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Abstract

This paper proposes and analyzes a model with boundedly rational features in which

the decision-maker (DM) behaves like an economist who builds a simplified representation

of the world. Crucially, this representation is “sparse,” i.e. uses few parameters that are

non-zero, or differ from the usual state of affairs. The DM may imperfectly maximize,

based again on a penalty related to sparsity. The lack of sparsity is formulated so as to

lead to well-behaved, convex maximization problems. The model is a tractable algorithm

that can be applied with paper and pencil in many situations of interest. I apply it to

a variety of prototypical economic situations: hitting a target with selective attention;

picking a consumption bundle, but with imperfect understanding of price; optimal pricing

with boundedly rational consumers —which, when paired with optimal response by firms,

generates a novel mechanism for price rigidity; life-cycle consumption and investment

problems; failures of Euler equations; portfolio choice problems with stocks and flows; the

“aquiring a company”problem; dollar auction game. I conclude that the model may be

a useful proposal for tractable analysis of bounded rationality in economic situations.
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1 Introduction

This paper proposes a tractable model with boundedly rational (BR) features. It is designed

to be easy to apply in concrete economic situations.

Its principles are the following. First, the decision-maker (DM) in the model is not the

rational agent model, but is best thought of as an economist building a model of the world (a

model-in-model or MIM). He builds representations of the world that are simple enough, and

thinks about the world through his partial model. Second, and most crucially, this represen-

tation is “sparse,” i.e. uses few parameters that are non-zero, or differ from the usual state

of affairs.1 I draw from the fairly recent literature on statistics and image processing to use

a notion of “sparsity”that still leads to well-behaved, convex maximization problems. Third,

maximization can itself be imperfect, with a penalty that also increases as the action taken

becomes too different from the default action, and it relies on the same sparsity criterion.

The DM, like an economist, simplifies his model of the world. For instance, he assumes

that some parameters are just irrelevant (when they can, strictly speaking, matter a bit), and

that some variables are deterministic rather than random. He assumes convenient distributions

rather than the messiness of reality: e.g., he might assume a distribution with two outcomes

rather than a continuum of outcomes. He models that variables are uncorrelated when they

are not exactly so. These choices are controlled by an optimization of his representation of the

world.

To motivate the model, I first consider the “quadratic target”problem: the DM wishes to

target the sum of many variables, but does not wish to think about all of them. By Taylor

expansion, this is a prototypical toy model for many optimization problems. I study how to

state the cost of enriching the representation. Following antecedents in statistics and applied

mathematics (Tibshirani 1996, Candès, and Tao 2006, Donoho 2006), I show that one is par-

ticularly appealing: the `1 norm, i.e. the sum of absolute values of the non-zero updates in the

variables. Why? First, a quadratic cost would not generate sparsity: small updates would have

a miniscule penalty, hence under that model the DM would have non-sparse representations.

Second, a fixed cost per variable would give sparsity, but lose tractability; fixed costs lead

to non-convex problems that make the solution very complicated in general. Instead, the `1

penalty both gives sparsity, and maintains tractability. Hence, in this quadratic loss problem,

it is useful to have the penalty for lack of sparsity be the `1 norm. The model generates

inattention to many variables, and dampened attention to some, as well as sparsity, so that we

are on the right track.

1The meaning of “sparse” is that of a sparse matrix or vector. For instance, a vector in θ ∈ R100,000 with
only a few non-zero elements is sparse.

2



The unweighted `1 criterion, used in the basic quadratic target problem, cannot work in the

general case: for instance, dimensions might not comparable —e.g., the units could be different.

I study how to generalize it. It turns out that, under some reasonable conditions, there is

only one unique algorithm that (i) penalizes the sum of absolute values in the symmetrical

quadratic target problem and (ii) is invariant by changes in units and various rotations of the

problem. This is the algorithm I state as the “Sparse BR”algorithm. Hence, basic invariance

considerations lead to an algorithm that is fairly tightly constrained .

In addition, the algorithm features just a fairly simple optimization problem, so it is easy

to apply.

I apply the model to a variety of situations. I study consumption and investment problems.

The agent will pay reduced or no attention to a great many variables. This generates systematic

deviations from Euler equations: they point towards inertia, as agents will react in a dampened

way to many future variables. DMs react more to news about the present than to late news

about the future. The marginal propensity to consume out of current income is higher than out

of future income. This is much like Thaler’s “mental accounts.”The covariance of consumption

with most things will be low, because of the dampening due to lack of attention, so that

measured elasticity of substitutions will be low and measured risk aversion will be high.

I consider an agent buying a bundle of n goods, with an imperfect attention to all prices.

The model generates a zone of insensitivity to prices: when prices are close to the default, the

DM does not pay attention to them. I then study how a firm will optimally price goods sold

to such BR consumers. It is clear that it will not choose just any price strictly inside the zone

of consumer inattention: it will rather pick a price at its upper bound. Hence, a whole zone

of prices will not be picked by firms. Even as the marginal cost of goods changes, there will

be a zone of complete price rigidity. In addition, there is an asymmetry: there will be discrete

jumps downwards of the price sometimes (“sales”), but not corresponding jumps up from the

normal price. Hence, we get a tractable, BR-based mechanism for price rigidity.

I also show how the model gives rise to first-order risk aversion and the endowment effect.

The size of the effect depends on how uncertain the good is. This is a difference from prospect

theory, where the size of the effect depends only on the hedonic value of the good. Hence, the

model explains why more experienced traders (List 2003) exhibit a much weaker endowment

effect.

I explain how the model accounts for a series of notions about bounded rationality. For

instance, the model generates epiphanies, i.e. sudden realizations of a possible state of the

world. It also generates a greater tendency to adjust one’s portfolio by adjusting flows rather

than stock allocations: i.e., an investor concerned that equity might be overvalued will stop

buying new shares altogether (or buy fewer new shares with fresh cash), rather than sell equities
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in his existing portfolio. Indeed, this suggests that empirically the difference between flow vs.

stock allocation is particularly diagnostic of the outlook of BR investors.

Besides studying those economic models, or components of models, I also apply the model

to some canonical laboratory games. I point out that the model is useful to interpret the

experimental evidence: the “acquiring-a-company”game, the centipede game, the “buy a dollar”

game.

Near the end of the paper, I describe a series of potential enrichments of the model. One is a

model with constraints. I also discuss what to do when the underlying spaces are discrete rather

than continuous, or when there are “domination”patterns that might (or not) be detected by

the DM. These are extra tools that the DM might use in some cases. Still, a lot of the basic

economics can be studied with the most basic framework.

Another extension is to multi-agent problems. To a large extent, I glue the basic Sparse-BR

model to the existing ideas from the k−levels of reasoning literature (Stahl 1998, Camerer, Ho,
and Chong 2004, Crawford and Iriberri 2007).

This paper tries to strike a balance between psychological realism and model tractability.

The goal for the model is to be applicable without too much trouble, and at the same time to

capture some dimensions of bounded rationality.

The central elements of this paper —the use of the `1 norm to model bounded rationality,

the accent on sparsity, and the sparse BR algorithm —are, to the best of my knowledge, novel.

I defer the discussion between this paper and rest of the literature to later in the paper, as it

is best discussed when the reader knows the key elements of the model.

The plan of the paper is as follows. Section 2 motivates of the model, in the context of

a stylized model where the goal is to hit a target. Section 3 states the main model. Section

4 applies the main model to a few applied problems. One is how a BR consumer picks a

bundle of n goods, but doesn’t completely process the vector of prices. I also work out how

a monopolist optimally sets prices given such a consumer: we will get a novel source of real

price rigidity, along with occasional “sales” with large temporary changes in prices. It also

shows how the model generates an endowment effect. Section 5 shows how the idea of different

representations applying to simplifying random variables and categorization, using the language

of “dictionaries” from the applied mathematics literature. Section 6 extends the model to

multiple players. Section 7 indicates various enrichments of the model and makes the link with

existing themes in behavioral economics. Section 8 discusses the limitations of this approach

and concludes.
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2 A Motivation: Sparsity and `1 Norm

We are developing a model where agents have sparse representations of the world, i.e. many

parameters are set at “0”, the default values. To fix ideas, consider the following decision

problem.

Problem 1 (Choice Problem with Quadratic Loss). The random variables xi and weights qi
are freely available, though perhaps hard to process. The problem is: Pick a to maximize

u (a, q, x) =
−1

2

(
a−

n∑
i=1

qixi

)2

(1)

If xi’s are known, the optimal action is a (q) =
∑n

i=1 qixi. However, we want to model

an agent that cannot think about all these dimensions. He will just think about “the most

important ones.”Hence, he will think about a (θ) =
∑
θixi for some vector θ, that endogenously

has lots of zeros, i.e. is “sparse.”The expected loss is: L = E [u (a (q))− u (a (θ))], i.e., assuming

for simplicity that the xi are i.i.d. with mean 0 and variance 1:

L =
1

2

n∑
i=1

(θi − qi)2 .

We will set the choice of θ as an optimization problem:

min
θ∈Rn

1

2

∑
i

(θi − qi)2 + κ
∑
i

|θi|α (2)

One natural choice would be α = 2. Then, we obtain − (θi − qi)− 2κθi = 0 i.e.

θi =
qi

1 + 2κ
(3)

We do not get any sparsity: all features matter, with a small or large qi. We just get some

uniform dampening. Hence, we seek something else.

