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Abstract

We present a model in which an asset bubble can persist despite the presence
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arbitrageurs to temporarily coordinate their selling strategies. This synchroniza-
tion problem together with the individual incentive to time the market results in
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a disproportionate impact relative to their intrinsic informational content.
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1 Introduction

This paper investigates the ability of an asset bubble to survive in the presence of
rational arbitrage. Our conclusions suggest that arbitrage ‘ultimately’ works, though
it might be ineffectual over substantial periods. In our setting, a bubble survives even
though rational agents know that the bubble must burst with probability one in finite
time.

Imagine a world in which there are some ‘behavioral’ agents variously subject to
animal spirits, fads and fashions, overconfidence and related psychological biases which
might lead to momentum trading, trend chasing and the like. There is by now a large
literature which documents and models such behavior.! We do not investigate why
behavioral biases needing rational corrections arise in the first place; for this we rely
on the body of work very partially documented in footnote 1. The classical view is
that arbitrage corrects such mispricing. Our concern in this paper is the extent to
which such departures from efficient pricing can persist despite the presence of rational
arbitrageurs. Thus our model provides further support for a variety of behavioral
finance models of mispricing, many of which do not explicitly incorporate optimizing
traders.

Suppose rational arbitrageurs understand that eventually the market will collapse
but meanwhile would like to ride the bubble as it continues to grow.? Ideally, they
would like to exit the market just prior to the crash. However, market timing is a
difficult task. Our investors understand that they will, for a variety of reasons, come
up with different solutions to this optimal timing problem. This dispersion of exit
strategies and the consequent lack of synchronization are precisely what permit the
bubble to thrive and grow. Selling pressure only impacts the bubble when a sufficient
mass of traders sells out. All this is consistent with a world in which temporally
coordinated selling by professional investors would lead to an immediate collapse of
the bubble. This scenario is the starting point for our work.

We present a model which formalizes the above synchronization problem and yields
a new perspective on the existence, persistence, and collapse of bubbles. We assume
that the price surpasses the fundamental value at a random point in time tg. There-
after, arbitrageurs become sequentially aware that the price exceeds the fundamental
value. After all rational arbitrageurs become aware of this mispricing, we consider
a bubble to have emerged. Since arbitrageurs become sequentially aware of the mis-
pricing, their trading strategies are initialized at different random times after #y.> In

LCognitive biases are illustrated in books and articles, such as Daniel, Hirshleifer, and Subrah-
manyam (1998), Hirshleifer (2001), Odean (1998), Thaler (1991), Shiller (2000), and Shleifer (2000).

2The trends in internet stocks during the year 2000 can be viewed in this light. Most of the
prominent institutional traders knew that the stock price of many internet companies could not be
justified by their fundamentals. Nevertheless, only a few investors acted accordingly, while the majority
could not afford to stay out of this fast growing market.

30ur theoretical framework is related to the working paper by Morris (1995) which we became



addition to its literal interpretation this assumption can be viewed as a metaphor for
a variety of factors such as differences of opinion and information which, in particu-
lar, find expression in the factor we seek to explore and emphasize, that is, temporal
miscoordination. Agents understand the structure of the model and in the simplest
setting believe that it is equally likely that they became ‘aware’ of the bubble before
or after the median agent.

Arbitrageurs can ‘attack’ the bubble at any point in time. They can sell their
stock holding and can even go short in stocks. However, arbitrageurs face financial
constraints which limit their stock holding as well as their maximum short-position.*
This limits the price impact of each arbitrageur. Large price movements can only
occur if sufficiently many traders sell or buy at the same time. We model this effect by
assuming that the bubble only bursts when the selling pressure exceeds some threshold
k. In other words, a permanent shift in price levels requires a coordinated attack. In
this respect, our model shares some features with the static second generation models
of currency attack in the international finance literature (Obstleld 1996).

However, these currency attack models focus exclusively on the question of whether
to attack or not but ignore the important temporal aspect of coordination. Coordi-
nating on a given action is complicated by the need to coordinate both the action and
the time at which it is taken. Thus, speculators need to decide both whether or not to
attack - the problem that is traditionally emphasized in the currency attack literature -
and also ‘when’ to attack. It would be futile to simply coordinate on the ‘whether’ if it
were not possible to also coordinate on the ‘when’. This temporal element exacerbates
the underlying coordination problem.

Notice that our model has elements of both cooperation and competition. Bursting
the bubble requires some coordination among arbitrageurs, while arbitrageurs are also
competitive in the sense that nobody wants to be too late to leave the market.

Our model generates several intriguing results. In our setting rational traders know
that the bubble will burst for exogenous reasons by some time ty + 7 if it has not
succumbed to endogenous selling pressure prior to that time. Here %y is the unknown
time at which price path surpasses the fundamental value and arbitrageurs start getting
aware of the bubble. Our analysis shows that if arbitrageurs’ opinion is sufficiently

aware of after the first draft or our paper was written. Morris’ paper analyses a standard dynamic
coordination game using a model with “asynchronous clocks.” His paper, in turn attributes the idea of
“asynchronous clocks” to the computer science literature, in particular, to Halpern and Moses (1990).
We will discuss his work further in Section 2.

4There is a growing literature which justifies restrictions on the possible portfolio positions of
arbitrageurs. Shleifer and Vishny (1997) argue that insitutional investors, who invest on behalf of
others, do not fully exploit long-run arbitrage opportunities out of fear of fund withdrawal. These
draw downs might cause early liquidation before the arbitrage strategy pays ofl. Another example
is margin requirements. They limit the degree of short sales. Borrowing constraints and the size of
internal funds restrict the arbitrageur’s stock holding position. Rather than explicitly modeling these
financial constraints, we exogenously assume a restricted maximum portfolio position.



dispersed, there exists an equilibrium in which the bubble never bursts prior to £y + 7.
Even long after the bubble begins and after all agents are aware of the bubble (7 may
be arbitrarily large), it is nevertheless the case that endogenous selling pressure is never
high enough to burst the bubble. Moreover, this equilibrium is unique.” Thus there is
a striking failure of the backwards induction argument which would yield immediate
collapse in a standard model. The persistence of the bubble in our model relies on
dispersion in traders’ viewpoints about when the bubble emerged. Presumably, this
dispersion is specially high at times of significant technological changes, such as the
invention of the steam boat, telegraph, internet, etc. Structural breaks such as large
scale financial liberalization programs can be another breeding ground for bubbles, as
illustrated by the economic developments in the Scandinavian countries during the late
eighties.

Second, we show that while arbitrageurs never burst a bubble if their opinions are
sufficiently dispersed or if the absorption capacity by the behavioral momentum traders
k is very large, for smaller dispersion of opinion or for smaller k, endogenous selling
pressure advances the date at which the bubble eventually collapses. Nevertheless, the
bubble grows for a substantial period of time.

The model also provides a natural setting in which news events can have a dispro-
portionate impact relative to their intrinsic information content. This is because news
events make it possible for agents to synchronize their exit strategies. Of course, large
price drops are themselves significant public events, and we investigate how an initial
price drop may lead to a full-fledged collapse. Thus the model yields a rudimentary
theory of ‘overreaction” and price ‘cascades’ and suggests a rationale for psychological
benchmarks such as ‘resistance lines’. In addition, our model provides a framework for
understanding fads in information such as the (over-)emphasis on trade figures in the
eighties and on interest rates in the nineties. Finally, our model supports arguments in
favor of centralized news dissemination since news which is received sequentially over
a long interval is much less likely to be reflected in the price.

The remainder of the paper is organized as follows. Section 2 illustrates how the
analysis relates to the literature. In Section 3 we introduce the primitives of the model
and define the equilibrium. Section 4 analyzes the case of a finite bubble which bursts
after T periods for exogenous reasons even in the absence of any arbitrage. It illustrates
why a lack of common knowledge leads to a failure of backwards induction. Section 5
analyses the case where the crash is caused, with a positive probability, by endogenous
selling pressure from arbitrageurs. Section 6 highlights the special role of public events
and discusses the fragility of bubbles with respect to different forms of public events.
Section 7 concludes the analysis. Detailed proofs are relegated to the Appendix.

®We restrict attention to perfect Bayesian equilibria in which when an agent attacks, all agents who
become aware of the bubble prior to the agent in question, also attack. We view this “monotonicity”
restriction as both natural and innocuous in the context of the issues we seek to investigate.



2 Related Literature

We are not the first to note that arbitrage may be limited. The existing literature
on limited arbitrage offers various justifications for our assumption that arbitrageurs
are financially constrained, while also providing alternative rationales for mispricing
different from the one developed here. In De Long, Shleifer, Summers, and Waldmann
(1990) risk averse arbitrageurs do not correct the price because they are short-lived
and thus only worry about the next period’s noisy price instead of the riskless long-run
fundamental value. In Shleifer and Vishny (1997), fund managers limit their arbitrage
out of fear of a drawdown. Fund managers are afraid that their investors will withdraw
their money if they suffer intermediate short-term losses even though the arbitrage
provides a riskless payoff in the long run. These papers build on the insight that
distorted prices might become even more distorted in the short run before eventually
returning to their normal long run values. The logic of our model is rather different. In
our model, arbitrage is limited due to the synchronization problem and the individual
incentive to time the market. Synchronization problems not only provide an alternative
reason for persistent mispricing but also amplify the effects described in the earlier
literature on limited arbitrage.

