/ (d ln p)2 < 0, then markup increase with firm size and the

opposite for log-convex demand.

Second, notice that the degree of pass-through depends on how markups change with

marginal cost changes, for different levels of demand. This effectively requires taking one

more derivative of the markup function and the result ultimately depends also on the

third derivative of the demand function.

Finally, notice that the second order conditions of the optimization problem (8.20) are
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always satisfied if d2 ln x
d(ln p)2 < 0. Now define z∗ij ≡ wiτij/p∗j then we can finally express

xj = x

(
z

z∗ij

)
,

and

µj = µ

(
z

z∗ij

)
.

In this environment we can write bilateral trade shares as

λij =

Ni
τijwi

zi
µ

(
zi
z∗ij

)
q
(

zi
z∗ij

)
∑k Nk

τkjwk
zk

µ

(
zk
z∗kj

)
q
(

zk
z∗kj

) .

Define vij as z/z∗ij

λij =
Niwiτij

µ(vij)
zi

q
(
µ
(
vij
)
− vij

)
∑k Nkwkτkj

(
µ(vij)

zk
q
(
µ
(
vkj
)
− vkj

))

Welfare under homogeneity (Neary-Mazrova)

Analytical expression for the welfare gains from trade are challenging to derive in this

case. We will instead work in the case of two symmetric countries around the free trade

equilibrium. The change in equivalent expenditure, e, required to keep the consumer is

written as

V
(

N, N∗, p, p∗,
I
Y

)
= f

[
Nu
(

Np
(Np + N∗p∗)

I
Npe

)
+ N∗u

(
N∗p∗

(Np + N∗p∗)
I

N∗p∗e

)]
= f

[
(N + N∗) u

(
I

(Np + N∗p∗) e

)]
where f is some function p is the price of the domestic good and p∗ the price of the

foreign good and the two parts inside the indirect utility function represent the relative

utility obtain from domestic and foreign goods. We can set this expression equal to a

constant, the targeted level of utility, totally differentiate, divide by N + N∗ and solve for
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the equivalent expenditure to obtain4

N̂
N

N + N∗
+

Np
Np + N∗p∗

−u′
(

I
(Np+N∗p∗)Y

)
I

(Np+N∗p∗)e

u
(

I
(Np+N∗p∗)e

) (
N̂ + p̂

)+

N̂∗
N∗

N + N∗
+

N∗p∗

Np + N∗p∗

−u′
(

I
N∗p∗e

)
I

N∗p∗e

u
(

I
(Np+N∗p∗)e

) (N̂∗ + p̂∗
) =

u′
(

I
(Np+N∗p∗)e

)
I

(Np+N∗p∗)e

u
(

I
(Np+N∗p∗)e

) ê

N̂
(

λN + λYξ

ξ

)
+ N̂∗

(
(1− λN) + (1− λY) ξ

ξ

)
− {λY [ p̂] + (1− λY) [ p̂∗]} = ê (8.22)

where

ξ =
u′
(

I
N∗p∗e

)
I

N∗p∗e

u
(

I
(Np+N∗p∗)e

)
and

λY =
Np

Np + N∗p∗

Can we express this as a function of trade. Notice that domestic trade shares are given

by

λ =
Npq (p)

(Npq (p) + N∗p∗q∗ (p∗))
=⇒

λ̂ =
(

N̂ + p̂ + ε p̂
)
−
[(

N̂ + p̂ + ε p̂
)

λ +
(

N̂∗ + p̂∗ + ε∗ p̂∗
)
(1− λ)

]
=⇒

λ̂ =
(

N̂ + p̂ (1 + ε)
)
(1− λ)−

(
N̂∗ + p̂∗ (1 + ε∗)

)
(1− λ)

4

N̂N +
Np

Np + N∗p∗

− (N + N∗)
u′
(

λI
(Np+N∗p∗)e

)
I

(Np+N∗p∗)e

u
(

I
(Np+N∗p∗)e

) (
N̂ + p̂ + ê

)+

N̂∗N∗ +
N∗p∗

Np + N∗p∗

− (N + N∗)
u′
(

I
N∗p∗e

)
I

N∗p∗e

u
(

I
(Np+N∗p∗)e

) (N̂∗ + p̂∗ + ê
) = 0
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where ε = q′p/q. Around free trade and symmetry λ = 1− λ, ε = ε∗

λ̂−
(

N̂ − N̂∗
)
(1− λ) = (1− λ) (1 + ε) ( p̂− p̂∗) =⇒

λ̂

(1− λ) (1 + ε)
−
(

N̂ − N̂∗
)

(1 + ε)
= ( p̂− p̂∗)

and replacing in (8.22) (using also that around free trade λY = 1− λY)

ê =
(

N̂ + N̂∗
) (λN + λYξ

ξ

)
−
{
(1− λY)

(1− λ)

λ̂

(1 + ε)
−

(1− λY)
(

N̂ − N̂∗
)

(1 + ε)

}

=
(

N̂ + N̂∗
) (λN + λYξ

ξ
+

1− λY

1 + ε

)
+

λ̂

(1 + ε)
− p̂

and under initial free trade and symmetry it is also λY = λ.

8.4.1.3 Monopolistic Competition with Heterogeneous Firms (Arkolakis-Costinot-Donaldson-
Rodriguez Clare)

We now retain the monopolistic competition structure with separable utility function but

we consider heterogeneous firms following Arkolakis, Costinot, Donaldson, and Rodrı́guez-

Clare (2012). The analysis here covers utility functions considered by Behrens and Murata

(2009), Behrens, Mion, Murata, and Sudekum (2009), Saure (2009), Simonovska (2009),

Dhingra and Morrow (2012) and Zhelobodko, Kokovin, Parenti, and Thisse (2011).

Demand can again be written as

xij (ω) = u′−1 (λj pij (ω)
)

(8.23)

where λj is the Lagrange multiplier of the consumer. As long as u′ (0) < ∞ we can define

a “choke-up” price p∗j = u′ (0) /λj so that if pij (ω) = p∗ij, xij (p) = 0. Given that the

distribution we use is continuous and with unbounded support there will be always a

firm from each i offering a price low enough to sell to all the markets. We maintain the

restrictions made in Section 8.4.1.
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8.4.1.4 Firm Problem

The firm problem is the same as in the homogeneity case. We have the price choice of

the firm to be pij (z) = µ
(

pij (z)
) τijwi

z as indicated above. It can be shown that given the

assumptions for u the markup is increasing in z and 0 for z = z∗ij where

z∗ij =
τijwi

p∗j
(8.24)

so that price can be expressed as

pij (z) = µ
(

z/z∗ij
) τijwi

z
. (8.25)

For the cross-section of firms we can offer a characterization of how the markup changes

with changes in productivity using the properties discussed above. In particular, when

demand is log-concave, d ln2 x/ (d ln p)2 < 0, markups are increase on firm relative size.

Since all the papers discussed above consider the case of the log-concave demand we

will proceed under this assumption as our benchmark in our analysis below.

8.4.1.5 Gravity

Using the expression for firm demand, equation (8.23), and firm prices (8.25), firms sales

can now be written as

tij (z) = µ
(

z/z∗ij
) τijwi

z
u′−1

(
µ
(

z/z∗ij
)

z/z∗ij
)

. (8.26)
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Using this expression we can aggregrate across firms to compute average sales of firms

from i in country j, given by

X̄ij =

ˆ
z∗ij

µ
(

z/z∗ij
) τijwi

z
u′−1

(
µ
(

z/z∗ij
)

z∗ij/z
) (z∗ij

)θ

zθ+1 dz =⇒

=

ˆ
z∗ij

µ
(

z/z∗ij
) τijwi

z∗ij

z∗ij
z

u′−1
(

µ
(

z/z∗ij
)

z∗ij/z
) (z∗ij

)θ

zθ+1 dz

and using a standard change of variables argument and the definition of z∗ij,

X̄ij = p∗j

ˆ
1

1
ν

u′−1
(

µ (ν)

ν

)(
1
ν

)θ+1

dν , (8.27)

i.e. average sales are source independent.

Therefore, trade shares are given by

λij =

Ni
Ai(
z∗ij
)θ X̄ij

∑k Nk
Ak(
z∗kj

)θ X̄kj

=
Ni
(
wiτij

)−θ

∑k Nk
(
wkτkj

)−θ
(8.28)

the standard formula for bilateral trade shares. Ni is the measure of entrants. Arko-

lakis, Costinot, Donaldson, and Rodrı́guez-Clare (2012) that this number is independent

of trade in this model, if there is a free entry condition, so in the interest of space, we will

assume that dNi = 0 in the derivations below.