Another natural modelling choice is α = 0, with the convention |θ|α = 1θ 6=0, i.e. there’s a

cost κ for each non-zero element. Then, the solution is:

θi =

{
qi if |qi| >

√
2κ

0 if |qi| ≤
√

2κ
.

We do obtain sparsity. However, there’s a big cost in terms of tractability. Problem (2) is

not convex any more when α = 0 (it is convex if and only if α ≥ 1). Its general formulation
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Figure 1: The τ function.

(minθ∈Rn F (θ) + κ
∑

i 1θi 6= 0, for a convex F ) it is very hard to solve —it is NP-complete in

the terminology of complexity theory (the naive solution would be to study the 2nθ subsets of

non-zero elements of θ). It requires studying cases, so it considerably hampers tractability.

This leads to consider the problem with α = 1, as argued in the recent signal-processing

literature (Tibshirani 1996, Donoho 2006, Candès, and Tao 2006). Then problem (2) is convex.

Let us solve it. Differentiating (2), we have:

− (θi − qi)− κ · sign (θ) = 0 (4)

Let us solve (4) when qi > 0. When the solution is θi > 0, we obtain θi = qi−κ, which requires
qi > κ. When 0 ≤ qi ≤ κ, θi = 0. In general we have:

θi = τ (qi, κ)

for the truncation or “soft thresholding”function τ defined as follows and plotted in Figure 1.

Definition 1 The truncation function τ is

τ (y, κ) = (|y| − κ)+ sign (y) (5)

i.e.

τ (y, κ) =


y − κ if y ≥ κ

y + κ if y ≤ −κ
0 |y| < κ

(6)

We summarize the situation in the following Lemma.

Lemma 1 For A > 0 and K ≥ 0, the solution of

min
θ

A

2
(θ − q)2 +K

∣∣θ − θd∣∣
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is

θ = θd + τ

(
q − θd, K

A

)
where τ is the truncation function given in (5).

Proof. By shifting θ → θ − θd, q → q − θd, it is enough to consider the case θd = 0. The

f.o.c. is

θ − q +
K

A
sign (θ) = 0

That is, θ = τ (q,K/A).

Hence, we do have some sparsity: all terms that have |qi| < κ are replaced by θi = 0. For

qi > κ, we get θi = qi − κ, so there’s a bit of dampening. 2

The conclusion is that we can use the `1 norm, i.e. the one that corresponds to α = 1 in

(2), to generate sparsity.

I next generalize the model this sort of idea to more general functions.

3 The Basic Model

To clarify the ideas and the exposition, I start with problems with just one DM.

3.1 Model Statement

There is an action a ∈ Rna , a representation θ ∈ Rnθ , and a state of the world x ∈ Rnx , and
noise realized later ε ∈ Rnε, and a value functionW (a, q, x, ε), W : Rna×Rnq×Rnx×Rnε → R.
The state of world is distributed with a known probability Px and, that given, the noise is
distributed with probability Pε|x.
Suppose the DM wishes to maximize maxa E [W (a, q, x, ε)], where the expectation is over

the realizations of ε. The true value of the parameter is q, but people will build their model

with a simpler representation θ. There is a default ad ∈ Rna and θd ∈ Rnd .
There is a prior knowledge of the normal variations in the action, represented by a random

variable ηa, and in the representation, represented by ηθ, discussed below.

2Also, it is easy to see that, θ has no more than ‖q‖1 /κ non-zero components.
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We will use the operators on a function f (a, θ):

(∆θif) (θ) =
(
θi − θdi

)
∂θif (θ) (7)

(∆aif) (θ) =
(
ai − adi

)
∂aif (θ) (8)

(∆ηθf) (a) = ηθ · ∂θf (θ) (9)

(∆ηaf) (a) = ηa · ∂af (a) (10)

The notation ∂af (a) is the differential of f at point a and the dot · is the vector product; for
instance, ηa · ∂af (a) =

∑
i ηai

∂f
∂ai

(a).

For X a random variable, I define:

‖X‖α = E [|X|α]
1/α (11)

for α ≥ 0, with the convention that ‖X‖0 = 1X 6=0 and ‖X‖∞ =esssup |X|. It is a norm when

α ≥ 1, as shown by Minkowski’s inequality. We will consider expressions such as
∑

i |θi| ‖Xi‖α =∑
i ‖θiXi‖α as they combine the important `1 feature that generates tractable sparsity (the |θi|1

terms), and the convenience of the general ‖Xi‖α norm, in particular with α = 2.

This paper proposes that the following algorithm is a useful model of agents’behavior. It

may be called the “Sparse Boundedly Rational”algorithm, or “Sparse BR”for short.

Algorithm 1 (Sparse BR Algorithm) To solve the problem maxa Ex [W (a, q, x, ε)], the agent

uses the following two steps:

1. Optimize on the representation of the world. Using the realism loss matrix Λ:

Λ = −Ex,ε
[
WaθW

−1
aa Waθ

]
(12)

evaluated at
(
ad, θd

)
, averaged over the realizations of x and ε, determine the parame-

trization θ of the “model-in-model”or “representation”used by the agent as the solution

of:

max
θ
−1

2
(θ − q)′ Λ (θ − q)− κ [θ] . (13)

The first part is a measure of expected losses from a poor simulation, while the second

part is the complexity cost of the representation,

κ [θ] = κθ
∑
i

‖∆θi∆ηaW (a, θ, x, ε)‖α (14)
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2. Optimize on the action. Maximize over the action a:

max
a
Eε [W (a, θ, x, ε)]− κ [a] , (15)

where the expectation is over the realizations of ε, and where the complexity cost of the

action, κ [a], is:

κ [a] = κa
∑
i

‖∆ai∆ηθW (a, θ, x, ε)‖α . (16)

Let me comment on the parts of the model.

First-Pass Intuition for the model When κθ = 0, the DM’s model of the world is the

correct one: θ = q. When κa = 0, the maximization is perfect, conditional on the model-in-

model.

For many applications, it might be enough to just turn on either step 1 or step 2 of the model.

In most of this paper, step 1 only will be turned on; i.e., I will assume perfect maximization

given the representation of the world (κa = 0).

When cognition costs κ are non-zero, the model exhibits inertia and conservatism: the

model-in-model (MIM) is equal to the default, and the action is equal to the default, when κ

is very large. For smaller κ, the model is neither at the default nor at the costless optimal, but

typically in between.

Units and scaling Sparsity penalties κθ and κa are non-dimensional. The model has

the right units: equations (12)—(16) all have the dimensions of W . Also, the equations are

independent of the units in which the components of θ and a are measured. However, the

model is not invariant to the representations of the world θ: some will be better for the agent

than others. That is probably a desirable feature of the model.

Values of ηθ and ηa Variables ηa and ηθ in part ensure that the model has the right

units and scaling properties. They are typically not crucial in applications. When they’re one-

dimensional, we can have ηa = σa. To close the model, we can say that ηθ simply follow the

distribution of q, and a follow the distribution of ad (q, x), for instance.

Why is the model set this way? The algorithm is written, first of all, to have some

descriptive realism. That will be argued in the rest of the paper. Also, it was designed to be:

(i) equivalent to the discussion done in Section 2 for the quadratic problem; this is because

smooth problems are locally equivalent to the quadratic target problem. The next subsection

indeed shows that equivalence
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(ii) dependent on ∂aW , but not W directly: as the DM seeks a, the algorithm should

arguably return the same answer whether we maximizeW (a, θ, x, ε) andW (a, θ, ε)+G (θ, x, ε)

for an arbitrary function G. The use of ∂aW (or, in slightly disguised form, ∆ηa for the non-

differential case) cancels the function G throughout the model

(iii) still, dependent only on no derivative higher than the second derivatives. That’s to

keep the model simple and in some sense independent (at least locally) of various details like

the third derivatives

(iv) invariant to the units of the components θ and a.

The Proposition, proven in the Appendix, says that there is a unique algorithm that satisfies

the above four criteria. In that sense, the model is tightly constrained. The equation (14) is

rather necessary.

Proposition 1 Suppose that the determination of θ is

max
θ
−1

2
(θ − q)′ Λ (θ − q)−K

(
θi − θdi , ηa,Waθi ,Waa,W

)
(17)

for a penalty function K evaluated at the values of W and its derivatives at point
(
ad, θd

)
.

Suppose also that K satisfies:

(i) The value of K is unchanged under linear reparametrizations of θi (for i = 1...nθ) and

of a: for all λi ∈ R, and A ∈ Rna×na,

K (λiθi, A
′ηa,Waθi ,Waa,Wa,W ) = K (θi, ηa, λiAWaθi , AWaaA

′,W ) (18)

(ii) Give two scalars b and c, a change W (a, θ)→ bW (a, θ) + c simply multiplies K by b.

(iii) When the cost function K is evaluated with: W = −1
2

(a− θ · x)2, ‖xi‖ = 1 for all i,

and ‖ηa‖ = 1 we have

K = κθ
∑
i

|θi| . (19)

Then, we have the penalty of θ must be the one in Step 1 of the Algorithm 1, i.e.

K (θi,ma,Waθi ,Waa,Wa,W ) = κθ
∑
i

‖∆θi∆ηaW‖ .