Our work is also related to different branches of the literature on bubbles and
mispricing in general.® The classical asset pricing literature typically rules out the
existence of bubbles. The basic argument entails backwards induction from the last
possible date at which the bubble can survive, given exogenous constraints. A com-
prehensive treatment of the non-existence of bubbles under symmetric information is
provided in Santos and Woodford (1997).7

The prior literature on crashes follows approaches that are quite distinct from ours.
We briefly note some of the key contributions. In Grossman (1988) a temporary crash
occurs because professional market timers do not provide sufficient liquidity since they
underestimate the degree to which other market participants’ risk aversion increases
as their wealth declines. More specifically, they underestimate other traders’ portfolio
insurance trading which synthesizes call-option payoffs. Gennotte and Leland (1990)
develop a static setting in which the unknown extent of portfolio insurance trading leads
to an ‘inverted’ S-shaped aggregate demand curve and thus to multiple equilibria. A
small shift in the aggregate supply can lead to a discrete price drop. In Romer (1993)’s
two-period rational expectations model, a small commonly observed supply shift can
lead to a large price change. Our paper shares the feature that public news can have

6 An extensive suvey of these models can be found in Brunnermeier (2001).

"Some other models of bubbles, starting with Tirole (1982), entail asymmetric information about
fundamentals. Allen, Morris, and Postlewaite (1993) and Morris, Postlewaite, and Shin (1995) in-
troduce higher order asymmetric information about the true value. The principal-agent structure in
Allen and Gorton (1993) induces portfolio managers to churn bubbles. Even though higher order
uncertainty is a defining feature of our setting, this uncertainty relates primarily to the timing rather
than the fundamental value.



a disproportionate impact. In our setting, even a public event with no informational
content can lead to the bursting of a bubble if the news arrival was unexpected. In
addition to the overreaction to news events, we are also able to generate price cascades.

Our modeling approach is more closely related to the international finance currency
attack literature. As in Obstfeld (1996) a price correction only occurs if there is suf-
ficient selling pressure. Morris and Shin (1998) eliminate the indeterminacy of second
generation speculative attack models by using the “global games approach” originally
proposed by Carlsson and van Damme (1993). Our game is also a global game in the
general sense of Carlsson and van Damme (1993) who define a global game to be “..
an incomplete information game where the actual payoff structure is determined by a
random draw from a given class of games and where each player makes a noisy obser-
vation of the selected game.”® The results for static global games do not apply to our
dynamic setting because learning from the existence of the bubble destroys strategic
complementarity. See footnote 14 for a discussion of this point.

Our work is related to the notion of “asynchronous clocks” which appears in the
computer science literature (see Halpern and Moses (1990)). Morris (1995) uses this
framework to show that in a repeated coordination game players never achieve the
efficient equilibrium, if they cannot perfectly synchronize their actions. The details of
our respective applications and the structure of the analysis are significantly different.
In particular, in our work asynchronicity is partially derived (our agents have access
to synchronized clocks). Furthermore, Morris’ (1995) analysis is closely related to the
global games approach, whereas our model lacks the strategic complementarity upon
which this approach relies.

Finally we note that some of the key elements of our model echothemes from Keynes
(1936). The connections are elaborated upon in the discussion following the presenta-

8All the known results for global games entail substantial additional assumptions. The seminal
paper by Carlsson and van Damme (1993) presents results for two player, two action games. These
results have been adapted and extensively applied in a variety of economic settings involving coordi-
nation problems by Morris and Shin (1999), (2000), and others following up on their work, such as
Goldstein and Pauzner (2000). More recently, Frankel, Morris, and Pauzner (2000) extend the results
of Carlsson and van Damme (1993) to the context of more general games with strategic complementar-
ities. We are not aware of any known results for global games which apply to our model. In addition
to the restrictions noted above, their results are for static games; our model is dynamic. Furthermore,
they typically let the noise of the signals going to zero. In our model, it is important that signals are
sufficiently dispersed; indeed arbitraguers prick the bubble if dispersion is below a certain threshold
level. Finally we note the two papers Burdzy, Frankel, and Pauzner (2001) and Frankel and Pauzner
(1998) which seek to eliminate the multiplicity of equilibria in dynamic coordination failure games,
the latter within a the specific framework of Matsuyama’s (1991) dynamic two sector model. A key
feature of these models is that agents are subject to frictions; in particular they can only change their
actions at random times. This inertia, together with other assumptions regarding permanent payoff
shocks generate unique equilibrium behavior often by iterative dominance arguments. Asymmetric
information typically does not play a role in this body of work. Our own work relies on asymmetric
information; however, the asymmetric information primarily concerns the temporal structure of the
model and leads to a synchronization problem.
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tion of the model setup.

3 Model

3.1 Model Step

We wish to develop a model in which rational arbitrageurs become sequentially aware
of mispricing starting at some random time 3. For simplicity, we assume the following
exogenous price process, depicted in Figure 1.

This price process may be motivated as follows. Prior to ¢ = 0 the stock price index
coincides with its fundamental value which grows at the risk-free interest rate r and
rational arbitrageurs are fully invested in the stock market. Without loss of generality,
we normalize the stock market price at ¢ = 0 to pp = 1. From ¢t = 0 onwards, both
the fundamental value v, as well as the stock price p, grow at a rate of g > r, that is
p; = 9. This higher growth rate may be viewed as emerging from a series of unusual
positive shocks which gradually make investors more and more optimistic about future
prospects. Such shocks may be associated with new technologies, dramatic institutional
changes such as financial or trade liberalizations, and so on. From some random time
to, rational arbitrageurs become sequentially aware that the price is too high. At %
the “fundamental value” drops to (1 — 3) e (with 8 € [0,1]) and thereafter grows at
the “old economy” rate r. We assume that ¢y is exponentially distributed on [0, 00)



with distribution function F'(fy) = 1 — e Mo After to, behavioral momentum traders
continue to keep the price growing at rate g, unless a mass of at least k arbitrageurs
sell their stock holding. Any selling pressure below a certain threshold level x may be
viewed as usual day-to-day fluctuations in order-flow which is absorbed by behavioral
momentum traders. Even if the selling pressure never exceeds k we assume that the
bubble bursts for exogenous reasons at tg + 7. Note that this assumption of a final
date is arguably the least conducive to the persistence of bubbles. In a classical model
it would lead to an immediate collapse for the usual backwards programming reasons.

Another important element of our analysis is that rational arbitrageurs become
sequentially informed that the fundamental value has not kept up with the growth of
the stock price index. More specifically, a new cohort of rational arbitrageurs of mass %
becomes aware of the mispricing in each instant ¢ from ¢ till g+ 6. Since g is random,
an individual arbitrageur does not know whether other arbitrageurs have received the
signal before or after them. Thus, the model contains two novel elements. First, agents
become aware of the bubble sequentially. Second, agents do not know how many other
rational arbitrageurs already know of the bubble’s existence. Consequently, an agent
who becomes aware of the bubble at ¢; has a posterior distribution for £3 with support
[t; — 0,t;]. Each agent views the market from the relative perspective of her own ;.
Viewed more abstractly, arbitrageurs’ types are given by I, € [0,00), the date when
they become aware of the bubble. Nature’s choice of #y determines the ‘active’ types
t, € [to, o + 0] in the economy. As noted earlier, we view this specification as a modeling
device which captures temporal miscoordination arising from differences of opinion and
information. The date ¢; at which agent 7 becomes ‘aware’ of the mispricing may be
more generally thought of as the date at which a player’s strategy is ‘initialized’.

Given such an environment, we want to identify the best strategy of a rational
player ¢,. She knows ¢;, the time when she first became aware of the mispricing. Let
us denote the absolute time scale by ¢ and the (relative) time elapsed since trader t;
became aware of the bubble by 7, = t — t;. We will drop the subscript 4, if 7; is the
same for all arbitrageurs.

After trader ¢, becomes aware of the bubble, she can sell all or part of her stock
holding or even go short till she reaches a certain limit where her financial constraint
is binding. FEach trader can also buy back shares. Without loss of generality, we
can normalize the action space to be the continuum between [0, 1], where 0 indicates
the maximum long position and 1 the maximum short position each arbitrageur can
take on. To avoid tedious technical qualifications, we assume that any change in a
trader’s portfolio holdings is maintained for some minimal period length A > 0 and we
characterize the limit equilibria as A — 0. Our model is therefore the continuous time
limit of a more natural discrete time model. We will not invoke the A-qualification

explicitly below, but it should be understood that it underlies our analysis.”