8.4.1.6 Welfare

Because the demand is non-homothetic to characterize welfare we need to explicitly solve

for the expenditure function rather than simply computing the real wage. Let ej ≡ e(pj, uj)

denote the expenditure function of a representative consumer in country j facing a vector
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of prices pj and let uj be the utility level of such a consumer at the initial equilibrium. By

Shephard’s lemma, we know that dej/dpω,j = q(pω,j, p∗j , wj) for all ω ∈ Ω. Since all price

changes associated with a change in trade costs are infinitesimal, we can therefore express

the associated change in expenditure as5

dej =

ˆ
ω∈Ω

[
qω,jdpω,j

]
dω,

where dpω,j is the change in the price of good ω in country j caused by the change in trade

costs. The previous expression can be rearranged in logs as

dej =

ˆ
ω∈Ω

[
λ(pω,j, p∗j , wj)d ln pω,j

]
dω,

where λ(pω,j, p∗j , wj) ≡ pω,jqω,j/ej is the share of expenditure on good ω in country j in

the initial equilibrium. Using equation (8.26) and the fact that firms from country i only

sell in country j if z ≥ z∗ij, we obtain

d ln ej = ∑
i

ˆ ∞

z∗ij

λij (z)
(

d ln wiτij + d ln µ(z/z∗ij)
)

dGi (z)

where

λi (z) =
Niµ

(
z/z∗ij

)
wiτij

z qij

(
z/z∗ij

)
∑i
´

Ni′µ
(

z/z∗i′ j
) wi′τi′ j

z qi′ j

(
z/z∗i′ j

)
dGi (z)

Using this expression with equation (8.28) we obtain, after simplifications,

d ln ej = ∑
i

ˆ ∞

z∗ij

λijd ln wiτij−∑
i

ˆ ∞

z∗ij

Niµ
(

z/z∗ij
)

wiτij
z qij

(
z/z∗ij

)
∑i
´

Ni′µ
(

z/z∗i′ j
) wi′τi′ j

z qi′ j

(
z/z∗i′ j

)
dGi (z)

d ln µ(z/z∗ij)

d
(

z∗ij
) dz∗ijdGi (z)

5In principle, price changes may not be infinitesimal because of the creation of “new” goods or the de-
struction of “old” ones. This may happen for two reasons: (i) a change in the number of entrants N or (ii) a
change in the productivity cut-off z∗. Since the number of entrants is independent of trade costs, as argued
above, (i) is never an issue. Since the price of goods at the productivity cut-off is equal to the choke price,
(ii) is never an issue either. This would not be true under CES utility functions. In this case, changes in pro-
ductivity cut-offs are associated with non-infinitesimal changes in prices since goods at the margin go from a
finite (selling) price to an (infinite) reservation price, or vice versa.
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or

d ln ej = ∑
i

ˆ ∞

z∗ij

λijd ln wiτij −∑
i

ρd ln z∗ijdGi (z)

where

ρ =
d ln µ(v)
d ln (v)

Niµ (v) wiτij
z qij (v) v−θ−1

∑i
´

Ni′µ (v)
wi′τi′ j

z qi′ j (v) v−θ−1dv

is a weighted average of the markup elasticities µ′(v) across all firms, where z∗ij is defined

in expression (8.24).

Notice that the first term is a standard term and represents gains from trade from

marginal costs reductions, but movements in markups have direct effects (negative im-

pact to welfare from exporters raising markups) and GE implications (potentially positive

effects on welfare because domestic producers lower their markups).

Finally, we can use the labor market clearing and the expression for total bilateral sales

to obtain and differentiating

d ln ej = ∑
i

λijd ln cij − ρ ∑
i

λijd ln cij + ρd ln p∗j

d ln p∗j =
θ

1 + θ ∑
i

λijd ln
(
wiτij

)
(8.29)

At this point, notice that from the gravity equation, ∑i λijd ln
(
wiτij

)
is equal to d ln λjj/θ.

Putting everything together we have

d ln ej =

(
1− ρ

1 + θ

)
d ln λjj/θ

These derivations imply that under standard restrictions on consumer demand and the

distribution of firm productivity, gains from trade liberalization are weakly lower than

those predicted by the models with constant markups considered in ACR. In particular

According to this result, if η < 0, then conditional on matching the same macro data,

models with variable markups will predict larger welfare gains and conversely if η > 0. It
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worth pointing out, that if markups are constant then ρ = 0 and we go back to the original

formula that is true for the models with CES demand (see Chapter 7).

8.5 Problem Sets

1. Monopolistic Competition with non-CES preferences.

Consider a consumer that has wealth W, consumes from a set of differentiated vari-

eties ω ∈ Ω, and solves the following maximization problem:

max
{q(ω)}

ˆ
Ω

u (q (ω)) dω s.t.
ˆ

Ω
p (ω) q (ω) ≤W,

Firms are monopolistic competitors and each firm has a productivity z drawn from

a country specific distribution Gi (z) . Firms from country i face an iceberg trade cost

to sell to a destination j.

(a) Derive the first order conditions of the firm. What are the conditions on the

utility function so that the problem of the firm is well defined (i.e. there exists

a unique solution for the firm markup at each level of firm productivity)?

(b) Discuss the pricing-to-market implications of this model. How do they depend

on firm market shares in a given market?

(c) Assume that each country has labor endowment Lj and that labor markets

clear. Define a monopolistically competitive equilibrium in this setup.

(d) Solve for the welfare gains from trade, following Arkolakis, Costinot, Donald-

son, Rodriguez-Clare (but without assuming a Pareto distribution).

(e) (optional) Write a program that computes the equilibrium for any level of the

parameters in this model and computes the welfare.
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(f) Compare the gains from trade in this model to the gains from Bernard, Eaton,

Jensen, and Kortum model.

2. Nested CES. Consider a Nested CES model, a la Atkeson-Burstein 2008, American

Economic Review. There is a continuum of sectors, s ∈ [0, 1], and n (s) is the number

of potential entrants in sector s for each country. Final output is given by

Y =

(ˆ 1

0
y (s)

σ−1
σ ds

) σ
σ−1

,

y (s) =

(∑
i

yi (s)
ε−1

ε ds

) ε
ε−1
 ,

where ε > σ > 1. Assume Cournot competition among the n (s) competitors of each

industry.

(a) Derive the optimal demand of the consumer for each firm.

(b) Derive the optimal firm markup as a function of firm market shares. How are

the parameters ε and σ affect the result?

(c) Discuss the pricing-to-market implications of this model. How do they depend

on firm market shares?

(d) Discuss the limit cases when there are many firms in a sector (n (s)→ ∞) or

when there is only a monopolist (n (s) = 1). (Hint: the first one is tricky).

(e) Pick a few parameter combinations for ε and σ and simulate the effect of a

market change from a monopoly to a duopoly. What happens to markups and

firm sales?

(f) Now redo i)-ii) with Bertrand competition. Show that there is no discontinuity

as ε→ ∞. Which is the model that arises in that case?
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(g) Discuss also the limit case ε = σ. Which model arises in that case?
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Chapter 9

Modeling Vertical Production
Linkages

In this section we will present some straightforward ways of introducing intermediate

inputs into the heterogeneous firms models. We will comment on the different ways in

which the production theory developed above can be used.

9.1 Each good is both final and intermediate

In their heterogeneous sectors framework Eaton and Kortum (2002) have used the inter-

mediate inputs structure initially proposed by Krugman and Venables (1995). The idea is

that the production of each good requires labor and intermediate inputs, with labor hav-

ing a constant share ι. Intermediates comprise the full set of goods that are also used as

finals and they are combined according to the same CES aggregator. Therefore, the overall

price index in country i, Pi (derived in previous sections), becomes the appropriate index

of intermediate goods prices in this case. The cost of an input bundle in country i is thus

ci = wι
iP

1−ι
i (9.1)
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The overall changes in the predictions of the model are small, but the main effect is that

trade shares are now affected by ι and thus

λij =
Aiτ

−θ
ij

(
wι

iP
1−ι
i

)−θ

∑N
k=1 Akτ−θ

kj

(
wι

kP1−ι
k

)−θ
.

9.2 Each good has a single specialized intermediate input

Yi (2003) develops a model where endogenous vertical specialization into different stages

of production is allowed. The output y2(ω) for a final good ω ∈ Ω is produced using in-

put from a uniquely specialized intermediate good y1 (ω). The corresponding production

functions are

y2
i (ω) = z2

i (ω) l2
i (ω)ι y1

i (ω)1−ι , i = 1, 2

y1
i (ω) = z1

i (ω) l1
i (ω) , i = 1, 2

where the output of each one of the stages can be produced by either countries and 1− ι

is the share of intermediates into production. The model is essentially a two stages Dorn-

busch, Fischer, and Samuelson (1977) model with Perfect Competition in all the markets.

The interesting feature of the Yi (2003) model is that the degree of specialization in either

stage of production for a given country is endogenous and depends on trade barriers and

the comparative advantage of the two countries.1 When for a given good both stages of

the production are performed abroad, trade of that good is more sensitive to trade cost

changes. Yi (2003) uses this feature of the model to offer an explanation of the rapid

growth of world trade during the past decades.

1While in the Eaton and Kortum (2002) intermediates good framework there are two possible production
patterns for the good that is sold in a given market (either home or foreign is the producer of the sold good)
in the model of Yi (2003) there are 4 for the two stages of a given variety. These are (HH) Home (country)
produces stages 1 and 2, (FF) Foreign produces stages 1 and 2, (HF) Home produces stage 1, Foreign produces
stage 2 and (FH) Foreign produces stage 1, Home produces stage 2.
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The main drawback of his approach is that calibration is constrained by the usage of

the Dornbusch, Fischer, and Samuelson (1977) framework. Thus, Yi (2003) can use gen-

eral monotonic functions for the relative productivity of one of the stages of production

between the two countries but not of both. Of course, this setup is very difficult to be

generalized in more than two countries.

9.3 Each good uses a continuum of inputs

Arkolakis and Ramanarayanan (2008) propose a different intermediate inputs structure by

merging and generalizing the two approaches described above. Goods are produced in

two stages with the second stage of production (production of “final goods”) using goods

produced in the first stage (“intermediate goods”). Production is vertically specialized to

the extent that one country uses imported intermediate goods to produce output that is

exported. There is a continuum of measure one of goods in the first stage of production,

and in the second stage of production. We index both intermediate and final goods by ω,

although they are distinct commodities.

