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Abstract

This paper provides an explanation for why the sunk cost bias persists among
firms competing in a differentiated product oligopoly. Firms experiment with cost
methodologies that are consistent with real-world accounting practices, including
ones that allocate fixed and sunk costs to determine“variable” costs. These firms
follow “naive” adaptive learning to adjust prices. Costing methodologies that in-
crease profits are reinforced. We show that all firms eventually display the sunk cost
bias. For the canonical case of symmetric linear demand, we obtain comparative
statics results showing how the degree of the sunk cost bias changes with demand,
the degree of product differentiation, and number of firms.
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1 Introduction

Economic theory offers the unambiguous prescription that only marginal cost is relevant

for profit-maximizing pricing decisions. On-going fixed costs or previously incurred sunk

costs, although relevant for entry and exit decisions, are irrelevant for pricing. This

theoretical prescription stands in stark contrast with evidence that pricing decisions

of real world firms display a sunk cost bias. In surveys of pricing practices of U.S.

companies, Govindarajan and Anthony (1995), Shim (1993), and Shim and Sudit (1995)

find that most firms price their products based on costing methodologies that treat fixed

and sunk costs as relevant for pricing decisions. Leading textbooks on managerial and

cost accounting paint a similar picture. Maher, Stickney, and Weil (2004, p. 258) assert

that, when it comes to pricing practices, “[o]verwhelmingly, companies around the globe

use full costs rather than variable costs.” They cite surveys of U.S. industries “showing

that full-cost pricing dominated pricing practices (69.5 percent), while only 12.1 percent

of the respondents used a variable-cost based approach.” Horngren, Foster, and Datar

(2000, pp. 427-40), another leading accounting textbook, report other surveys in which

a majority of managers in the United States, the United Kingdom and Australia take

fixed and sunk costs in to account in pricing.

While suggestive, surveys of pricing practices do not answer the question whether the

sunk cost bias has a material effect on observed prices. Managers may be influenced by a

combination of biases that “cancel out,” leading them to price “as if” they understood the

economic reasoning of marginal revenue and marginal cost. One way to resolve this issue

is through controlled experimental settings where decision makers face environments that

differ only in the presence of sunk cost. Offerman and Potters (2006) conduct such an

experiment in a Bertrand duopoly context. In their baseline treatment with no fixed or

sunk cost, Offerman and Potters find that prices converge to the Bertrand equilibrium.

In the sunk cost treatment, subjects face the same demands and marginal costs as in

the baseline treatment, but they must pay a sunk entry fee to play the game. In this

treatment, Offerman and Potters find that prices are significantly higher: once the sunk

entry fee is paid, the average markup over marginal cost is 30 percent higher than the

markup in the baseline treatment.
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A standard reaction to this evidence is that initial behavioral biases eventually disap-

pear in response to learning and competition. Pursuit of profit is a powerful incentive for

firms to learn to price optimally. Also, competition among managers for promotion and

advancement within a firm should favor those who price optimally. Alchian (1950)’s clas-

sic argument that learning and imitation would propagate good practices suggests that

inter-firm competition would only reinforce the case for optimal pricing: “[W]henever

successful enterprises are observed, the elements common to these observable successes

will also be associated with success and copied by others in their pursuit of profits or

success. ‘Nothing succeeds like success.’ ”

Yet, important mechanisms for propagating best accounting practices lend little if

any support for the use of economics-based pricing principles. For example, textbooks

in managerial accounting often list marginal-cost based pricing as just one of several ac-

ceptable methodologies, alongside others that incorporate sunk costs into pricing. Some

managerial accounting texts even argue against basing prices on marginal costs.1

Our goal in this paper is to understand why the sunk cost bias persists in real-world

pricing practices despite the forces of learning and competition. In fact, we will argue that

the sunk bias is reinforced by these forces. We study a Bertrand oligopoly with product

differentiation where firms occasionally experiment with new “costing methodologies”

and reinforce the ones that yield higher profits. Firms are “naive” in the sense that

they adjust their prices adaptively, and may confound fixed, sunk and variable costs.

The choice of costing methodologies is subject to inertia: firms adjust prices much more

frequently than they experiment with new costing methodologies.2

1To cite one example, Shank and Govindarajan (1989) admonish managers to avoid committing the
“Braniff fallacy,” the practice (named after the now-defunct Braniff Airlines) of being content to sell seats
at prices that merely cover the incremental cost of the seat. They state that “Looking at incremental
business on an incremental cost basis will, at best, incrementally enhance overall performance. It cannot
be done on a big enough scale to make a big impact. If the scale is that large, then an incremental look is
not appropriate!” (p. 29, emphasis in original) Shank and Govindarajan make it clear that they believe
that managers should incorporate sunk costs into pricing decisions arguing that “Business history reveals
as many sins by taking an incremental view as by taking the full cost view..”

2An indirect indication of the inertia involved in the selection of costing systems comes from the
empirical literature on the adoption of activity-based costing (ABC). ABC is a set of practices for
assigning costs to products in a multi-product firm that is widely believed to be superior to traditional
methodologies for allocating common costs. Beginning in the mid-1980s, academics and consultants
began touting the virtues of ABC, but available evidence suggests that the adoption of ABC in the
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Our main result is that all firms eventually display the sunk cost bias.3 We reach this

conclusion by analyzing two learning processes. Theorem 1 shows that if a firm suffers

from a sunk cost bias, adaptive learning eventually leads to higher equilibrium profits.

We then model the process through which firms experiment with new costing practices

and reinforce successful ones. Theorem 2 shows that this process of experimentation and

reinforcement leads all firms to eventually display the sunk cost bias almost surely. This

can explain why the sunk cost bias has been so hard to eradicate in managerial pricing

practices.

A key assumption in our analysis is that the pricing game is supermodular, so the

adaptive learning results of Vives (1990) and Milgrom and Roberts (1990) are applicable.

We especially rely on Echenique (2002), who shows that adaptive learning leads to the

“right” comparative statics when the pricing game has multiple equilibria. Modeling

the process through which firms reinforce successful costing methodologies is more prob-

lematic. First, it is implausible that firms know their rivals’ distorted costing practices.

Second, even if these practices are known, computing payoff functions requires calcu-

lating the limit of the adaptive adjustment in prices. Firms that are naive enough to

confuse cost concepts are unlikely to have the requisite sophistication and understanding

of the game to carry out such computations. Thus, our firms face a learning problem

where neither opponents’ strategies nor the payoff functions are known.4 Despite these

difficulties, we display a reinforcement learning process in which all firms eventually dis-

tort their relevant costs by incorporating sunk costs in their pricing decisions (Theorem

2).

Our analysis does more than rationalize the pervasiveness of the sunk cost bias. It

also makes predictions about which industry structures reinforce this bias, and which

tend to eradicate it. There is no reason to suspect that managers’ innate predispositions

to behavioral biases is correlated with industry structure. Yet Section 5.4 shows that

mid-to late 1990s was not widespread (see for example, Brown, Booth, and Giacobbe (2004), Roztocki
and Schultz (2003)). Among the factors that have slowed the adoption of ABC systems include the need
to make significant new investments in information technology in order to implement an ABC system
and the need to obtain acceptance from key managers to support the transition to an ABC system.

3Our analysis also covers, without any modifications, unsunk flow fixed costs.
4In the pricing game we assume that each firm knows its own demand and the recent history of its

rivals’ prices.
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the sunk cost bias should not persist in a monopoly, perfectly competitive markets and

undifferentiated Bertrand competition. These predictions can, in principle, be tested. In

fact, our prediction that monopolists would eventually rid themselves of the sunk cost

bias is consistent with the experimental findings of Offerman and Potters (2006).

The sunk cost bias in our model acts as if it is a commitment to raise prices. But it

is a ‘soft commitment’ in the sense that it can be easily eliminated through learning. By

contrast, in the classical analysis of strategic commitment, sophisticated players make

binding decisions to limit their flexibility and foresee the impact of these decisions on

their rivals’ future behavior. Here, we envision real-world managers whose behavior is

shaped by myopic incentives and refined by naive adaptive learning. The driving force

in our model is confusion about which costs are relevant for pricing decisions. Since such

confusion is unlikely to be observable, it is quite different from the familiar foundation of

commitment, namely credible, transparent public actions designed to shape equilibrium

outcomes in subsequent stages of the game. See Section 7.3 for further discussion.

The sunk cost bias in human decision-making manifests itself in a myriad of ways.

One pattern, extensively supported by experimental evidence (see, Arkes and Ayton

(1999)), is for individuals to persist in an activity “to get their money’s worth.”5 Under

this pattern, individuals deflate the true cost of the activity. In this paper we focus

on how the sunk cost bias manifests itself in pricing decisions. The evidence reported

above, as well as a wealth of anecdotal examples, suggests that firms inflate relevant

cost by including a sunk cost component.6 We allow firms to be rational, inflate or

deflate relevant cost. Our analysis identifies circumstances under which a systematic

bias towards inflating cost appears.

The paper proceeds as follows. In Section 2 we provide an interpretation cost ac-
5For example, in a well-known experiment (see Arkes and Ayton (1999)) season tickets were sold at

three randomly selected prices. Those charged the lower price attended fewer events during the season.
Apparently, those who had sunk the most money into the season tickets were most motivated to use
them.

6A particularly vivid example is Edgar Bronfman, former owner of Universal Studios, who criticized
the movie industry’s pricing model because ticket prices do not reflect differences in the sunk production
costs of different movies. “He ... observed that consumers paid the same amounts to see a movie that
costs $2 million to make as they do for films that cost $200 million to produce. ‘This is a pricing model
that makes no sense, and I believe the entire industry should and must revisit it.’ ” Wall Street Journal,
April 1, 1998.
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counting practices as they relate to pricing decisions. Sections 3-5 introduces the model

and our main results. In Section 6, we specialize our general model to the canonical

case of symmetric linear demand. We obtain a closed-form solution that shows how the

distortion of relevant cost depends on the degree of product differentiation and the num-

ber of firms. Finally, Section 7 compares the implications of our model with available

experimental evidence and discusses related literature.