9 Absent such qualifications our continuous time model would accommodate highly discontinuous
strategies and best response would be unique only up to measure zero. Equivalently, we could also



The strategy of a trader who became aware of the bubble at time {; is a function
oy, ¢ [ti, 00) + [0,1], where [1— oy, (t)] can be viewed as trader ¢;’s current holding
after she becomes aware of the bubble. A trader may exit from and return to the market
multiple times. Given the structure of the game, the actions of the other traders affect
trader t,’s payoff only if these actions cause the bubble to burst. Rather than specifying
the payoff for each possible strategy, it suffices for our purposes to consider the payoff
difference between selling (buying) z; a shares slightly earlier at ¢ — A instead of at
time ¢t assuming that players adopt identical strategies before t —A and after t. Suppose
[1 — oy (t— A)} —x¢ A > 0. Selling z; A shares at t — A, yields a revenue of x; Ap;_ A,
which invested in the money market account grows to z; a (eTApt, A) at time ¢. Selling
i A shares at {, yields a revenue of x;_ap;. Thus the difference between both ‘cash
payoffs’ is given by x; A times

(erAPth - Pt) .

The actual prices depend on when the bubble bursts. If the bubble bursts within
the interval (¢ — A 1), then the revenue difference is given by x;_a times erRedt=A)
edtotr(t=to) (1 — 3). Note that one also has to define the payoffs for the case where the
bubble bursts exactly at the time when the arbitrageur submits her sell order, that is
either at ¢ — A, or ¢. In this case all orders are submitted at the pre-crash price €% as
long as the accumulated selling pressure is smaller than k. If the accumulated selling
pressure exceeds &, then only the first randomly chosen orders will be executed at e9*
while the remaining orders are executed at the post-crash price edtotr{t—to) (1-75). In

other words, the expected execution price
e + (1 — o) egtotr(t—to) (1—5)

is a convex combination of both prices. o < 1 if the selling pressure is strictly larger
than k, and o = 1 if the selling pressure is exactly k at the time of the bursting of the
bubble.

In addition, we introduce a reputational penalty for arbitrageurs who decide to
(partially) stay out of the market in the case where the bubble does not burst. There
are various rationales for this penalty. For example, institutional investors who are not
fully invested in the market have a lower return on their portfolio and therefore their
clients might withdraw their money. In this case they have to liquidate profitable long-
run arbitrage opportunities. The reputational penalty leads to an additional difference
in payoff of cpyAxy_a if trader ¢, sells 24— A shares at {—A instead of at ¢ and the bubble
does not burst. That is, we assume that the penalty is proportional to the stock market
index p;, the time length A and the number of shares x, A she sells early.’

assume that there are e-costs per unit trade and focus on the case where £ goes to zero.
U Tony Dye’s case provides a vivid illustration of this penalty. He was for many years the successful



3.2 Discussion of the Model

We now discuss and put into perspective some key elements of our model. The fun-
damental question whether professional arbitrageurs correct mispricings is a very old

one and goes back to at least Keynes’ “General Theory of Employment, Interest and
Money” (1936) in which he wrote:

It might have been supposed that competition between expert profes-
stonals, possessing judgment and knowledge beyond that of the average
private investor, would correct the vagaries of the ignorant individual left

to himself. (italics added)

Our model setup relies crucially on two elements, which can also be traced back
to Keynes (1936). First, professional arbitrageurs want to ride the bubble as long as
possible given that the bubble grows at a rate g larger than the riskfree rate r. Each
individual trader’s objective is to leave the market just prior to the crash. Professional
traders do not want to forego the capital gains as long as the bubble grows, but, of
course, seek to exit before the crash. Referring back to Keynes:

The actual, private object of the most skilled investment to-day is “to
beat the gun”, as the Americans so well express it, to outwit the crowd, and
to pass the bad, or depreciating, half-crown to the other fellow. (italics

added)

The second element is that large price changes require a certain degree of coordi-
nation. In our model the bubble only bursts if more than k traders attack the bubble
at the same time. Therefore, each professional arbitrageur only attacks at times when
she believes that the other arbitrageurs attack as well. Hence, it is more important to
focus on other arbitrageurs’ trading than on the fundamentals of an asset. This is in
the same spirit as “Keynes’ Beauty Contest”:!!

chief investment officier of Phillips and Drew, London. Nicknamed “Dr. Doom” he refused to bow to
the fashion of investing in internet stocks fearing an imminent slump in the markets. He lost his job
in March 2000 - just days before his warnings that the tech bubble would burst came true. In market
historian David Schwartz’s words “The irony is he [Tony Dye|] may well be right, but at the wrong
time.” Even though this penalty is very relevant in today’s financial markets, our analysis does not
rely on it. All results also hold for ¢ = 0.

L1Other authors also have found inspiration in this famous quote in Keynes (1936). Froot, Scharf-
stein, and Stein (1992) focus on the endogenous information acquisition decision of traders. Their
analysis relies on the fact that traders are short-lived and might be forced to unwind their position
before the collected information is reflected in the price. Consequently, traders have an incentive to
collect information which other traders will also collect. In contrast, we focus on the persistence of
bubbles in the presence of rational arbitrageurs without restricting their horizons.

10



... professional investment may be likened to those newspaper competi-
tions in which the competitors have to pick out the six prettiest faces from
a hundred photographs, the prize being awarded to the competitor whose
choice most nearly corresponds to the average preferences of the competi-
tors as a whole; so that each competitor has to pick, not those faces which
he himself finds prettiest, but those which he thinks likeliest to catch the
fancy of the other competitors, all of whom are looking at the problem from
the same point of view. (italics added)

Indeed, in our relativistic framework, each trader looks at the problem from the
same point of view, however, relative to the date, when she became aware of the bubble’s
existence. Combining these two elements with our earlier assumption that traders
become aware of the bubble in a sequential random order leads to our results.

In our model, we have exogenously assumed that the bubble only bursts when
the selling pressure exceeds k. In general, we think that small selling pressure has a
negligible price impact, in particular if this selling pressure is of a temporary nature.
Market makers and risk-neutral day traders'? view temporary selling pressure as a
cheap buying opportunity and make excess profits as long as the bubble continues
to grow. Behavioral momentum traders may absorb any permanent selling pressure
originating from rational arbitrageurs’ trading activity. We have not modelled the
behavior of boundedly rational traders. This leaves many modelling alternatives open
and also allows for multiple interpretations of k. For example, we could introduce
wealth-constrained risk-neutral momentum traders in our model. Imagine a situation
where the momentum traders’ estimate of the value of the stock increases exponentially
at a rate of g. Since they are risk-neutral, they determine the price process as long as
they can absorb the shares sold by the arbitrageurs. When the rational arbitrageurs’
selling pressure surpasses K, they are unable to take on larger positions and realize
their misperception. In this setup, x has a nice interpretation since it reflects the mass
of momentum traders.

One potential criticism is that by assuming that the bubble only bursts when the
selling pressure exceeds k, we implicitly also assume that rational agents do not become
aware of selling pressure by other rational agents until it crosses a certain threshold.
Our response is that we view the model as being a stylized, one-dimensional, depiction
of a far more complex setting with noisy prices and agents differing in the manner in
which they interpret noisy signals. This leads them to have different perceptions of the
probability with which the bubble is likely to burst now and in the future. Initially,
the threshold at which agents become aware of the selling pressure is taken to be the
point at which the bubble actually bursts. We relax this strong assumption in Section
6. This permits us to analyze price cascades. Smaller selling pressure might already

2Day traders do not engage in fundamental analysis. They solely rely on information inferred from
past and current prices.

11



lead to a minor price decline, which in turn might be used as a synchronization device.
Given the right circumstances, this might develop into a full blown crash.

3.3 A Preliminary Result - Attack Condition

Let II(t|t;) denote trader t,’s unconditional cumulative distribution function that the
bubble bursts prior to time ¢. Note that I1(¢|t;) of trader ¢; depends on the specifics of
the model structure as well as on the equilibrium conjecture by trader ¢,. We suppress
the latter arguments for simplicity. Therefore, the expected payoft difference from
selling one share at t — A instead of at ¢, is given by

<H(t]t,-) —TI(t — Alt;)

> {OétiAeg(thH»rA . Oét,Aegt0+T(t7tO) (1 . ﬂ)} +

1 TI(t - Aft,)
_ II(t|t;) — II(t — Alt;) rA_g(t-A) ot B gtotr(t—to) (1 _
+<1 1—I0(t — Alty) >%Ae Y foue” + (1 —ag) T (1 - H)]

Suppose II(t|t;) admits density = (t|t;), that is, TI(¢|t;,) = ffooﬂ(t’]g) dt’. Let
T° (t’t) — m(tlt;)
-t 1-T1(t]t;)
still exists at .

denote the corresponding conditional density, given that the bubble

Lemma 1 (Attack condition) Suppose I1(t|t;) admits density 7 (t|t;). Then if

g—r+c

“(tlt,) <
() < 7 (1— ) E e ot 1]

trader t; will choose to trade to the maximum long position. Conversely, if ©° (t|t;) >

g—riec . . e
(-A)Ble @ T 0] she will trade to the maximum short position.