Proposition 1 justifies in some sense Step 1 of the algorithm. We match the basic quadratic

targeting of the earlier section, and the model satisfies scale invariance. That leads to the

formulation of κ [θ] in Step 1 of the algorithm. 3

3Note that the K function cannot depend on Wa, as this value is generally be 0 in the default policy.
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Step 2 is justified, heuristically, by using the idea that penalties for changing one’s repre-

sentations and penalties for changing one’s action are treated symmetrically. This is why (16)

is simply the rewriting of (14) by changing the roles of actions and representations.

The above might be a formal nicety, or perhaps it might reflect something slightly deeper

in people’s decision-making: The “basic” algorithm would be given by the penalty (19), and

then the mind would simply use the core algorithm after rescaling for the particular units of a

situation. That leads the mind to the algorithm (14).

Before enriching the model, we apply it to a concrete problem, so we can better see how it

works.

3.2 Application: Quadratic Target Problem

3.2.1 Applying the Sparse BR Algorithm

We detail the application of the model to the quadratic target problem. The value function is

W (a, θ, x, ε) =
−1

2
(a− θ · x− ε)2

The agent has access to a vector of information x, while ε is not known in advance. θ is the vector

of weights to put on x, whose true value is q. The problem is to maximizemaxa Ex [W (a, q, x, ε)].

Instead, the agent will use W (a, θ, x, ε), with θ possibly sparse: θi = 0 corresponds to not

thinking about dimension i. The DM’s response is as follows (the proof is in the Appendix).

Proposition 2 (Quadratic Loss Problem) In the quadratic optimization problem, the represen-

tation is

θi = θdi + τ

(
qi − θdi , κθ

σa
‖xi‖

)
(20)

and the action taken is:

a = ad + τ

θ · x− ad, κa√∑
i

σ2
θi
v2
xi

 (21)

When κθ = 0, θ = q, and when κa = 0, a = θ · x.

Equation (20) features anchoring on the default value θdi , and a partial adjustment towards

the true value qi: θi ∈
[
θdi , qi

]
.

DMs do not deviate from the default iff |qi| ‖xi‖ < κθσa, i.e. when “dimension i cannot

explain more than a fraction
(
κθ
)2
of the variance of action a”. It is the relative importance of
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attribute i in decision a that matters for whether or not the DM will pay attention to attribute

i, not its absolute importance in terms, say, of a dollar payoff.

The total amount of attention concerning decision a is the same whether a is very important

or less important; this is a correlated from the fact that the model is scale-invariant inW . People

will pay attention to say 80% of attributes, whether it is for a small decision (e.g. buying at

the supermarket) or a big decision (e.g. buying a car of a house). Some evidence consistent

with that is presented by Samuelson and Zeckhauser (1988). I conjecture that it is a good

benchmark. It would be good to evaluate this feature empirically.4

Equation (21) indicates that, when there is more uncertainty about the environment, the

action is more conservative and closer to the default : when
√∑

i σ
2
θi
v2
xi
is higher, a is closer

to ad. In the model, for a given amount of information (θ · x) the power of default is higher
when there is more residual uncertainty in the environment. That might be testable in the rich

literature on defaults (Madrian and Shea 2001).

We can venture a word about the calibration. As a rough baseline, we can imagine that

people will search information that accounts for at least ξ2 = 25% of variance of the decision,

i.e. if |qi| ‖xi‖ < ξσa. Then, using (20), we find κθ ' ξ. That leads to the baseline to κθ ' 0.5.

By the same heuristic reasoning, we can have as a baseline κa ' 0.5.

To conclude, the model generates inattention, inertia, that respond to the local (i.e., for

the decision at hand) costs and benefits. Let us now explore the model’s consequence in a few

applications.

4 Some Applications of the Model

4.1 Choosing n Consumption Goods

We next study a basic, static consumption problem with n goods.

Problem 2 Suppose that the vector of prices is p ∈ Rn++, and the utility function is quasi-linear

in money. The frictionless decision problem is maxc∈Rn u (c)− λp · c.

The vector of prices is pd + q, where pd is the usual price, and q is some change in the price.

For instance, in the experimental setup of Chetty, Looney, and Kroft (2009), q could be a tax

added to the price. The DM may pay only partial attention to the change in price, and consider

that the price of good i is p (θ)i = pdi + θi.

The utility function is quasi-linear in money, but that will be relaxed in section 7.1.1.

4One could change that prediction by some choice of κ, though that would take us here too far afield.
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We calculate

Wci = ui − λ
(
pdi + θi

)
, Wcicj = uij, Wciθj = −λ1i=j

Hence, the components of the loss matrix are Λii = λ2

−uii in two cases: first, if the utility function

is separable in the goods (u (c) =
∑

i u
i (ci)), or, for a non-separable utility function, if we apply

the algorithm with the “key action”(Section 7.1.3) (the key action for pi is ci).

Calling σci = ‖ηci‖, the allocation of attention is:

min
θ

∑
i

λ2 (θi − qi)2

2 |uii|
+ κλ |θi|σci

hence we have

θi = τ

(
qi,
κ |uii|σci

λ

)
= τ

qi, κui
∣∣∣ ciuiiui

∣∣∣ σcici
λ


and using ui = λpi, and calling ψi = ui/ (−ciuii) the price-elasticity of demand of good i, we
obtain:

θi = τ

(
qi, κ

piσln ci

ψi

)
(22)

To go further, we examine the case where preferences are separable, so that the f.o.c.

ui (ci) = λpi implies that a change in price dpi implies uiidci = λdpi, so that |uii|σci = λσpi,

hence:

θi = τ (qi, κσpi) (23)

We see that the price inertia is independent of much of the utility function (e.g., it’s inde-

pendent of the elasticity of the good): it’s solely dependent on the price of the good.

Equation (22) says that that controlling for the volatility of consumption, inattention is

larger for less elastic goods. The intuition is that for such goods, the price is actually a small

component of the overall purchasing decision (whose range is measured by σln ci). Equation

(23) says that to be remarked, a given price change has to be big as a fraction the normal price

volatility. It would be good to test those predictions. Chetty, Looney and Kroft (2009) presents

evidence for inattention, but do not specifically test a relation like (22) and (23).

4.2 Optimal Monopoly Pricing and a BR-Induced Price Stickiness

and Sales

I next study the best response of a monopolist to the behavior of a monopolist facing the

BR consumer who has the utility function u (y,Q) = y + Q1−1/ψ/ (1− 1/ψ) for money y and
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consumption Q of the good5 So if the price is p, the demand is D (p) = p−ψ, where ψ is the

demand elasticity. The consumer uses the sparse BR algorithm; by the previous analysis, his

demand will be:

DBR (p) = D
(
pd + τ

(
p− pd, κ

))
(24)

where, by (22), κ = κθpiσlnQ/ψi. Hence, the consume is insensitive to price changes when

p ∈
[
pd − κ, pd + κ

]
.

The monopolist’s picks p to maximize profits, maxp (p− c)DBR (p), where c is the marginal

cost (in this section, to conform to the notations of this the optimal pricing literature, c is a

marginal cost, while consumption is indicated by Q). The following Proposition describes the

optimal pricing policy:

Proposition 3 With a BR consumer, the monopolist’s optimal price is

p (c) =


ψc+κ
ψ−1

if c < c1

pd + κ if c1 ≤ c ≤ c2

ψc−κ
ψ−1

if c > c2

(25)

where c1 = cd −
√

2cdκ
ψ−1

+ O (κ) solves equation (47), c2 = cd + κ, with cd = (1 − 1/ψ)pd. The

pricing function is discontinuous at c1 and continuous elsewhere.

Let us interpret Proposition 3. When p ∈
(
pd − κ, pd + κ

)
, the demandDBR (p) is insensitive

to price. Hence, the monopolist won’t charge a price p ∈
(
pd − κ, pd + κ

)
: she will rather charge

a price p = pd + κ. Hence, we get a whole intervals of prices that are not used in equilibrium,

and much bunching at p = pd + κ. There, price is independent of marginal cost. This is a real

“stickiness”, and can be a nominal one too. This effect is illustrated6 in Figure 2. We see that

a whole zone of prices are not used in equilibrium: there is a gap distribution of deviations of

prices from the norm. For low enough marginal cost c, prices fall discretely, like a “sale”.

The cutoff c1 is asymmetric. It deviate from the baseline cd as a square root of the cost.7

This simple model seems to account for a few key stylized facts. Prices are “sticky”, with

a wide range insensitive to marginal cost. This paper predicts “sales”: a temporary large fall

5Previous work on rational firms and inattentive consumers include L’Huillier (2010), using differently-
informed consumers, and Matejka (2010), using a Sims-type entropy penalty. Their model is quite different
from the one presented here in both assumptions and results.

6The assumed values are ψ = 6, cd = 7.1, κ = 0.025pd. They imply pd = 8.5, κ = 0.22, p
(
c−1
)
= 7.46,

p (c2) = 8.7.
7There is also a more minor effect. For very low marginal cost, consumers don’t see that the price is actually

too low: they replace p by p + κ. Hence, reacts less to prices than usual (demand is less elastic), which leads
the monopolist to raise is prices. For high marginal cost, consumer replace the price by p− κ, so their demand
is more elastic, and the price is less than the monopoly price.
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Figure 2: Optimal price as a function of the marginal cost. In the range (c1, c2] = (6.2, 7.3] the
price is independent of the marginal cost.

in the price, after which the price comes back exactly where it was (if c goes back to [c1, c2]).