2 Price Setting and Costing Methodologies in Practice

An economist reading managerial accounting textbooks may be surprised to discover

that they mainly consist of a compilation of common company practices. In contrast to

the traditional economic treatment of optimal pricing, managerial accounting offers no

rigid guidelines as to how various costs should factor into firms’ pricing practices.

In this section, we present our understanding and interpretation of the accounting

principles used as a guide in day-to-day costing practices.

2.1 Full-cost Pricing

The most common set of real-world pricing practices fall under the rubrics cost-based

pricing, cost-plus pricing, or full-cost pricing. Although they come in a wide range of

variations, they all base price on a calculation of an average or unit cost that includes

variable, fixed, and sunk costs.7

Firms justify full-costing using a variety of arguments, with typically little or no

foundation in economic theory:

• Simplicity. Full-cost formulas are thought to be relatively straightforward to im-

plement because they do not require detailed analysis of cost behavior in order

to separate the fixed and variable components of various cost items. A related

argument is that estimates of marginal cost are often imprecise and indeed even-

misleading in large, multi-product firms (Kaplan and Atkinson (1989)).
7See Kaplan and Atkinson (1989) for a detailed discussion of full-cost pricing.
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• Promote full recovery of all costs of the product. Pricing based on a full-cost

formulas is sometimes justified because it provides a clear indicator of the minimum

price needed to ensure the long-run survival of the business (Horngren, Foster, and

Datar (2000, p. 437, henceforth HFD)). The idea is that without full-cost pricing,

a firm’s managers would not be as aware of the “ pricing hurdle” that the firm

would need to clear in order to generate economic profits for the firm.8

• Competitive discipline. Some managers believe that full-costing methodologies pro-

mote pricing stability by limiting “the ability of salespersons to cut prices” and

reducing the “temptation to engage in excessive long-run price cutting.” (HFD,

p. 437). Further, full-costing may allow firms to better coordinate on price in-

creases: “At a time when all firms in the industry face similar cost increases due

to industry-wide labor contracts or material price increases, firms will implement

similar price increases even with no communication or collusion among individual

firms.” (Kaplan and Atkinson (1989)).

2.2 Absence of Common Standards and the Importance of Flexibility

An underlying message of the accounting literature is that firms should adapt their

costing methodologies to fit their particular competitive environment and product line

idiosyncrasies. That is, an emphasis is placed on flexibility. The typical theme is that the

appropriate methodology depends on the industry environment. For example, full-cost

pricing is considered to be well suited for firms that operate in differentiated product

industries (HFD, p. 427), while companies that operate in highly competitive commodity

industries are encouraged to set prices based on competitors’ prices.9

Managerial practice mirrors the textbook emphasis on flexibility. For example, the

cost of shared assets is often allocated to individual product lines according to fixed,

and more or less arbitrary, percentages. In computing unit costs, there is no universally
8This argument may seem strange to economists who might wonder why it is not possible for the

firm’s managers to price to maximize profits based on standard marginal reasoning and to simply do a
“side calculation” to determine whether that profit-maximizing price allows the firm to recover its total
costs, including the rental rate on capital.

9This emphasis on flexibility and “sticking with what what works” is consistent with theoretical
models of reinforcement learning.
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accepted benchmark for what quantity should go in the “denominator” : some firms cal-

culate unit cost at full capacity (in one of its various forms), while others use historical

output levels, while still others base unit costs on forecasts of future sales. Some com-

panies compute prices by applying a single markup to a chosen cost base, while others

apply different markup percentages to different cost categories.

2.3 Representational Faithfulness

Given the arbitrariness and flexibility in pricing methodologies, there is no presumption

that a firm includes all of its fixed and sunk costs in its computation of unit costs for

price-setting purposes. Still, it is reasonable to believe that “firms do not create costs out

of thin air!!” In fact, we shall assume that firms’ distortions display a minimal degree

of coherence, requiring that they only allocate existing fixed and sunk costs.

This can be justified by the accounting principle of representational faithfulness,

which is one of the two major principles (the other being verifiability) that defines the

standard to which external financial statements are expected to adhere (Financial Ac-

counting Standards Board (1980, p. 28)). This principle requires the “correspondence or

agreement between a measure or description and the phenomenon it purports to repre-

sent.” Although internal financial information is not required to meet external standards

of reliability, external reporting systems often have an important impact on account-

ing information that is used for internal purposes. It therefore seems plausible that a

principle designed to keep external accounting information grounded in the economic

fundamentals of transactions would also keep internal accounting information similarly

grounded.

Another justification may be based on psychological evidence that the sunk cost bias

results from decision makers’ taste for taking actions that rationalize past choices. See

Eyster (2002). Clearly, if no sunk or fixed costs are committed, there is nothing to

rationalize and, under this theory, the sunk cost bias should not appear.
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2.4 Budgets and Variances

For pricing and other operating decisions, firms typically utilize a budget of forecasts of

costs and quantities for a given accounting period. Budgets aid in decision making and

also serve as a benchmark against which decisions can be evaluated ex post. Budgeted

amounts may be based on historical performance, engineering studies of how various

cost items might behave, and hypotheses about competitors’ actions.10 For example, a

budget might specify a firm’s per-unit cost based on the quantity of output produced in

the most recent time period.

The budget process is subject to inertia. A firm may change its price and other

operating decisions many times before it would consider changing the methodology used

to determine its budget.

At the end of each accounting period, firms typically compute a variance, the differ-

ence between the budget amount and the actual result.11 Variances provide a mechanism

by which anticipated and actual performance can be reconciled. For example, suppose

a firm has computed its unit costs based on a target output, and the actual output in

the accounting period differs from this target output. A variance would then reconcile

the unit cost the firm assumed would prevail and the unit cost that actually prevailed.

Variance analysis assures that managers ultimately are held accountable for the actual

performance of the firm.

2.5 Summary

The discussion above highlights key features of managerial practice which we will incor-

porate in our formal model:

1. Firms choose “costing methodologies” that might confound sunk, fixed, and vari-

able costs. Firms do not necessary allocate all of fixed and sunk costs to the cost

base, but this allocation cannot exceed actual fixed and sunk costs.
10Sophisticated firms often build flexibility into their budgeting. This flexibility allows the firm to

adjust the values of key variables to reflect unexpected shocks (e.g., abrupt increase in the cost of a raw
material, labor strikes, and so on).

11See Maher, Stickney, and Weil (2004) for a through discussion of variances.
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2. Firms compute the per-unit sunk cost based on a budgeted output level that re-

mains constant during an accounting period.

3. Day-to-day management of the firm’s pricing strategy is guided by the firm’s budget

and costing methodology. Although firms can adjust prices quickly, budgets and

costing methodologies are less flexible and change less often than prices.

4. Firms periodically reconcile actual and budgeted profits by adding back variances

ensuring that, at the end of each accounting period, firms observe their actual

economic profit.

3 The Model

We consider an oligopoly in which boundedly rational firms may adopt costing method-

ologies which cause their pricing decisions to depart from those prescribed by textbook

economic theory. This section sets up the basic model.

3.1 Demand and Cost Fundamentals

The industry consists of N single-product firms engaged in (Bertrand) price competition

with differentiated products. (By a slight abuse of notation N also denotes the set of

firms.) Firm n’s quantity, denoted qn, is determined by a demand function qn = Dn(p),

where p = (p1, . . . , pN ) denotes the industry’s vector of prices.12 We assume that firm n

knows its own demand function, Dn, but not the demand functions of the other firms.

We assume that Dn is differentiable and, wherever Dn > 0, satisfies ∂Dn
∂pn

< 0 and
∂Dn
∂pm

> 0 for m 6= n. Further, we assume that for any pair of firms n, m, demand is strictly

log-supermodular, i.e.,
∂2 log Dn(pn, p−n)

∂pn∂pm
> 0. Log-supermodularity is equivalent to the

intuitive condition that a firm’s demand becomes less price elastic as a rival’s price goes
12We use the following standard vector notation. For any vector x ∈ Rl, x = (x1, . . . , xl) and x−n ∈

Rl−1 denotes the vector (x1, . . . , xn−1, xn+1, . . . , xl). Also, x ≥ 0 means that xj ≥ 0 for all j; x > 0
means that xj ≥ 0 for all j and x 6= 0; and x >> 0 means that xj > 0 for all j.
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up, a property that is satisfied by many common demand systems, including linear, logit,

and CES.

Each firm has a constant marginal cost cn, with c = (c1, . . . , cN ) ≥ 0 denoting the

vector of these costs. In addition, each firm has a per-period sunk cost, denoted Fn ≥ 0.

Our analysis also covers, without any modifications, unsunk flow fixed costs. However,

we will use the term sunk cost to avoid redundancy. For example, Fn may represent the

per-period capital charge for an asset that has no redeployment value. The calculation

of Fn will depend on the specific accounting standards used by the firm (for instance,

how depreciation is computed). We abstract from these issues and take Fn as given. In

our multi-period analysis, we also assume that Fn is constant over time.

Finally, we shall assume that the set of Nash equilibria is compact and is contained

in the interior of a cube P = [0, p+] ⊂ RN .

3.2 Economic vs. Accounting Profits

Firm n’s objective measure of success is its economic profit, defined as

πe
n(p) ≡ (pn − cn)Dn(p)− Fn.

The sunk cost bias distorts the firm’s perception of relevant costs. We model this in a

way that is both simple and consistent with managerial accounting practices discussed

in Section 2. We assume that a firm may act as if its true marginal cost is inflated

by a constant distortion component, sn ≥ 0, representing the part of sunk cost (mis-)

allocated as a per unit variable cost.

To motivate this, imagine that firm n bases its cost allocation on a budgeted quantity

q̂n (see Section 2.4). In practice, q̂n is based on past realized quantities, and is therefore

independent of the firm’s current decisions. For now we take q̂n > 0 as exogenously

given. In footnote 22, we explain how its choice can be made endogenous after the full

learning model is introduced.