Each first-stage intermediate input ω can be produced with a CRS labor only technol-

ogy given by

y1
i (ω) = z1

i (ω) l1
i (ω) , (9.2)

with efficiency denoted by z1
i (ω). The technology for producing output of final good ω

is:2

yi
2 (ω) = z2

i (ω)
(
l2
i
)ι
(ˆ

mi
(
ω, ω′

) σ−1
σ dω′

) (1−ι)σ
σ−1

, (9.3)

where mi (ω, ω′) is the use of intermediate good ω′ in the production of final good ω. The

parameter σ is the elasticity of substitution between different intermediate inputs.

We use the probabilistic representation of Eaton and Kortum (2002) for good-specific

2Unless otherwise noted, integration is over the entire set of goods in the relevant stage of production.
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efficiencies. For each country i and stage s, zi
s in (9.2) and (9.3) is drawn from a Fréchet

distribution characterized by the cumulative distribution function

Fs
i (z) = e−As

i z−θ
,

for s = 1, 2 and i = 1, 2, where As
i > 0 and θ > 1. Efficiency draws are independent

across goods, stages, and countries. The probability that a particular stage-s good ω can

be produced in country i with efficiency less than or equal to zs
i is given by Fs

i
(
zs

i
)
. Since

draws are independent across the continuum of goods, Fs
i
(
zs

i
)

also denotes the fraction of

stage-s goods that country i is able to produce with efficiency at most zs
i .

Following Eaton and Kortum (2002), it is straightforward to show that the distribution

of prices of stage-1 goods that country i offers to country j equals

Gs
ij (p) = 1− e−Ai

s

(
qij

s

)−θ
pθ

,

where qij
s is the unit cost of producing and shipping the good. This means that the overall

distribution of prices of stage-s goods available in country j is

Gj
s (p) = 1− e−Φj

s pθ
, (9.4)

where

Φj
s ≡∑

k
Ak

s

(
qkj

s

)−θ
. (9.5)

The probability that country j buys a certain good from country i, as Eaton and Kortum

(2002) show, equals

λ
ij
s =

Ai
s

(
qij

s

)−θ

Φj
s

. (9.6)

As in Eaton and Kortum (2002), it is also true that, because the distribution of stage-s

goods actually purchased by country j from country i is equal to the overall price distri-
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bution Gj
s, the fraction λ

ij
s of goods purchased from country i also equals to the fraction of

country j’s total expenditures on stage-s goods that it spends on goods from country i.

The interesting feature of this intermediate inputs structure is that the specialization

patterns introduced by Yi (2003) still hold. However, the model is much easier to calibrate

given that the function that determined comparative advantage can be easily linked to

observable trade shares for each stage of production.
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Chapter 10

The gravity estimator and trade cost
estimates

In the previous few classes, we have seen how to calibrate gravity models to coincide with

observed trade data and perform counterfactuals for any change in bilateral frictions. One

lesson from these procedures is that the gravity constants play an enormously important

role in determining the general equilibrium forces of the model. A natural follow-up

question is how to estimate these gravity constants. This is the question we turn to in this

lecture. In much of this section we use the notation for the general gravity framework that

we considered in Section XXX.

10.1 The Head and Ries procedure

The Head and Ries (2001) procedure is a very simple method of estimating the parameters

on distance that dispenses of the need of computing the equilibrium of the model. If one

looks at the relationship
XijXji

XiiXjj
=
(
τijτji

)1−σ (10.1)

then this relationship is an adjustment that takes care of the critique of Anderson and

vanWincoop of neglecting the impact of parameters on general equilibrium variables. Pa-
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rameters can be estimated through a linear regression.

10.2 Gravity estimators

Let us first do a little algebra using conditions 1-3 of the universal gravity framework in

order to contrast some traditional estimators with more structural approaches. By com-

bining the gravity equation with the balanced trade condition, we can write the destina-

tion fixed effect δj as a function of its income Yj and the origin fixed effects in all other

countries:

Yj = ∑
i∈S

Xij ⇐⇒

Yj = ∑
i∈S

Kijγiδj ⇐⇒

δj =
Yj

∑i∈S Kijγi

Substituting this expression back into the gravity equation yields an expression for bilat-

eral trade flows that depends only on the origin fixed effect:

Xij = Kijγiδj ⇐⇒

Xij =
Kijγi

∑k∈S Kkjγk
Yj. (10.2)

Substituting equation (10.2) into the goods market clearing condition allows us to write

the origin fixed effect γi as a function of the origin income Yi and the origin fixed effects
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in all other countries:

Yi = ∑
j∈S

Xij ⇐⇒

Yi = ∑
j∈S

Kijγi

∑j∈S Kkjγk
Yj ⇐⇒

γi =
Yi

∑j∈S
Kij

∑k∈S Kkjγk
Yj

.

Finally, substituting this expression back into the gravity equation (10.2) allows us to write

bilateral trade flows as a function of the (exogenous) bilateral frictions Kij, the income in

the origin and destination, and measures of the “bilateral resistance”:

Xij =
Kijγi

∑k∈S Kkjγk
Yj ⇐⇒

Xij = Kij ×
Yi(

∑j∈S
Kij

∑k∈S Kkjγk
Yj

) × Yj(
∑k∈S Kkjγk

) ⇐⇒
Xij = Kij ×

Yi(
∑k∈S Kik

Yk
Πk

) × Yj

Πj
, (10.3)

where we define Πj ≡ ∑k∈S Kkjγk. Let us call equation (10.3) the structural gravity equa-

tion.

10.2.1 The traditional gravity estimator

Until about a decade ago, almost all estimation procedures based on the gravity equation

assumed that trade frictions Kij were a linear function of observed bilateral covariates (e.g.

distance, common language, shared border, etc.) Tij, i.e.:

Kij = Tijβ + ε ij

and estimated β by running the following regression:
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ln Xij = Tijfi + ln Yi + ln Yj. (10.4)

Call equation (10.4) the traditional gravity estimator. Comparing the traditional estimat-

ing gravity equation to the structural gravity equation (10.3), it is immediately obvious

that the traditional estimating gravity equation is missing (i.e. not controlling for) Πi or

∑k∈S Kik
Yk
Πk

. Since we can write the structural gravity equation as:

Xij =
Kij

Yj
Πj

∑k∈S Kik
Yk
Πk

×Yi,

we can see that the structural gravity equation implies that the share of trade flows from

i to j depends on how large Kij
Yj
Πj

is to Kik
Yk
Πk

in all other countries. Since Πj ≡ ∑k∈S Kkjγk,

destinations that are more economically remote (in terms of having lower Kkj than aver-

age) will tend to have lower Πj, which will cause country i ∈ S to export a greater share

of its total trade to those destinations. Intuitively, this is because more remote countries

will have higher price indices, and hence will be willing to pay more for any given good.

This is what Anderson and Van Wincoop (2003) refer to as “multilateral resistance.”

Because Πj will (generically) varies across destinations, the traditional estimating grav-

ity equation will suffer from omitted variable bias. Furthermore, because Πj depends on

the average trade friction between j and the rest of the world, it will be correlated with Kij,

which will result in biased estimates of β. This means that you should never use the tradi-

tional estimating gravity equation to estimate trade costs. Indeed, Baldwin and Taglioni (2006)

award papers doing this with the “gold medal error” of estimating gravity equations.
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10.2.2 The fixed effects gravity estimator

An alternative to the traditional estimator is to take logs of the gravity equation (??):

ln Xij = ln Kij + ln γi + ln δj.

If we assume that ln Kij = Tijβ + ε ij, this equation becomes:

ln Xij = Tijβ + ln γi + ln δj + ε ij. (10.5)

Call equation (10.5) the fixed effects gravity estimator. Since Tij are observed and ln γi

and ln δj can be estimated by including dummy variables for each origin country and each

destination country (note: there are two dummy variables for country), β can be estimated

consistently by applying the fixed effects estimator to equation (10.5) and γi and δj can be

consistently estimated (to scale) from the coefficients on the dummy variables.

Given the estimates from equation (10.5), the fixed effects gravity estimator allows us

to recover the multilateral resistance terms (to scale) in the structural gravity equation as

follows. By taking exponents of the estimates, we can back out predicted values (up to

scale) of the origin fixed effect and the bilateral trade costs:

γ̂i ≡ exp
(

ˆln γi

)
K̂ij ≡ exp

(
Tij β̂

)
Since Πj ≡ ∑k∈S Kkjγk, we then can construct an estimate of the destination multilateral

resistance term:

Π̂j ≡ ∑
k∈S

K̂kjγ̂k = ∑
k∈S

exp
(

Tkj β̂ + ˆln γk

)
which then allows you to construct the origin multilateral resistance term ∑k∈S K̂ik

Yk
Π̂k

.

Note that nowhere in these derivations did we use the estimated destination fixed effect,
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which suggests that the destination fixed effects are “nuisance parameters,” i.e. they are

unnecessary (given the equilibrium conditions) to fully derive the gravity equation. This

is because, as we saw above, balanced trade implies that the destination fixed effect is

pinned down by the origin fixed effects:

δj =
Yj

∑i∈S Kijγi
,

a restriction that is not made in equation (10.4). This is the major drawback of this esti-

mation procedure: by relying just on the gravity structure of the model, the fixed effects

estimator imposes no equilibrium conditions on the estimation, and as such, the result-

ing estimates will (generically) not ensure that the goods market clears or that trade is

balanced. The other major drawback of the fixed effect estimation procedure is that there

may be computational difficulties to including so many dummy variables, especially if

one is interested in estimating γi and δj. (However, if one is simply interested in esti-

mating β, there exist new ways of doing so without having to invert the large dependent

variable matrix, see ?).