This type of behavior documented empirically by Kehoe and Midrigan (2010). In addition, the

model says that the typical size of a sales will be p (c2)− p
(
c−1
)
, i.e., to the leading order

p (c2)− p
(
c−1
)

=

√
2κψpd

ψ − 1
=

√
2κθσlnQp

d

ψ − 1
(26)

where we use κ = κθpiσln ci/ψi for the last equality.

Hence, the model makes the testable prediction that the gap in the distribution of price

changes, and the size of sales, is higher for goods with high consumption volatility, and and

that are less price-elastic. The psychological intuition for this is that for those goods, price is

a less important factor in the overall purchasing decision. Again, I do not know of no evidence

on this.

To close the model, one needs a theory of the default price. In a stationary environment,

the simplest is to sa that pd is the average empirical price,

pd = E
[
p
(
c̃, pd

)]
(27)

taking the distribution over the marginal costs c̃. By the implicit function theorem, for small

enough κ and a smooth non-degenerate distribution of costs, there is a fixed point pd. In the

small κ limit and a symmetrical cost distribution f , one can show that pd = ψ
ψ−1

c+ cf(c)κ

2(ψ−1)2
+o (κ)

with c := E [c] (the calculations are in the online appendix). Hence, the default price is slightly

higher than price without BR.

This example illustrates that it is useful to have a tractable model: the sparse-BR algorithm

to think about the consequences of bounded rationality in market settings.8 Also, those the

8For instance much the same analysis will carry over to a closely related setup where consumers are inattentive
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sparse BR model was designed to generate inattention, it was not designed to generate price

stickiness and sales. Rather, it generates a new theory of those as an unexpected by-product.

4.3 Intertemporal Consumption Problems

4.3.1 Two-Period Consumption Problems

The agent has initial wealth w, and future income y, can consume c1 at time 1, and invest the

savings at a rate R. Hence, the problem is as follows.

Problem 3 (2-Period Consumption Problem). Given an initial wealth w, solve

max
c1

W = u (c1) + E [v (y +R (w − c1))] .

The income is y = y∗+
∑I

i=1 yi: there are J sources of income, and we normalize E [yi] = 0.

Let us study the solution of this problem with the algorithm.

Imperfections of observation The DM observes the income sources sparsely: he uses

the model yθ = y∗+
∑K

i=1 θiyi, the θi to be determined. We call s1 = w− c1 the amount saved

at date 1. Let us follow the Sparse BR algorithm. As the default point, we take θd = 0. We

calculate:

Wc1 = u′ (c1)− E [v′ (c2)R] , Wc1c1 = u′′ (c1) + E
[
v′′ (c2)R2

]
, Wc1θi = E [v′′ (c2)Ryi]

and for the differential operators, ∆θ1∆c̃1W = θiWθ1c1ηc1 .

Let us proceed with the part related to future income. The loss function is

L =
v′′ (c2)2R2

−Wc1c1

∑
i

E
[
y2
i

]
(θi − 1)2

and the program (13) is:

min
θi

L+ κθ |v′′ (c2)R|σc2
∑
i

|θi|σ2
yi

Hence, the solution is:

θi = τ (1, κi) κi = κθ
Wc1c1

v′′ (c2)R

σc2
σyi

(28)

to the decimal digits of the price, i.e. DBR (n+ x) = DBR (n) for n a positive integer and x ∈ [0, 1). There will
be bunching at a price like $2.99.
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To be more analytical, let us take some functional forms, and assume Gaussian noise, u (c) =

−e−γc and v (c) = −e−ρe−γc, where γ is the coeffi cient of absolute risk aversion and ρ the rate
of time preference. Because under the default, which has no uncertainty, v′ (c2)R/u′ (c1) = 1,

and the exponential specification gives v′′ (c2)R/u′′ (c1) = 1, (28) gives:

κi =
κθσc2
σyi

,

Hence, the agent maximizes, not under y2 = y2∗ + θ1µy + θ2εy, but under the MIM:

y2 = y2∗ +
n∑
i=1

τ

(
1,
κθσc2
σyi

)
yi (29)

Proposition 4 (2-Period Consumption Model) With full maximization of consumption, the

time-1 consumption is:

c1 =
1

1 +R

(
Rw + δ/γ − γσ2

ε/2 + y∗ +
I∑
i=1

θiyi

)
(30)

θi = τ

(
1,
κθσc2
σyi

)
The marginal propensity to consume (MPC) at time 1 out of time-2 wealth, ∂c1/∂yi, is:(

∂c1

∂yi

)BR
=

(
∂c1

∂y

)ZC
· τ
(

1,
κθσc2
σyi

)
(31)

where
(
∂c1
∂y

)BR
is the MPC under the BR model, and

(
∂c1
∂y

)ZC
is the MPC under the zero

cognition cost model (i.e., the traditional model). Hence, the marginal-propensity to consume

is source-dependent.

Proof. Under the expectations induced by θ, we have

c2 = R (w − c1) + ye, ye := y∗ +

I∑
i=1

θiyi

By maximization, with those beliefs, Eθ
[
e−γ(c2−c1)−δ] = 1, i.e.

−γ
[
ye − γσ2

εy +R (w − c1)− c1

]
− δ = 0

i.e. (30).

Different incomes sources have different marginal propensity to consume —this is reminiscent
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of Thaler’s mental accounts. Equation (31) makes another prediction, consumers pay more

attention to sources of income that usually have large consequences, i.e. have a high σyi.

Extending slightly the model, it is plausible that a shock to the stock market does not affect

my disposable income much —hence, there will be little sensitivity to it. 9

There is a similarity of this model with models of inattention based on a fixed cost of ob-

serving information (Duffi e and Sun 1990), in particular with the optimal rules of the allocation

of attention developed by Abel, Eberly and Panageas (2010), Gabaix and Laibson (2002), and

Reis (2006). Because of the fixed cost, in those models the rules are of the type “look up the

information every D periods”. From a formal point of view, the present model is more general.

Also, the inattention formula (30) holds consumer by consumer, rather than for an consumer

that aggregates lots of different consumers —hence the present model is simpler. From a sub-

stantive point of view, the range of inactions are different: in the adjustment-every-D-periods

model, adjustment will happen. However, in the present model, if the adjustment is always

small, then adjustment may never happen. The presence of different models of boundedly

rational behavior may help empirical research in that area.

Likewise, we get the following effects (to be typed in a next version of this paper). The

MPC of news about y1 is as follows: high for small changes, low for bigger changes – if the

default is “save sd1 =fixed”. If the default is “consumed c∗1”(i.e., “save s
d
1 = y1−cd1”), then MPC

is low for small changes, higher for big changes. The model also allows to measure the impact

of changes in R: very small. Hence, the measured intertemporal elasticity of substitution, say,

will be quite small.

The Euler equation will only hold with the “modified” parameters under Pθ. Hence, we
have

Eθ
[
v′ (c2)

u′ (c1)
R

]
= 1

but using the expectation under θ. Note that it features underreaction to future news, especially

small future news.

4.3.2 Multiperiod Consumption Problems

One example: say at is the amount of money saved at time t. Then

W =

T−1∑
t=1

βtu (yt − at) + v (B) , B =

T−1∑
t=1

RT−tat. (32)

If the action is ct, then it is the same as ct = yt−at. Just the default is expressed differently:

9In other cases, the default policy might be to consume what’s in one’s wallet, up to keeping a minimum
amount, say. Then, the MPC of a dollar bill found on the sidewalk will be 1.
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at = s∗yt. We calculate:

Wat = −βtu (ct) +RT−tv′ (B)

Watas = βtu′′ (ct) δst +R2T−t−sv′′ (B)

Watys = −βtu′′ (ct) δst

SoWyaW
−1
aa Way is rather messy, becauseWatas is non-diagonal. However, calculate the “key

action”: for the ys shock (section 7.1.3), it is just the saving at time s. t∗ (ys) = s. Then, with

yt = yt + θεt

(θ − q)′ Λdiag (θ − q) =
∑
t

(θt − qt)2 (βtu′′ (ct))
2

βtu′′ (ct) +R2T−2tv′′ (B)
σ2
εt

Hence, the representation problem is

min
θt

1

2
(θt − qt)2 (βtu′′ (ct))

2

βtu′′ (ct) +R2T−2tv′′ (B)
σ2
εt + κ

∣∣θt − θdt ∣∣ βt |u′′ (ct)|σat
i.e.

min
θt

1

2
(θt − qt)2 1

1 +R2T (βR2)−2t v′′ (B) /u′′ (ct)
σ2
εt + κ

∣∣θt − θdt ∣∣σat
So, if βR2 < 1, then the weight in losses falls with time. That means that the DM wants

to be precise about early representations, less precise about late representations. There is also

the simpler effect that, as one is closer to a given yt, there is more to adjust because one knows

more about yt.

So the model generates low sensitivity to information about distant future.

4.4 Endowment Effect

We will see that the model generates an endowment effect. Call a ∈ [0, 1] the quantity of

mugs owned, x ≥ 0 the (random) utility (expressed in a money metric) for having a costless

mug, and p the mug price. So the utility is W (a, x) = a (x− p), and the decision problem is

maxa∈[0,1]W (a, x) = a (x− p). Using part 2 of the Sparse BR algorithm (equation 16), we have
∆ηxW = aηx, and ∆a∆ηxW =

(
a− ad

)
ηx, so the problem is:

max
a∈[0,1]

a(E [x]− p)− κa ‖ηx‖
∣∣a− ad∣∣

where ηx is the uncertainty about x, say ‖ηx‖ = σx.

