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Abstract

I study individuals who use frequentist statistical models to draw
secure or robust inferences from i.i.d. data. The main contribution of
the paper is a steady-state model in which distinct statistical models
are consistent with empirical evidence, even as data increases without
bound. Individuals may hold different beliefs and interpret their en-
vironment differently even though they know each other’s statistical
model and base their inferences on identical data. The behavior mod-
eled here is that of rational individuals confronting an environment in
which learning is hard, rather than ones beset by cognitive limitations
or behavioral biases.
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“The crowning intellectual
accomplishment of the brain

is the real world.” 1

1 Introduction

While classical subjectivist decision theory allows for virtually unlimited
freedom in how beliefs are specified, this freedom is all but extinguished
in economic modeling. Virtually all equilibrium concepts in economics—be
it Nash, sequential, or rational expectations equilibrium—require beliefs to
coincide with the true data generating process, reducing any disagreements
in beliefs to differences in information.2 , 3 On the other hand, there is no
shortage of examples in the sciences, business or politics where the way in-
dividuals ‘look at a problem’ and ‘interpret the evidence’ is just as important
in determining beliefs as the data on which these beliefs are based.

To capture this and other related phenomena, I study individuals facing
the most classical of statistical learning problems, that of drawing inferences
from i.i.d. data. These individuals are modeled as classical (frequentist)
statisticians concerned with drawing secure or robust inferences. The main
contribution of the paper is to show that distinct statistical models can
be consistent with empirical evidence, even in a steady-state when data
increases without bound. Individuals may then hold different beliefs and
interpret their environment differently even though they know each other’s
statistical model and base their inferences on identical data.

Decision makers are assumed to be as rational as anyone can reasonably
be. But rationality cannot eliminate the constraints inherent in statistical
inference—any more than it can eliminate other objective constraints like
lack of information. The methodology advocated in this paper is to study ra-
tional individuals confronting environments in which learning is hard, rather
than appeal to cognitive limitations or behavioral biases.

1G. Miller: “Trends and debates in cognitive psychology,” Cognition, 1981, vol. 10,
pp. 215-25.

2In games with incomplete information, this also requires the common prior assumption
which dominates both theoretical and applied literatures.

3The points made in this paragraph are not new. But being part of the folklore of
the literature, they are hard to trace to original references. The contrast between the
subjectivist and equilibrium methodologies is adapted from Hansen and Sargent (2001).
For an exposition of the problems with the Bayesian methodology in statistical inference,
see Efron (2005)’s presidential address to the American Statistical Society.
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1.1 Uniform Learning and its Implications

What makes learning hard? It is intuitive that two individuals with common
experience driving on US highways will agree on which side of the road
other drivers will use. It is far less obvious that two nutritionists, even when
exposed to a large common pool of data, will necessarily reach the same
theories about the impact of diet on health. These, and countless other
examples like them, suggest that some learning problems can be vastly more
difficult than others. It is, however, not at all clear what this formally means:
learning the probability of any single event in an i.i.d. setting reduces to the
simple problem of learning from a sequence of coin flips. This is so regardless
of how ‘complicated’ the event, the true distribution, or the outcome space
is.

Focusing on learning probabilities ‘one event at a time,’ misses the point,
however. Decision making is, by definition, about choosing from a family of
feasible acts. From a learning perspective, this raises the radically different
and more difficult problem of using one sample to learn the probabilities of
a family of events simultaneously.

The theory of uniform learning is the formal framework that studies ro-
bust (i.e., distribution-free) inference in this context.4 In Section 2, I use
this theory to introduce a simple model of belief formation where probabil-
ities are estimated from empirical frequencies using a frequentist statistical
model. Any such model gives rise to a belief correspondence that maps obser-
vations to a set of probability measures consistent with empirical evidence.

The individual chooses confidence levels in his estimates of various events.
This choice is trivial when data is abundant and the set of alternatives to
choose from is narrowly defined. An example is repeated i.i.d. coin flips
or, more generally, a finite outcome space and data that asymptotically in-
creases without bound. In this case, frequentist, Bayesian, and just about
any other sensible inference all agree.

The more interesting case is situations characterized by scarcity of data.
A key insight from the theory of uniform learning concerns the tension be-
tween the amount of data, and the ‘richness’ of the structure of acts the
decision maker wants to evaluate. What makes a learning problem hard is
not the amount of data per se, but this amount in relation to the ‘statisti-

4This theory, also known as Vapnik-Chervonenkis theory, and its generalization, the
theory of empirical processes, occupy a central role in modern statistics but are relatively
unknown to economic theorists. The reason for this is clear and revealing: a Bayesian has
no use for uniform learning.
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cal complexity’ of the alternatives considered. Thus, the impact-of-diet-on-
health problem is hard because one is concerned with learning about many
events simultaneously, namely how different diets impact individuals with
different characteristics. The theory of uniform learning provides a formal
framework to make sense of intuitive notions like a set of events is ‘rich,’
‘hard to learn’ or ‘statistically complex.’

With abundant data and a narrowly defined decision problem beliefs
are (approximately) determinate: the set of measures consistent with em-
pirical evidence collapses to a small (ε-) neighborhood and little scope for
disagreement remains. But when data is scarce and the decision maker has
to evaluate a rich set of options, the result is statistical ambiguity, in the
sense that data is insufficient to pin down beliefs. In this case, different
individuals with different statistical models may draw different inferences
and hold wildly different beliefs even though they observe the same data
and know each others’ models.

An implication of this theory is a sort of ‘law of conservation of confi-
dence:’ as the individual increases confidence in his estimates of the proba-
bility of some events, he inevitably decreases his confidence in others.5 This
trade-off has interesting implications for confidence-sensitive decision mak-
ers. First, as discussed earlier, beliefs may be under-determined by empirical
evidence. Second, although ambiguity about the probability of some events
disappears as the number of observations increases, ambiguity about oth-
ers persists. On the statistically unambiguous events, the decision maker
has Bayesian beliefs6 but this is now a consequence of the learning model
rather than an aspect of preferences. Third, coarsening and categorization
are necessary for learning. The pervasiveness of categorization seems beyond
dispute and does not require a model to establish. Why people categorize
is less obvious and is potentially the more important question: do individu-
als categorize because of computational complexity, limited memory, lack of
information? If decision makers are modeled as classical, frequentist statis-
ticians, then categorization is necessary to draw secure inferences. Since the
model is free of any presumed a priori structure, any implied categorization
reflects individuals’ attempt to make sense of their environment (hence the
opening quote of this paper). No appeal to computational complexity or

5The reader may find it helpful to compare this with ordinary linear regression, where
adding more regressors lowers the confidence in the estimated parameters. A key differ-
ence here is that our setting is non-parametric. The need for a non-parametric model is
discussed at length in Section 3.4.