Proof. In the case where the density 7; (¢|t;) is well defined, the bubble bursts in
each instant with zero probability. Therefore, we can ignore the zero-probability cases
where the selling pressure strictly exceeds k exactly at t — A or £ and leads to a bursting
of the bubble: We can, without loss of generality, set ay A = oy = 1.

The payoff difference between selling x; A shares at ¢ — A instead of £, is then given
by x; A times

< / @l dt’> ([ — (1= 8) B2 [0l 1] ] (1+ Ac)} +

-A
+ {(eg(FA)em —e%") — Ace?'}

Using a first order Taylor expansion around ¢, (i.e. A = 0) the expected payoll differ-
ence simplifies to ;e times

AT (t) [L— (1= B) B [ ), t] e @ (1 4+ Ac) — (g —7) —c.
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For A — 0 we can ignore terms of order (A)2 and hence trader ¢; should sell z; A
shares already at ¢ if

(g — T) +c (>|<>
1= (1= ) Ble & @], (]

7 (t)L;) >

and hold them at ¢, when the inequality is reversed. Since selling (holding) z; A shares
affects the payoff linearly, it is optimal to go to the maximum short (long) position.

The attack condition (*) is easier to interpret if we introduce A-terms of higher
order.

AT (t)t;) [ — (1= B) B [e9 7%t t]] > (1 — A7 (¢]t:)) [(g — ) + ] "' A

The left hand side reflects the expected benefits of being out of the stock market.
The bubble of estimated size [egt -(1-p)F [e(gfr)tolti, tH bursts with a probability
A7° (t|t;) during the small interval A. The right hand side captures the costs of being
out of the market for a short interval A in the case that the bubble does not burst.
Not only does the arbitrageur lose out on the appreciation (g —r), the arbitrageur
also suffers a reputational penalty c. The lemma also asserts that trader i, either
wholeheartedly attacks or holds the maximum long position. Effectively, the relevant
action space reduces to {0,1}. The arbitrageur’s risk neutrality enables us to take this
simplifying step.

Before proceeding to the analysis of specific models, let us define the equilibrium
concept and discuss the underlying assumptions of the model.

Definition 1 A trading equilibrium is defined as a Perfect Bayesian Nash Equilib-
rium in which a trader who attacks at time t (correctly) believes that all traders who
became aware of the bubble prior to her also attack att.

This restriction on beliefs is very natural in our setting since in all variations of the
model that we consider, it becomes easier to successfully attack the bubble the longer
it persists. Note that we are not restricting attention to trigger strategies in which an
agent who attacks at ¢ continues to attack at all times thereafter.

4 Persistence of Bubbles

4.1 Analysis

To contrast our analysis with the standard backwards induction outcome, we assume
that in the absence of rational arbitrage the bubble bursts precisely T periods after the
mispricing emerged. That is, the bubble bursts at ¢ = ¢y + 7 for exogenous reasons in
the event that selling pressure prior to tg+ 7 never exceeds the threshold k. This fact is
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common knowledge. In a model in which all arbitrageurs became aware of the bubble
at tg, all traders would attack the bubble and it would burst immediately. This is a
consequence of the usual backwards induction argument. In our model, arbitrageurs
become aware of the bubble sequentially in a random order and furthermore have
a non-degenerate posterior distribution over ¢y3. Recall that traders become ‘aware’
of the bubble during the interval [tg,%o + 0], where we have interpreted 6 to be a
measure of differences in opinion and other heterogeneities across players. Following
the terminology used in Allen, Morris, and Postlewaite (1993), the mispricing becomes
a bubble after it is known to all arbitrageurs, that is at {9 + 6.

A

We show that if 6 is not too small, that is, if § > %w, then the trading
equilibrium is unique and the bubble bursts precisely at tg+7 for all 5. In this case the
endogenous selling pressure of the rational arbitrageurs has absolutely no influence on
the time at which the bubble bursts. It is worth noting that this result holds despite
the fact that it is possible within our model for traders to coordinate on particular
dates, say Friday, 13th of April 2001, by adopting strategies which are not symmetric
m 7;.

Proposition 1 Suppose Ok > —In (1 — g7¢+c) (%), g—71+4c> A Then there exists

a unique trading equilibrium. In this equilibrium all traders begin altacking 7" = T —
<l> [_ ]'n 1 — )\(17(175)6,(97”?)

5 p— < T periods after they became aware of the bubble

and continue attacking thereafter. Nevertheless, for all ty, the bubble bursts precisely
at t() —|— T.

For a given trading equilibrium, we define the function ¢ which specifies for each
t the minimum 7; at which some arbitrageur attacks at t. Given our definition of a
trading equilibrium any trader ¢, with 7, > 1 (f) also attacks at ¢, and a trading
equilibrium is completely characterized by its associated -function. Indeed, we will
sometimes refer to an equilibrium . For a given g the total mass of traders attacking

at t >ty 1s
=) 1
Stot = min / —dt’, 1
to 9

- min{%(t—w(t)—to),l}.

Lemma 1 shows that all traders always either hold their maximum or their minimum
position. That is, in equilibrium ¢, must equal 0 or 1, respectively. Consequently, s,
also corresponds to the aggregate selling pressure.

The following two Lemmas are useful in establishing Proposition 1. We focus on
the attacking traders t; = ¢ — ¢ (1), whose time lag between awareness and action is
shortest at a given time t.

14



Lemma 2 (Preemption Lemma) Consider for each t a trader t; =t — v (t) who
first attacks at time t > t;. In equilibrium trader t, cannot believe with strictly positive
probability that sy, > K.

Proof. Suppose trader ¢, attacks the first time ¢ when Pr; (to|s4, > ) > 0. That
is, with strictly positive probability the bubble will burst and since s; 4, strictly exceeds
k, the selling price is already reduced by a fraction a < 1. Consequently, there exists
a small A > 0 such that attacking at t — A leads to a strictly larger expected payoff
for trader ¢,.

The motive to pre-empt a possible crash rules out equilibria in which a mass of
‘aware’ arbitrageurs start attacking on a specific date, say Friday, April 13th of 2001.

Lemma 2, together with the fact that each attacking trader believes that traders
who became aware of the bubble before her also attack, allows us to derive a necessary
condition for the equilibrium beliefs of arbitrageur ¢; whose time lag between awareness
and attacking 1s shortest. Formally, trader ¢,’s 7; := min; ¢ (t). The formal proof is
relegated to Appendix A.1.

Lemma 3 Suppose arbitrageur t; first altacks at somet > t;, then it must be the case
that player t; believes that the support of to is [max {t; — Ok, t — T}, 1;].

Equipped with these two lemmas we provide the proof of Proposition 1 in the
Appendix A.2. The intuition for this result is probably best provided by a less general
but more intuitive argument.

Suppose that for a given strategy profile, endogenous selling pressure would eventu-
ally burst the bubble at some g+ 7, where 7 < 7. Then 7 is mutual knowledge among
all arbitrageurs, while ¢y, of course, is not known. At each date ¢, each arbitrageur
t; tries to predict the likelihood that the bubble might burst in the next instant. LFor
t < t; — 0+ 7, trader ¢; can rule out the possibility that the bubble bursts in the
next instant. For ¢ > ¢, — 0 + 7 , trader ¢, believes that the date {g + 7 at which
the bubble bursts is uniformly distributed between the next instant ¢ and ¢; + 7. The
latter is the case if trader ¢, became aware of the bubble precisely at 5. That is, the
conditional density that the bubble might burst at instant ¢ is 7° (¢|t;) = W
for t > t, — 8 + 7 and zero otherwise. The attack condition Lemma 1 states that trader

t;, will only attack if 7 (¢|t;) = lieﬂéiﬁ,t) > 17(175)E([ij&)ic)(tfto)@,,t]‘ Since the right
(g—r)te
T Be- w7

hand side is always smaller than each arbitrageur ¢, attacks earliest from

o (120 )
g—r-+c
. A(1-(1-p)e~l9-7) 1 .
onwards. Note that 7 > —In |1 — p— (X)? since no trader attacks be-

fore she is aware of the bubble. The mass of traders who are aware of the bubble at
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time ¢ is given by max {% (t—to), 1}. Given that each arbitrageur never attacks before

A g—r+c

—(1—-B)e—(g—m)7T
than max {% <t -7+ (%) l— In <1 _ A (lgi),Jrc )>1 — t0> ,1}. For t = tp+7 the

1_ ,\(17(175)@*(9*%)
g—r+c

—(1-ge~lg—m)7 . . . .
T— <l> l— In <1 _ 2(-a-pe o) periods, the total selling pressure at time ¢ is less

total selling pressure is at most % (%) —In

>> which 1s smaller

than the threshold . This contradicts the initial assumption that 7 < 7. Therefore,
we can rule out any equilibrium where 7 is independent of 1y. In particular, the proof
shows that there does not exist a symmetric equilibrium in which the bubble bursts
prior to 7.1

However, there might exist equilibria for which 7 is a function of ¢g. For example,

attacking on a particular date, say Friday, 13th of April 2001 (denoted by ¢'?) leads to

7A_13 . T if t() > t13 — 0k
Tt =ty ity <t —0k

which 1s not ruled out as a possible equilibrium by the above argument. However,
given this strategy profile, a positive mass of traders starts attacking at ¢'*. That
is, the bubble bursts with a strictly positive probability from the individual trader’s
viewpoint. By Lemma 2 traders have an incentive to attack earlier and hence it is
not an equilibrium strategy. The proof in the Appendix generalizes this result to any
possible trading strategy profile.