The solution is simple and yields the willingness to pay (WTP) as well as the willingness

19



to accept (WTA) for the mug. If ad = 0 (i.e. the agent does not already own the mug), the

solution is: buy iff p ≤ WTP = E [x]− κaσx. If ad = 1 (i.e. the agent already owns the mug),

the solution is: sell iff E [x] ≤ WTA = E [x] + κaσx. The discrepancy between the two,

WTA−WTP = 2κaσx (33)

is the endowment effect. In contrast, with loss aversion the discrepancy is

WTA−WTP = (λ− 1)E [x] (34)

where λ ' 2 is the coeffi cient of loss aversion. (With loss aversion λ, as selling the good creates

a loss of λE [x], while getting it creates a gain of only E [x]).

Hence, this paper’s approach predicts that the endowment effect is increasing in uncertain

subjective utility (σx) of goods.

There is some consistent evidence: for instance, there’s no endowment effect for dollar bills,

say, which have a known hedonic value. Likewise, professional traders (List 2003) do not exhibit

an endowment effect —in this theory, this is because there’s a known value to the good.

The next section presents some applications of the model.

4.5 Rebalancing the Portfolio in Flow rather than Stock

We shall see that, in the model, when people think that the stock market is overvalued, they

change their stock allocation in the “flow”(invest more in cash and less in new stocks) more

than they do in the “stock”(e.g. sell stock in their retirement account and invest the proceeds

in bonds).

To see this, say that the retirement account has S in stocks and B in bonds. The agent has

an amount y in cash, to be invested either in stocks (s) or bonds (b). The utility is (calling R

the random return of stocks):

u ((S + s)R + Y − S + y − s)

We start with an allocation Sd, and sd. The agent just learned that R is less favorable than he

initially thought. What does he do?

Economically, only S + s matters. Which one will change, though? We have

κs = κ0 ‖u′′ ·R‖ ‖ηs‖ |s− sd| , κS = κ0 ‖u′′ ·R‖ ‖ηS‖ |S − Sd|
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so the f.o.c. is:

E [u′ (W ) ·R]− κ0 ‖u′′ ·R‖ (‖ηs‖ sign (s− sd) + ‖ηS‖ sign (S − Sd)) = 0

Hence, if ‖ηs‖ < ‖ηS‖ (which is very likely as the s account is much smaller), the agent first
changes the s account, i.e. the flow allocation, rather than the retirement allocation. Given

that this preference is strict, it is robust to adding various small costs and frictions.

Going one step further, agents with high cognition costs will rebalance in “flows” and

agents with lower cognition costs will rebalance both in stock and in flows. Hence, the model

predicts that agents who rebalance in stock are more sophisticated than agents that rebalance

by adjusting their flow allocation. If this prediction is verified empirically, it might offer a way

to study the “sentiment”of more naive investors: the typical active allocation made in flows,

minus the typical active allocation made in stock.

5 Other Features of Representations of the World

5.1 Simplification of Random Variables

5.1.1 Formalism

Consider a random variable Y with values in Rn. In its MIM, the DM might replace it with a

random variable X that might be “simpler”in some sense.

(i) It might have a different, arguably simpler distribution: for instance, we could replace

a continuous distribution with a 1-point distribution (e.g. X = E [Y ] with probability 1), or

with a two-point distribution X = E [Y ]± β, for some β. We could even have X be a certainty

equivalent of Y .

(ii) It might have independent components. For example, we could have Xi
d
= Yi, but the

components (Xi)i=1...n are independent, while the components (Yi)i=1...n are not.

To formalize (i), call F and G the CDF of X and Y respectively. Then, U = G (Y ) has a

uniform [0, 1] distribution, and we can define X = F−1 (U), with the same U so that X and Y

are maximally affi liated.

To formalize (ii), it is useful to use the machinery of copulas. For an n−dimensional,
let us write Y =

(
G−1

1 (U1) , ..., G−1
n (Un)

)
with U1 have the copula C (u1, ..., un), so that

E [φ (Y )] =
∫
φ
(
G−1

1 (u1) , ..., G−1
n (un)

)
dC (u1, ..., un). In the simplified distribution, the mar-

ginals G−1
i could be changed, and the copula could be changed. To express X, we could have

X =
(
G−1

1 (U ′1) , ..., G−1
n (U ′n)

)
, where the U ′i might have the copula of independent variables,

Cθ (u1, . . . , un) = u1 · · ·un, of some intermediary copula. If we wish to have Xi’s marginals
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simpler than Yi’s, like in (i), we can set X =
(
F−1

1 (U ′1) , ..., F−1
n (U ′n)

)
for some Fi.

Eyster and von Weizsacker (2010) present experimental evidence for correlation neglect, i.e.

the use of simplification (ii). The next example illustrates the possible relevance of simplification

(i).

5.1.2 Application: Acquiring-a-company Game

Samuelson and Bazerman (1985) devised a ingenious problem.

Problem 4 (Acquiring-a-company) The company is worth X ∼ U [0, 100] to Ann, and worth

1.5X to you (you’re a better manager than Ann). You can make a take-it-or-leave-it offer a to

Ann, who knows X. Which offer do you make?

In addition, the experimental set up makes sure that “Ann”is a computer, so that its answer

can be assumed to be rational. Experimentally, subjects respond with a mode around 60, and

a mean around 40 (Charness and Levin 2009). However, the rational solution is a = 0. This is

a case of extreme asymmetric information.

The objective payoff is:

π (a) = E
[(

3

2
X − a

)
1X≤a

]
(35)

Let’s see how to state the MIM. For simplicity, we normalize the maximum X to 1, X ∼
U [0, 1]. We will see how, if the agent uses a simpler representation of probabilities, we account

for the non-zero experimental value. This is a different explanation from available explanations

(Eyster and Rabin 2005, Crawford and Iriberri 2007), which emphasize assuming that the other

player is irrational, but the DM is rational. However, there is no “other player”in this game,

as it is just a computer, and then those models predict a bid of 0 (Charness and Levin 2009).

In the simplest representation, Xθ = 1
2
: the agent forms a model of the situation by sim-

plifying the distribution, replacing it with a distribution with point mass X = 1/2. Then, the

best response is a = 1/2. This is not too far from the empirical evidence.

In a richer MIM, let us replace the distribution with a 2-point distribution, Xθ = 1/2 − θ
with probability 1/2, X = 1/2 + θ with probability 1/2, for some θ ∈ [0, 1/2] (we leave it to be

an empirical matter to see what θ is —the same way it is an empirical matter to see what the

local risk aversion is). Given this model, the agent solves for (35).

Proposition 5 In the acquiring-a-company problem, the Sparse BR bid by the decision-maker

is:

a∗ =

{
1
2

+ θ if θ ∈
[
0, 1

6

]
1
2
− θ if θ ∈ (1

6
, 1

2
]
. (36)
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Proof. It is clear that the optimal solution a belongs to {0, 1/2− θ, 1/2 + θ}. If the offer
is a = 1/2− θ, the offer is accepted only if X = 1/2− θ (in the MIM), so:

πM2

(
1

2
− θ
)

=
1

2
·
(

3

2

(
1

2
− θ
)
−
(

1

2
− θ
))

=
1

8
− θ

4

If the offer is a = 1/2 + θ the buyer gets the plant for sure, which has a value to him of 3
4
in

expectation, so:

πM2

(
1

2
+ θ

)
=

3

4
−
(

1

2
+ θ

)
=

1

4
− θ

The two profits πM2
(

1
2
− θ
)
and πM2

(
1
2

+ θ
)
are the same if and only if θ = 1/6. So, the

optimal decision is as announced in the Proposition. Hence, the maximum paid is 1
2

+ 1
6

= 2
3
.

Likewise, if the agent uses a 3—point distribution at 1/2 + kθ, k ∈ {−1, 0, 1}, then the
optimal offer a∗ is: 1/2 + θ for θ ∈

[
0, 1

6

]
, 1/2 for θ ∈

[
1
6
, 1

4

]
, and 1/2− θ for θ ∈ (1

4
, 1

2
]. Hence,

the predictions are quite similar.10

On the other hand, the model does not explain part of the results in the Charness and

Levin (2009) experiments. In a design where the true distribution of X is 0 or 1 with equal

probability, the rational choice is a = 0. However, subjects’choices exhibit two modes: one

very near 0, another around a = 1. The model explains the first mode, but not the second one.

It could be enriched to account for that additional randomness, but that would take us too

far afield. One useful model is the contingency-matching variant of Section 10.1.3: with equal

probability, the DM predicts that the outcome will be 0 and 1, and best-responds to each event,

so plays 0 or 1 with equal probability. Hence, reality seems to be reasonably well accounted for

by a mixture of the basic model and its contingencies-matching actions.

All in all, the model does a rather nice job at describing behavior in the basic acquiring-a-

company game, even though it doesn’t account for all the patterns in the other variants.

5.2 Dictionaries and Stereotypical Thinking

One particular interpretation of the θ is potentially interesting. We could have a “dictionary”:

(θi)i∈I for some index set I, and θi ∈ Θi for a some set Θi. The resulting representation is:

X (θ) =
∑
i∈I

xi (θi)

10I note that the empirically correct prediction a∗ > 1/2 holds only if β ≤ 1/6. In particular, that means
that β < stdev (X) = 1

2
√
3
= 0.29, which could have been a normatively appealing benchmark. Also, β <

AbsDev (X) = 1/4 (= E [|X − E [X]|]).
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Note that the dictionary might be “redundant,”i.e. the xi (θi) need not form a basis.