6That is, a single (additive) probability measure that is updated using Bayes rule.
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cognitive limitations is made.
In Section 3, I turn to large sample theory, where the main technical con-

tribution of this paper lies. The known theory of uniform learning primarily
focuses on the case of finite data and has no bite in the limit, as the amount
of data increases. This makes it unsuitable for use in most economic models.
On a practical level, large sample theories permit greater tractability and
clearer intuitions. More fundamentally, equilibrium notions in economics—
e.g., Nash or rational expectations equilibrium—are usually interpreted as
capturing insights about steady-state or long-run behavior. A theory of
learning in which diversity is nothing more than a temporary phenomenon
would be difficult to reconcile with this steady-state interpretation.7

1.2 Beliefs and Decisions

The main concern of this paper is with belief formation, with questions
like: where do beliefs come from? and what makes them ‘reasonable?’ An
orthogonal, but equally important, question is: what decisions do individuals
make given their beliefs? To answer this, a decision making model that
combines beliefs and tastes into choices is needed. In Section 4, I introduce
a simple framework to integrate uniform learning into standard models of
decision making and their applications.

One issue I address using this framework is whether learning consider-
ations lead rational decision makers to hold common beliefs. See Morris
(1995) for a survey and synthesis. One of the clearest statements of one side
of the argument is Aumann (1987, pp. 12-13):

“[T]he CPA expresses the view that probabilities should be based on
information; that people with different information may legitimately
entertain different probabilities, but there is no rational basis for people
who have always been fed precisely the same information to do so.”

At the other end of the argument, Savage (1954) writes:8

“[I]t is appealing to suppose that, if two individuals in the same situa-
tion, having the same tastes and supplied with the same information,
act reasonably, they will act in the same way. [....] Personally, I

7This point, often under-appreciated, is discussed at length in Bewley (1988) who
introduced the notion “undicoverability” to capture the idea of stochastic processes that
cannot be learned from data. His model and analysis are, however, quite different from
what is reported here.

8Page numbers refer to the 1972 edition, Savage (1972).
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believe that [such agreement] does not correspond even roughly with
reality, but, having at the moment no strong argument behind my pes-
simism on this point, I do not insist on it. But I do insist that, until
the contrary be demonstrated, we must be prepared to find reasoning
inadequate to bring about complete agreement. [...] It may be, and
indeed I believe, that there is an element in decision apart from taste,
about which, like taste itself, there is no disputing.” (p. 7)

In reconciling these conflicting views, it is a good idea to have in mind an
explicit model that explains how “probabilities should be based on informa-
tion.” My claim is that, when viewed as statisticians, it is perfectly natural
for individuals to hold different beliefs based on identical information. Their
statistical models may be interpreted as Savage’s “element in decision apart
from taste, about which [...] there is no disputing.”

1.3 Robust vs. Bayesian Inference

The reader imbued with the Bayesian paradigm may be bewildered by no-
tions of learning and robustness that make no reference to prior beliefs,
updating rules and the like. Besides, doesn’t the standard Bayesian model
already contain a theory of belief formation in the form of updating via
Bayes rule?

Separating belief formation from decision making, as done in this paper,
may seem like a serious violation of the Bayesian paradigm. Historically,
however, Savage conceived his framework as normative, as a way to define
rational behavior in situations involving uncertainty, but that is otherwise
silent on the question of belief formation. Thus, he writes (1967, p. 307)
that the subjectivist view of probability is best thought of as a tool “by
which a person can police his own potential decisions for incoherency.” This
does not seem to commit even a Bayesian to any particular model of belief
formation.

A common retort is that Bayesian theory already provides a theory of
belief formation via de Finetti’s theorem. The need for a separate model of
belief formation is obviated, so the argument goes, by assuming a decision
maker with exchangeable beliefs who updates his prior using Bayes rule. The
effectiveness of this as a ‘learning’ and ‘belief formation’ procedure is deeply
entrenched in the Bayesian folklore, but it is also a myth. A classic theorem
by Freedman (1965), detailed in Section 5.5, shows that Bayesian posteriors
are “generically” erratic in a very strong sense whenever the outcome space
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is infinite.9 Although there is always room to quibble over the meaning
of genericity of beliefs and probability laws, what seems beyond dispute is
the impossibility of a general result establishing the consistency of Bayesian
updating. In a survey of that literature, Diaconis and Freedman (1986, p.
14) write:

“Unfortunately, in high-dimensional problems, arbitrary details of the
prior can really matter; indeed, the prior can swamp the data, no mat-
ter how much data you have.”

Our intuition, often naively derived from coins and urns, that data eventu-
ally swamps the priors is misleading. Freedman (1965) puts it quite vividly:

“[F]or essentially any pair of Bayesians, each thinks the other is crazy.”

If one substantially relaxes Bayesian theory, then there is not even a consen-
sus on how to update beliefs to incorporate new evidence.10 In summary, the
erratic nature of Bayesian decision making and its inability to incorporate
robustness suggest that one should not be quick to dismiss non-Bayesian
inference as irrational.

1.4 Descriptive vs. Normative Interpretations

Readers who declare frequentist statisticians irrational will have a hard time
not just with this paper, but with current statistical practice in all empiri-
cal fields of enquiry–which is overwhelmingly frequentist.11 At a minimum,
frequentist decision making is worth studying because it is descriptively im-
portant, and may therefore be a better approximation of how economic
actors behave.