Given q̂n, the firm’s accounting profit is:

πn(p, sn) ≡ (pn − cn − sn)Dn(p)− (Fn − snq̂n), (1)

10



where (Fn − snq̂n) denote the unallocated sunk cost. The accounting profit function πn

represents the manager’s perception of the relevant payoff function within a given round of

short-term price adjustments. Note that the difference between economic and accounting

profits, sn(Dn(p)−q̂n), disappears if the firm is rational, sn = 0, or if budgeted and actual

quantities coincide. Footnote 22 elaborates on how discrepancies between budgeted and

actual quantities are reconciled at the end of the accounting period.

Actual economic profit is not observed within a round of short-run price adjustments.

However, at the end of the accounting period, budgeted and actual quantities are recon-

ciled using variances, ensuring that firms ultimately observe their economic profit.

We shall require that the unallocated sunk cost be non-negative, and that firms do

not “make-up” sunk costs when there are none. Formally, we require

sn ≤
Fn

q̂n
.

In particular, Fn = 0 implies sn = 0, so a firm with no sunk cost would be unable to

inflate its true marginal cost. Note that we do not require that firms allocate all of their

sunk cost. This may be justified in terms of the arbitrariness and flexibility in costing

methodologies discussed in Section 2.

3.3 The Static Price Competition Game

Formally, a price competition game Γ(s) with cost distortions s is an N -player game,

each with strategy set P and payoffs function given by the accounting profit function

defined in Equation (1).

In Γ(s) firm n maximizes πn(·, sn) given a forecast p−n of its competitors’s prices,

yielding a first-order condition:

(pn − cn − sn)
∂Dn(p)

∂pn
+ Dn(p) = 0, (2)

provided Dn(p) > 0. This gives rise to firm n’s reaction function13

rn(p, sn) = arg max
p′n

πn(p′n, p−n, sn).

13Our assumptions on demand imply that this is well defined and single valued.
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Our assumptions on demand imply that rn(sn) : PN → P is differentiable on the interior

of PN−1 and strictly increasing:

∀n 6= m,
∂rn

pm
> 0.

Let r(s) : PN → PN denote the vector of reaction functions. An equilibrium for Γ(s)

is a price vector p̄ such that p̄ = r(p̄, s). Let E(s) denote the set of equilibria for Γ(s).

Given the assumption that demand is log-supermodular, the price-setting game Γ(s) will

be supermodular, which implies that a pure strategy equilibrium exists (Milgrom and

Roberts (1990, Theorem 5) ). Our assumptions do not, however, rule out the possibility

of multiple equilibria. Note that any equilibrium p̄ such that all firms are active (i.e.,

q̄ >> 0) must satisfy p̄ >> c + s.

4 An Illustrative Example

To motivate our formal analysis, we consider a simple example. There are two firms

facing common marginal cost c = 10, sunk cost F > 0, and demand curves14

Dn(pn, pm) = 124− 2pn + 1.6pm, m 6= n, m, n ∈ {1, 2}.

Initially, firms are at the (unique, symmetric) Bertrand equilibrium of this game.

Suppose that this game is repeatedly played by myopic players. Unbeknownst to

its opponent, firm 1 “experiments” with a new costing methodology which inflates its

relevant costs by s1 = 10 per unit, and that firms adjust their prices adaptively, say,

by following a simple procedure like the Cournot dynamic.15 Then firm 1’s experiment

triggers a process of pricing adjustments that leads to higher limiting prices and economic

profits for both firms. In fact, firm 1’s equilibrium price increases from 60 to about 65

and its economic profits increase from 5,000 to about 5,149. Suffering from a sunk cost

bias yields higher profits to firm 1!
14This is the cost and demand system used in Offerman and Potters (2006). See Section 7.1 for

comparison with their experimental findings.
15Under the Cournot dynamic firms best respond to their opponents’ last period price (see, for instance,

Vives (1999)). Our analysis applies more generally, as described in the next section.
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This informal story has a flavor similar to the familiar logic of strategic commitment.

There are crucial differences, however: Strategic commitments matter only to the ex-

tent that they are observable and irreversible. By contrast, firms’ internal accounting

methodologies and the confusions about relevant costs that these methodologies entail

are neither observable nor irreversible. The intuition underlying our analysis is based

instead on firms’ predisposition to commit the sunk cost bias, their use of naive adaptive

rules to set prices, and the stickiness of their costing methodologies. Our formal model

shows that firms’ initial predisposition is reinforced under some market structures, while

it disappears under others.

Learning plays two crucial roles in our analysis. First, it is implausible that firms

that succumb to the sunk cost fallacy would, at the same time, have the sophistication

necessary to carry out the complex reasoning justifying Nash equilibrium play. The

alternative view, which we take here, is that a Nash equilibrium in the pricing game is

the result of a naive adaptive process carried out by boundedly rational players. We use

the theory of learning for supermodular games to model myopic firms who adjust prices

adaptively, unaware of the demand and costing practices of their opponents. Second,

although a positive cost distortion will shift the equilibrium set upward,16 equilibrium

analysis is consistent with the selection of a lower equilibrium price within the new set. In

this case, arbitrary equilibrium selection, rather than fundamentals, end up driving the

persistence of the sunk cost bias. Our first main result, Theorem 1, shows that learning

can serve as a foundation for meaningful comparative statics when multiple equilibria

may be present.

In the above informal discussion, we focused on the consequences of firms’ experi-

ments, while taking the experiments themselves as exogenously given. Our second main

result, Theorem 2, endogenizes the process of experimentation in a model where cost-

ing methodologies are reinforced depending on how well they have done in the past on

average.
16In the sense that the smallest (largest) equilibrium price vector of Γ(s′) is larger than the smallest

(largest) equilibrium price vector of Γ(s). See Milgrom and Roberts (1990).
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5 Main Results

5.1 Adaptive Learning and Comparative Statics

We first define adaptive pricing processes in the game Γ(s) repeatedly played by myopic

players.

Definition 1 An adaptive pricing adjustment for Γ(s) starting at p̄ is a sequence of

prices {pt} such that p0 = p̄ and there is positive integer γ such that for every t, pt

satisfies17

r(inf{pt−γ , . . . , pt−1}, s) ≤ pt ≤ r(sup{pt−γ , . . . , pt−1}, s).

That is, at time t, each firm best responds to some probability distribution on the

recent past history of play of their opponents. The class of adaptive pricing adjustment

process is quite broad, and includes, as special cases, the Cournot dynamic where pt =

r(pt−1), a version of fictitious play in which only the past γ rounds of play are taken into

account, and sequential best response.

The key comparative statics result needed for our analysis is:

Proposition 1 Suppose that p̄ ≤ r(p̄, s). Then

lim
t→∞

pt = inf{z ∈ E(s); z ≥ p̄}

for any adaptive pricing adjustment sequence {pt} for Γ(s) starting at p̄.

The proof is essentially that of Theorem 3 in Echenique (2002) specialized to the

case where best replies are single-valued.18 The comparative statics implications of this

result is that starting with an equilibrium price p̄, if one firm distorts its cost, then any

adaptive pricing adjustment must converge to the lowest price vector that is higher than

p̄. Note that this result yields unambiguous prediction on the direction of price changes,
17For t < γ we set pt−γ = p0.
18As r is a strictly increasing reaction function, the lowest and highest selections from r are equal.

Also, the lowest and highest selections from iterated applications of r are also equal. The proof of part 2
of Theorem 3 in Echenique (2002) shows that these selections define the lower and upper bounds of the
limit points of any adaptive dynamic. Hence, as r is a best-reply function, this limit is unique. Finally,
part 1 of Theorem 3 shows that this limit must be equal to the lowest equilibrium higher than p̄.

14



but is silent on the effect on economic profits, which is our primary concern. This is

what our first theorem deals with.

5.2 Distortion Result

Theorem 1 There exists ∆ > 0 such that given any firm n, vector of distortions s̄−n ≥
0, equilibrium price vector p̄ of Γ(s̄−n, sn = 0) with corresponding quantity vector q̄ >> 0,

if firm n chooses 0 < ŝn < ∆ then for any adaptive pricing adjustment {pt} for Γ(s̄−n, ŝn)

starting at p there is a time T such that:

πe
n(pt) > πe

n(p̄) for every t ≥ T .

Proofs of this and subsequent results are in the Appendix.

Theorem 1 says that no matter what costing methodologies are employed by rival

firms, there is always a cost distortion ŝn that eventually results in higher economic

profits for firm n. To provide an intuition for the theorem, suppose we are initially at

any equilibrium p̄ of the game Γ(s̄−n, sn = 0). A cost distortion by firm n to ŝn > 0

causes firm n to raise its price. This triggers an adaptive adjustment process that

eventually settles at a strictly higher equilibrium price. The question is, does this yield

higher economic profits for firm n? Note, first, that for any sequence of distortions

converging to 0, the corresponding equilibrium prices converge to an equilibrium p̂ of

Γ(s̄−n, sn = 0). There are two cases. First, if p̂ >> p̄ then it is easy to see that economic

profits of firm n must strictly increase. Roughly, this happens if p̄ is not locally stable,

so a slight perturbation leads to a large jump in prices. The second case is that p̂ = p̄.

Here, roughly, the net effect on the economic profits of firm n consists of a negative

direct effect (due to the distortion of its price, holding the prices of its rivals fixed) and a

positive strategic effect (due to its rivals raising their prices). We show that for a small

enough distortion of relevant costs, the latter dominates the former.

We note that no assumptions are made about firm n’s knowledge about the demand

functions, costs, or costing methodologies of its rivals. Nor does any firm need to know,

specifically, what new equilibrium would be reached if it distorted its relevant cost.
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5.3 Adjustment of Costing Methodologies

We now turn to the process through which firms choose costing methodologies. As

suggested in the introduction, new complications arise, namely that firms do not know

their rivals’ strategies or their own payoff functions. Since firms must learn about their

payoffs as well as resolve the strategic uncertainty about their opponents’ behavior, the

learning model here is of necessity different from the adaptive model used in the pricing

game.19

We introduce a model of reinforcement learning through trial and error. In this

model, motivated by Milgrom and Roberts (1991), firms know their strategy set and ob-

serve their realized payoffs. But they do not know their payoff functions or the strategies

used by their opponents. Firms experiment with different costing methodologies from

time to time and reinforce those that have done well on average in the past.