At tg + 7 the bubble bursts for exogenous reasons. In equilibrium each arbitrageur

(- g)e-(s-m)7
starts leaving the stock market at ¢ > ¢, + 7 — <l> l— In <1 — M1-0-pet )>1

A g—r+c

Notice, however, that at the time of the crash ¢y + 7, the endogenous selling pressure
is less than k and thus, the bubble bursts purely for exogenous reasons. This is in
contrast to the standard backwards induction reasoning where the anticipation of a
crash prepones the price drop.

We note here that the standard iterative dominance proof of global games cannot
be applied in our setting, since our game does not exhibit strategic complementarities.
The reason is that traders infer information from the fact that the bubble still exists.!*

I3Note that for A — 0, the prior distribution of ¢ is an (improper) uniform distribution. In this case
the conditional distribution for trader ¢, that the bubble bursts in the next instant is 7° (t|1_fi) =

A1-(1-g)e” 777
g—r—+c

1
tir—t
1-(1-pe o7

G-rte

and the term —1In | 1 — (%) converges to

14This is probably best illustrated by means of an example, wherein we restrict the strategy space
to trigger strategies. Consider a trader ¢; who starts attacking the bubble at t13 = ¢; + 7, provided
that all other traders attack immediately when they became aware of the bubble. Given this strategy
profile, trader ¢, can infer a lower bound for ¢y from the fact that the bubble still exists. Compare
this with a situation where other traders do not start attacking immediately when they become aware
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4.2 Lack of Common Knowledge

In standard models, any finite bubble can be eliminated by the classic backwards
induction reasoning. However, the standard backwards induction argument requires a
starting point which is common knowledge among the arbitrageurs. To gain a better
understanding for why a bubble persists even though the life span of the bubble is
finite, it is useful to take a closer look at arbitrageurs’ knowledge of the bubble as
time evolves. Proposition 2 below shows that it is never common knowledge that at
least k traders are aware of the bubble; this basic observation provides an alternative
perspective on the difference between our model and the classical literature on bubbles.

Proposition 2 It is never common knowledge that at least k traders are aware of the
bubble.

Proof. It is sufficient to look at the first k traders. At £y + Ok, at least x traders
know of the bubble. That is, it is mutual knowledge among k traders at tg + k.
However traders, in particular arbitrageurs who only became aware at tg + 0k, are not
sure whether the other arbitrageurs are aware of the bubble too. At tg+ 20k, the first
k traders know that a bubble exists and that at least a fraction k of the arbitrageurs
knows of the bubble. However, they do not know whether a fraction xk knows that a
fraction k knows that the bubble exists, etc. This is only the case at ty + 30x. More
generally, let n be a positive integer, then at to+n6k, the kth trader knows that at least
k traders know that at least k know that ... and so on at most n-times. It will never
be common knowledge among k traders that there are at least a fraction  traders who
know of the bubble.

As time goes to infinity the fact that at least x arbitrageurs know of the bubble
becomes “almost common knowledge” in the case where the bubble never bursts for
exogenous reasons, that is 7 — oo . However, it is never common knowledge among at
least k traders. Thus, our synchronization problem model is another example of the
striking difference between common knowledge and almost common knowledge.'®

5 Endogenous Crashes

The previous section highlights the central features of our modeling approach and
emphasizes the different points of departure from traditional models. While the bubble
bursts exactly after T periods for exogenous reasons in the previous section, we show
in this section that rational arbitrageurs burst the bubble if arbitrageurs’ dispersion of

of the bubble but only at, say t'3. In this case trader t, cannot derive a lower bound for ¢y from the
existence of the bubble. Consequently, she has a greater incentive to attack the bubble at £'3. This is
exactly the opposite of what strategic complementarity would prescribe.

5 This distinction was first introduced in the economics literature by Rubinstein (1989).
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opinion and/or momentum traders’ absorption capacity are sufficiently large. Hence,
this analysis could be viewed as a bridge between the first part of our paper, where
the bubble only bursts for exogenous reasons, and the standard ‘no bubble’ literature,
where bubbles are ruled out since arbitrageurs would burst it right away.

We focus on the trading equilibrium which makes it hardest to sustain a bubble.
That is, we focus on the equilibrium, where arbitrageurs attack earliest. This raises
the bar for our analysis since our primary objective is to show that bubbles may exist
despite the presence of rational arbitrageurs. Since each equilibrium can be character-
ized by its y-function, the more formal statement is that we focus on the equilibrium
Y™ with the property that ¢ (t) < ¢ (¢) for all ¢ for any possible equilibrium function
1. It is not obvious that a ¥**-equilibrium exists. Proposition 3 below shows that
it does, and furthermore that the “most aggressive” equilibrium ™" is a symmetric
trigger-strategy equilibrium. The chosen setup also allows us to derive the endogenous
life span of the bubble and the exact trading strategies in closed form.

1

i A—A(1-pB)e(e—)T
Proposition 3 Suppose 0k < (X) [— In{1— -

symmetric trigger strategqy equilibrium, wn which the traders leave the market T =
(gfrﬂ)ei\k(j:a()g*HCHA g%r) - 9/{} periods after they become aware of

the bubble. Hence, the bubble bursts exactly at

)\f(g77’+c)(lfe’)‘9“)
~n < ) >

(g—r)

Then there exists a

max {0, —In (

to + max < Ok,

Furthermore 7 < 4 (t) for allt for any possible equilibrium 1 (1).

The proof of this proposition is presented in Appendix A.3. Note that for 3 = 0,
—(g—r4c)(1—e A%
Ok < —1In <>\ -+l )> (L) and hence, the bubble always bursts at g —

A(1-9) g—r

A—(g—r+e)(1—e 20%) 1
(205 (1)

The previous section highlights the point that the usual backwards induction ar-
gument breaks down since at no point is it common knowledge that a bubble exists.

However, the above equilibrium can be obtained via the following (backward) proce-
dure which entails “iterative removal of non-best-response symmetric trigger strate-
gies.” Since the bubble ultimately bursts for exogenous reasons, eventually attacking
a bubble becomes a dominant strategy even when it is assumed that no other trader
ever attacks. Let t, + 7' (= t, + 7*) be this date. Under the conjecture that each
trader t, starts attacking from t, + 7! onwards, trader t,’s best (trigger) response is
to attack even earlier from ¢; + 72 onwards. Iterating this argument yields the sym-
metric trigger-strategy equilibrium described above. Intuitively, as 7; approaches T
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arbitrageur t, become sufficiently ‘nervous’ that the bubble might burst, which leads
to an endogenous response. This endogenous response feeds on itself. Nevertheless,
the bubble persists till to + 7 + Ok.

The closed form solution enables us to conduct some comparative statics. The
endogenous life-span of the bubble increases as the dispersion of opinions among arbi-
trageurs 0 increases. Taking our model literally, 6 describes the time span (window)
over which traders become sequentially aware of the bubble. It is also essential for our
argument to work that individual traders do not know when they became aware of the
bubble relative to others: individual traders become aware of the bubble in a sequen-
tial, random order. The larger the window 6, the more uncertain is each arbitrageur
about when other traders became aware of the bubble. Alternative model formulations
show that the dispersion of the timing is crucial for the emergence of the bubble and
not the difference in the estimate of the fundamental value. The comparative static of
the absorption capacity & of the momentum traders is the same as for 0. A larger k
requires more coordination among arbitrageurs and thus prolongs the bubble. As one
would expect the reputational penalty ¢ make it more costly to stay out of the market
and, hence, extend the life-span of the bubble. A change in the excess growth rate of
the bubble (g — r) causes two opposing effects. On the one hand, it is more costly to
not participate in the appreciation of the bubble. This effect is similar to the reputa-
tional penality ¢ extending the larger life-span of the bubble. On the other hand, a
higher (past) excess grows rate also increases the current size of the bubble. The larger
the bubble, the more incentive the arbitrageur has to leave the stock market. Overall,
the comparative static is ambivalent. For small (¢ — 7) an increase in the excess growth
rate increases the life-span of the bubble, while the opposite is true for large (g — 7).
Notice that a surprise interest rate increase by the Federal Reserve Bank might induce
arbitrageurs to leave the stock market. It is not worth risking to be caught by a crash
in exchange for a smaller excess return (¢ — ). However, if the crash does not occur,
the bubble grows at a lower rate which might lengthen the life-span of the bubble.

The proofs of Proposition 3 and Lemma 4 in the appendix allow us to replace the
sufficient condition of Proposition 1 with a necessary and sufficient condition.

A=A(1-g)e— a7
—In({1-— p——
and sufficient condition that the bubble bursts for exogenous reasons atl to+7. Further-

more, this outcome is unique.