There are also reasons to think that a concern for robustness is norma-
tively compelling. In his 1951 paper, Savage states that “the central problem
of statistics is [..] to make reasonably secure statements on the basis of in-
complete information.” What applies to statisticians ought to apply just as
well to economic actors. The fact that the classic Savage (1954) framework
precludes concerns for security led to many subsequent attempts to rein-
troduce such concerns. These include Bewley’s ((1986) and (1988)) studies

9Freedman’s result holds when the outcome space is the set of integers. It was gener-
alized by Feldman (1991) to complete separable outcome spaces, such as [0, 1] or Rn.

10Such as preferences not supported by a single prior, as in ambiguity models, for
instance. See Machina (1989)’s classic survey of these issues, especially the resulting
problem of dynamic (in-)consistency.

11 See, for instance, Efron ((2005) and (1986)).
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of Knightian uncertainty, the ambiguity models of Schmeidler (1989) and
Gilboa and Schmeidler (1989), the macroeconomics literature on robustness
and model uncertainty pioneered by Hansen and Sargent (e.g., see their 2001
expository paper), and the econometrics literature that uses minimax regret
or other robustness criteria as found, for instance, in Manski (2004).

Although classical frequentist methods dominate empirical studies in
economics, they had negligible impact on economic theorizing. One area
where frequentist-like procedures appear is the literature on learning in
games, as in models of fictitious play, adaptive learning and regret matching.
Another example is Kreps (1998)’s model of anticipated utility, aspects of
which he attributes to the older literature on learning rational expectations.

Hansen and Sargent (2001, p. 215) argue that a fundamental aspect of
the economic methodology is what might be termed inferential symmetry,
namely that “the economist and the agents inside his model [be] on the
same footing” and, in particular, that “economic agents share the modelers’
doubts” and concerns for robustness. In light of this, it is puzzling that we
choose frequentist methods to learn about the behavior of economic agents
and their environments, yet assume that these very agents are Bayesians
when learning about the same environment.

2 Uniform Learning and Consistency with Empir-
ical Evidence

2.1 Basic Setup

A decision maker faces a set of outcomes X with a σ-algebra of events Σ and
a true but unknown probability distribution P in P, the set of probability
measures on (X,Σ). Here we focus exclusively on statistical inference and
belief formation; decision making is examined in Section 4.

I consider three models, with the third not used until Section 3.3:

1. Xf is a finite set, Σ = 2Xf is the set of all subsets, and P is the set of
all probability measures;

2. Xc is a complete separable metric space, Σ = B is the family of Borel
sets, and P is the set of countably additive probability measures;

3. Xd is a countable set, Σ = 2Xd is the set of all subsets, and P is the
set of finitely additive probabilities.
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To simplify the notation, we will distinguish the probability spaces (as
Xf , Xc or Xd) but not the sets of events Σ or probabilities P as they will
always be clear from the context. Definitions, claims and interpretations
relating to an outcome space X are meant to apply to all three possibilities
listed above.

The decision maker bases his beliefs on repeated i.i.d. sampling from
the fixed true distribution P on X. Finite samples of t observations are
modeled by conditioning on the first t coordinates of an infinite sample
s = (x1, . . .). Formally, let S denote the set of all infinite sequences of
elements in X, interpreted as outcomes of infinite sampling. I.i.d. sampling
under P corresponds to the product probability measure P∞ on (S,S), where
S is the σ-algebra generated by the product topology.12

2.2 Motivation and Intuition

This subsection focuses on the special class of categorization problems to
introduce and motivate the main ideas.

Definition 1 A decision maker faces a categorization problem if:

• X is of the form Y × {a, b} for some set of “instances” Y and two
categories, a and b;

• The decision maker chooses an element of F , the set of all functions
f : Y → {a, b}, interpreted as categorization rules;

• Given P , his payoff from f is P{(y, i) : f(y) = i, i = a, b}.

As an example, consider a stylized investment problem where an investor
faces randomly drawn “investment opportunities” from a set Y . A catego-
rization rule is a contingent investment strategy f : Y → {buy, sell}. Given
such f , a correct categorization is made at x = (y, i) if f(y) = i. His payoff
is simply the probability of the set of outcomes where he ‘gets it right:’

Af ≡ {(y, i) ∈ X : f(y) = i}.

To convert this problem into a standard decision theoretic language, a nat-
ural state space is P and acts are functions from P to monetary payoffs in

12Most readers are familiar with these standard concepts in the cases Xf and Xc. Section
A.1 provides the requisite background in general enough terms to cover the less familiar
case of (Xd,Σ).
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[0, 1].13 We restrict attention to categorization acts:

ξ : P → [0, 1]

such that for every P , ξ(P ) = P (Af ) for some f ∈ F . For a Bayesian
decision maker, this is a completely straightforward problem. He would
have a belief π over P and chooses the investment rule that maximizes
expected payoff given his belief.

We are interested in the case where no such belief is given as a primitive,
but must rather be constructed from experience. Specifically, the decision
maker observes a sequence st = (x1, . . . , xt) drawn i.i.d. from P . In our
investment example, the stationarity of P may be interpreted as consisting
of two parts: (a) the description of each investment opportunity is com-
prehensive enough that no potentially relevant factors are omitted; and (b)
the economic fundamentals of what makes a company or a stock profitable
are stable. If the underlying distribution is non-stationary, then one would
expect learning to be even harder, and for reasons quite distinct from those
we wish to emphasize here.

I will take the point of view that the decision maker is a frequentist
who is concerned with obtaining secure inferences. Difficulties with the
Bayesian procedure of starting with a prior and update it using the data
were discussed in the Introduction and will be further elaborated in Section
5.5.

Define the empirical frequency of A ⊂ X relative to a sample st:

νt(A, s) ≡ #{(x1, . . . , xt) ∩A}
t

.14 (1)

An application of your favorite version of the weak law of large numbers
ensures that νt(Af , s) is a good estimate of ξ(P ) ≡ P (Af ) when t is large.
For example, by Chebyshev’s inequality one has, for any f ∈ F :

P∞{s : |P (Af )− νt(Af , s)| < ε} > 1− 1
4tε2

.