That being said, the fixed effects gravity estimator is probably the most common es-

timator of gravity equations today, as it is simple to implement and model consistent

(with the caveat above). It is also straightforward to extend the fixed effects gravity esti-

mator to include multiple years (by adding origin-country-year and destination-country-

year dummies), multiple industries (by adding origin-country-industry and destination-

country-industry dummies), etc.
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10.2.3 The ratio gravity estimator

An alternative approach is to consider as the dependent variable the (log) trade shares

rather than the (log) trade levels. From gravity equation (??) we have:

Xij

Xjj
=

Kijγiδj

Kjjγjδj
=

Kijγi

Kjjγj
=⇒

ln
(

Xij

Xjj

)
= ln

(
Kij

Kjj

)
+ ln γi − ln γj.

If we assume that ln
(

Kij
Kjj

)
= Tijβ + ε ij, then this equation becomes:

ln
(

Xij

Xjj

)
= Tijβ + ln γi − ln γj + ε ij. (10.6)

Following Head and Mayer (2013), we call the (10.6) the ratio gravity estimator. Because

the destination fixed effect is constrained to be the negative of the origin fixed effect, the

ratio gravity estimator no longer has any nuisance parameters in the estimation, which

makes the estimation easier to implement using dummy variables. However, while the

ratio gravity estimator has N (where N is the number of countries) fewer parameters

to estimate than the fixed effect estimator, it also has N fewer observations since any

time i = j equation (10.6) simplifies to the trivial equation 0 = ε ii; hence the degrees

of freedom remains unchanged. In addition, as with the fixed effect estimator, the ratio

gravity estimator is based only on the gravity equation (??), so it too does not impose that

the general equilibrium conditions hold.

Furthermore, since unlike the fixed effects estimator, the ratio gravity estimator only

identifies the relative trade frictions rather than the absolute trade frictions. That is, taking

exponents of ln
(

Kij
Kjj

)
= Tijβ + ε ij yields:

K̂ij = exp
(
Tij β̂

)
K̂jj.
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This means that we are unable to recover the multilateral resistance term Πj since:

∑
k∈S

exp
(

Tkj β̂ + ˆln γk

)
=

1
K̂jj

∑
k∈S

K̂kjγ̂k =
Π̂j

K̂jj
.

In order to call this expression the multilateral resistance, one would have to assume (as

is often done) that Kjj = 1, i.e. internal trade is costless.

10.2.4 The Anderson and van Wincoop procedure

Anderson and Van Wincoop (2003) develop a general equilibrium methodology to obtain

estimates of the costs of trade in the model as a function of distance proxies.

Using the equation (3.8) we have

Xi

XW = w1−σ
i ∑

j
αij

(
τij

Pj

)1−σ Xj

XW

where XW is total world spending (income). Using the bilateral demand

Xij = pijxij = αijw1−σ
i

(
τij

Pj

)1−σ

Xj

we then have

Xij =
XiXj

XW αij

 τij(
∑k αik

(
τik
Pk

)1−σ Xk
XW

)1/(1−σ)

Pj


1−σ

while by summing up over ı́’s we can compute the price index,

∑
k′

Xk′ j = ∑
k′

Xk′Xj

XW αk′ j

 τk′ j(
∑k αik

(
τik
Pk

)1−σ Xk
XW

)1/(1−σ)

Pj


1−σ

=⇒

Pj =

∑
k′

αk′ j
(
τk′ j
)1−σ Xk′

XW

∑k αik

(
τik
Pk

)1−σ Xk
XW


1/(1−σ)
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where we used the fact that balanced trade implies Xj = ∑k Xkj.

If we define

Ξ1−σ
k = ∑

j
αkj

(
τkj

Pj

)1−σ Xj

XW

then

Pj =

[
∑
k=1

αkj

(
τkj
)1−σ

Ξ1−σ
k

Xk

XW

]1/(1−σ)

under symmetric trade barriers, τij = τji, αij = αij, from the last equations it turns out that

Ξj = Pj, so that

Xij =
XiXj

XW

(
τij

PiPj

)1−σ

Anderson and Van Wincoop (2003) estimate the stochastic form of the equation

ln
(

Xij

XiXj

)
= k + a1 ln τ̃ij − a2Dij − ln P1−σ

i − ln P1−σ
j + ε ij (10.7)

where Dij is a dummy variable related to borders and a1 = (1− σ) ã1, τ̃ij = τ
(1−σ)
ij . The

innovation of Anderson and vanWincoop was to perform this estimation expressing Pi, Pj

as an explicit function of the model parameters, σ and ã1, a2 as well as (observable) mul-

tilateral resistance terms. The authors cannot separately estimate σ since its effect on dis-

tance cannot be separately identified from ã1 with their methodology. Nevertheless, their

method delivers much more sensible effects for the coefficient on borders. Estimation

without considering Pi, Pj as a function of the parameters to be estimated overstates the

effect of distance of trade. The intuition is that smaller countries are likely to have higher

price indices since they impose trade barriers to larger countries.
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10.3 The no arbitrage condition

If prices are proportional to marginal costs and there are iceberg trade costs then for any

product ω ∈ Ω produced in any origin i ∈ S and for any destinations j ∈ S and k ∈ S:

pij (ω)

pik (ω)
=

τij

τik
.

If we assume that τii = 1 for all i ∈ S then setting k = i yields the no-arbitrage condition:

pij (ω)

pii (ω)
=τij. (10.8)

The no-arbitrage condition provides an exceedingly simply and surprisingly powerful

way of identifying the iceberg trade costs. The simplicity of the identification is self-

evident: if an origin sells a good to itself and sells it to another destination, then the

iceberg trade costs is simply equal to the ratio of the destination price to the origin price.

Why is the result surprisingly powerful? It is because no-arbitrage condition should

hold regardless of the model. To see this, suppose that the no-arbitrage condition did

not hold and instead that pij(ω)

pii(ω)
> τij. This should not be an equilibrium, because any self-

interested arbitrageur could purchase the good in i ∈ S, resell the good in j ∈ S, and make

a profit. Conversely, suppose that pij(ω)

pii(ω)
< τij. This implies that whoever was selling the

good from i to j ought to have just sold locally. In the first case, money was being left on

the table, while in the latter case, money was being thrown away, both of which tend to

make us economists nervous.1

Despite the simplicity and power of using the no-arbitrage condition to identify the

iceberg trade costs, there are three major difficulties in empirically implementing the esti-

mation strategy:

1In my job market paper, I argue that it can be the case that pij
pii

> τij if it is costly for arbitrageurs to
discover what the price is in other locations. I believe that such “information frictions” are quantitatively
important in real world markets.

159



1. The observed prices in both the origin and destination have to be for the same good

ω. Observing prices of identical goods is especially difficult for differentiated vari-

eties; for example, prices of t-shirts across locations may vary because of the quality

of the t-shirts rather than because of trade costs.

2. Even if the goods are identical, we need to know that the good was produced in i ∈ S

and sold to j ∈ S. If j ∈ S purchased a good from another location (or produced it

locally), there is no reason that the no-arbitrage equation must hold with location

i. Note the inherent tension between the first difficulty and this difficulty: if one is

able to find a good that is truly identical across locations (e.g. a commodity), there

is a high likelihood that it is produced in many locations.

3. The no-arbitrage condition only holds if the price of the good is proportional to

the marginal cost of production. This assumption would be violated, for example, if

producers had market power and were able to charge variable mark-ups in different

destinations. Note in the case of CES, producers do not charge variable mark-ups,

but this result is particular to the CES case (and likely unrealistic).

Let us now discuss some of the approaches taken in the trade literature that have at-

tempted (more or less successfully) to navigate these three difficulties. We now consider

four methods used to estimate the no-arbitrage conditions.

10.3.1 The Eaton and Kortum (2002) approach

Eaton and Kortum (2002) observe 50 manufactured products across the 19 countries in

their data set. They note that if a product ω ∈ Ω is not traded between the two countries,

then it must be the case that producers of ω found it more profitable to sell domestically,
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i.e.:

pi (ω) >
pj (ω)

τij
⇐⇒ τij >

pj (ω)

pi (ω)
,

i.e. the iceberg trade costs exceed the price gap. Conversely, if a product is traded, then

the no arbitrage equation holds with equality. These two facts imply that the price ratio

of all products is bounded above by the iceberg trade cost.