Proposition 4 For a given 7, Ok > (%) )} 15 the necessary

Proof. It is easy to check that for 6k = (%) [— In (1 — Af}‘(lg*fgi;(gqﬁ)} the time

when the bubble bursts for endogenous reasons ty + 7** + 0k coincides with the time

to + T, when it would burst for exogenous reasons. Since %Z: > (, the bubble bursts

1 — AA0=pge o7 ) }

for exogenous reasons for 0k > (%) [— In ( -
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By Lemma 4 there exists no other equilibrium where the bubble bursts before tg +
T** + Ok for endogenous reasons. Hence, the bursting at £y + 7 is unique outcome.

6 Synchronizing Public Events

For simplicity, we will restrict our formal analysis to sunspots which serve as pure
coordination devices and will not consider signals which reveal information about tg.
This is consistent with our emphasis on issues of synchronization. Informative public
signals would not entail qualitative changes to the analysis presented below.

Interestingly, anticipated public events do not alter the analysis in any way. To see
this, observe that “Friday 13th of April 20017 is precisely such an anticipated public
event and we have argued in the preceding section that an anticipated crash on a specific
date cannot occur. The reason is that each individual trader has an incentive to pre-
empt a proposed synchronized attack on April 13th. However, traders cannot front-run
unanticipated public events and hence, such events can lead to a synchronized attack.
Indeed, even an (unanticipated) increase in the likelihood of a public event alone may
also trigger a crash.

Throughout we will assume that traders who are not already aware of the bubble do
not observe the public event. If the public event serves to make all arbitrageurs aware
of the bubble and this fact is common knowledge then the model become degenerate:
we are back in a world of symmetric information in which the bubble cannot possibly
survive after the public event.

6.1 Unanticipated Public Events

We consider the case where public signals arrive at a constant arrival rate A,. Let
Ap be sufficiently small such that the uncertainty about possible future public events
alone does not trigger an immediate crash. Arbitrageurs who are aware of the bubble
become more and more wary as time goes by. Therefore, they increasingly look out
for signals which might cause the bubble to burst even though these signals are totally
unrelated to the fundamentals. We try to capture this idea by assuming that public
signals are only observed by traders who became aware of the bubble more than 7,
periods ago. Traders who are either unaware of the bubble or only recently became
aware of it do not observe public signals. Alternatively, one can also envision a more
general setting where unaware traders observe the public signal (sunspot) but do not
attribute much importance to it. This more general viewpoint would lead us to a
theoretical discussion of what constitutes the “publicness” of a public event? To avoid
these interesting related theoretical puzzles, we make our assumption about 7,. Note
that the case 7, = 0 captures the special case where all aware traders observe this
public event.
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FEven just the possibility that a public event might occur alters traders’ strategies
and this in turn alters the likelihood that the bubble will burst in the next instant.
Instead of attacking at ¢;+7"*, arbitrageurs already attack at ¢;+7***, where 7*** < 7**.
All traders who directly observe the public event can trade conditional on it. That
is, they can synchronize their actions. If all traders who observe the signal attack the
bubble, the bubble bursts with a strictly positive probability from the viewpoint of each
individual trader. Since the cost of an instantaneous attack is zero, it is optimal for all
arbitrageurs who observe the public signal to sell their assets.'® If the selling pressure
surpasses k, the bubble bursts even though the public event carries no fundamental
news. In Wall Street jargon, the public event serves as a “smokescreen” for the price
correction. If the selling pressure is less than k, the attack fails. This reveals to the
attacking traders that the bubble is not ripe yet and even traders who started attacking
the bubble prior to the public event invest in the market again, thereby strengthening
the bubble.

Analogous to the previous sections we define the function 1 (t|h;) for any equilib-
rium ) to indicate at any time ¢ and for any history of past public events hy, inf;, (¢ — ;)
where the infinimum is taken with respect to set of arbitrageurs who attack at time .
As in the previous section we focus on the equilibrium, where sustained bubbles are
least likely. That is, one for which ™" (t|ht) < v (t|ht) for all ¢, a given history h; of
public events and any equilibrium . For 7, > 7**, public events can be neglected as
the analysis is identical to the one in Section 5. Therefore, we focus our analysis on
the case, where 7, < 7.

Proposition 5 In the ™" -equilibrium as defined above arbitrageur t, always attacks
at the instances of public eventst, > t,+7,. Furthermore, she attacks at allt > t;4+7**"
excepl in the event that the last attack failed in which case she re-enters the market
for the interval t € (Ly,t, + 7 —7,) N (Ly, t; + THF) unless a new public event occurs
in the interim or after t; + VP, At the latter time the density that the bubble bursts
for exogenous reasons or due to another public event is sufficiently high to warrant exit
(even if other traders do not attack).

After a failed attack at the latest public event ?,,, even traders who started attacking
prior to t,, that is, traders with ¢; < ¢, — 7***, buy back shares. Thus, they strengthen
the bubble. Nobody attacks till ¢, + 7*** — 7, after a failed attack at ¢, except if
t >t; + 7' in which case the perceived density that the bubble bursts for exogenous

16Many market timers follow this strategy. For example, Richard Buch of the Seattle-based Mer-
riman Capital Management illustratively notes: “It is like rushing out of a building when you think
there’s a fire. When there isn’t, you go back in rather sheepishly and everyone asks ‘Why are you
so nervous?’ But, once in a while, everyone stays in the building and there actually is a fire. The
real value of market timing is getting out before a big crash.” Financial Times, Weekend November

25/26th, 2000.
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reasons or due to the arrival of a new public event is too high. In short, Proposition 5
illustrates how market sentiment bounces back after a failed attack.

This section highlights the point that it is much more important to focus on news
events that other traders consider as possible price movers than to focus on fundamen-
tals. As pointed out earlier, our analysis follows a more non-classical view which can
be traced back to Keynes (1936).

The analysis also illustrates that increased uncertainty by itself can lead to signifi-
cant price swings. This falls in line with the statement that Wall Street is more afraid
of uncertainty than of the worst outcome per se.!” An increase in the likelihood A,
that a public event might occur in itself can trigger large price movements. Suddenly,
it becomes optimal for arbitrageurs to attack the bubble even though there was no
news event so far. The uncertainty about the timing of a public event can have a
much bigger impact than an anticipated public event. The outcome of the 2000 US-
presidential elections can be viewed in this light. Some people have argued that the
uncertainty surrounding whether Gore or Bush won the election and when it will be
resolved served as a “smokescreen” for the price correction in high-tech stocks that was
anyway necessary. In our model this uncertainty about the timing allows arbitrageurs
to synchronize their actions. This can lead to large price movements, while an antic-
ipated announcement of the winner on Nov 7th, 2000 does not. The new element is
that arbitrageurs can de-facto also coordinate on uncertainty about news.

Our analysis also sheds some light on the fact that there are fads and fashions
in information. For example, trade figures drove the market during the 1980’s. In
contrast, in the late 1990’s Alan Greenspan’s statements moved stock prices, while
trade figures were ignored.

6.2 Price Cascades and Rebounds

The most visible public events on Wall Street are probably large past price movements
or a break through psychological resistance lines. In the model setup so far, we had
eliminated any price impacts by assuming that any selling pressure smaller than xk does
not affect the price path. We now relax this assumption in order to view price drops as
public events. This enables us to illustrate how a large price decline either leads to a
full blown crash or to a rebound. In the latter event the bubble is strengthened in the
sense that all arbitrageurs are ‘in the market’ for some interval, including those who
had previously exited prior to the price shock.

More formally, let a price drop by a fraction v be viewed as a synchronization
device by all arbitrageurs. We assume that this exogenous price drop occurs with a
Poisson density )\; at the end of a random trading round ¢.!® The price drop shakens

i)

17Similar statements: “Wall Street hates a vacuum ...
17th, 2000.

1¥This exogenous price drops are not explicitly model and can for example be due to random mood

as stated in the Economist, Friday, November
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momentum traders’” mood temporarily and they are only willing to take on shares if
the price is less than price after the price drop (1 — «) e?". If the bubble does not burst
in the subsequent trading round, momentum traders regain their confidence and are
willing to sell and buy at a price of €9 until their absorption capacity s is reached.
Consequently, arbitrageurs who exit the market after a price drop receive $ (1 — ) %
per share. Should the synchronized attack after a price drop fail, arbitrageurs can only
buy back their shares at price of e%*. In other words, leaving the market even only
for an instant is very costly. Hence, only traders who are sufficiently certain that the
bubble will burst after the price drop will leave the stock market. More specifically,
Proposition 6 shows that only traders who became aware of the mispricing more than
7, Will choose to leave the market and attack the bubble after a price drop. Notice,
although 7, is derived endogenously for the subgame after a price drop, it serves the
same role as 7, in Subsection 6.1. Consequently, Proposition 6 has the same structure
as Proposition 5.