13Assume risk neutrality throughout this example for simplicity.
14In the special structure of categorization problems, the data is in the form of a sequence

st = {(yr, ir)}tr=1 of t instance-category pairs and the empirical frequency of Af is

νt(Af , s
t) =

#{f(yr) = ir}
t

.
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In fact, probabilities can be estimated uniformly regardless of the event or
the distribution:

sup
f∈F

sup
P∈P

P∞{s : |P (Af )− νt(A, s)| < ε} > 1− 1
4tε2

. (2)

It is irrelevant whether f is complicated or simple, the outcome space X is
finite or infinite, . . . etc. The inference about any single rule boils down to
estimating the probability of one event, and this is formally equivalent to
finding the probability of heads in independent coin flips. This may be one
of the reasons behind the commonly held intuition that “people eventually
learn.”

But choice involves, almost by definition, evaluating many acts simulta-
neously. In the investment example, one has to evaluate the performance of
as many candidate investment rules as possible in order to choose the best
one. Taking a learning perspective, define the set of ε-good samples for f as:

Good tε,P (f) ≡
{
s :
∣∣P (Af )− νt(Af , s)

∣∣ < ε
}

This is the set of samples on which the empirical frequency of Af is a good
estimate of its true probability. Here the parameter ε may be viewed as a
measure of the confidence one has in this approximation.

Suppose now we are choosing among rules {f1, . . . , fI} and there is
enough data to ensure that each event Good tε,P (Afi) has high probability.
Then, by definition, we can confidently assess the performance of any given
rule fi. This, however, says little about how to confidently choose the best
rule within the set {f1, . . . , fI} since this requires samples that are represen-
tative for each event Af1 , . . . , AfI simultaneously. That is, one has to ensure
that the probability:

P∞
[
∩iGood tε,P (Afi)

]
. (3)

is large. The fact that each event Good tε,P (Afi) is large guarantees only that
the probability of the intersection is at least 1−Iε, a conclusion that quickly
becomes useless as the number of rules being compared increases.

The central issue is to determine for what class of events is uniform
learning possible. This is illustrated in Figure 1 where the square repre-
sents the set of all samples of length t and the comparison is among three
events A1, A2, and A3 in the outcome space X. In Figure 1(a) the events
Good tε,P (Ai), i = 1, 2, 3, coincide so their intersection has probability 1− ε.
In this case, one has as much confidence in the joint evaluation of the three
events as in each event simultaneously. Part (b) illustrates opposite case:
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The square represents the space Xt of samples of size t

For an event A, GoodA is the set of 

representative samples relative to the event A 

Good(A1)Good(A2)

Good(A3)

Good(A1)

= Good (A2)

= Good (A3)

(a)

Good(A1)

! Good (A2)

! Good (A3)

(b)

Figure 1: Two examples of intersections of sets of samples

(In each case the square represents the space Xt of samples of size t)

each event Ai gives rise to a set of representative samples Good tε,P (Ai) which,
by (2), has probability at least 1− ε. The problem is that these sets of sam-
ples stack up in such a way that their intersection has probability of only
1− 3ε.

What determines whether a learning problem falls into type (a) or (b)?
The answer is supplied by the beautiful and powerful theory of Vapnik and
Chervonenkis (1971) (translated from an earlier paper in Russian).15 Section
5.1 provides a brief and self-contained account.

2.3 Uniform Learning and Statistical Models

Definition 2 (Uniform Learnability) A family of subsets C ⊂ 2X is ε-
uniformly learnable by data of size t if,

sup
P∈P

P∞
{
s : sup

A∈C

∣∣P (A)− νt(A, s)
∣∣ < ε

}
> 1− ε. (4)

C is uniformly learnable if for every ε ∈ (0, 1) there is t such that (4) holds.
15For expositions of this theory, see Vapnik (1998) or Devroye, Gyorfi, and Lugosi (1996).
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The crucial aspect of the definition is the location of supA∈C , indicating the
requirement that the probability being evaluated in (4) is that of samples
in which all events in C have their probabilities ε-close to their empirical
frequencies.

Definition 3 (Statistical Models) A triple (C, ε, t) is a (feasible) statistical
model whenever C is ε-uniformly learnable with data of size t.

For each event A, think of νt(A, s) as a “point-estimate” of P (A) and ε as
denoting the boundaries of a confidence interval around νt(A, s). Extending
this idea to all events, define

µtC,ε(s) =
{
p ∈ P : sup

A∈C

∣∣p(A)− νt(A, s)
∣∣ ≤ ε} . (5)

as the set of distributions consistent with empirical evidence. A probability
measure that does not belong to µtC,ε is one that can be rejected with high
confidence as inconsistent with the data. We suppress reference to C and ε,
simply writing µt(s), whenever they are clear from the context.

We shall view the collection of events C and the degree of confidence ε
as reflecting the decision maker’s model of his environment. On the other
hand, the amount of data t is an objective constraint that confronts the
decision maker with a trade-off between confidence, measured by ε, and the
scope of events C he can learn.

The problem with this logic is that feasibility of a statistical model, by
itself, is a hopelessly weak criterion; it is, for instance, trivially satisfied when
C = ∅ or ε = 1.16 To obtain a meaningful theory, it is useful to introduce
the following partial order on statistical models:

Definition 4 A statistical model (C′, ε′, t′) dominates another model (C, ε, t)
if

• C ⊆ C′, ε′ ≥ ε and t′ ≤ t.

(C′, ε′, t′) strictly dominates (C, ε, t) if at least one of the above inequalities
holds strictly.

When considering decision makers’ preferences over statistical models in
Section 4.4, I will argue that it is normatively compelling that scarce data
is not wasted. Thus, the most relevant statistical models must be maximal:

16In typical statistical learning theory applications, the family of events C is exogenously
given, such as half intervals in [0,1], or rectangles in R2. I know of no instance in which
the idea of maximality is used in that literature.
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Definition 5 (Maximality) A statistical model (C, ε, t) is maximal if there
is no feasible model (C′, ε′, t′) that strictly dominates it.

A maximal model does not overlook any sharper inferences that could have
been drawn using the same amount of data t.

For a finite outcome space Xf , the existence of a maximal model that
dominates a given model (C, ε, t) is straightforward. This is more delicate
on infinite outcome spaces, but still true:

Theorem 1 Fix t and suppose that (C, ε, t) is a feasible statistical model.
Then there is a maximal feasible statistical model (C′, ε′, t′) that dominates
(C, ε, t).