5.3.1 A Dynamic Game of Experimentation and Cost Adjustments

We assume firms can adjust prices much more frequently than they can adjust their

costing methodologies. To model this, we first restrict firms to choose from a finite grid

of relevant cost distortions Sn = {0,∆, 2∆, . . . ,K∆}, where K is a positive integer and

∆ > 0 (Sn is the same for all firms). Firm n chooses sn(τ) ∈ Sn at times τ = 1, 2, . . ..

Within each “interval” [τ , τ + 1], we have a sequence of price adjustment sub-periods

t = 1, 2, . . . during which firms may adjust prices, but not their distortion of relevant

costs.20

To define the dynamic game of cost adjustments, fix s(0) arbitrarily and let p(0) be
19Most adaptive learning models assume that firms know their own payoff function and the actions

taken by their opponents. We are aware of only a few models that can handle the case of unobserved op-
ponents’ actions and unknown own-payoff function, all of which rely on players’ randomly experimenting
with different strategies. Milgrom and Roberts (1991) and Hart and Mas-Colell (2001) describe adap-
tive procedures that eventually leads to the play of only serially undominated strategies and correlated
equilibrium respectively. Friedman and Mezzetti (2001) propose a procedure that leads to the play of a
Nash equilibrium in supermodular (as well as other classes of games with a property called weak Finite
Improvement Property). The problem is that supermodularity of the the costing methodology game
requires stringent, difficult to interpret conditions on the underlying model. In particular, it does not
necessarily follow from the supermodularity of the pricing game.

20Thus, formally, we have a double index {τ t}∞τ,t=1 and where indices are ordered lexicographically:
τ ′t′ > τ t if and only if τ ′ > τ or [τ ′ = τ and t′ > t].
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any equilibrium of the game Γ(s(0)).21 At time τ , firm n is chosen with probability 1
N , at

which point this firm is allowed to re-evaluate its costing methodology. With probability

ε > 0, this firm experiments by picking a distortion sn(τ) uniformly from Sn. We call

these periods, “firm n’s experimental periods.” With probability 1− ε, firm n picks the

distortion that generated the highest average payoff in its past experimental‘ periods.

Firms experiment independently from each other and over time. All other firms m 6= n

set sm(τ) = sm(τ − 1).

Firm n’s payoff at τ is:

Πn(s(τ), p(τ − 1)) ≡ πe
n(p(τ))

where p(τ) = limt→∞ pt and {pt} is any adaptive pricing adjustment sequence for Γ(s(τ))

starting at p(τ −1).22 To motivate this definition, suppose that τ > 0 is an experimental

period for firm n in which firm n chooses sn(τ) 6= sn(τ − 1). This triggers a process of

price adjustments starting from p(τ −1) and converging to a new equilibrium price p(τ).

Our assumption that prices adjust more rapidly than costing methodologies implies that

the limiting price p(τ) obtains “before” period τ + 1 arrives. The payoff function above

says that firm n uses the profit from this final price, πe
n(p(τ)), in judging its experiment

at τ .

Our model is motivated by Milgrom and Roberts (1991)’s study of learning and

experimentation in repeated, normal form games. Their analysis is inapplicable in our

setting, however, because we are dealing with a dynamic game with history dependent

payoffs. In our model, the payoff structure at time τ is a reduced form for an underlying

pricing dynamic whose outcome may depend on the initial condition p(τ − 1).

5.3.2 Learning result

Theorem 2 There is ∆ > 0 such that, with probability one, there is τ̄ such that for

every firm n, in all non-experimental periods τ ≥ τ̄ , sn(τ) > 0.
21The assumption that p(0) is an equilibrium of Γ(s(0)) can be relaxed, but not entirely dropped. See

Echenique (2002).
22 With this notation, we can now endogenize the choice of the reference quantity q̂n used to determine

the per unit sunk cost Fn
q̂n

that provides an upper bound on sn. Formally, we set q̂n(τ) = qn(τ − 1) for
τ > 1 and set q̂n(0) > 0 arbitrarily.
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That is, on almost all paths all firms eventually distort their relevant costs. The

strength of the results is in how weak the assumptions are. Firms only know their past

distortion choices and, in each case, how well they have done in price competition. This

rather coarse information does not allow firms to correlate changes in their payoffs with

changes in their rivals actions, or conduct counterfactuals like “I would do better by

choosing s′n given the actions of my rivals.” Nevertheless, this coarse information is

sufficient for firms to eventually reject “rational” costing.

5.4 No-distortion Results

Our analysis makes sharp predictions about which environments are unlikely to reinforce

the sunk cost bias, and which environments tend to eliminate it.

5.4.1 Monopoly Market

The intuition underlying our analysis is that the benefit from distorting relevant costs

stems from its favorable strategic effects. This strategic effect is absent in monopoly, so

our model implies that no distortion should persist in a monopoly market. Even though

a monopolist is just as likely to be predisposed to the sunk cost bias initially, (non-

strategic) learning will eventually lead the firm to price optimally. This conclusion is

consistent with the experimental results of Offerman and Potters (2006) who find that the

effects of the sunk cost bias disappear in the monopoly treatment of their experiments.23

5.4.2 Perfect Competition

The sunk cost bias would also not persist in a market with price-taking firms. Let p∗ be

the equilibrium price. Since an individual firm’s output decision has no effect on the price

and hence on other firms output and pricing decisions, a firm that distorts its relevant

costs moves its own output away from the profit-maximizing quantity and hence reduces

its economic profits. There is indirect evidence in support of this conclusion: Maher,

Stickney, and Weil (2004, p. 258) note that “cost-based pricing is far less prevalent in
23See Section 7.1 for a more detailed discussion.
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Japanese process-type industries (for example, chemicals, oil, and steel)”, all of which

are products with very weak differentiation.

5.4.3 Price Competition with Homogenous Product Oligopolies

Finally, no distortion should persist in a Bertrand oligopoly with homogenous products.

To establish this, suppose there are N firms with constant marginal costs ordered so

that c1 ≤ c2 . . . ≤ cN . Let D(p) be a demand curve which is continuous and strictly

decreasing at all p where D(p) > 0 and that there is a “choke price” p̄ < ∞ such that

D(p) = 0 for all p ≥ p̄ and we assume p̄ > c1. The demand for firm n is

Dn(p) =


D(pn) if pn is the lowest price

1
J D(pn) if pn and J − 1 other firms set the lowest price

0 if pn is not the lowest price.

We also assume that the price firm 1 sets if it is a monopolist is greater than c2. Otherwise,

firm 1 is effectively a monopolist even in the presence of competition and hence the

analysis is very similar to the monopoly case above.

Proposition 2 There is no incentive to distort relevant costs in a homogeneous product

oligopoly.

The intuition underlying this result is straightforward. In a homogenous product Bertrand

oligopoly, each firm has such a strong incentive to undercut its competitor to capture

the entire market that it is impossible to soften price competition via cost distortion.

6 Special Case: Symmetric Linear Demand

In this section we examine the important special case of symmetric linear demand. This

additional structure enables us to generate comparative statics predictions about how

the distortion changes with the number of firms, the degree of product differentiation,

and so on. Theorems 1 and 2 illustrated that our main points hold generally. Once

we move the special structure of symmetric linear demand, the analysis becomes much

simpler: there is a unique equilibrium in the pricing game for any profile of distortions.
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The cost distortion game is supermodular, dominance solvable, and its Nash equilibrium

is also the unique correlated equilibrium (Milgrom and Roberts (1990)). A broad class of

learning models, including our own, converge to the unique equilibrium in the distortion

game.

We assume that the N firms in the industry have a common marginal cost c and face

a symmetric system of firm-level demand curves that is consistent with maximization by

a representative consumer who has a quadratic net benefit function. The representative

consumer chooses quantities q = (q1, . . . qN ) to maximize:

U(q) = aq − 1
2
bqΘq − pq,

where a and b are positive constants and

Θ=


1 θ . . . θ
θ 1 . . . θ
...

. . .
...

θ θ . . . 1

 ,

where θ ∈ (0, 1) parameterizes the extent of horizontal differentiation among the goods.

As θ → 0, the goods become independent, and as θ → 1, the goods become perfect

substitutes. Throughout, we assume that a > c.

The system of demand functions implied by the solution to the representative con-

sumer’s utility maximization problem is given by:

qn = Dn(p) = α− βpn + γ
∑
m6=n

pm, n ∈ {1, . . . , N},

where

α ≡ a(1− θ)
b(1− θ) [1 + (N − 1)θ]

> 0,

β ≡ 1 + (N − 2)θ
b(1− θ) [1 + (N − 1)θ]

> 0,

γ ≡ θ

b(1− θ) [1 + (N − 1)θ]
∈ (0, β).

For later use, note that

2β − (N − 1)γ =
2(1− θ) + (N − 1)θ

b(1− θ) [1 + (N − 1)θ]
> 0.
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The (unique, symmetric) Nash equilibrium in prices without distortions is

p0 = λa + (1− λ)c,

where

λ =
(1− θ)

2(1− θ) + (N − 1)θ
∈ (0,

1
2
).

Now, suppose that firm n chooses costing methodology sn ∈ [0, s+], where s+ ≡ F
q̂ is

the maximum distortion consistent with a firm’s sunk cost and is assumed to be common

across all firms. The first-order condition for a firm is:

∂πn(p, sn)
∂pn

= −β(pn − c) + α− βpn + γ
∑
m6=n

pm + βsn = 0, n ∈ {1, . . . , N}. (3)

Given a vector s of distortions, firm n’s second-stage equilibrium price pn(s) is found by

solving this system of first-order conditions:

pn(s) = p0 +
β

2β + γ
sn +

β

2β + γ

(
γ

2β − (N − 1)γ

) N∑
m=1

sm. (4)

This implies

∂pn

∂sn
=

β

2β + γ

[
1 +

γ

2β − (N − 1)γ

]
> 0. (5)

∂pn

∂sm
=

β

2β + γ

γ

2β − (N − 1)γ
> 0. (6)

Finally, firm n’s economic profit is

πe
n(s) ≡ πe

n(pn(s)) = (pn(s)− c)

α− βpn(s) + γ
∑
m6=n

pm(s)

 . (7)

We call the game where the firms choose distortions and payoffs are determined by (7)

and (4), the distortion game.