Proposition 6 There exists a unique symmetric trigger strateqy equlibrium (T;, T****> .
In this equilibrium arbitrageur 1, exils the markel after a price drop at t, if t;, >
ty + 7,. Furthermore, she is oul of the market at all t > t; + 7" except in the
event that the last attack failed in which case she re-enters the market for the interval
te (t;, by + T — T;) N (t;, t; + T’l’p> unless a new public event occurs in the interim
or after t; + 7'V, At the latter time the density that the bubble bursts for exogenous
reasons or due to another public event is sufficiently high to warrant exit (even if other
traders do not attack).

Proposition 6 shows that a price drop which is not followed by a crash leads to a
sudden rebound and temporarily strengthens the bubble. In this case all arbitrageurs
can rule out, that the bubble will burst within (t;,t; T — T;) N (t;,ti + T’l’p>.
Within this time interval, the price grows at rate of g with certainty. Consequently, all
arbitrageurs re-enter the market after a failed attack and buy back shares at a price of
et even if they have sold them an instant earlier for (1 — ) e". As noted earlier the
structure of Proposition and proof is the same as of Proposition 5. In the comparable
case in which )\; = M and 7, = T, T < 7 since after a price drop the first
randomly selected orders are only executed at the price of (1 — 7)€" instead of €9 in
the case of a ‘regular’ public event.

Note that it is important that price drops can also occur prior to time ¢y3. Other-
wise, immediately after a price drop it is commonly known that a bubble exists and a
backwards induction argument starting from ¢, +7 would lead to an immediate collapse

of the bubble.

changes by noise traders.
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7 Conclusion

We confine ourselves to a few brief remarks while referring the reader to the introduction
for motivation and description of our model and its main results.

We have developed a new model which serves both as a general metaphor for dif-
ferences of opinion, information and belief among traders, and, more literally, as a
reduced-form modeling of the temporal expression of heterogeneities amongst traders.
While it is well understood that appropriate departures from common knowledge will
permit bubbles to persist, we believe that our particular formulation is both neutral
and parsimonious. Furthermore, since bubbles have to arise in any possible trading
equilibrium for a wide range of parameter values we consider, our results suggest that
departures from rational prices are persistent, and that bubbles are a robust phe-
nomenon. The model provides a setting in which ‘overreaction’ and self-feeding price
drops, leading to full-fledged crashes, will naturally arise. It also provides a frame-
work which allows one to rationalize phenomena such as ‘resistance lines’ and fads in
information gathering.

Finally we note here that many of the assumptions of our simple model may be
viewed as being conducive to arbitrage. In particular, we assume that all profession-
als are in agreement that assets are overvalued, while arguably there are substantial
differences in opinion even amongst professionals regarding the possibility that current
valuations indeed reflect a new era of higher productivity growth, lower wages and
inflation etc. Presumably incorporating these realistic complications would reinforce
our conclusions.

A Appendix

A.1 Proof of Lemma 3

Let us denote the upper and lower bound of the support of trader ¢;’s beliefs about ¢y
oy [t 5]

upper bound

to <t; =ty : Because traders become aware of the bubble after its emergence.
lower bounds

(i) to>t,—kO =ty ™" for t; — kO > 1 — 7

Suppose t5*" < ¢; — k0, then with a strictly positive probability the mass of traders
attacking at ¢ is sy, ; given our belief restriction that all trader ¢, < L; also attack at {.
This corresponds to the aggregate selling pressure s;, ; > «. In this case, traders would

experience a (strict) price decline at ¢ and thus trader L; has an incentive to attack an
instant earlier. Thus tg™" > ¢; — k0 i () > 0.
In the special case ¥ (t) = 0, trader ¢; cannot attack earlier than ¢; and thus an al-
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ternative argument has to be employed. In this case the bubble can only still exist
prior to t; and sy ¢, > K if at ' sufficiently close to t;, not all ‘aware’ arbitrageurs were
attacking the bubble, i.e. 1 (t) > 0.!" However, this is not optimal for them since all
of them have an incentive to preempt the possible crash at ;.

Suppose ty " > t; — Kk, then the mass of traders attacking at ¢ and thus the corre-

sponding selling pressure is s, ; < k with probability one. Hence, it pays for trader ¢;
to delay her attack. This is the case, since for trader ¢ ; 1t is not possible that sy .+
will jump to k in the next instant. For trader L the maximum increase in S, ;yq4; 1S at
most dt. Consequently, t; — k) = t,"*".

(i) to>t—T =ty fort; — w0 <t—T7

Since the bubble bursts at to+ 7, each trader can immediately infer from the existence
of the bubble at time ¢ that tg >t — 7.

A.2 Proof of Proposition 1

fort —t,< 7 -0k

Since trader t; knows the equilibrium ¢ () function, she is aware that her time lag
between awareness and attacking the bubble is the shortest. GGiven the above Lemma,
when agent £; considers attacking the first time, she thinks that Zo is distributed over
[t; — Ok, t;]. Given that the prior is exponentially distributed with F (tg) = 1 — e o,
the prior probability that to € [t; — Ok, ;] is e *&579%) — ¢~ Since arbitrageurs

become aware of the mispricing in a uniform manner the conditional density of ¢q is
)\ef)\to

therefore given by Y| For ty = t; — 0k the density is Hﬁ For
e

t ’9") (1764\9,4
trader ¢;, the density that the bubble bursts in the next instant is therefore always
smaller or equal to Hﬁ By Lemma 1, it is never optimal to attack at this point if

]n(17 g*i\JrC)
A

ﬁ > g — 1+ c. Since Ok > —
violated.

fort —t,> T — 0k

As 7, =1 —1; approaches T, trader ,’s perceived density that the bubble bursts in the

next instant is at least A = — ;‘(,7 ~,
1767)\(tj7t+7—) 1—e=7=73)

, this necessary equilibrium condition is

which is increasing in 7,. By Lemma

1, trader ¢, attacks never attacks before 7; where #)‘(?77) > g —r +c, that is
—e k2

—r+ec
P G
7] A

smaller than x the bubble does not burst for endogenous reasons.

Since the mass of traders attacking at ¢y + 7 is smaller than and hence

19This argument relies on the seniority condition implied by the definition of a “trading equilibrium.”
It assumes that each attacking trader beliefs that all traders who became aware of the bubble before
her also attack the bubble.
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A.3 Proof of Proposition 3

Proof. Let us conjecture that all rational arbitrageurs leave the market at t; + 7**
Given this symmetric trigger strategy profile, the bubble will burst at ¢t = g+ 7" 4 0k.
Since this is known by all arbitrageurs, they also know that when the bubble bursts
its size is e [1 —(1-0) 67(977’)(7**”“)}. Consequently, we can focus on the attack
condition

A S (g—r)+c
1 — e~ AMttT** +0k—t) — 1 _ (1 _ ﬂ) e—(g—r)(T**+0k)

Rearranging attack for

1y onaiaa-ge o)

E> 4T+ Ok — <§r>+c
p (8= =ATA(Q—ple” (g—r)(7*"+ox)
provided that 7** > 0. Solving for the critical 7" = 7**4-0x—— it |

yields

X1-5)
(g—7)

k%

—In { (g=rte)e " (g-rie)tA }
™ = — 0k

A—(g—r+c) [176’)‘9“]

Hence the bubble bursts at ¢y — g%r In A 5)

} if 7 > 0 and at ty + 0k
otherwise. That is, the bubble bursts at

A—(g—r—+c) [1767)‘0’4]
~In { (1-5) }

(g—r)

to + max < Ok,

—1In (1 — Af}‘(lfﬁ)e*(gfr)f—)}

The bursting time is well defined, since the initial condition 0k < P

Af(gfrJrc)[lfe*)‘@"]
A(1-9)

l
/\
r+c e~ M=
> 0. Notice that for 3 =0, —In l)\ (g ol ]1 {L} >

guarantees that B e

. A—(g— 7’+c) 1 e )‘9“ 1
0k for any Ok since (a) for Ok =0, to+ 0k =19 —In B {g T} and (b)
a{ln{x(gwc)ﬁexen] {ng}}

A(1-8)
For 7; > (<) 7** any arbitrageur ¢, has a strict incentive (not) to attack. By inspec-

(k)
: sy * (g—r)tc
tion of the attack condition (*) 7 (t|t;) > C_ABe @ D] one can see that for

t = to+ 0k + 7, all arbitrageurs who became aware of the mispricing before (after)
t;, it is optimal to be out of (in) the market.
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> 1 for all relevant 0x.
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Lemma 4 There does not exist an_equilibrium in which an agent atllacks prior to
t; + 7%, that is, for any equilibrium ¢, ming ¢ (1) < 7**

Proof. Suppose there exists an equilibrium 17) with ming 1]}(75) < 7*. Consider
the trader at which function 1 (f) achieves its minimum over ¢ and call her ¢;. The

argument can be extended to the case where mlnﬂ/)( ) does not exist. Let us denote
the arg miny 1/)( ) by tand 7 7, the time lag after which trader t; attacks the first time.