2.4 Learning Complexity, Scarcity of Data and the Order of
Limits

A key theme of this paper is that the desire to draw secure inferences from
scarce data leads individuals to statistical models that are coarser than the
true model. This is captured by the criterion of uniform learnability, which
reflects the difficulty of learning when data is scarce relative to the set of
options available to the decision maker. Recall that the weak law of large
numbers implies that there is t̄ such that for all t > t̄

sup
A∈C

sup
P∈P

P∞
{
s :
∣∣P (A)− νt(A, s)

∣∣ < ε
}
> 1− ε. (6)

This bound pertains to a statistical experiment in which a fresh sample
is drawn for each event evaluated. Each new event would require t̄ new
observations, a preposterous amount of data when the decision maker is
comparing a large set of acts.

A concern for scarcity of data means that data is not so abundant that
one can generate samples at will. The uniform learning criterion

sup
P∈P

P∞
{
s : sup

A∈C

∣∣P (A)− νt(A, s)
∣∣ < ε

}
> 1− ε (7)

models a decision maker who gets one shot at sampling t observations. The
scarcity of data forces the decision maker to restrict attention to a narrower
class of events C.

In summary, modeling environments where learning is hard is an illusive
goal because no event, when taken in isolation, is ever hard to learn. Rather,
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complexity in learning is a property of families of events and arises only when
the scarcity of data is taken seriously.

Whether a decision problem is complex or not depends on the relation-
ship between the amount of data available and the richness of the set of
events considered. This is sharply illustrated in the following theorem:

Theorem 2 Let X = Xf be a finite outcome space with cardinality n. Then:

1. For any given n and ε > 0 there is t̄ such that 2Xf is uniformly learn-
able with data of size t ≥ t̄; and

2. Given any t, ε > 0 and α > 0 there is n such that #Xf > n implies:

#C
#2Xf

< α

for any C that is ε-uniformly learnable with data of size t.

The problem is one of order of limits: Holding the finite set of outcomes
fixed, taking the amount of data to infinity guarantees uniform learning of
the powerset. On the other hand, holding t large but fixed, the set of events
and acts that can be uniformly learned shrinks down to zero as the size of the
outcome space increases. This is even when t is large enough to guarantee
learning the probability of any event in isolation.

If the outcome space is ‘small,’ as in the case of coin flips, the side of the
road drivers are likely to use and so on, then case 1 of the theorem is rele-
vant. Things differ dramatically when the outcome space is vast. Consider,
for example, the problem of evaluating the impact of diet on health. If there
are z1 binary attributes that define an individual’s characteristics, z2 binary
attributes that define diet characteristics, and z3 binary attributes that de-
fine health consequences, then the cardinality of the finite outcome space is
2z1+z2+z3 . For entirely conservative values of, say, z1 + z2 + z3 = 50, the
cardinality of the set of events is the incomprehensibly large number 2250

.
For individuals to reach agreement on the probability of all events through
learning is more in the realm of fantasy, even by the standard of idealized
economic models of decision making.17

When part 2 of the theorem is relevant, as in the last example, individuals
seeking robust inferences from a large but limited pool of data either restrict

17The reader may be amused by the fact that complete 0.01-agreement will require,
using (17), a minimum t that exceeds the estimated number of minutes since the Big
Bang.
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the scope of theories C, the set of models they consider P, or both. The key
point is that such restrictions must precede empirical evidence. It should
therefore not be surprising that rational individuals entertain ambiguity and
disagreements even when facing identical information.

2.5 Event-Dependent Confidence

The model presented above is unnecessarily restrictive in that it rules out
trading off confidence across events. Consider, for example, a choice between
a bet that pays 1 on an event A and zero otherwise, and another that pays
100 on B and -50 otherwise. One would expect a decision maker to demand
greater precision about his estimate of P (B) than P (A).

The formalism used so far assumes a common confidence interval size ε
for all events. This is done for simplicity, and a generalization can be readily
made. Instead of a single ε applied to a family of events C, confidence is
now represented by

• A function ζ : Σ → [0, 1], representing an event-dependent (size of)
confidence interval;

• A constant δ ∈ [0, 1] representing a confidence level.

Uniformly learnable would then mean:

sup
P∈P

P∞
{
s : ∀A,

∣∣P (A)− νt(A, s)
∣∣ < ζ(A)

}
> δ. (8)

Our more restrictive formulation (C, ε, t) is one characterized by δ = ε and
a distinguished family of events C such that ζ(A) = ε for each A ∈ C. The
arguments of the paper go through, with appropriate modifications, under
the more general model.

3 Large Sample Theory

I now turn to the asymptotic properties of uniform learning as the amount
of data increases. There are at least three reasons why large outcome spaces
are important:

• Robustness: A natural question is: would the conclusions of the anal-
ysis eventually disappear as more data accumulates?
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• Tractability: Asymptotic models can be considerably simpler and yield
sharper intuitions.

• Applicability: Equilibria in economic and game theoretic models are
often viewed as steady-states that arise as limits of learning processes.

3.1 Exact Learning

As the decision maker is given more data, he can sharpen his statistical
model by either decreasing ε or increasing the range of events C he learns
about. We formalize this using the notion of learning strategy:

Definition 6 A learning strategy is a sequence σ ≡ {(Ct, εt, t)}∞t=1 of sta-
tistical models satisfying:

• εt → 0;

• Ct ⊆ Ct+1 for every t;

• Ct is a maximal εt-uniformly learnable family of events by data of size
t.

The learning strategy is simple if there is t̄ such that Ct = Ct+1 for every
t ≥ t̄.

The idea is that, as the decision maker is given larger sets of data, the set of
feasible statistical models increases. His choice from the larger set of models
may either involve increasing confidence or enlarging C. Simple strategies
involve increasing confidence while holding the set of events C constant.

Given a learning strategy σ = {(Ct, εt, t)}∞t=1, the set of beliefs consistent
with empirical evidence is:

µσ(s) ≡
{
p : ∀t sup

A∈Ct

∣∣p(A)− νt(A, s)
∣∣ ≤ εt} .

The next theorem shows that on a ‘typical’ sample, any p ∈ µσ(s) should
assign to any event A a probability equal to the true probability P (A), and
thus µσ(s) has a very clean structure on most samples:

Theorem 3 (Exact Learning) Fix any learning strategy {(Ct, εt, t)} and
write C = ∪tCt. Then for any P ∈ P:

µσ(s) =
{
p : p(A) = P (A), ∀A ∈ C

}
, P∞ − a.s.