Firm n’s problem in the distortion game is

max
sn∈[0,s+]

πe
n(s) = (pn(s)− c)

α− βpn(s) + γ
∑
m6=n

pm(s)

 .

We begin by establishing some basic properties of the distortion game:
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Proposition 3 The distortion game is supermodular and has a unique, symmetric equi-

librium distortion s∗.

Throughout, we assume that the symmetric equilibrium in the first-stage is less than

the upper bound s+, and below we show that this distortion is generally positive for

θ ∈ (0, 1). Given this, the equilibrium distortion s∗satisfies

∂πe
n(s∗)
∂sn

= 0, n ∈ {1, . . . , N},

with the induced equilibrium price p∗ = pn(s∗), n ∈ {1, . . . , N}. These conditions can

be shown to imply:

s∗ =
(p∗ − c)(N − 1)ξγ

β
(8)

p∗ = p0 +
βs∗

2β − (N − 1)γ
, (9)

where ξ ≡
∂pn
∂sm
∂pn
∂sn

=
γ

2β−(N−1)γ

1+ γ
2β−(N−1)γ

∈ (0, 1).

With this derivation in hand, we can establish a baseline set of no-distortion results,

that mirror those in Section 5.4:

Proposition 4 (a) As the goods become independent, the equilibrium distortion goes to

zero, i.e., limθ→0 s∗ = 0; (b) As the goods become perfect substitutes, the equilibrium

distortion goes to zero, i.e., limθ→1 s∗ = 0; (c) As the number of firms becomes infinitely

large, the equilibrium distortion goes to zero, i.e., limN→∞ s∗ = 0

We now turn our attention to circumstances under which the equilibrium distortion

is positive. To do so, we solve (8) and (9) in terms of the primitives of the model:

a, b, c, θ,and N .

p∗ − c =

(
p0 − c

)
[(2− θ) + (N − 1)θ]

(2− θ) + (N − 1)θ(1− θ)
(10)

s∗ =

(
p0 − c

)
(N − 1)θ2

[(2− θ) + (N − 1)θ(1− θ)] [(1− θ) + (N − 1)θ]
. (11)

An immediate implication of these expression is that when there is some degree

of (imperfect) product differentiation, firms distort their relevant costs in equilibrium,

which in turn elevates the equilibrium price relative to the single-stage Nash equilibrium:
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Proposition 5 If θ ∈ (0, 1) the equilibrium distortion is positive, i.e., s∗ > 0. Moreover,

the induced equilibrium price exceeds the Nash equilibrium price without distortions, i.e.,

p∗ > p0.

Table 1 shows calculations of the Nash price, the equilibrium distortion s∗, and the

induced equilibrium price p∗ for different numbers N of firms and values of the product

differentiation parameter, θ.24 As one would expect given Proposition 4, the equilibrium

distortion is not monotone in θ. For any N , it initially increases in θ but eventually begins

to decrease, going to zero as the products become perfect substitutes. The equilibrium

distortion is not monotone in N either. For low values of θ, the distortion initially

increases in N, but eventually decreases to 0 as N becomes sufficiently large. When

the number of firms is large, the equilibrium distortion is extremely small. However,

in an industry with a small number of firms and an intermediate degree of product

differentiation, the equilibrium distortion can be significant. For instance, when N = 2

and θ = 0.80, the equilibrium distortion is $21.82, about 36 percent of the undistorted

Nash price of $60.
24The parameters for these calculations are as follows: a = 310, b = 350

252
, and c = 10.
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θ N = 2 N = 3 N = 5 N = 10 N = 100
→ 0 p0 160.00 160.00 160.00 160.00 160.00

s∗ 0 0 0 0 0
p∗ 160.00 160.00 160.00 160.00 160.00

0.10 p0 152.11 145.00 132.73 110.00 33.08
s∗ 0.71 1.17 1.65 1.81 0.18
p∗ 152.45 145.65 133.71 111.20 33.24

0.20 p0 143.33 130.00 110.00 80.59 21.21
s∗ 2.70 3.70 3.95 2.80 0.10
p∗ 144.83 132.22 112.63 82.73 21.31

0.40 p0 122.50 100.00 74.29 47.50 14.41
s∗ 9.47 9.18 6.29 2.62 0.04
p∗ 128.42 106.43 79.23 49.80 14.45

0.60 p0 95.71 70.00 47.50 29.35 11.99
s∗ 17.70 12.05 5.76 1.72 0.02
p∗ 108.36 79.64 52.54 30.97 12.01

0.80 p0 60.00 40.00 26.67 17.89 10.75
s∗ 21.82 9.88 3.40 0.80 0.01
p∗ 78.18 48.89 29.88 18.68 10.76

0.90 p0 37.27 25.00 17.89 13.61 10.34
s∗ 17.48 6.12 1.80 0.39 ≈ 0
p∗ 53.17 30.81 19.64 14.00 10.34

→ 1 p0 10.00 10.00 10.00 10.00 10.00
s∗ 0 0 0 0 0
p∗ 10.00 10.00 10.00 10.00 10.00

Table 1 suggests that even though the distortion is non-monotonic in the number of

firms, the induced equilibrium price is. The next proposition confirms this:

Proposition 6 The induced equilibrium price p∗ is strictly decreasing in the number of

firms.

Since firms do not internalize the beneficial impact of their distortion of relevant costs

on their rivals’ profits, they end up with a price lower than the monopoly price:

Proposition 7 When θ ∈ (0, 1), the induced equilibrium price is less than the monopoly

price.
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Let us now turn to a comparative statics analysis of the equilibrium distortions

with respect to the other parameters of the model, a and c. To avoid conflating the

impact of a and c on the distortion with their effect on the overall price level, we derive

the comparative statics result for the percentage distortion above the undistorted Nash

equilibrium price, s∗

p0

Proposition 8 The percentage distortion s∗

p0 is increasing in a and decreasing in c.

Hence an increase in demand, as measured by a larger value of a, will result in a greater

percentage distortion, while an increase in marginal cost will result in a lower percentage

distortion.

This result makes sense. The difference a − c measures the intrinsic value of the

industry profit opportunity. The incremental benefit to a firm from suppressing price

competition will be greater the more intrinsically profitable the market is, and as a result,

the degree of distortion is greater the greater is a or the lower is c.

We conclude by considering the implications of this analysis for entry. To do so, we

imagine that each firm faces a sunk cost of entry F . With no distortion, the equilibrium

number of firms N0 is given by the condition:

(p0 − c)(α−
[
β − (N0 − 1)γ

]
p0 = F,

which can be rewritten (
a

b
− p0

b

) (
p0 − c

)
1 + (N0 − 1)θ

= F. (12)

Similarly, with distortions, the equilibrium number of firms N∗ is given by:(
a

b
− p∗

b

)
(p∗ − c)

1 + (N∗ − 1)θ
= F. (13)

Proposition 9 When θ ∈ (0, 1), the equilibrium number of firms is greater than the

equilibrium number of firms in the game where no firm distorts, i.e., N∗ > N0.

This is because distortions increase equilibrium margins, making entry more desir-

able.
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7 Discussion

7.1 Experimental Results

As noted in the introduction, there is strong evidence from the psychology literature that

individual decision makers commit the sunk cost fallacy. A well-cited example is a study

by Arkes and Blumer (1991) which found that the sunk costs incurred by season ticket

holders for a university theater company apparently influenced attendance decisions.

Experimental economists have also studied sunk cost biases, but the evidence from

this work is more mixed. Economists’ experiments on the sunk cost fallacy differ from

those in the psychology literature in that the latter typically do not focus on decision

making in market settings in which competition might be expected to create strong

pressures for decision makers to “get it right.” By contrast, economist’s experiments

on sunk costs generally place subjects in the context of some sort of market rivalry.

For example, Phillip, Battalio, and Kogut (1991) study bidding in first-price sealed bid

auctions in which subjects paid a sunk admissions fee in order to participate. They found

that 95 percent of the subjects correctly ignored sunk costs in their bidding behavior.

Summarizing a variety of experiments in competitive market settings in which sunk costs

might effect market outcomes Smith (2000) writes: “These results showed no evidence

of market failure due to the sunk cost fallacy.”

The finding that subjects in competitive market experiments do not succumb to the

sunk cost fallacy is consistent with the prediction of our theory that it would run counter

to the self-interest of a price-taking firm, or a price-setting firm in a homogeneous product

oligopoly, to base decisions on sunk costs. However, a more direct test of the implications

of our theory would be to explore pricing behavior in a differentiated-product oligopoly

market in which firms incur sunk costs. Unfortunately, most of the existing experimental

investigations of price competition in a differentiated product oligopoly (e.g., Dolbear,

Lave, Bowman, Lieberman, Prescott, Reuter, and Sherman (1968)) are not relevant to

our theory. This is because these experiments typically provided subjects with a table

showing profit as a function of own price and the prices of rivals. Participants were

simply asked to choose a price, and they did not have to figure out for themselves which

costs might be relevant for pricing decisions.
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An important exception to this approach is a recent paper by Offerman and Potters

(2006). In this study, subjects assumed the role of decision makers in a differentiated

product duopoly, and they were given information on firms’ demand curves and marginal

costs. Subjects were placed in one of three treatments: one in which rights to operate

in the market were auctioned to the two highest bidders; one in which entry rights were

allocated randomly to two subjects who were required to pay an up-front fee;25 and

one in which entry rights were allocated randomly without payment of a fee. Offerman

and Potters find that when an entry fee is charged (either via a fixed fee or by means

of an auction) prices are significantly higher than the undistorted (symmetric) Nash

equilibrium price, but when no entry fee is charged, prices were close to the undistorted

equilibrium price. By contrast, in a monopoly market, prices tend to equal the profit-

maximizing monopoly price, irrespective of the level or form of the sunk entry fee.