Since they do not observe which of the 50 manufactured products are actually traded

between any pair of countries, they employ a “brute force” method of estimating the trade

cost by taking the maximum price ratio observed across all products as their measure of

the bilateral iceberg trade costs:

τ̂EK
ij ≡ max

ω∈Ω

pj (ω)

pi (ω)
. (10.9)

Equation (10.9) is a valid estimator of the true iceberg trade costs if at least one of the

observed products is traded, prices are measured perfectly, the products observed are

identical, and prices are proportional to marginal cost.2

Using this estimator, Eaton and Kortum (2002) find a trade elasticity (i.e. 1
α ) of roughly

eight; i.e. a 10 percent increase in trade costs is associated with an 80% decline in trade

flows. More recently, ? have argued that because it is possible for none of the observed

products to have actually been traded, an estimator based on equation (10.9) will be biased

downwards. Because observed trade flows can be rationalized equally well with a higher

trade elasticity and lower trade costs or a lower trade elasticity and higher trade costs,

if the estimated trade costs are biased downwards, the implied elasticity of trade will be

biased upwards. They develop a simulated method of moments estimator that corrects

this error, and find an elasticity of trade of approximately four, which currently is the

standard in the trade literature.
2Recognizing that prices likely are measured with error, Eaton and Kortum (2002) actually use the second

highest observed price ratio as their preferred estimator of the iceberg trade cost.
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10.3.2 The Donaldson (2014) approach

In Donaldson (2014) (which we will see in detail in a few lectures), the author had a clever

solution to the three difficulties mentioned above of estimating the no-arbitrage condition.

He found a homogeneous good where the unique location of production was known: salt!

As he writes:

“Throughout Northern India, several different types of salt were consumed,

each of which was regarded as homogenous and each of which was only ca-

pable of being made at one unique location.”

In the simplest case, having such a good would allow one to construct bilateral trade

costs immediately from the no-arbitrage equation, as τij =
pij(ω)

pii(ω)
. However, even with

“perfect” good for which to apply the no-arbitrage condition, Donaldson (2014) faced

two additional difficulties. First, it turned out that he did not observe the price of a variety

ω ∈ Ω of salt at the origin. Second, since not every location i ∈ S produced its own unique

variety of salt, at best, he could only apply the no-arbitrage condition to find a subset of

the bilateral iceberg trade costs.

To solve both problems, Donaldson (2014) made a parametric assumption that ln τij =

Tijβ + ε ij. With this assumption, the no arbitrage condition becomes:

τij =
pij (ω)

pii (ω)
⇐⇒

ln pij (ω) = ln pii (ω) + ln τij ⇐⇒

ln pij (ω) = ln pii (ω) + Tijβ + ε ij. (10.10)

By including a salt-variety ω fixed effect, β can be estimated using just the observed vari-

ation in prices of a particular variety across destinations. Once β is estimated, the trade

costs between any origin and destination can be imputed from the parametric assump-
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tion. Furthermore, α can be estimated by regressing bilateral trade flows on Tij β̂ using

the gravity regression in equation (??). Donaldson (2014) estimates the elasticity of trade

flows for each commodity in his data set separately and finds a mean of roughly four,

consistent with Simonovska and Waugh (2013).

The Donaldson (2014) approach assumes that salt is traded in perfectly competitive

markets, which, because salt is a commodity, seems reasonable.

10.3.3 The Allen (2012) approach

In Allen (2012), I use the spatial dispersion in prices of agricultural commodities (which,

unlike Donaldson (2014), were produced in many regions) in order to infer the size of

trade costs.

The insight of the approach in this paper is to note that even when two countries

do not trade, the no arbitrage condition provides information about the size of the trade

costs. The intuition is the same as in the Eaton and Kortum (2002) above: if a particular

commodity is not observed to be traded between two locations, then this must mean that

the trade cost exceeded the price gap between the two locations, i.e. Xij (ω) = 0 =⇒

τij >
pj(ω)

pi(ω)
, whereas when trade does occur between the two locations, then this must

mean that the no-arbitrage equation holds, i.e. Xij (ω) > 0 =⇒ τij =
pj(ω)

pi(ω)
.

Suppose we observe the price of a particular commodity ω ∈ Ω in each location i ∈ S

in each period t ∈ {1, ..., T}, i.e. pit (ω). Furthermore, suppose for any pair of origin i ∈ S

and destination j ∈ S, we observe whether or not trade flows occur in each period t ∈

{1, ..., T}, i.e. 1
{

Xijt (ω) > 0
}

. Finally, suppose that the bilateral trade cost of commodity

ω in time t depend on a time invariant bilateral trade cost and an idiosyncratic error that

is i.i.d. across time periods:

ln τijt (ω) = ln τij (ω) + ε ijt (ω) ,
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where ε ijt (ω) ∼ N
(
0, σ2).

We can then estimate ln τij (ω) using a maximum likelihood routine. The log likeli-

hood function can be written as:

l
(
ln τij, σ

)
=

T

∑
t=1

(1
{

Xijt (ω) > 0
}

ln φ

(
1
σ

(
ln

pjt (ω)

pit (ω)
− ln τij

))
+,

1
{

Xijt (ω) = 0
}

ln
(

1−Φ
(

1
σ

(
ln

pjt (ω)

pit (ω)
− ln τij

)))
)

which bears a very close resemblance to a Tobit estimator. Using this estimator to identify

trade costs and then regressing trade flows on these trade costs to identify the trade elas-

ticity yields an elasticity of a little bit more than two in the context of agricultural trade

flows between islands in the Philippines.

In the presence of information frictions where positive trade flows merely indicate that

the price ratio exceeds the bilateral trade costs (i.e. Xij (ω) > 0 =⇒ τij <
pj(ω)

pi(ω)
), the the

log likelihood function can be written as:

l
(
ln τij, σ

)
=

T

∑
t=1

(1
{

Xijt (ω) > 0
}

ln Φ
(

1
σ

(
ln

pjt (ω)

pit (ω)
− ln τij

))
+,

1
{

Xijt (ω) = 0
}

ln
(

1−Φ
(

1
σ

(
ln

pjt (ω)

pit (ω)
− ln τij

)))
).

In this case, the log likelihood function is identical to the following Probit regression:

1
{

Xijt (ω) > 0
}
= β ln

pjt (ω)

pit (ω)
+ αij,

where β = 1
σ and αij = − 1

σ ln τij (ω). Hence, identifying the iceberg trade cost is straight-

forward: you regress (using a Probit) whether or not trade flows occurred on the observed

log price ratio and a constant. The coefficient on the price ratio identifies the variance of

the distribution of measurement error in the trade costs and the variance, combined with

the constant, identifies the iceberg trade cost. Intuitively, as the measurement error goes
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to zero, any increase of the log price ratio above the threshold αij will induce trade with

probability one, so that β will approach infinity.

The advantage of this approach relative to Eaton and Kortum (2002) is that it explic-

itly allows for measurement error in trade costs; the advantage of this approach relative to

Donaldson (2014) is that one does not need to observe exactly where a product was pro-

duced. The disadvantage relative to both approaches is that requires knowing whether or

not trade flows occurred at the product level.

Like in the Donaldson (2014) approach, an assumption in the Allen (2012) approach is

that prices are proportional to marginal costs, which because the focus is on agricultural

commodities, seems reasonable.
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Chapter 11

Parameter Choices for Gravity
Models

Anderson and Van Wincoop (2003) developed a framework that delivers structural re-

lationships for trade among countries (or regions) based on the model analyzed in sec-

tion (3.3). This model is useful to identify parameters related to the cost of distance and

the border. As we showed in the previous chapters, and as elaborated in Anderson and

Van Wincoop (2004) and Arkolakis, Costinot, and Rodrı́guez-Clare (2012), that basic setup

has very similar properties in terms of bilateral aggregate trade and welfare to richer

models of trade and heterogeneity. New, heterogeneous-firm models generate a num-

ber of predictions at the firm-level which can also be used to obtain key parameters of the

model. In this chapter we will discuss the identification of key parameters of these mod-

els determining aggregated but also disaggregated trade. Alternative ways of estimating

gravity equations are summarized in a survey by Anderson and Van Wincoop (2004)

11.1 Recovering the trade elasticity from gravity estimates

In the gravity regressions above, we estimated the bilateral trade friction matrix Kij. In

models where Kij = τ
1
α

ij , if we observed the iceberg trade costs and had estimates for Kij,
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we could estimate the gravity constant with a simple log-linear regression:

ln τij = α ln Kij + ε ij.

Unfortunately, because trade flows alone will only allow us to identify the total bilateral

trade frictions
{

Kij
}

, so we need to rely additional data to recover the iceberg trade costs.

The most popular method of doing so is to rely on price data and the no-arbitrage condi-

tion.

An important subset of the models that fit into the universal framework are those for

which β = 0. This is because in many of these models the gravity constant α is related to

the partial elasticity of trade flows to iceberg trade costs. For example, in the Armington

model, we have the gravity equation:

Xij = τ1−σ
ij w1−σ

i Aσ−1
i Pσ−1

j Ej

and the labor market clearing condition

Yi = Ei = wiLi

Because the origin fixed effect γi ≡
(

Ai
wi

)σ−1
, we can write the labor market clearing

condition:

Yi = AiLiγ
1

1−σ

i ,

so that the gravity constant α ≡ 1
1−σ . Combining this with the gravity equation, we have

that the elasticity of trade flows to iceberg trade costs (which we will refer to as the trade

elasticity) is the inverse of the gravity constant:

∂ ln Xij

∂ ln τij
= 1− σ =

1
α

.

Hence, for these models, identifying the gravity constant is equivalent to identifying the
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trade elasticity. As a result, we will turn our focus to procedures for identifying the trade

elasticity, which first requires an examination of traditional reduced form gravity equa-

tions.

11.1.1 The Eaton and Kortum procedure(s)

Another approach that gives an unbiased estimate of parameter a1 is to replace the in-

ward and outward multilateral resistance indices and production variables, Xi − ln P1−σ
i

and Xj − ln P1−σ
j , with inward and outward region specific dummies. This approach is

adopted by a series of papers (e.g. Eaton and Kortum (2002)).