In particular, µσ(s) is a convex set of probability measures, almost surely.
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The main challenge in proving this result is to show that it holds for finitely
additive P on Xd, as required in Section 3.3 below. Note also that agreement
on C may lead to agreement on events outside C. See Section 4.3.

The theorem justifies the following straightforward definition:

Definition 7 Beliefs are asymptotically determinate if there is a learning
strategy σ such that for every P ,

µσ(s) = P, P∞ − a.s.

That is, the only belief consistent with empirical evidence is the true distri-
bution.

The phenomenon of most interest to us is beliefs that are not determi-
nate. An easy consequence of Theorem 2 is that this cannot be achieved if
X is finite. To model environments where learning is hard, data is scarce,
and beliefs are indeterminate, we need to turn to infinite outcome spaces.

3.2 Continuous Outcome Spaces

An obvious candidate for an infinite outcome space is Xc, a complete sepa-
rable metric space with the Borel σ-algebra B. P is the set of all (countably
additive) probability measures on (Xc,B). We begin with a general, and
discouraging, result:

Theorem 4 If X is a complete metric space then beliefs are asymptotically
determinate via a simple learning strategy.

A prototypical example illustrating the theorem is:

Example 1 Let X = [0, 1] and C be the class of half intervals: [0, r] or (r, 1]
where r is any number in [0, 1]. Then this is an uncountable collection of
events that is uniformly learnable.

There are two distinct learning principles at play in this example:

• Statistical learning: by the classic Glivenko-Cantelli Theorem, the em-
pirical distribution functions converge to the distribution function uni-
formly almost surely, so in the limit the probability of each half interval
is known without error;

• Deduction: once the probabilities of events in C are known one can use
the axioms of probability to deduce the probabilities of events outside
C. In this example, this leads to deducing the probabilities of all Borel
events. The theorem shows that this intuition generalizes.
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The argument underlying the theorem shows that complete learning in
the limit can be achieved using an exceedingly simple class of events, similar
in their simplicity to the half intervals. It is difficult to think of bounded
rationality reasons that would prevent a decision maker from using such
simple learning procedure.

The example is disturbing in another way, namely that it reveals a rather
sharp disconnect with the finite outcome space/finite data model. It is easy
to find examples of finite outcome space and finite data in which complete
learning does not occur. Yet this cannot occur in the settings covered in
Theorem 4. This is an artifact of the mathematical structure of Xc that
distorts the learning problem by imposing strong restrictions on Σ and P.
This leads to the model of the next section in which complete learning
cannot occur, reflecting more faithfully the phenomenon found in finite-
finite models.

3.3 Discrete Outcome Spaces

Here we consider Xd to be countable; Σ is the set of all subsets of X; and
P the set of all finitely additive probability measures on Σ. This space
of outcomes is discrete in the sense that there is no extraneous metric or
measurable structure that restricts the set of events.

Theorem 5 Beliefs in the discrete outcome space (Xd,Σ) are not asymp-
totically determinate.

In fact, for any learning strategy σ, there is P such that µσ(s) 6= {P},
P -a.s.18

It is worth noting that the scope of disagreement asserted in the theorem
can be substantial, as shown in the following corollary to its proof:

Corollary 6 For any uniformly learnable C and any α ∈ (0, 0.5] there is a
pair of probability measures λ and γ that agree on C, yet |λ(B)− γ(B)| = α

for uncountably many events B.

To interpret these results, recall the earlier discussion that there are
two learning principles: a statistical principle, under which probabilities are
deduced from data, and a deductive principle, under which probabilities
of some events are deduced from knowledge of the probabilities of others.

18This is a stronger claim than just saying that beliefs are not asymptotically determi-
nate, which would have only required that µσ(s) 6= {P} on some set A with P (A) > 0.
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Statistical inference works here just like it did in continuous outcome spaces.
What is different is that there is no longer a uniformly learnable C such
that the probability of all events can be deduced from knowledge of the
probability of events in C.

The proof uses a combinatorial result that bounds the “size” of uniformly
learnable classes of events. Passing to the limit is quite delicate because,
among other things, the cardinality of a family of events is not a useful
measure of its learning complexity.19 The proof uses a novel argument in
which a (finitely additive) measure λ can be perturbed without changing
the probability it assigns to events in C.

3.4 Modeling Choices and Generalizations

3.4.1 The Absence of Presumed Structure

A finite outcome space Xf is free from any presumed a priori structure, such
as notions of distance, ordering, or similarity between elements. I view a
structure-free model as an essential backdrop to any study that seeks to
shed light on how individuals model their environment. No one disputes
that cognitive structures, like orderings and similarity, are essential in de-
cision making. But to explain why these structures look the way they do,
one should avoid letting extraneous presumed structures surreptitiously con-
taminate the analysis. In a structure-free model, like Xf , individuals end up
using orderings and similarity in the form of a statistical model to facilitate
learning and to make sense of empirical evidence (hence the opening quote
of this paper).

In infinite outcome spaces, the counterpart of Xf is the discrete space
Xd, which admits all subsets and all probability measures as legitimate. By
contrast, the continuous outcome space Xc comes loaded with structural as-
sumptions. When Xc = [0, 1], for instance, a similarity function in the form
of a metric is implied, limiting the range of events, acts, and probabilities
used. This accounts for the learning result, Theorem 4, that stands in stark
contrast to what happens in large but finite outcome spaces.

3.4.2 Stationarity

The model assumes that the decision maker faces a stationary problem (P
is unchanging). Many decision problems may be usefully modeled as sta-

19The example in footnote 25 illustrates that knowledge of the probabilities of a count-
able family may be sufficient to determine the probabilities of all Borel sets.
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tionary, while some non-stationary problems become stationary in a richer
outcome space. In any event, failure of learning would hold a fortiori in non-
stationary settings where the object to be learned is constantly changing.

3.4.3 Robustness

Robustness enters via our assumption that the decision maker is completely
ignorant about the true model P , and that he seeks inferences robust to this
model uncertainty. This may be viewed as too extreme. In defense of this
requirement, consider:

• The model can accommodate the introduction of prior knowledge that
narrows down the set of possible distributions. The qualitative insights
generalize if we limit the decision maker’s model uncertainly to some
P◦ ( P, provided this is a rich enough set of distributions.