For instance, take a geometrical example and the plane R2. We could have: x1 (α, β,R) the

circle with center (α, β) and radius R (the index is in R3); x2 (α, β, α′, β′) a square starting with

two “diagonal”edges (α, β) and (α′, β′) (the index is then in R4). The total figure is the sum

of all those primitive figures. We describe a picture from the basic constituents.

In a more social setting, we could have x a n−dimensional vector of attribute such as
profession, nationality, income, social background, ethnicity, gender, height etc. Then, the

primitive words in the dictionary could be xEng for a stereotypical engineer, xAsian for an Asian

person, etc.

The key is that it’s easy (sparse) to think in terms of “ready-made”categories, but harder

(less sparse) to think in terms of a mix of categories. For instance, suppose that the space

of attributes is X = (y1, y2), where y1 is how good the person is at mathematics, and y2 how

good she is at dancing. Say that there’s “type”engineer, with characteristics xEng = (+8,−3):

i.e. engineers are quite good at math, but are rather bad dancers (on average). Take a person

called Johanna. First, we’re told she’s an engineer, and the first representation is xJ = xEng.

Next, we’re told she’s actually a good dancer, and with level +4 in dancing. Her characteristics

is xJ = (8, 4). How will she be remembered? We could say x (θ) = xEng + 7xDancer, but such a

representation is rather costly. Hence, the information “good dancer”may be discarded, and

only xEng will be remembered. The “stereotype” of the engineer eliminates the information

she’s a good dancer.

More precisely, suppose that one wishes to maximize U = − (a1 − x1)2 − β (a2 − x2)2, i.e.

have a good model of the person, with a weight β on the dancing abilities. We start from

xd = XEng = (8,−3), and plan to change
(
xd1, x2

)
(it is clear that the first dimension need not

change). Applying the algorithm, we have maxθ−1
2
β (a2 − θ2)2 − κσa2β

∣∣θ2 − xd2
∣∣, hence using

Lemma 1, x2 = xd2 + τ
(
xq2 − xd2, κσa2

)
, i.e.

x2 = −3 + τ (7, κσa2)

Hence we get a partial adjustment, with x2 between the stereotypical level of dancing (−3) and

Johanna’s true level (4).

Hence, a model of sparsity-seeking thinking with a dictionary would be the following. Given

a situation x, find a sparse representation that approximates x well, e.g. find the solution to:

min
(θi)i∈I

∥∥∥∥∥∑
i∈I

xi (θi)− x
∥∥∥∥∥

2

2

+
∑
i

κi
∣∣θi − θdi ∣∣

Then, people will remember x (θ) =
∑

i∈I xi (θi), rather than the true x. That generates a
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simplification of the picture, using simple traits. The above may be a useful mathematical

model of the categorization. For instance, we might get a model of “first impressions matter”.

The first impression determines the initial category. Then, by the normal inertia in this model,

opinions are adjusted only partially.

It is also clear that it is useful to have a dictionary of such archetypes: they make thinking,

or at the very least, remembering, sparser. One may also speculate that the education and life

events give the DM new elements in his dictionary.

6 Multiple Players

6.1 Model Statement

For multiple players, we glue the basic 1-person algorithm to the k−level thinking models of
Stahl (1998) and Camerer, Ho, and Chong (2004). They assume perfect rationality for the DM,

whereas here the DM is boundedly rational. Also, we express things here in a fairly general

dynamic framework.

There are K types of players, indexed k = 1...K, with mass mk. We start with a vector

of default policies adk, representations θ
d
k and value function V

d
k . Depending on the context,

default policies could be very random, e.g. “pick each action with equal probability.”

Algorithm 2 (Game with Multiple Players) In an K−player game, the algorithm is the fol-

lowing for player 1:

Step 1. Apply the Sparse BR algorithm to the function:

W
(
at,
(
adkt
))

= u
(
at,
(
adkt
)
k=1...K

)
+ βV d

(
St+1

(
at,
(
adkt
)
k=1...K

, xt+1

))
without flexibility in the representation of the world, but with a cost of action equal to κa = κ

with probability π, and κa =∞ with probability 1−π. That is, a fraction π of DMs do a κa-best
response, or while a fraction 1− π do not deviate from the default policy. Call those policies a1

k

and a0
k , respectively.

Step 2 (round R = 2). Update the model of the world: say that there are 2K types, (k, r),

r = 0 or 1. Model

aθk,1 = (1− θk,1) a0
k + θk,1a

1
k

Then, apply the Sparse BR algorithm to the function: W , using the plans that a mass mk of

players will play aθk,1 with probability π, and a
0
k with probability 1− π. Use the same dichotomy

of action maximization, assuming that players who “stopped thinking” in round 1 continue to

stop thinking. Call a2
k the policy of the players who went through two rounds of thinking.
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Figure 3: A centipede game. Reproduced from Palacios-Huerta and Volij (2009).

Step 2’ (round R ≥ 2). Update the model of the world, say that that there RK types

(k, r) , r = 0...R− 1. Model the actions as:

aθk,r = (1− θk,r) a0
k + θk,ra

r
k

and proceed as in Step 2. Call aRk the resulting action for players would went through R rounds

of reasoning.

Step 3. Iterate on the round R until no player updates his action, or indefinitely R =∞.

In the end, the policies are made of RmaxK types (k, r)r=0,...,Rmax−1 with mass mk (1− π) πr,

and actions ark.

The algorithm is a little complicated, but in many situations it is easy to use. First, in a

1-player game, it is just the previous Algorithm 1. Second, in one-shot games, when agents who

do think have zero cognition costs (κa = 0 and κθ = 0), the model is identical to the Cognitive

Hierarchy Model (Camerer, Ho, and Chong 2001), which has proven to be a useful benchmark.

However, it imbeds the Cognitive Hierarchy idea in a model where individual agents maximize

imperfectly, and also in dynamic programming situations.

6.2 Applications

6.2.1 Centipede Game

Figure 3 shows a centipede game (Rosentahl 1981), reproduced from Palacios-Huerta and Volij

(2009). The game-theoretic prediction is that player 1 stops and gets 4, but in practice very

few non-professional players do that.

We assume that the default action is “randomize at each node.”11 Under that scenario,

11We could have a more robust rule, e.g. “randomize at each node, but with a weight 0 on the nodes that
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player 1 considers his payoff. A simple calculation shows that the expected payoff of continuing

is 19, while the payoff from stopping is 4. Hence, player 1 continues. Indeed, at all nodes,

players continue.

The explanation of the centipede game shares similarities to that of McKelvey and Palfrey

(1992). In their interpretation, the opponent can be selfish with some probability q, or altruist

(and always continue) with some probability 1− q. Hence, their model still requires backward
induction, using this structure. However, in the present model, only forward induction is needed.

Hence, the model is simpler to use in the centipede situation. Also, depending on the costs

and benefits of thinking, the models will make different predictions (a future study, beyond the

scope of this paper, would be required to do justice to this issue). In addition, Algorithm 2 is

fairly generally available.

6.2.2 Dollar Auction Game

The dollar auction game (Shubik 1971) is an amusing and enlightening game. There is an

amount of money to auction, say a D = $20 bill. There are two players (for simplicity in this

paper) who can participate in an ascending auction with increments of $1. The person who

drops out, and has bid b, pays b. The person who stayed and bid b′ = b + 1 gets the bill and

pays b′, for a total payoff of D − b′. The initial bid, if any, is at an arbitrary level.
In practice, one gets an initial bid b < D (say b = 1), and then the game escalates without

limit (or, until a limit imposed by the instructor is reached). The paradox is that it always

seems better to go “one more step”even though the expected payoff is infinitely negative. That

is not the equilibrium predicted by orthodox game theory, which is the following: someone bids

b = D, and the other player doesn’t bid.

The model delivers the classroom result. Suppose that the MIM is that people will continue

with probability π and stop with probability 1− π (as a baseline, π = 1/2). In the model, the

right thing to do is to best-respond given those future events. To analyze this formally, consider

V (b), the expected payoff of continuing with a bid b. It is easy to show that it is equal to:12

V (b) = D − b− 2π

1− π (37)

can lead to a payoff less than M for some M .”
12We have the Bellman equation

V (b) = (1− π) (D − b) + πmax (V (b+ 2) ,−b− 2)

Indeed, with probability 1 − π, the other player drop out with probability 1 − π, then the payoff is D − b.
With probability π he continues, then the player chooses the best option between dropping out (which yields
−b − 2) or continuing (which yields V (b+ 2)). To solve the Bellman equation, we seek a solution of the type
V (b) = Ab+B, and solve for A and B by plugging that solution in the Bellman equation. This yields (37).
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It is better to continue and bid b + 2 rather than give up iff V (b+ 2) ≥ −b, i.e. iff D ≥ 2π
1−π .

This is the case for instance if D = $20 and π = 1/2. Indeed, for a wide range of parameters

agents will continue forever. They will stop only if they see that the probability of continuing

is π > D/(2 +D), which is 0.91 when D = $20.

7 Complements and Discussion

7.1 Some Variants on the Model

This subsection indicates some small variants to Sparse BR Algorithm that may be useful in

some situations. The reader may wish to skip this section in the first reading.