Eaton and Kortum also provide a variety of different methods to estimate the param-

eter that governs the elasticity of trade. In the Eaton and Kortum (2002) model this is the

parameter of the Frechet distribution that governs productivity heterogeneity, θ (whereas

in the Armington model it is σ− 1). Using a relationship similar to (4.17) and specifying

intermediate inputs as in equation (9.1), they can derive a relationship of the form

ln
X′ij
X′jj

= −θ ln τij + Si − Sj (11.1)

where Si = Ai/ (1− ι)− θ ln wi, Sj are destination fixed effects and X′ij = Xij− [(1− ι) /ι] ln (Xii/Xi)

with 1− ι the share of intermediates in manufacturing production.1 They also use proxies

for distance, border effects etc. for the first term in order to estimate θ ln τij but while they

can distinguish the effect of the components (proxies) of that term they cannot distinguish

1Eaton and Kortum (2002) estimate
ln τij = f + mj + δij

where f includes distance and other geographic barrier fixed effects, mj a destination fixed effect and δij an
error term. To capture potential reciprocity in geographic barriers, they assume that the error term δij consists
of two components: δij = δ1

ij + δ2
ij. The country-pair specific component δ2

ij (with variance σ2
2 ) affects two-way

trade, so that δ2
ij = δ2

ji, while δ1
ij (with variance σ2

1 ) affects one-way trade. This error structure implies that

the variance-covariance matrix of δ diagonal elements E
(

δijδij

)
= σ1

1 + σ2
2 and certain nonzero off-diagonal

elements E
(

δijδji

)
= σ2

2 .
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that effect from the effect of the multiplicative term θ. To address that problem and using

their estimates from the previous stage for Si they estimate

Si =
1

1− ι
ln Ai − θ ln wi

using technology and education fundamentals to be the proxies for Ai and data for wages

adjusted for education. Using a 2SLS estimation they get θ = 3.6.

The second alternative is to estimate the bilateral trade equation (11.1) using their

proxy of ln(Pidij/Pj), instead of the geography terms along with source and destination

effects. The proxy for dij is constructed by looking at the (second) highest ratio of prices

of homogeneous products across different destinations and the proxy for Pi/Pj as the

average of these price ratios. Using a 2SLS and geography variables to instrument for the

proxy of ln(Pidij/Pj) their estimate for this procedure is a θ = 12.86.

The favorite estimate of the Eaton and Kortum (2002) is the derivation of the θ using

the trade shares equation in terms of prices

Xij/Xj

Xii/Xi
=

(
Pidij

Pj

)−θ

.

With simple method of moments, −θ is simply the ratio of the mean of ln Xij/Xj
Xii/Xi

and their

proxies of ln Pidij
Pj

. Simonovska and Waugh (2013) propose an alternative estimation of

the Eaton and Kortum (2002) by using the above equation and a simulated method of

moments approach adapted from Eaton, Kortum, and Kramarz (2011).

11.1.2 Gravity trade models where β 6= 0

All the proceeding analysis constrained itself to gravity trade models where the trade elas-

ticity provided sufficient information to recover the gravity constants, i.e. β was assumed

to be zero. We now turn to the general case.
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From our discussion of identification, we know that trade data alone is insufficient to

estimate the gravity constants; however, if both trade data and information about trade

costs are observed, then the gravity constants can be recovered. Suppose, for example,

that (the change in) trade costs is a function of a vector of observables T̂ij, i.e. ln K̂ij =

T̂′ijµ, where the prime denotes a transpose. Then the gravity constants can be recovered

in a two-stage estimation process. First, one estimates the (log) change in exporter and

importer shifters using the observed (log) change in trade flows, ln X̂o
ij:

ln X̂o
ij = T̂′ijµ + ln γ̂i + ln δ̂j + ε ij,

where we interpret the residual ε ij as classical measurement error. Second, one estimates

the gravity constants by projecting the observed (log) change in income, ln Ŷo
i , on the

estimated change in exporter and importer shifters
{

ln γ̂E
i
}

and
{

ln δ̂E
j

}
:

ln Ŷo
i = α ln γ̂E

i + β ln δ̂E
i + νi.

While theoretically straightforward, this procedure is practically difficult, as the model

predicts that the residual νi – unless it is pure measurement error – will be correlated with

both ln γ̂E
i and ln δ̂E

i . This omitted variable bias arises because any unobserved change in

the income shifter Bi (which causes the income of a location to be higher than observables

would imply) will enter the residual and increase both the location’s exports (through

goods market clearing) and imports (through balanced trade). As a result, estimates of α

and β will be biased upwards.

An alternative procedure is to rely on the general equilibrium structure of the model.

By incorporating the general equilibrium effects within the estimator, there is no need for

a two stage estimation procedure. In particular, we use the structure of the model – which

incorporates both the gravity structure (corresponding to the first stage above) and the
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generalized labor market clearing condition (corresponding to the second stage above) –

to calculate the change in the exporter and importer shifters directly. Formally, we can

estimate the gravity constants α and β and the trade cost parameter µ by minimizing the

squared errors of the observed change in trade costs and the predicted change in trade

costs:

(α∗, β∗, µ∗) ≡ arg min
α,β∈R,µ∈RS

∑
i

∑
j

(
ln X̂o

ij − T̂′ijµ− ln γ̂i
(
T̂µ; α, β

)
− ln δ̂j

(
T̂µ; α, β

))2
,

(11.2)

where we emphasize that the change in the origin and destination shifters will be deter-

mined in general equilibrium and depend on both the gravity constants and the trade cost

parameter.

It turns out that equation (11.2) is best solved by first estimating the µ given a set of

gravity constants α and β and then solving for the α and β. Denote µ (α, β) as the trade

cost parameter which minimizes the squared error for a given α and β, i.e.:

µ (α, β) = arg min
µ∈RS

∑
i

∑
j

(
ln X̂o

ij − T̂′ijµ− ln γ̂i
(
T̂µ; α, β

)
− ln δ̂j

(
T̂µ; α, β

))2

First order conditions are:

−2 ∑
i

∑
j

(
T̂ij +

(
∑

k
∑

l
T̂kl

(
∂ ln γ̂i

∂ ln Kkl
+

∂ ln δ̂j

∂ ln Kkl

)))(
ln X̂ij − T̂′ijµ

∗ − ln γ̂i
(
T̂µ∗

)
− ln δ̂j

(
T̂µ∗

))
= 0

Consider the following first order approximations of the log change in the exporter and

importer shifters:

ln γ̂i
(
T̂µ
)
≈∑

k
∑

l

∂ ln γi

∂ ln Kkl
T̂′klµ and ln δ̂j

(
T̂µ
)
≈∑

k
∑

l

∂ ln δj

∂ ln Kkl
T̂′klµ. (11.3)
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Substituting these approximations into the first order conditions yields:

0 =∑
i

∑
j

(
T̂ij +

(
∑

k
∑

l
T̂kl

(
∂ ln γ̂i

∂ ln Kkl
+

∂ ln δ̂j

∂ ln Kkl

)))
×(

ln X̂ij −
(

T̂′ij + ∑
k

∑
l

∂ ln γi

∂ ln Kkl
T̂′kl + ∑

k
∑

l

∂ ln δj

∂ ln Kkl
T̂′kl

)
µ∗
)

,

or equivalently:

µ∗ =

(
∑

i
∑

j
∑

k
∑

l

∂ ln X̂ij

∂ ln Kkl
T̂kl T̂′ij

)−1

∑
i

∑
j

∑
k

∑
l

∂ ln X̂ij

∂ ln Kkl
T̂kl T̂′ij ln X̂ij

It turns out that this expression has an intuitive interpretation. To see this, let us first write

it in matrix form. Let T̂ denote the N2 × S vector whose 〈i + j (N − 1)〉 row is the 1× S

vector T̂′ij, D (ff, fi) is the N2 × N2 matrix whose 〈i + j (N − 1) , k + l (N − 1)〉 element is
∂ ln Xij
∂ ln Kkl

(which we know from previous lecture is a function only of the gravity constants

and observed trade flows), and ŷ denote the N2 × 1 vector whose 〈i + j (N − 1)〉 row is

ln X̂o
ij. Then the general equilibrium gravity estimator is:

µ (a, β) =
((

D (α, β) T̂
)′ (D (α, β) T̂

))−1 (
D (α, β) T̂

)′ ŷ. (11.4)

Equation (11.4) says that, to a first order, the general equilibrium estimator is the coeffi-

cient one gets from of an ordinary squares regression of the observed hatted variables on

a “general equilibrium transformed” explanatory variable T̂GE
ij :

ln X̂o
ij =

(
T̂GE

ij

)′
µ + ε ij,

where:

T̂GE
ij ≡∑

k
∑

l

∂ ln X̂ij

∂ ln K̂kl
T̂kl .

Intuitively, the general equilibrium transformed regressors capture the effect of the entire

set of explanatory variables on any particular observed bilateral trade flow. As a result,
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µ (α, β) directly accounts for all (first-order) general equilibrium effects arising from the

network structure of trade flows.

We can then find the gravity constants α and β which minimize the total squared error.