Our theoretical model gives exactly the same predictions. Our theory implies that a

monopolist would have no incentive to succumb to the sunk cost fallacy. In a duopoly

with differentiated products but with no sunk costs, firms might ultimately benefit from

distorting their relevant costs, but because they lack a compelling justification for dis-

tortionary behavior, our theory would predict that they would end up charging the

undistorted Nash equilibrium price. When sunk costs are present, firms have the oppor-

tunity to distort relevant costs upwards, and given the demand curves and marginal costs

in the Offerman and Potters’ environment, it makes sense to do so. Indeed, in this case,

the fit between our model and Offerman and Potters’ quantitative results is remarkably

tight. In the calculations in Table 1 in the previous section, we chose parameters so that

when θ = 0.80 and N = 2, we have an economic environment that is identical to that

in Offerman and Potters’ duopoly experiments.26 As shown in Table 1, the equilibrium

price in the two-stage game predicted by our model is 78.18, about 30 percent higher

than the undistorted Nash equilibrium price of 60. In Offerman and Potters’s fixed entry
25Unbeknownst to the subjects, the fixed entry fees were set equal to the entry fees generated in the

auction treatment.
26In particular, recall that we set a = 310, b = 350

252
, and c = 10. When θ = 0.80 and N = 2, the firms’

demand curves are given by D1(p1, p2) = 124− 2p1 + 1.6p2 and D2(p1, p2) = 124− 2p2 + 1.6p1, exactly
as in the Offerman and Potters experiment.
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fee and auction treatments, the average prices were 75.65 and 72.73, respectively.27

Offerman and Potters interpret their results as suggesting that entry fees generate

tacit collusion. In fact, their explanation itself relies on a bounded rationality assumption

as they study finite repetitions of an oligopoly game which has a unique subgame perfect

equilibrium. Moreover, their explanation predicts that tacit collusion should also occur

in a Bertrand oligopoly with homogenous products. This does not coincide with our

predictions and hence provides a way of testing our theory against theirs.

In conclusion, we note that Offerman and Potters’s experiment is not a formal test

of our model. Our model requires separate pricing and costing decisions and a specific

timing structure in which adjustments in these decisions occur at different rates. Nev-

ertheless, models should ideally provide robust insights that hold beyond the narrow

formalism on which they are based. It is in this sense that we view their results as

suggestive of the plausibility of the core intuition of our paper.

7.2 Cournot Competition and Behavioral Biases

Suppose firms engage in Cournot quantity competition, rather than Bertrand price com-

petition. In the Bertrand model, a firm that suffers from the sunk cost fallacy charges

a higher price for any given prices of its rivals. That is, it becomes a less aggressive

competitor and this triggers a movement to higher prices and profits. In the Cournot

model, a firm benefits from producing a higher quantity for any given quantities of its

rivals and by becoming a more aggressive competitor. This occurs when the firm acts

as if its marginal cost is lower than it actually is.

One bias that might lead to this behavior is a tendency to give explicit weight to

market share in the firm’s objective function. Alternatively, managers may overlook

relevant opportunity costs.28 For example, a manager whose firm has purchased an

input under a long-term contract may treat the cost of that input as sunk when, in fact,

it is variable if the input can be resold in the marketplace. A similar bias can arise if

the contract price of the input is less than the current market price, and the manager
27These calculations are based on the data reported in Table 1 in Offerman and Potters.
28Phillip, Battalio, and Kogut (1991) found evidence that subjects treat opportunity costs as different

from direct monetary outlays.
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computes marginal cost based on the historical, rather than current, market price.

But the presence of sunk costs should not further exacerbate these biases. This,

then, implies that the difference between Cournot quantity setting and Bertrand price

setting provides a refutable implication of our theory. Under Bertrand price setting,

prices should be higher in an experimental treatment in which firms face sunk costs than

in one in which sunk costs are zero.29 By contrast, under Cournot quantity setting, the

equilibrium price should not vary across experimental treatments that differ only in the

degree to which firms have sunk costs.

7.3 Alternative Explanations: Noisy Observation of Cost, Delegation,
and Evolution

Cost and price distortions may arise as a result of firms observing their total cost, but

not its split between fixed, sunk and variable components. In this case rational firms’

estimates of relevant costs are likely to include non-zero errors similar to the distortions

introduced in this paper. In this case a plausible scenario is that firms’ errors have zero

mean, in which case no systematic distortion in relevant costs, prices, or profits would

appear.

It also is instructive to compare our model with models of strategic delegation, as

in the seminal work of Fershtman and Judd (1987). In contrast to delegation models,

we study firms with myopic incentives who arrive at their decisions through a process

of naive adaptive learning. Our firms do not actively fine-tune their incentive schemes

in anticipation of more favorable second-stage equilibrium outcomes. Our model also

has testable implications that separates it from the delegation framework. First, the

delegation model would predict higher prices regardless of the presence of sunk cost, a

prediction that can be experimentally tested. Second, the logic of delegation has no bite

when prices are set by the firms’ owners, as in experiments where each firm is a single

subject (so there is literally no delegation). In our model, whether the owner of the firm

is the same as the agent setting prices is irrelevant.

Related ideas appear in the recent literature on the evolution of preferences.30 Like
29Recall, this is what Offerman and Potters (2006) found.
30Guth and Yaari (1992) is one of the earliest works in this area. See the special issue of The Journal of
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strategic delegation, this literature underscores the value of commitment, but this time

using distortions of players’ perceptions of their payoffs as a commitment device. The

unobservability of firms’ costing practices again separates our model from evolution of

preferences approach.31 And as in the delegation paradigm, sunk cost plays no role in

evolutionary arguments; these arguments work equally well in settings where no sunk

cost is present.

8 Concluding Remarks

There is extensive evidence that real-world decision makers violate the predictions of

standard economic theory. Among these violations, the sunk bias in pricing decisions

stands out on a number of grounds. First, its impact is not limited to small-stakes

decisions: pricing is one of the most critical decisions a company can make. Second,

unlike other cognitive biases that disappear once the underlying fallacy is explained,

the sunk cost bias in pricing seems to thrive despite the relentless efforts of economics

and business educators to stamp it out. Third, while many cognitive biases disappear

through learning and training, the survey evidence we report provide no indication that

this bias is disappearing over time.

In this paper we provided a theory of why the sunk cost bias persists in pricing

practice.32 We showed that under conditions rooted in actual cost accounting practices,

Economics Theory, 2001, vol. 97 which is devoted for this line of research, and in particular Samuelson
(2001)’s excellent overview. Closer to our model is the recent work of Heifetz, Shannon, and Spiegel
(2004). They offer an interesting model of the evolution of optimism, pessimism and interdependent
preferences in dominance-solvable games.

31As Dekel, Ely, and Yilankaya (1998) point out, this approach has little bite when players cannot
observe their opponents’ preferences.

32The only other model we are aware of that studies the effect of the sunk cost bias in differentiated
Bertrand competition is by Parayre (1995). He considers a two stage game in a linear environment similar
to the special case of symmetric linear demand we study in Section 6 (in his model, no naive learning
justification of behavior is considered). Parayre assumes that the sunk cost bias has the implication that
firms produce in order to use up whatever capacity is available to them. Compared to the standard
Bertrand equilibrium, Parayre’s model leads to lower prices and profits. Our model sheds light on the
form of distortion that is likely to persist in a competitive environment. While the form of distortion we
propose will be perpetuated in the long run, our model predicts that Parayre’s form of distortion must
disappear.
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price competition with product differentiation reinforces managers’ innate predisposition

to succumb to the sunk cost bias. And although there is no reason to suspect this predis-

position to systematically vary across industries, no similar forces appear in monopoly,

perfect competition, or price competition with homogenous products. Thus, our analysis

makes predictions that can be empirically and experimentally tested.

Our theory builds on recent advances in learning in games played by naive players who

know little about their environments. As such, this paper illustrates how learning theory

can be a valuable tool in understanding the nature of behavioral biases in economics.
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9 Appendix

The proof of Theorem 1 relies on Proposition 1 and the following result:

Proposition 10 There exists ∆ > 0 such that for any firm n, any vector of distortions

s−n ≥ 0, any sn ≤ ∆, and any equilibrium price vector p of Γ(s−n, 0) with corresponding

quantity vector q >> 0, if p+ is an equilibrium of Γ(s−n, sn) with p+ > p,

πe
n(p+) > πe

n(p).

Proof of Theorem 1: Let ∆ be as in Proposition 10 and choose any 0 < ŝn ≤ ∆.

Fix any s̄−n and p̄ as in the statement of the theorem. By Proposition 1, any adaptive

adaptive price adjustment {pt} starting from p̄ for Γ(s̄−n, ŝn) converges to p = inf{z ∈
E(s̄−n, ŝn), z ≥ p̄}. It is easy to see that in fact p >> p̄. The result now follows from

Proposition 10.

Proof of Proposition 10: Suppose, by way of contradiction, that for every positive

integer k, there is sn < 1/k, a vector of distortions sk
−n, an equilibrium p̄k of Γ(s̄k

−n, 0)

and an equilibrium p̂k of Γ(sk
−n, sn) with p̂k > p̄k yet πe

n(p̂k) ≤ πe
n(p̄k). Passing to

subsequences if necessary, we may assume that sk
−n → s−n, p̄k → p̄, and p̂k → p̂.

Clearly, p̂ ≥ p̄ and πe
n(p̂) ≤ πe

n(p̄). We note that, by Lemma 2 below, p̂ is an equilibrium

of Γ(s−n, 0). We consider two cases:

Case 1: p̂ > p̄ In this case, the fact that best responses are strictly increasing implies

p̂ >> p̄. Next we show that πe
n(p̂) > πe

n(p̄). From our assumptions on demand and the

fact that q >> 0:

πn(p̂−n, p̄n, sn = 0) > πn(p̄, sn = 0) = πe
n(p̄). (14)

That is, relative to p, firm n achieves higher profit if his opponents strictly increase their

prices while all other prices remain unchanged. Since p̂ is an equilibrium, we must also

have

πe
n(p̂) = πn(p̂, sn = 0) ≥ πn(p̂−n, p̄n, sn = 0),
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which combining with (14) implies πe
n(p̂) > πe

n(p̄). By the continuity of πe
n, for k large

enough, πe
n(p̂k) > πe

n(p̄k), a contradiction.