• But one must then ask where does knowledge of P◦ come from? The
requirement to be robust to all distributions helps delineate the bound-
ary between empirically-grounded and extra-factual sources of knowl-
edge.

In the investment example, allowing all P ’s may correspond to a technical
investor with no prior theory (e.g., basic economics or finance) that puts a
priori restrictions on the true distribution. If the investor were to incorporate
theories from macroeconomics or finance, say, he will presumably be able
to reduce P to some smaller set P◦. But despite decades of extensive and
commonly shared evidence, even the best theories these fields have to offer
leave ample room for model uncertainty. This is seen daily in well-publicized
conflicting policy recommendations, forecasts, and investment strategies.

4 Diversity, Ambiguity and Decision Making

4.1 A Decision Theoretic Framework

Learning leads to a compact convex set of probability measures µt(s) and
µσ(s) consistent with empirical evidence. These are purely statistical con-
structs that impose constraints on beliefs, but otherwise orthogonal to how
beliefs are incorporated into choice. To do so requires an explicit decision
theoretic framework.
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Here I use a simple formulation based on Gajdos, Hayashi, Tallon, and
Vergnaud (2006)’s model of how objective information can be incorporated
into a subjective setting. Fix a finite set of consequences Z. An act is a
function of the form:

ξ : P → ∆(Z).

Here, P is interpreted as the set of states and ∆(P) as an individual’s beliefs
about these states. For example, ξ may be induced by a categorization rule,
as detailed in Section 2.2. Endow P and ∆(P) with their weak* topologies,20

and let K be the set of all compact and convex subsets of ∆(P).
Consider now a decision maker with objective information that the true

distribution π over the states space P lies in some compact convex set Π ⊆
∆(P). Gajdos, Hayashi, Tallon, and Vergnaud (2006) proposed that this
decision maker evaluates an act ξ according to:

U(ξ) = min
π∈ϕ(Π)

∫
X
u ◦ ξ(P ) dπ(P ) (9)

where

• u is a vNM utility function; and

• ϕ : K → K maps objective information, in the form of a set of measures
Π, to a subjective set of measures ϕ(Π), and satisfies

ϕ(K) ⊆ K, ∀K ∈ K. (10)

They provide preference axioms, extending those of Gilboa and Schmei-
dler (1989), that characterize this representation. Unfortunately, their setup
includes assumptions of technical nature that make their preference charac-
terization inapplicable to our problem.21 Here I use their functional form;
verifying whether their representation holds with these technical assump-
tions removed will be undertaken in future work.

The main innovation here is the specific source of objective information
proposed, namely statistical inference from repeated sampling.

Definition 8 (Frequentist restrictions on subjective beliefs)
20The topology on ∆(P) is generated by sets of the form: {π ∈ ∆(P) : α < π(E) < β}

where E ⊂ P and 0 ≤ α < β ≤ 1.
21Namely that P must be countable and ∆(P) consists of measures of finite support.
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• Infinite samples: Given a strategy σ and a sample s, the set Πσ(s) ⊆
∆(P) of beliefs consistent with empirical evidence consists of all prob-
ability measures π ∈ ∆(P) that put mass 1 on µσ(s).

• Finite samples: Given a statistical model (C, ε, t) and a sample s, the
set Πt

σ(s) ⊆ ∆(P) of beliefs consistent with empirical evidence consists
of all probability measures π ∈ ∆(P) that put mass at least 1 − ε on
µ(C,ε,t)(s).

Below I focus exclusively on Πσ(s) since the case of finite data Πt
σ(s) is quite

similar. It is straightforward to verify that the mapping

s 7→ Πσ(s)

is a correspondence assigning to each sample a compact convex set of prob-
ability measures. The sets of beliefs Πσ(s) do not vary arbitrarily with
data. Rather, they all share the property that there is a family of events,
independent of s, on which any two measures in Πσ(s) must agree.22

The functional form generally expressed in (9) above now becomes:

U(ξ; s) = min
π∈ϕs(Πσ(s))

∫
X
u ◦ ξ dπ. (11)

The inclusion condition (10), which now becomes:

ϕs (Πσ(s)) ⊆ Πσ(s) ∀s,

says that the decision maker cannot be completely delusional: he must put
no weight on probabilities that are securely rejected by available evidence.

If beliefs are asymptotically determinate, as in the finite or continuous
outcome spaces, µσ(s) is a singleton measure P̄ . In this case, inclusion forces
the decision maker to hold the belief δP̄ that puts unit mass on P̄ in almost
all samples. The utility function in (11) implies that decision maker will
behave exactly as a Bayesian, almost surely.

If µσ(s) is non-degenerate (as in the discrete model, or in a finite out-
come space with limited data), then objective information cannot pin down
a single distribution P . This leaves the decision maker the freedom to en-
tertain many possible beliefs π; all learning does is to restrict these beliefs
to Πσ(s). To evaluate acts, as in (11), the decision maker transforms the
objective information Πσ(s) into a subjective set of measures ϕs (Πσ(s)).
Two polar cases of such transformation are worth noting:

22Lehrer (2005) makes a similar point in a very different context.
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• Bayesian Belief Selection: ϕs is single-valued.

• Maximally Ambiguous Beliefs: ϕs is the identity (ϕ(Π) = Π for all
Π ∈ K).

Note that, in evaluating acts, the taste component u is assumed to be
independent of the sample s. Samples only provide information, so it makes
sense that they only impact beliefs. On the other hand, we allow ϕs to
vary with s to reflect subjective elements of how the decision maker in-
terprets ambiguous objective information. When beliefs are asymptotically
determinate, the inclusion condition (10) makes this freedom superfluous.
But when empirical evidence is not sufficient to reduce µσ(s) to a single-
ton, the decision maker’s subjective “inferences” and interpretations of the
evidence may well vary from sample to sample. He may potentially be in-
fluenced by unmodeled heuristics, misconceptions, over-confidence, biases
involving superstitions, or by reading patterns in otherwise randomly gen-
erated numbers. One may debate whether or not doing so is “rational,” but
such debate would have to appeal to criteria that go beyond the minimalist
approach adopted here.