From equation (11.4) (and the fact that a projection matrix is idempotent), the estimation

of the gravity constants can be written as:

(α∗, β∗) = arg min
α,β∈R

ŷ′
(

I− T̂
((

D (α, β) T̂
)′ (D (α, β) T̂

))−1 (
D (α, β) T̂

)′) ŷ. (11.5)

Equation (11.5) can be estimated using traditional optimization procedures. Using the

trade cost shock of joining the WTO, ? find gravity constants are approximately -30, con-

sistent with a trade elasticity of fourteen and a labor share in the production function of

0.08.

11.2 Calibration of a firm-level model of trade

Parameters Determining Firm Sales Advantage We now turn to techniques developed

in determining deeper structural parameters of these models, that determine the micro

behavior of the firms. An example of these parameters is the marketing parameter β

and the ratio of the Pareto parameter and the elasticity of sales, θ̃ = θ/ (σ− 1), used

in Arkolakis (2010b). Both these parameters determine the distribution of sales of firms

and can be calibrated by looking at the size advantage of prolific exporters, i.e. the size

advantage of firms that are able to penetrate more markets.

This advantage can be uncovered by looking at the following two structural relation-

ships of the model i) normalized average sales of firms from France, F, conditional on

selling to market j,

X̄FF|j
X̄FF

=

(
MFj
MFF

)−1/θ̃

1−1/θ̃
−

(
MFj
MFF

)−1/(β̃θ̃)

1−1/(θ̃ β̃)
1

1−1/θ̃
− 1

1−1/(θ̃ β̃)

(11.6)
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and ii) exporting intensity of firms in percentile PrFj in market j,

tFj
(
PrFj

)
X̄Fj

/
tFF (PrFF)

X̄FF
=

1−
(
1− PrFj

)1/(θ̃β)(
MFj
MFF

)−1/θ̃
−
(
1− PrFj

)1/(θ̃β)
(

MFj
MFF

)−1/(θ̃ β̃)
(11.7)

Notice that parameters θ and σ affect equations (11.6) and (11.7) only insofar they affect θ̃.

Higher θ implies less heterogeneity in firm productivities (and thus in firm sales), whereas

higher σ translates the same heterogeneity in productivities to larger dispersion in sales.

For the calibration, Arkolakis (2010b) uses a simple method of moments estimate. In

particular, β and θ̃ are picked so that the mean of the left-hand side is equal to the mean of

the right-hand side for both equation (11.6) and equation (11.7) evaluated at the median

percentile in each market j. The solution delivers β = .915 and θ̃ = 1.65. Notice that using

equation (11.6), a method of moments estimate for the fixed model with β = 0 gives a

θ̃ = 1.49.

To complete the calibration of the model, we need to assign magnitudes to σ and θ.

Broda and Weinstein (2006) estimate the elasticity of substitution for disaggregated cat-

egories. The average and median elasticity for SITC 5-digit goods is 7.5 and 2.8, respec-

tively (see their table IV). A value of σ = 6 falls in the range of estimates of Broda and

Weinstein (2006) and yields a markup of around 1.2, which is consistent with those values

reported in the data (see Martins, Scarpetta, and Pilat (1996)). In addition, θ̃ = 1.65 and

σ = 6 imply that the marketing costs to GDP ratio in the model is around 6.6% within the

range of marketing costs to GDP ratios reported in the data. Finally, this parameteriza-

tion implies that θ = 8.25 for the endogenous cost model which is very close to the main

estimate of Eaton and Kortum (2002) (8.28) and within the range of estimates of Roma-

lis (2007) (6.2− 10.9) and the ones reported in the review of Anderson and Van Wincoop

(2004) (5− 10). Since the model retains the aggregate predictions of the Melitz-Chaney

framework if θ is the same I will calibrate the two models to have θ = 8.25. For the fixed
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cost model, given the calibrated θ̃ = 1.49, it implies a σ = 6.57.

Calibration for a multi-product firms model

Parametrizing a multi-products firm model requires to dig deeper into establishing

predictions at the within-firm level. We will now briefly go over the calibration procedure

of Arkolakis and Muendler (2010) for their model described in 8.3. Guided by various

log-linear relationships observed in their data (see, for example Figure ??) they specify

the following functional relationships

fij(g) = fij · gδ for δ ∈ (−∞,+∞),

h(g) = gα for α ∈ [0,+∞).
(11.8)

This specification gives product level sales for the g-th ranked product of the firm as

pijg(z)xijg(z) = σ fij(1) Gij(z)δ+α(σ−1)

(
z

z∗,Gij

)σ−1

g−α(σ−1) .

Using the logarithm of this structural relationship, a regression of the sales of the firm on a

constant, a firm fixed effect and the number of the products of the firm obtains α (σ− 1) =

2.66 and δ ' −1.38.

11.3 Estimation of a firm-level model

We present here the framework of Eaton, Kortum, and Kramarz (2011) that is the first

work that estimates a multi-country firm-level model of trade making use of the firm-

level data. The idea is to identify a set of micro facts on exporters and to develop a con-

sistent modeling framework that would explain these micro observations using model

relationships. Then the authors estimate the fundamental parameters of the model using

the micro data. In this respect the paper of Eaton, Kortum, and Kramarz (2011) is parallel

to the Eaton and Kortum (2002) framework.
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11.3.1 The model

Sales of the firm are given by

tij (ω) = aj (ω) nij

(
pij

Pj

)1−σ

,

derived by asymmetric CES utility function with preference for each good affected by

aj (ω) (these could be interpreted as Armington type bias in a particular good). The term

aj (ω) reflects an exogenous demand shock specific to good ω in market j. The term Pj is

the CES price index that will be analyzed in a moment.

Producers are heterogeneous and the unit cost for a producer from i in producing a

good and shipping it to country j is

cij (ω) =
wiτij

zi (ω)

where τij is an iceberg cost. The measure of potential producers who can produce their

good with efficiency at least z is

µi (z) = Aiz−θ .

Given the unit cost this implies that the measure of goods that can be delivered to country

j from anywhere in the world at unit cost c or less in j is

µj (c) =
N

∑
k=1

µkj (c)

=
N

∑
k=1

Ak
(
wkτkj

)−θ cθ

≡
N

∑
k=1

Φkjcθ

≡ Φjcθ

Conditional on selling in a market the producer makes the profit from producer from
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i in j

πij (ω) = max
p,n

(
1−

cj (ω)

p

)
aj (ω) n

(
p
Pj

)1−σ

Xj − ε j (ω) f j
1− (1− n)1−β

1− β
,

where cj (ω) is the unit production cost, ε j (ω) an entry cost and f j > 0. Producer charges

a constant markup

pij = m̄cj (ω) , m̄ = σ/ (σ− 1)

Define

ηj (ω) =
aj (ω)

ε j (ω)
.

Thus, we can describe seller’s behavior in market j in terms of its cost draws cj (ω) = c,

the demand shock aj (ω) = a, and the redefined entry shock ηj (ω) = η. It can be shown

using the results of section 8.2 combined with this framework that a firm will enter a

market j iff its cost draw c ≥ c̄j (ω)

c̄j (η) =

(
η

Xj

σ f j

)1/(σ−1) Pj

m̄
. (11.9)

Notice that the entry threshold depends on a only through η. For the firms with c ≥ c̄j (ω)

the fraction of buyers reached in a market will be (for β > 0)

nij (η, c) = 1−
(

c
c̄j (η)

) (σ−1)
β

You can rewrite sales as

tij (η) = ε j

1−
(

c
c̄j (η)

) (σ−1)
β

( c
c̄j (η)

)−(σ−1)

σ f j

Notice that even though Eaton, Kortum, and Kramarz (2011) add these 3 levels of firm

heterogeneity they can determine easily all the aggregate variables of the model. First,
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the price index is given by the following integration

Pj =

[ˆ ˆ (ˆ c̄j(η)

0
αnij (η, c) m̄1−σc1−σdµj (c)

)
g (α, η) dαdη

]−1/(σ−1)

= m̄

Φj

 θ

θ − σ + 1
− θ

θ + (σ− 1) β−1
β

 ˆ ˆ αc̄j (η)
θ−(σ−1) g (α, η) dαdη


which substituting for the entry hurdle (11.9) gives

Pj = m̄
(
κ1Φj

)−1/θ
(

Xj

σ f j

)(1/θ)−1/(σ−1)

,

where

κ1 =

 θ

θ − σ + 1
− θ

θ + (σ− 1) β−1
β

 ˆ ˆ αη
θ−(σ−1)

σ−1 g (α, η) dαdη ,

and g (α, η) is the joint density of the realizations of producer-specific costs. Second, from

the model we can get a series of relationships directly related to observables. The measure

of entrants in market j is

Mj =

ˆ
c̄j (η) g

=
κ2

κ1

Xj

σ f j

where

κ2 =

ˆ
ηθ/(σ−1)g2 (η) dη

Number of firms selling from i to j

Mij =
κ2

κ1

λijXj

σ f j
,

where

λij =
Φij

Φj

being the observed market share, which exactly the same as in the monopolistic compe-
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tition model with productivity as the only source of variation. Finally, average sales are

given by

X̄ij =
κ1

κ2
σ f j

It also turns out that the distribution of sales in a market, and hence mean sales, is invari-

ant to the location of the supplier.

Notice that all these relationships are derived independently of the actual distribu-

tion of demand and entry shocks. This separability allows for a very simple and generic

solution of the model that retains the forces of the previous structure while allowing for

additional levels of heterogeneity that brings the model closer to the data.