7.1.1 Model with Constraints

We now come back to the presentation of the model, with a more general framework (which

includes consumption problems), that has a number K of constraints.

max
a
Eε [u (a, θ, x, ε)] subject to Bk (a, θ, x) ≥ 0 for k = 1...K (38)

For instance, B1 could be a budget constraint, B1 = y − p · c.
We will use the methods of Lagrange multipliers to formulate an algorithm.

Algorithm 3 (Constrained-Sparse BR Algorithm) To solve the problem (38), the agent uses

the following three steps.

1. Transformation into an unconstrained problem. At θd, solve for the problem. Pick the

Lagrange multiplier λ ∈ Rk such that the solution is:

max
a
Eε
[
u
(
a, θd, x, ε

)]
+ λ ·B

(
a, θd

)
.

2. BR-Solve the new, unconstrained problem. Use the Sparse BR Algorithm 1 for the value

function

W (a, θ, x, ε) := u (a, θ, x, ε) + λ ·B (a, θ, x) .

That returns a representation θ and an action a.

3. Adjustment to take the constraints fully into account. Call ad a default action that sat-

isfies the constraints, and a (µ) = ad + µ
(
a− ad

)
. Pick the real µ that satisfies maxµ

Eε [u (a (µ) , θ, x, ε)] subject to the constraints. The chosen action is a (µ).
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For instance, in the study of section 4.1, if the utility problem ismaxc∈Rn u (c) s.t. y−p·c ≥ 0,

the new Step 1 is to we pick the Lagrange multiplier λ that corresponds to the problem:

maxc u (c) + λ
(
y − pd · c

)
. Then, we define:

W (c, θ) = u (c) + λ

(
y −

∑
i

(p∗i + θi) ci

)
(39)

This gives us a quasi-linear utility function, with linear utility for residual money. The Step

2 is as in section 4.1. In step 3 (applied with cd = 0), the DM picks a consumption bundle

c = µ · c (p+ θ, y), where µ ensures the budget constraint, (p+ q) · c = y.

7.1.2 Discrete sets, Non-differential Operators

Sometimes (e.g., when the space underlying a is not continuous) it is useful to replace the

differential operators used in Algorithm 1 by their non-differential counterpart (the superscript

F is a short-hand for “finite”):(
∆F
θi
f
)

(θ) = f (θi, θ−i)− f
(
θdi , θ−i

)
,
(
∆F
ai
f
)

(θ) = f (ai, a−i)− f
(
adi , a−i

)(
∆F
ηθ
f
)

(θ) = f (θ + ηθ)− f (θ) ,
(
∆F
ηaf
)

(a) = f (a+ ηa)− f (a)

How to define “a + ηa”when the action space A is finite? Assume that space A comes

equipped with a distance d (a, a′): for instance, if A = {1, ..., n} ordered in N, d (a, a′) = |a− a′|,
and if A is just a set of options with no clear metric (e.g., 4 options with no particular spatial

ordering), then we can have d (a, a′) = 1a6=a′ . Then, “a + ηa”with a probability proportional

some decreasing function of d (a, a′), for instance e−βd(a,a′) for some β.

Likewise, sometimes (e.g. when dealing with functions with discrete support) to have a

non-differential version of the Λ matrix. A simple device is to consider values a∗ (θ) and set:

Λii =
1

(θi − qi)2E
x,ε [u (a∗ (θi, q−i) , q, x, ε)− u (a∗ (q) , q, x, ε)] (40)

where a∗ (θ) is the optimum under the model parametrized by θ.

7.1.3 Simplifying the realism loss parameter Λ

The “key action”simplification for Λ The following simplification is often useful. For

Λ, use

Λdiag = diag (Λ11, . . . ,Λnn) , Λii = max
k

−W 2
θiak

Wakak

(41)

The intuition is the following. For each dimension θi, pick the “key action”that is related

to it: the one with the maximum
−W 2

θiak

Wakak
, in virtue of (43). The term Λdiag is simple to calculate,
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and doesn’t involve the matrix inversion of the general Λ in (12).

Averaging In the baseline model Λ is evaluated at the default action and representation.

We could extend that by averaging around the baseline. For instance, define Λ (a, θ, x) =

−WaθW
−1
aa Waθ and

Λ = E
[
Λ
(
ad + ηa, θ

d + ηd, x
)]

(42)

where the expectation is over ηa, ηd, and x. So we add noise around ad and θd.

Application: if we use the default action (no saving), there is no impact of the interest rate,

the simple Λ is 0. But with the average, the agent will see that for some other policies (non-zero

saving) the interest rate does matter.

7.1.4 Parameter-specific Complexity Cost

Different sources could have different complexity. This is easy to represent as κ [θ] =
∑

i κ
θ
i ‖∆θi∆ηaW‖α

where costlier sources have a higher κθi .

7.1.5 Enrichments in κ [a]

Enrichment via loss aversion One interesting enrichment is to use a loss-aversion based

penalty that penalizes negative outcomes but not positive ones. Denote x− = max (−x, 0), i.e.

x− = −x for x < 0 and 0 for x ≥ 0. Call ∆− the “loss aversion”operator, (∆−f) (x) = (f (x))−.

Instead of the original formulation (16), κ [a] = κa
∑

i ‖∆ai∆ηθW‖α, we could have, for a
complexity parameter κa,−:

κ [a] = κa,−
∑
i

‖∆−∆aiW‖

This operator ∆− may be useful, first, because loss aversion seems important in many parts

of economic psychology. Also, it is serviceable in the (relatively rare) cases where a gamble is

offered with no downside. To see this, take the problem where the agent can pick a quantity

a ∈ [0, 1] of a gamble g with non-negative support, i.e. obtain utility u (ag). It is clear that,

whatever the complexity of g, by domination, picking a = 1 is the right thing to do. This

is missed by the basic algorithm, but is detected with the loss aversion operator: normalizing

u (0) = 0,

κ [a] = κa,− ‖∆−∆aW‖ = κa,−E
[
(u (ag)− u (0))−

]
= 0

because u (ag)−u (0) ≥ 0 almost surely. Then, it is clear that there is no penalty for complexity.

We can also mix and match, and replace (16) by

κ [a] = κa
∑
i

‖∆−∆ai∆ηθW‖α + κa,−
∑
i

‖∆−∆aiW‖

30



This is adding a “loss aversion”operator to the previous operators. It seems that in many

situations it is not worth bothering the loss aversion operator ∆− , which adds some algebraic

complexity, but it is good to have it available when “dominations”patterns are important.

Finally, the DM might restrict himself to a parametrization of the actions. For instance,

if the underlying action is A = (A1, ..., AT ), and At is the savings rate at time t, we can have

At (a) = a0 + a1t, a savings rate that depends in an affi ne way on age, where (a0, a1) is a

2-dimensional parametrization of the agent’s savings rate.

7.2 Links with Themes of the Literature

7.2.1 Links with Themes in Behavioral Economics

In this section, I mention the ways the Sparse BR approach meshes with themes in behavioral

economics: it draws from them, and is a framework to think about them.

Anchoring and adjustment The model exactly features anchoring and adjustment for

expectations and decisions: the anchor is the default MIM θd and action ad, the adjustment is

dictated by the circumstances.

Power of defaults Closely related to anchoring and adjustment, it has now been well

established that even in the field default actions are very often followed (Madrian and Shea

2001, Carroll et al. 2009). This model prominently features that stylized fact.

Rules of thumb Rules of thumb are rough guides to behavior, such as “invest 50/50 in

stocks and bonds,”and “save 15% of your income.”They are easily modeled as default actions.

The advantage is that the model will generate deviations from the rule of them (the default

action) when the circumstances call for it with enough force: for instance, if income is very low,

the agent will see that current marginal utility is very high, and he should save less.

Temptation vs BR The present model is about bounded rationality, rather than “emo-

tions”such as hyperbolic discounting (Laibson 1997) or temptation. Following various authors

(e.g. O’Donoghue and Loewenstein 2005, Fudenberg and Levine 2006, Brocas and Carillo 2008),

we can imagine an interesting connection, though, operationalized via defaults. Suppose that

“system 1” (Kahneman 2003), the emotional and automatic system, wants to consume now.

This could be modeled as saying that System 1 resets the default action to high consumption

now (it likely will also shift the default representation). System 2, the cold analytical system,

could be modeled as what the current algorithm does. It partially overrides the default when
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cognition costs are low, but will tend to follow it otherwise. So, while many papers have focused

on modelling “system 1,”this paper attempts at modelling “system 2”.

Mental Accounts Some of the above has a flavor of “mental accounts.”Take the basic

wine example by Thaler: the wine was purchased for $20, now it is $80. Rationally, people

should sell that bottle. However, the default is to consume it. So, if cognition costs are high

enough, people will just follow that default. On the other hand, the effect is limited in the

model: if the bottle was worth $8,000, say, people would sell it.

Availability The theory is silent about the cost κi of each dimension: in the benchmark

model they are the same. It is plausible that more “available”dimensions will have a lower κi.

For instance, availability is greater when a variable is large, familiar, and frequently used.

First-order risk aversion The model generates first-order aversion, as seen in section

4.4.

1/n heuristics This heuristic (Bernatzi and Thaler 2001, Huberman and Jian 2006) is to

allocate an amount 1/n when choosing over n plans, independently of the plans’correlation:

for instance, the agent allocates 1/3, 1/3, 1/3, no matter whether the offering is one bond fund

and two stocks funds or the offering is one stock fund and two bond funds. We get that in

the model by using the “simplification of variables.”The simplification is that the variables are

treated as independent rather than correlated.