Case 2: p̂ = p̄ For each k, define

zk =
p̂k − p̄k

‖ p̂k − p̄k ‖
.

Let SN denote the unit sphere and, given α > 0, define Bα = SN∩{xN ∈ RN
+ , xn ≤ 1−α}.

We first need the following lemma:

Lemma 1 There is α > 0 such that for all large enough k, zk ∈ Bα.

From the definition of derivatives, for every ε > 0 there is h̄ such that for any

0 < h < h̄ and any z ∈ SN

∣∣∣πe
n(p̄k + hz)− πe

n(p̄k)
h

− [∂πe
n(p̄k)]z

∣∣∣ < ε

where ∂πe
n(p̄k) is a row vector of partial derivatives of πe

n evaluated at p̄k. Notice that
∂πe

n
∂pn

(p̄k) = 0 as p̄k is an equilibrium and ∂πe
n

∂pm
(p̄k) > 0 as ∂Dn

∂pm
> 0 for m 6= n and qk

m > 0

for all k large enough. Note that [∂πe
n(p̄)]z > 0 for all z ∈ Bα.

Next we note that

lim inf
k→∞

min
z∈Bα

p̄k∈E(sk
−n,0)

[∂πe
n(p̄k)]z ≥ min

z∈Bα
p̄∈E(s−n,0)

[∂πe
n(p̄)]z.

To see this, write

min
z∈Bα

p̄k∈E(sk
−n,0)

[∂πe
n(p̄k)]z = [∂πe

n(p̌k)]žk.33

For any pair of subsequences {p̌l}, {žl} converging to p̌ and ž, respectively, we have

ž ∈ Bα and p̌ ∈ E(s−n, 0) (the latter holds by Lemma 2). From the continuity of πe
n we

have

min
z∈Bα

p̄l∈E(sl
−n,0)

[∂πe
n(p̄l)]z = [∂πe

n(p̌l)]ž → [∂πe
n(p̌)]ž ≥ min

z∈Bα
p̄∈E(s−n,0)

[∂πe
n(p̄)]z.

33The minimum is achieved by the compactness of Bα and E(sk
−n, 0).
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Fix α > 0 and set ε = 0.25 min z∈Bα
p̄∈E(s−n,0)

[∂πe
n(p̄)]z. Then, given any z ∈ Bα and

p̄k ∈ E(sk
−n, 0), for all k large enough we have

πe
n(p̂k)− πe

n(p̄k)
‖ p̂k − p̄k ‖

≡ πe
n(p̄k + ‖ p̂k − p̄k ‖zk)− πe

n(p̄k)
‖ p̂k − p̄k ‖

> [∂πe
n(p̄k)]zk − ε

≥ min
z∈Bα

p̄k∈E(sk
−n,0)

[∂πe
n(p̄k)]z − ε

≥ 0.5 min
z∈Bα

p̄∈E(s−n,0)

[∂πe
n(p̄)]z − ε

≥ 0.25 min
z∈Bα

p̄∈E(s−n,0)

[∂πe
n(p̄)]z > 0.

Hence πe
n(p̂k)− πe

n(p̄k) > 0 for all k large enough. A contradiction.

Proof of Lemma 1: Given k, for m 6= n

lim
h→0

rm(p̄−n, p̄n + h, sm)− p̄m

h
=

∂rm

∂pn
(p̄, sm)

As p̂k → p̄, p̄k → p̄ and sk
−n → s−n, since ∂rm

∂pn
is continuous, for every ε > 0, there is a k̄

such that for all k > k̄ :

rm(p̂k
−n, p̄k

n +
(
p̂k

n − p̄k
n

)
, sk

m)− p̄k
m

(p̂k
n − p̄k

n)
>

∂rm

∂pn
(p̄, sm)− ε (15)

for all m 6= n.

Note further that

p̂k
m = rm(p̂k

−n, p̂k
n, sk

m) = rm(p̂k
−n, p̄k

n +
(
p̂k

n − p̄k
n

)
, sk

m)

and hence from (15), for every ε > 0, for all k large enough and all m 6= n,

p̂k
m − p̄k

m

p̂k
n − p̄k

n

>
∂rm

∂pn
(p̄, sm)− ε > 0

if ε is small enough.

To prove the lemma, suppose, by way of contradiction, that {zk} has as an accumu-

lation point the unit vector z′ with z′n = 1 and all other entries equal to zero. Passing to
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subsequences if necessary, we may assume that zk → z′. This implies that p̂k
m−p̄k

m

||p̂k−p̄k|| → 0

for every m 6= n, and p̂k
n−p̄k

n

||p̂k−p̄k|| → 1. Thus, given any τ > 0, for ε small and for all k large

enough,
∣∣∣ p̂k

n−p̄k
n

||p̂k−p̄k|| − 1
∣∣∣ < τ , hence ||p̂k − p̄k|| < p̂k

n−p̄k
n

1−τ . Then for m 6= n,

‖ zk − z′ ‖ ≥ p̂k
m − p̄k

m

‖ p̂k − p̄
k‖

≥ p̂k
m − p̄k

m
pk

n−p̄n

1−τ

> (1− τ)
(

∂rm

∂pn
(p̄, sm)− ε

)
> 0,

contradicting the assumption that zk → z′.

Lemma 2 Suppose that sk → s, and pk → p where for each k, pk is an equilibrium of

Γ(sk). Then p is an equilibrium of Γ(s).

Proof: If p were not an equilibrium of Γ(s), then there would be a firm m and a strategy

p′m such that

πm(p−m, p′m, sm) > πm(p−m, pm, sm).

Since πm is continuous in p and sm, for all large enough k,

πm(pk
−m, p′m, sk

m) > πm(pk
−m, pk

m, sk
m).

This contradicts the fact that pk is an equilibrium of Γ(sk) for all k.

Lemma 3 For any s−n, sn ≥ ∆, and p ∈ E(s),

p0 ≡ sup{z ∈ E(s−n, 0), z ≤ p} << inf{z ∈ E(s−n,∆), z ≥ p0} ≤ sup{z ∈ E(s−n,∆), z ≤ p}.

Proof: First, note that, since best responses are strictly increasing in opponents’ prices

and cost, po << p. Define a sequence of price vectors {pt}∞t=0 such that p0 = sup{z ∈
E(s−n, 0), z ≤ p}, and for t > 0,

pt = (rm(pt−1, sm),m 6= n, rn(pt−1,∆)).

We show by induction that pt << p for all t. The claim holds by definition for t = 0.

Assume that it holds for t ≥ 0, then since pt,−m << p−m for all m, and best responses
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are strictly increasing in opponents’ prices, rm(pt, sm) < rm(p, sm). A similar argument

shows that pt >> p0 for all t > 0. Since [p0, p] is compact, passing to subsequences

if necessary, we may assume that pt → p∆ ∈ [p0, p]. Since {pt} is an adaptive pricing

adjustment starting at p0, by Proposition 1, p∆ = inf{z ∈ E(s−n,∆), z ≥ p0}. Clearly,

p∆ ≤ sup{z ∈ E(s−n,∆), z ≤ p}.

Lemma 4 There is φ > 0 such that for any s and p ∈ E(s),

Πn(s−n,∆, p)−Πn(s−n, 0, p) > φ.

Proof: Consider any s′, p′ ∈ E(s′). Assume first that s′n > ∆. By Proposition 1,

Πn(s′−n,∆, p′)−Πn(s′−n, 0, p′) = πe
n(sup{z ∈ E(s′−n,∆), z ≤ p′})−πe

n(sup{z ∈ E(s′−n, 0), z ≤ p′}).

Combining Lemma 3 and Proposition 10, this expression is strictly positive for every

s′, p′ ∈ E(s′). The conclusion now follows from the facts that s′ ranges over a finite set,

E(s′) is compact for every s′, and πe
n is continuous. The remaining cases s′n = 0,∆ can

be dealt with similarly.

Proof of Theorem 2:

Choose ∆ as in Proposition 10. Fix an arbitrary firm n and define Lτ (s) to be the

sum of payoffs in all periods τ ′ < τ such that τ ′ was an experimental period and the

distortion s was chosen. Define

Xτ = Lτ (∆)− Lτ (0).

Since experiments are independent across periods and all distortions are picked with

equality probability, the strong law of large numbers implies that, almost surely, for all

τ large enough, all distortions are played with equal frequencies. Thus, for all large

non-experimental periods τ , Xτ > 0 implies that firm n does not choose sn = 0. Thus,

to prove the theorem, it suffices to show that Xτ →∞ almost surely.

Define

xτ = [Lτ (∆)− Lτ (0)]− [Lτ−1(∆)− Lτ−1(0)]
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yτ = xτ − E(xτ |hτ−1), zτ = E(xτ |hτ−1)

Yτ =
τ∑

s=1

ys, Zτ =
τ∑

s=1

zs.

Clearly,

Xτ = Yτ + Zτ ,
34 (16)

and {Yτ} is a martingale.35 Since each Yτ has bounded support, by Theorem 6.8.5 in Ash

and Doleans-Dade (2000, p. 280) the random variables Yτ − Yτ−1 = yτ are orthogonal,

and by Theorem 5.1.2 in Chung (2001, p. 108), Yτ
τ =

P∞
s=1 ys

τ → 0 almost surely (i.e.,

the conclusion of the law of large numbers holds). From this and equation (16) it follows

that
Xτ − Zτ

τ
→ 0 a.s. (17)

On the other hand,

zτ = E([Lτ (∆)− Lτ (0)]− [Lτ−1(∆)− Lτ−1(0)]|hτ−1)

= E(Πn(s−n(τ),∆, p(τ − 1))−Πn(s−n(τ), 0, p(τ − 1))|hτ−1)

≥ 1
N

ε

K
φ > 0,

where the last two inequalities follow from Lemma 4, and K is the number of distortions

in the grid. This implies that Zτ
τ ≥ 1

N
ε
K φ. This fact and equation (17) imply Xτ → ∞

almost surely.