11.3.2 Estimation, simulated method of moments

There are particular steps in the estimation procedure proposed by the authors. They

match 4 sets of moments (each set of moments is denoted as m)

a) The distribution of exporting sales in individual destinations by different percentiles

in these destinations,

b) the sales of french firms in France of firms that sells in individual destinations by

different percentiles in France,

c) normalized export intensity of firms by market by different percentiles in France,

d) the fraction of firms selling to each possible combination of the top seven exporting

destinations.

These 4 set of moments contribute to the objective function

Q (m) =
#m

∑
k=1

wk (m)
(

p̂k (m)− pk (m)
)2

where p̂k (m) are the simulated observations for each moment and pk (m) the ones related
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to the data. The authors use the following weights

wk (m) = N/pk (m)

where N is the number of firms in the data sample. With these weights each Q (m) is a chi-

square statistic with degrees of freedom given by the number of moments to be matched

(#m). Chi square is the limiting distribution of Q (m) (for N large) under the null that the

sampling error is the only source of error and, thus, observed sales follow a multinomial

distribution with the actual probabilities as parameters. Hence, the means of the Q (m)’s

equal their degrees of freedom and their variances twice their means.

The paper has a set of important contributions

• It identifies a set of statistics in the data that will be a rigorous test for all future

trade theories.

• It develops a model that is consistent with these facts and can account for different

levels of heterogeneity. In particular, it shows how the model can motivate research

to interpret and “read” the data in a way consistent to the model.

• It develops an internally consistent methodology for estimating firm-level models.
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Chapter 12

Some facts on disaggregated trade
flows

12.1 Firm heterogeneity

• Firms appear to have huge differences in sales and measured productivities (Bernard,

Eaton, Jensen, and Kortum (2003)–BEJK–)

• In fact, only a tiny fraction of firms export to at least one market and an even smaller

fraction export to multiple destinations (only 16% of French firms sells to at least one

destination other than France, 3.3% sell to at least 10 destinations and a mere .05%

to 100 or more! See figure 14.1 drawn from Eaton, Kortum, and Kramarz (2011)).

Moreover, exporters typically earn a small fraction of their total revenues from their

exporting sales (BEJK).

• Exporters have a size advantage over non-exporters. In fact, exporters that sell to

many countries sell more in total and in the domestic market than exporters that

sell to few destinations or firms that sell only domestically (Eaton, Kortum, and

Kramarz (2004), Eaton, Kortum, and Kramarz (2011) –EKK–). This fact is illustrated

in Figure 14.1 given that the slope of the line in the plot is far less than 1 (around
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.35): including firms less successful in exporting means less than linear increase in

total sales in France.

• The number of exporters entering a market, their average size and the total num-

ber of products sold increases with the size of the market, with an elasticity that

is roughly constant. (Klenow and Rodrı́guez-Clare (1997), Hummels and Klenow

(2005) EKK, Arkolakis and Muendler (2010)). The elasticity of entry for French ex-

porters can be seen in Figure 14.2.

• The distribution of sales of firms in a country, conditional on selling to that coun-

try, is robust across countries. It features a Pareto tail when looking at the large

firms, and large deviations from Pareto when looking at the small firms: there are

too many “too” small guys selling to each destination. Figure 14.3 illustrates the

distribution of size of firms in different destinations, grouping destinations in three

categories depending on the overall sales of French firms there.

• Firms that sell more goods sell more per good (Bernard, Redding, and Schott (2011)

and Arkolakis and Muendler (2010)). This feature is true across destinations as Fig-

ure 14.3 indicates. In fact the distribution of goods is also robust across destinations.

The above facts suggests the existence of important trade barriers, that only relatively

productive firms can overcome. In addition, the facts suggest that the costs of market

penetration have similar characteristics across markets and that the same driving forces

govern the behavior of firms.

12.2 Trade liberalization

• There is a substantial response of trade flows to price changes induced by changes in

tariffs during trade liberalizations (see for example Romalis (2007)). This response
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is much larger than the response of trade flows to price changes over the business

cycle frequency –2-3 years–. The elasticity to changes in tariffs has been estimated in

the range of 8-10 while the one for short run adjustments around 1.5 to 2 (See Ruhl

(2009) for a review).

• A large number of new firms engage in trade after trade liberalization (see discus-

sion in Arkolakis (2010b)). Also a large number of new products are traded after

a trade liberalization (Kehoe and Ruhl (2013), Arkolakis (2010b)). New goods typi-

cally come with very small sales (Arkolakis (2010b)).

• Goods with little trade before a liberalization have higher growth rates of their trade

flows after trade liberalization. (see figure ?? and Arkolakis (2010b)).

• Trade liberalization forces the least productive firms to exit the market. (Bernard

and Jensen (1999), Pavcnik (2002), Bernard, Jensen, and Schott (2003))

The above facts on trade liberalization suggest that firms respond to short run (e.g.

exchange rate movements) changes differently than they respond to permanent changes

(e.g tariff reductions). Their response to permanent changes depends also on their initial

size. Whatever the explanation for this behavior, ultimately it should also be consistent

with the previous facts on exporting behavior of heterogeneous firms.

12.3 Trade dynamics

• A large number of firms do not export continuously to a given destination (more

than 40%). In addition a large number of new firms start exporting every year at a

given destination. These new firms and the firms that die typically have tiny sales

(Eaton, Eslava, Kugler, and Tybout (2008)).

183



• The growth rate of small exporters to a given destination is higher than the growth

rate of larger exporters (Eaton, Eslava, Kugler, and Tybout (2008), Arkolakis (2011)).

• The variance of the growth rate of small exporters to a given destination is larger

than the variance of growth of large exporters (Expected to be true: see Arkolakis

(2011) and the facts presented by Sutton (2002)).
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Chapter 13

Appendix

13.1 Distributions

This appendix explains the details of the two main distributions used in these notes1.

13.1.1 The Fréchet Distribution

The type II extreme value distribution, also called the Fréchet distribution, is one of three

distributions that can arise as the limiting distribution of the maximum of a sequence of

independent random variables. The distribution function for the Fréchet distribution is

F(x) = exp

{
−
(

x− µ

σ

)−θ
}

,

for x > µ, where θ > 0 is a shape parameter, σ > 0 is a scale parameter and µ ∈ R is a

location parameter. The density of the Fréchet distribution is

f (x) =
θ

σ

(
x− µ

σ

)−θ−1

exp

{
−
(

x− µ

σ

)−θ
}

,

1Many thanks to Alex Torgovitsky for the preparation of this appendix
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for x > µ. If X is a Fréchet-distributed random variable then

E(X) =

ˆ ∞

µ
x

θ

σ

(
x− µ

σ

)−θ−1

exp

{
−
(

x− µ

σ

)−θ
}

dx

= σ

ˆ ∞

0
y−

1
θ e−ydy + µ

ˆ ∞

0
e−ydy

= σΓ
(

θ − 1
θ

)
+ µ,

where y :=
(

x−µ
σ

)−θ
and

Γ(z) =
ˆ ∞

0
tz−1e−tdt

is the Gamma function. Now assume that µ = 0, take T := σθ and rewrite the distribution

function as

F(x) = e−Ax−θ
,

so that the Fréchet distribution is now parameterized by θ, A. Notice that for any given

θ and A is increasing in the scale parameter, σ. Figure ??, shows how θ and A affect the

Fréchet distribution.

The Pareto Distribution

The Pareto distribution is parameterized by a shape parameter, θ > 0, a scale parameter

m > 0 and has support [m, ∞) with distribution function

F(x) = 1−
(m

x

)θ
.

The density function is

f (x) =
θmθ

xθ+1 .
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The nth moment of a Pareto distributed random variable can easily be calculated as

E(Xn) =

ˆ ∞

m
xnθmθx−θ−1dx =


θmn

θ−n , if θ > n

+∞, if θ ≤ n

which shows that the shape parameter controls the number of existent moments. Direct

computation yields

E(X) =
θm

θ − 1
, if θ > 1,

Var(X) =
θm2

(θ − 1)2(θ − 2)
, if θ > 2.

The Pareto distribution is an example of a power law distribution, which can be seen

by observing that

Pr [X ≥ x] =
(m

x

)θ
.

This implies that

log (Pr [X ≥ x]) = θ log(m)− θ log(x),

so that the log of the mass of the upper tail past x is linear in log(x). For example, if

the number of employees in a randomly sampled firm, X, is Pareto distributed, then the

proportion of firms in the population that have more than x employees is linear with the

number of employees on a log-log scale. This is related to a useful self-replicating feature

of the Pareto distribution, which is that the distribution of X conditional on the event

[X ≥ x̄], where x̄ ≥ m, is given by

Pr [X ≥ x|X ≥ x̄] =
Pr [X ≥ x]
Pr [X ≥ x̄]

=

(
x̄
x

)θ

,

for x ≥ x̄. That is, truncating the Pareto distribution on the left produces another Pareto

distribution with the same shape parameter! Figure ??, shows how θ and the initial point
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m affect the Pareto distribution.
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Figures and Tables
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Figure 14.1: Sales in France from firms grouped in terms of the minimum number of
destinations they sell to. Source: Eaton, Kortum, and Kramarz (2011).
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Figure 14.2: French entrants and market size. Source: Eaton, Kortum, and Kramarz (2011).

DistributionsData.wmf XXX need to replace XXX

Figure 14.3: Distribution of sales for Portugal and means of other destinations group in
terciles depending on total sales of French firms there. Each box is the mean over each
size group for a given percentile and the solid dots are the sales distribution in Portugal.
Source Eaton, Kortum, and Kramarz (2011).
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