7.2.2 Links with Other Approaches to Bounded Rationality

This paper is yet another attempt in a long series of attacks on the polymorphous problem of

bounded rationality: see Conslik (1996) for a survey. Some put the accent on learning (Sargent

1993), a theme that could be merged with the current paper. Some model people as finite

automata (Rubinstein 1998), an interesting idea that nonetheless is hard to implement in a

tractable way. In contrast to some papers, the accent here is on models that can be used

directly in economics.

This paper also links to a literature modelling inattention. Some is with fixed cost (Duffi e

and Sun 1990, Gabaix and Laibson 2002, Reis 2006), some with an entropy-related cost (Sims

2003). This paper, in contrast, recommends the `1 penalty for sparsity. This seems to be a novel

import in modelling bounded rationality, even though it has been quite useful in the applied

mathematics literature cited above.
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8 Conclusion

This paper proposes a tractable model with some boundedly rational features. No doubt, it

could and should be greatly enriched. For instance, it is silent about some diffi cult operations

like Bayesian (or non-Bayesian) updating and learning (see Gennaioli and Shleifer 2010 for

recent progress in that direction) and memory management (Mullainathan 2002). Even though

it can be applied to situations with several dates, its essence is still quite static. However, despite

these current limitations, given its tractability and fairly good generality, it might be a useful

point of departure to think about the impact of bounded rationality in economic situations.
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9 Proof Appendix

Loss from Lack of Realism What is the DM’s loss when he makes an approxima-

tion θ while the truth is q? For a given x, define W (a, θ) = Eε [W (a, θ, x, ε)] and a (θ) =

arg maxaW (a, θ). The loss is L = W (a (θ) , q)−W (a (q) , q). Let us approximate in the limit

of small losses. As a solves Wa (a, θ) = 0, the implicit function theorem gives δa = −Waθ

Waa
δθ, so

the loss is:

L = Waδa +
1

2
Waa (δa)

2 = 0 +
1

2
Waa ·

(
−Waθ

Waa

δθ

)2

=
−W 2

aθ (δθ)2

2Waa

By the same reasoning, in n dimensions the loss is

L =
1

2
(θ − q)′ Λ (θ − q) , Λ = −WθaW

−1
aa Waθ (43)

Proof of Proposition 1. We need the following Lemma.

Lemma 2 Consider positive integers n, p, and a function f : Rn×Rn×p → S, for some set S,

such that for all x ∈ Rn, y ∈ Rn×p, and A ∈ Rn×n, f (Ax, y) = f (x,A′y). Then, there exists a

function g : Rp → S such that f (x, y) = g (x′y).

Proof. Define e1 =

(
1

0n−1

)
and for a row vector z ∈ Rp, g (z) := f (e1, e1z). We have:

f (x, y) = f (xe′1e1, y) as e′1e1 = 1

= f (e1, e1x
′y) using the assumption with A = xe′1

= g (x′y) .

Hypothesis (ii) implies that K is independent of the point estimate of W (as opposed to

its derivatives): it can be written K (θi, ηa,Waθi) for some function K (by a minor abuse of

notation).

We use the invariance by reparametrization λ1 in hypothesis (i), and apply Lemma 2 to

K (θ1,Waθ1 , Z1), where Z1 represents the other arguments. This implies that we can write

K (θ1,Waθ1 , Z1) = K (θ1Waθ1 , Z1), for a new functionK. Proceeding the same way for (θi,Waθi)

for i = 2...n, we see that we can write K = K (ηa, (θiWaθi)i=1...n). We next apply Lemma 2 to
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x = ηa and y = (θiWaθi)i=1...nθ
. It implies that we can write:

K = k ((ηa ·Waθiθi)i=1...n)

for some function k.

Finally, to determine k, we use hypothesis (iii), which indicates that whenever ‖xi‖ = 1,

and ‖ηa‖ = 1, k ((ηaxiθi)i=1...n) =
∑

i |θi|. By homogeneity, when ‖xi‖ and ‖ηa‖ are nonzero,
define x̂i = xi/ ‖xi‖, η̂a = ηa/ ‖ηa‖ and θ̂i = θi ‖xi‖ ‖ηa‖. Then,

k ((ηaxiθi)i=1...n) = k
((
η̂ax̂iθ̂i

)
i=1...n

)
=
∑
i

∣∣∣θ̂i∣∣∣ =
∑
i

‖ηaxiθi‖

so in general,

K =
∑
i

‖ηaxiθi‖ =
∑
i

‖∆θi∆ηaW‖ .

Proof of Proposition 2 Step 1: Representation. We calculate

Wa = −a+ θ · x+ ε, Wθ = x (a− θ · x− ε)

Waθ = x, Waa = −1

so

Λ = −E
[
WaθW

−1
aa Waθ

]
= E

[
x2
]

=: v2
x

Note that x’s mean could be non-zero. With n dimensions for θ, drawn independently, we have,

by the same calculation, Λ = Diag (E [x2
i ]).

Let’s now calculate κ [θ]. To simplify the notations, we take θdi = 0.

∆θi = θiWθi = θixi (a− θ · x− ε)

Applying the operator ∆ηa = ηa∂a, ∆ηa∆θ = ηaθixi and

‖∆θi∆ηaW‖α = ‖θixiηa‖α = |θi| ‖xi‖α ‖ηa‖α

So

κ [θ] = κθ
∑
i

‖∆θi∆ηaW‖α = κθ
∑
i

‖ηa‖α |θi| ‖xi‖α
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hence κ [θ] =
∑

iKi |θi| with
Ki ≡ κθ ‖ηa‖α ‖xi‖α (44)

When θd is not necessarily 0,

κ [θ] =
∑
i

Ki

∣∣θi − θdi ∣∣
So, the maximization (13) is

max
θ
−
∑
i

1

2
‖xi‖2

2 (θi − qi)2 −
∑
i

Ki

∣∣θi − θdi ∣∣
We use Lemma 1, which gives (20).

Step 2: The approximate maximization. We calculate κ [a] from equation (16). From W =

(a− θ · x)2 /2, we calculate:

∆ηθW = (a− θ · x) ηθx, ∆a∆ηθW =
(
a− ad

)
ηθ · x

hence:

κ [a] = κa ‖∆a∆ηθW‖α = κa
∣∣a− ad∣∣ ‖ηθ · x‖α = κa

∣∣a− ad∣∣√∑
i

σ2
θi
v2
xi

All in all, the maximization stage gives:

max
a
−1

2
(a− θ · x)2 −K

∣∣a− ad∣∣
with K = κa

√∑
i σ

2
θi
v2
xi
. This gives

a = ad + τ
(
θ · x− ad, K

)
(45)

Hence, this example features BR representation of the world, and BR maximization. �

Proof of Proposition 3. The monopolist solves

max
p
π (p) , π (p) = (p− c)

(
pd + τ

(
p− pd, κ

))−ψ
Consider first the interior solutions with p /∈

(
pd − κ, pd + κ

)
. Call ε = sign (p− pd).

Then, pd + τ
(
p− pd, κ

)
= p − εκ (equation 6).Then, ∂pτ

(
p− pd, κ

)
= 1 and the f.o.c. is

p− εκ− ψ (p− c) = 0, i.e.

p = pint ≡ ψc− εκ
ψ − 1

(46)

36



7.0 7.5 8.0 8.5 9.0 9.5
p3.5

4.0

4.5

5.0

5.5

Profit

Figure 4: Profit as a function of the price. There are two local maxima: an interior optimum
pint and p = pd + κ > pint.

The profit is then

π
(
pint
)

=

(
ψc− εκ
ψ − 1

− c
)(

ψc− εκ
ψ − 1

− εκ
)−ψ

= ψ−ψ
(

(c− εκ)

ψ − 1

)1−ψ

Next, it’s not optimal for the monopolist to have p /∈
(
pd − κ, pd + κ

)
, as p = pd + κ gives

the same demand and strictly higher profits. The profit is the

π
(
pd + κ

)
=
(
pd + κ− c

) (
pd
)−ψ

If it is optimal to choose pint rather than pd + κ iffR ≥ 1, where

R
(
c, cd, κ

)
=

π (pint)

π (pd + κ)
=

ψ−ψ
(

(c−εκ)
ψ−1

)1−ψ

(
ψ
ψ−1

cd + κ− c
)(

ψ
ψ−1

cd
)−ψ

=
(c− εκ)1−ψ

[ψcd + (ψ − 1) (κ− c)] (cd)−ψ

The c2 bound is easy: because it is clear (as the profit function is increasing for p < pint)

that c2 is such that pint (c2) = pd + κ, i.e. ψc2−κ
ψ−1

= ψcd

ψ−1
+ κ, i.e. c2 = cd + κ. The trickier case is

the case where c < cd, in which case there can be two local maxima. See the illustration below.

Hence, the cutoff c1 satisfies, with ε = −1,

R
(
c1, c

d, κ
)

= 1 (47)

and c1 < cd. To obtain an approximate value of c1, remark that R (c, c, 0) = 1: when κ = 0,

the cutoff corresponds to c = cd. Also, calculations show ∂1R (c, c, κ) = 0 and ∂11R (c, c, κ) 6= 0.

Hence, a small change κ implies a change δc1 such that, to the leading order, 1
2
R11·(δc)2+R3·κ =

0, i.e. c1 = cd −
√

2R3κ
R11

. Calculations yield c1 = cd −
√

2cκ
ψ−1

+O (κ).
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