Proof of Proposition 2: In any equilibrium of the pricing game, the lowest price

offered must be at or just below than the second highest cost including any distortion.

Suppose this is not the case and let p∗ be the lowest price. Then, of the two lowest cost

firms, at least one is not capturing the entire market. But that firm can price just under

p∗ and capture the entire market and increase its accounting profit, a contradiction.

Also, in any equilibrium, the firm with the lowest cost including distortions must be

setting the lowest price. Otherwise, it is making zero profits and can deviate and make

positive accounting profit by matching the lowest price. If its cost including distortion
34This is the well-known Doob decomposition. See, for instance, Chung (2001, Theorem 9.3.2, p. 337).
35E(Yτ+1|Yτ ) = E(yτ+1 + Yτ |Yτ ) = E(xτ+1|Yτ )− E(E(xτ+1|Yτ )|Yτ ) + Yτ = Yτ .
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is lower than the second-highest cost, it will price slightly below the second-highest cost

to capture the entire market. This observation implies that in any equilibrium with no

distortions, the lowest price must be at or just below c2. Also, firm 1 must be setting the

lowest price and either capturing the entire market, if c2 > c1, or sharing it, if c1 = c2.

In either case, firms 2 and above make zero profits and firm 1 makes positive profits only

if c2 > c1.

Suppose firm 2 or higher distorts its relevant costs upwards by s. Then, let c∗ be

the lowest cost including the distortion among all the firms apart from firm 1. By our

argument above, any equilibrium of the pricing game must have the price set at or just

below c∗. Therefore, firms 2 and higher makes zero profits in equilibrium and hence

have no incentive to distort their relevant costs upwards. Now, suppose firm 1 distorts

upwards by s. If c1+s < c2, then there is no change in the equilibrium in the pricing game

and hence no incentive to distort. If c1 + s > c2, in any equilibrium in the pricing game,

firm 1 must make zero profits as firm 2 has the lowest cost and will always undercut the

price set by the firm with the second-highest cost including any distortion. Hence, firm

1 has no incentive to distort relevant costs upwards. Moreover, there is no incentive for

firm 1 to distort downwards as it does not alter the pricing equilibrium. Similarly, if firm

n > 1 distorts downwards by s it still makes zero profits, when cn − s ≥ c1, or makes a

loss, when cn − s < c1 and it sets a price just under c1 which is less than its true cost

cn. �

Proof of Proposition 3

We establish existence by showing that πe
n(s) is supermodular in s (Milgrom and

Roberts 1990, Theorem 5). Differentiating πe
n(s)with respect to sn we have:

∂πe
n(s)

∂sn
=

−β (pn(s)− c) + α− βpn(s) + γ
∑
m6=n

pm(s)

 ∂pn

∂sn
+ (pn(s)− c) γ

∑
m6=n

∂pm

∂sn
.

Using (3), we can write this as:

∂πe
n(s)

∂sn
= −β

∂pn

∂sn
sn + (N − 1)γ

∂pm

∂sn
(pn(s)− c) , (18)
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where ∂pn
∂sn

and ∂pn
∂sm

are given by (5) and (6), respectively. This implies:

∂2πe
n(s)

∂sn∂sm
= (N − 1)γ

(
∂pn

∂sm

) (
∂pm

∂sn

)
> 0.

Thus, the first-stage game is supermodular in s. To establish uniqueness we establish

the contraction condition Λ ≡ ∂2πe
n(s)

∂s2
n

+
∑

n6=m
∂2πe

n(s)
∂sn∂sm

< 0 for all s ≥ 0. We first note

that
∂2πe

n(s)
∂s2

n

=
∂pn

∂sn

[
−β + (N − 1)γ

∂pm

∂sn

]
.

Thus, we can write

Λ =
∂pn

∂sn

{
−β +

[
(N − 1)γ + (N − 1)2γξ

] ∂pm

∂sn

}
,

where ξ ≡
∂pn
∂sm
∂pn
∂sn

=
γ

2β−(N−1)γ

1+ γ
2β−(N−1)γ

∈ (0, 1). Since ∂pn
∂sn

> 0 and ∂pm
∂sn

= β
2β+γ

γ
2β−(N−1)γ , Λ < 0

if and only if [
(N − 1) + (N − 1)2ξ

] γ2

(2β + γ) (2β − (N − 1)γ)
< 1. (19)

Now, straightforward algebra establishes that:

γ2

(2β + γ) (2β − (N − 1)γ)
=

(
θ

(N − 1)θ + 2(1− θ)

) (
θ

(2N − 1)θ + 2(1− θ)

)
.

Furthermore ξ < 1, so (N − 1) + (N − 1)2ξ < (N − 1) + (N − 1)2 = N(N − 1). Thus[
(N − 1) + (N − 1)2ξ

] γ2

(2β + γ) (2β − (N − 1)γ)

<

(
(N − 1)θ

(N − 1)θ + 2(1− θ)

) (
Nθ

(2N − 1)θ + 2(1− θ)

)
.

But N < 2N − 1, since N > 1. Thus(
(N − 1)θ

(N − 1)θ + 2(1− θ)

) (
Nθ

(2N − 1)θ + 2(1− θ)

)
<

(
(N − 1)θ

(N − 1)θ + 2(1− θ)

) (
(2N − 1) θ

(2N − 1)θ + 2(1− θ)

)
.

Since each term in the above expression is positive but less than one, we immediately

have (
(N − 1)θ

(N − 1)θ + 2(1− θ)

) (
(2N − 1) θ

(2N − 1)θ + 2(1− θ)

)
< 1,

which establishes that Λ < 0. The equilibrium in sn is thus unique, and because firms

are symmetric, the equilibrium distortion will be symmetric across firms.
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Proof of Proposition 4

Proof (a): We begin by noting that θ = 0 ⇒ γ = 0 and β = 1
b . Using this, it is

straightforward to verify that limθ→0
∂πe

n
∂sn

= − sn
2b < 0. Hence, no firm has an incentive to

choose a positive distortion.

Proof (b): It is straightforward to show that

lim
θ→1

p0 = c.

lim
θ→1

γ

β
=

1
N − 1

.

lim
θ→1

β

2β − (N − 1)γ
= 1.

lim
θ→1

ξ =
1
N

.

Now let s∗(1) = limθ→1 s∗ and p∗(1) = limθ→1 p∗. Taking limits of each side of (8) and

(9), and using the expressions above we have

s∗(1) =
(p∗(1)− c)

N
.

p∗(1) = c + s∗(1).

These can only be satisfied if s∗(1) = 0 and p∗(1) = c.

Proof (c): It is straightforward to show that

lim
N→∞

p0 = c.

lim
N→∞

(N − 1)ξ = 1.

lim
N→∞

γ

β
= 0.

Now let s∗(∞) = limN→∞ s∗ and p∗(∞) = limN→∞ p∗. Taking limits of (8) and using

the above expressions implies that s∗(∞) = 0.

Proof of Proposition 5

If θ ∈ (0, 1), then p0 > c. Furthermore, it is straightforward to show that

(N − 1)θ2

[(2− θ) + (N − 1)θ(1− θ)] [(1− θ) + (N − 1)θ]
> 0,
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which implies that s∗ > 0. When θ ∈ (0, 1),

(2− θ) + (N − 1)θ
(2− θ) + (N − 1)θ(1− θ)

> 1.

Thus, p∗ − c > p0 − c, or p∗ > p0.

Proof of Proposition 6

The expression for p∗ − c can be written as follows:

p∗ − c = (a− c)(1− θ)y(N)z(N),

where

y(N) =
1

2− θ + (N − 1)θ(1− θ)

z(N) =
2− θ + (N − 1)θ

2(1− θ) + (N − 1)θ
.

Clearly y(N) is strictly decreasing in N and so too is z(N):

z′(N) = − θ2

[2(1− θ) + (N − 1)θ]2
< 0.

Hence p∗ − c is strictly decreasing in N .

Proof of Proposition 7

The monopoly price pM satisfies

pM − c =
a− c

2
.

From (10), p∗ − c can be written as

p∗ − c =
(a− c)(1− θ) [2− θ + (N − 1)θ)]

[2− θ + (N − 1)θ(1− θ)] [2(1− θ) + (N − 1)θ]
.

p∗ < pM if and only if

(1− θ) [2− θ + (N − 1)θ)]
[2− θ + (N − 1)θ(1− θ)] [2(1− θ) + (N − 1)θ]

<
1
2
. (20)
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This can be re-written as

[2− θ + (N − 1)θ(1− θ)] [2(1− θ) + (N − 1)θ] > 2(1− θ) [2− θ + (N − 1)θ)] .

Now, for N ≥ 3, [2(1− θ) + (N − 1)θ] ≥ 2 since θ ∈ (0, 1) and N − 1 ≥ 2. Hence, we

have:

[2− θ + (N − 1)θ(1− θ)] [2(1− θ) + (N − 1)θ] > 2 [2− θ + (N − 1)θ(1− θ)]

> 2(1− θ)[2− θ + (N − 1)θ].

For N = 2, the inequality (20) boils down to:

1− θ

2− θ
<

2− θ2

4
,

which can be shown to hold for θ ∈ (0, 1). Hence, (20) holds for all N ≥ 2, establishing

p∗ < pM .

Proof of Proposition 8

These results follows directly from the expression (11).

Proof of Proposition 9

We know from the above results that

pM > p∗ > p0.

Since pM maximizes (p− c)
(

a
b −

p
b

)
, it therefore follows that(

a

b
− p∗

b

)
(p∗ − c) >

(
a

b
− p0

b

)
(p0 − c).

Given (12) and (13), it immediately follows that

1 + (N∗ − 1)θ > 1 + (N0 − 1)θ,

or N∗ > N0.
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