Step 1: There exists a sequence t" — £ = t + T] s.t. 1/) (ﬂ
Lemma 3 shows that the support of arbltrageur t S posterlor of to hastobe |t [ — Ok, t; }

Le. Pr; (to € [ — Ok, 1, } ]Ft, tj, t) = 1 in any equilibrium. Recall F} denotes the event
where the bubble does not burst prior to t. Suppose that lim inf{p(t)ﬂfp(tj) =T+,
then trader ij’s support for the distribution of £, would be [tNJ — 0k — f(n) ,tj}, with
J(n) > 0. That is, he could not infer from the existence of bubbles that ty > ¢; — 0k,
which contradicts Lemma 3.

Step 2: Recall that 1 (1) refers to the attacking trader who is the last to become aware
of the bubble. Let us denote her ex-ante payofl {rom attacking at s >t by V; (s|¢/) and
the marginal payoff change from delaying to attack by,

avi (s|y)

o(thy) = S48

s=t

Instead of focusing on the interim expectations Fy, [Vi|t;, F;] conditional on the exis-
tence of the bubble, it is more convenient to focus on the ex-ante expectations V;. This
can be done without loss of generality since for the event Iy, that is, for the case that
the bubble has already burst, the decision is irrelevant because the payoff is a constant
ZETO.

Y™ (t) = 7 for all ¢, corresponds to the equilibrium where all traders attack after 7**
17) () corresponds to potential alternative equilibrium which is described by the attack
strategies . 5 5

At { := argmin, ¢ (1), trader ij attacks after a time lag of 7 := 7; = min, ¢ (¢) periods.
If every trader were to attack after 7, then the function ¢ (t) = 1 for all ¢, describes
the corresponding outcome. N

Since 1** (t) describes an equilibrium (and assuming differentiability), the marginal
payoff of waiting conditional on the event F} that the bubble still exists, is zero. That
is v (L|y™") Pry=+) (Fi) = 0. Since Pry=+y (F;) > 0, the ex-ante marginal payoff is also
v (t]Y™) = 0.

Suppose each arbitrageur were to attack 7 periods after she becomes aware of the bub-
ble. In this case the endogenous selling pressure at ¢ in the -strategy profile would
coincide with the endogenous selling pressure in the ¢**-equilibrium at t + 7** — 7.
However at t + 7** — 7 each arbitrageurs estimate of the size of the bubble is strictly
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larger than the estimates at {. Thus v (]t) Pryw (Ft) > v (¢™) Pryeqy (F) = 0.
That is v (t|v) > 0.

Step 1 of the proof showed that the candidate equilibrium described by 1]} () has the
property that there exists a sequence " /¢, ¢ (t") \ ¢ (t) =¥ (1) = T.

For any sequence t" /' t and 9 (™) "\ " (1), v (t"]ﬁ)) — v (2]17)5

Hence, there exists a ¢ > 0, s.t. forallt € (t —¢,1), v (thz)) > 0. In words, in the po-

tential equilibrium &, trader ¢; has a strict incentive to delay attacking. Consequently,
there does not exist any ¢ equilibrium, with 7 < 7**.

A.4 Proof of Proposition 5

Proof.

Attack at public events

From each arbitrageur’s point of view, a bubble bursts with strictly positive probability
at each ¢, if others attack at ¢,, too. Given this belief and the fact that an instanta-
neous attack is costless, it is always an equilibrium that each trader who observes the
public event attacks the bubble at ¢,,.

Prior to arrival of public events

Prior to ¢y + 0K+ 7, the public event is only observed by less than x traders and thus it
has no impact on the bubble. Irom ¢y + 0k + 7, onwards each public event bursts the
bubble. That is, the bubble can also burst due to public events with an additional Pois-
son density of A, from to+0r+7, onwards. No arbitrageur ¢, knows ¢y and the perceived
density that public event occurs which bursts the bubble is A, F' (t > to + 0k + T,L;, 1).
Recall that F'(t > tg + 0k + T,|t;,t) is the probability that ¢ > tg+6x+7,. The attack
condition generalizes to

A
1 — e AMtitT = +0r—t) [1 -(1-7

FAF (t > to + Ok + Tyt t) [L— (1= B) B [e OOt 4] (1 — ayse)
> (g—r)+ec

If the bubble bursts at 7** 4 0k only, then its size is €% [1 - (1-7) e*(Q*T)(T**“r@’f)}
which is reflected in the first term. If on the other hand the bubble bursts prior
to this date, due to the arrival of a public event trader t,’s expected size is e9*[1 —
(1 — B) Ble~ o)t #]]. The advantage of attacking prior to the public event has
to be multipied by (1 — a,4), since a trader can still leave the market at the pre-crash
price with probability a, ; even after the public event. Notice that a,; is the (expected)
fraction of orders executed at the pre-crash price Kk — F [% (t —to — 7°*) |ts, t} over all

orders submitted immediately after a public event % (7% — 7).

el on)]

*

Rather than attempting to solve for 7*** in closed form, we show that 7" ex-

ists and 7" < 7. Consider the following procedure of iterative removal of trigger
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strategies. Suppose attacking from ¢; + 7! onwards is a best response to the conjecture
that other agents never attack. Note that 7! < oo since the bubble bursts latest at
to + T for exogenous reasons. Suppose attacking from ¢; + 7" is a trigger best response
to the conjecture that all other agents attack from ¢; + 7" ! onwards. By restrict-
ing arbitrageurs beliefs about others’ strategies to symmelric trigger strategies, the
strategies become strategic complements. Therefore the sequence (77) is weakly de-
creasing. Let 7 := lim,, ., 7". Since agents’ payoff are continuous in the times at
which they attack, it follows that the strategy profile in which all agents attack at 7***
yields a perfect Bayesian equilibrium. More formally, let the payoff of attacking from
t; + 7; onwards given that all others attack after 7_; be denoted by V (7;|7_;). By
definition V (7|7 1) — V (7|7~ 1) > 0 for all 7. By continuity of V (), for n — oo,
lim,, o V (7**|7**) = V (7]7***) > 0.

It is easy to see that 7*** < 7**. For the special case where there are no public events,
that is when A, = 0, the attack condition is identical to the one used in Proposition 3
and hence 7*** = 7**. For A, > 0, the incentive to exit the market is strictly higher for
each arbitrageur. Consequently, 7%** < 7%,

Strategy after failed attack

A failed attack at t, reveals that ¢y > ¢, — 7, — O, since less than k arbitrageurs
attacked. Given the strategy to attack with a delay of 7"** periods, fewer arbitrageurs
would attack prior to ¢t =t, + 7*** — 7, than at ¢,. Consequently, the bubble will not
burst till ¢, + 7*** — 7,. All arbitrageurs, who observed the failed attack at ¢, know
this and thus re-enter the market and ride the bubble till ¢, + 7*** — 7,,, modulo the
qualifications below. After ¢ = ¢, + 7" — 7, the analysis coincides with a setting
without a public event at ¢,. It should be noted that there are two exceptional cases
where arbitrageurs leave the market again prior to ¢, + 7"** — 7,,. Iirst, they attack
again should a new public event occur and secondly after ¢ = ¢, +771, when the density
that the bubble will burst for exogenous reasons or due to another random public event
is so high, that the arbitrageur wishes to exit the market.

A.5 Proof of Proposition 6

Lemma 5 There exists a T, such that all traders t; who became aware of the mispricing
prior to U, — 7, leave the markel and all other arbitrageurs stay in the stock market.

Proof. Let us denote 7"*** the time elapsed after which trader leave the market

% Exiting the market after a price drop is

in the absence of price drops attack 7
optimal if and only if

IT (t|t;) (L =) e’ = Elut, t;]] e, + (1 =T (t]t;)) [(1 — ) e — €] > 0.

T (t;]t» denotes the trader Z,’s probability that the bubble will bursts after a price
drop at ;. If the bubble does not burst, then all arbitrageurs sell their shares at
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the price of (1 — v)e%. If the bubble does burst, [/{ — % (t; —ty — T****ﬂ orders are

executed at (1 — ) e while the remaining orders are executed at a price equal to v;.
Gﬁf(t;)*tofﬂ'****)

I kokok ok
’Tp T

The term o, , = reflects the fact that only the first randomly selected

order are executed at (1 — 7) e?". Rearranging the attack condition yields

v
— Eludttd

I (¢ ’ti >
(p ) Oé;)’t_|_fy<1—oé;,,t> Qp,t ™ eat

Given the conjecture that all ¢-arbitrageurs with ¢; > ¢, — 7, are out of the mar-
ket, IT (t;]t» =I (to <t—0k— T;]t,tz) which is decreasing in ;. Since futhermore
E [v|t, t;] is increasing in t;, there exists a critical level 7, such that for all arbitraguers
with ¢; < t; - T; the attack condition is sastified and for all ¢; > t; — T; not, thereby
validating the conjecture.
Proof of Proposition 6.

After establishing the critical value 7, in Lemma XX, the remaining proof of Propo-
sition 6 is analogous to the proof of Proposition 5. The only difference is that after
the price drop, the first orders are only executed at a price of (1 — «y) e?* instead of the
pre-crash price e¥t.
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