I conclude by noting that the analysis of this paper is not wedded to any
particular model of how beliefs are incorporated into decision making. The
above model is attractive for its simplicity and tractability, but the main
points on the role of uniform learning and the incorporation of objective
information could have just as easily been made using smooth ambiguity
preferences (Klibanoff, Marinacci, and Mukerji (2005)) or variational pref-
erences (Maccheroni, Marinacci, and Rustichini (2006)).

4.2 Diversity of Beliefs

Should individuals who have observed a large, common pool of data hold
the same beliefs? We consider the case of infinite data for simplicity. Similar
definitions and argument hold in the finite data case.

Consider two individuals, i = 1, 2 who:

1. Face the same unknown environment P ;

2. Observe the same infinite sequence of data s;

3. Have identical vNM utility u;

4. Each has a learning strategy σi;
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5. ϕis is single-valued for every s.

Conditions 1-3 are obvious; they rule out differences in the environment,
data, or tastes as sources of disagreement. Decision makers who differ on
these dimensions are, not surprisingly, likely to disagree on how to evaluate
acts, even with infinite data. Condition 4 is definitional. Condition 5 is
necessary to even define what “holding the same beliefs” means.

Under these conditions, each individual is a subjective utility maximizer,
with a single-valued πis ≡ ϕis

(
Π(s)

)
that varies with the sample. We say

that two individuals almost always hold a common belief if for every P ,
π1
s = π2

s, P
∞ − a.s.

Theorem 7 Two individuals almost always hold a common belief if either

• Beliefs are asymptotically determinate; or

• The two individuals use the same learning strategy σ and the functions
ϕ1
s and ϕ2

s are equal almost surely.

The theorem, whose proof is straightforward, highlights the sort of con-
ditions needed for common beliefs to obtain. If beliefs are asymptotically
determinate, then µσ(s), and hence Π(s), is single-valued. Inclusion then
forces the two individuals to hold identical beliefs, and evaluate acts identi-
cally. Under these assumptions, the only sources of differences in behaviors
are differences in tastes or information about future outcome realizations.

But if beliefs are asymptotically indeterminate, then differences in the
σi’s and ϕis’s can no longer be ignored. Assume first that the two individuals
choose identical learning strategies. Then they both have the same objective
information Π(s) and this set of beliefs exhausts all available statistical
evidence. This leaves room for the subjective mappings ϕis to play a role.
These mappings summarize individuals’ reliance on unmodeled heuristics,
intuitions or biases to figure out how to assign probabilities to events not
pinned down by Π(s).

The subjective mappings ϕis that drive disagreement are not shaped by
evidence, nor are they subject to learning. It would seem rather remote that
individuals end up with identical ϕis’s on their own.

The second, and potentially more radical, source of disagreement is dif-
ference in learning strategies. With common learning strategies, individuals
must agree on the probability of some events. But when their learning
strategies are allowed to differ, then it may so happen that, in a rich enough
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problem, there is no agreement on any non-trivial event. Again, there is
no reason to expect that learning or players’ rationality should lead their
strategies to merge over time.

The upshot is that, in environments where learning is hard, conditions
that guarantee common beliefs are exceedingly demanding because different
individuals can look at the same problem differently. One should therefore
not be surprised, and indeed should expect, that different individuals with
access to a large identical pool of data can reach different conclusions.

4.3 Statistical Ambiguity and Probabilistic Closure

One may interpret the multiplicity of distributions consistent with empirical
evidence (i.e., the fact that µσ(s) is non-singleton) as indicative of statis-
tical ambiguity. Although µσ(s) is a purely statistical construct, it does
bear on whether ambiguity-sensitive behavior arises. The following result is
straightforward:

Theorem 8 An individual displays ambiguity averse behavior almost surely
if:

• Beliefs are not asymptotically determinate; and

• ϕs is set-valued almost surely.

There is a large literature on the role of ambiguity in decision making
that builds on the insights of Schmeidler (1989) and Gilboa and Schmeidler
(1989). This literature, which is too vast for even a cursory review here,
characterizes ambiguity aversion in terms of axioms on choice behavior. This
paper takes a complementary approach: I put forth an explicit learning
model and a decision model, within which ambiguity aversion may or may
not arise, then ask “what must be true about a given environment to cause
ambiguity averse behavior arise or vanish?”

The next natural question is: “what are the events on which all ambiguity
disappears in the limit?” To make this more formal, fix a learning strategy
σ={(Ct, εt, t)}∞t=1 and write C = ∪tCt. By Theorem 3, the decision maker
learns the probability of all events in C exactly. Two problems arise: first,
C need not have any particular structure; for example, it need not be closed
under complements, unions . . . etc. For example, the class of events in
Example 1 is not an algebra. Second, agreement on the probabilities of
events in C may lead to agreement on events outside C. For instance, if we
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know the probability of two events A, B ∈ C and these events are disjoint,
then we can unambiguously deduce the probability of the event A∪B, even
if it does not belong to C.

These issues point to the need of formally defining the class of events
whose probabilities can be unambiguously determined in the limit. Call a
function p : C → [0, 1] a partial probability if it is the restriction to C of some
probability measure p′ on Σ.23

Definition 9 An event A ∈ Σ has unambiguous probability given C if, for
any partial probability p on C, and any two extensions p′, p′′ of p to Σ,
p′(A) = p′′(A).

The set C? of all such events will be referred to as the probabilistic closure
of C.

Obviously, C ⊆ C? with equality obtaining if C is an algebra of events in Xd,
or a σ-algebra in Xc. What can be said about the structure of C? in general?

There is an increasing agreement in the ambiguity literature that un-
ambiguous events need not form an algebra, but only a λ-system. This
observation was first made by Zhang (1999), and subsequently elaborated
in many papers, in particular Epstein and Zhang (2001). A λ-system is
a family of events closed under complements and disjoint unions, but not
necessarily arbitrary unions or intersections (Billingsley (1995)).

Theorem 9 Fix any uniformly learnable family C:

1. C? is a λ-system;

2. C? may be strictly larger than the smallest λ-system containing C;

3. C? need not be an algebra.

Part (1) is evident. Part (2) is known; an example in de Finetti (1974)
illustrates the point. A version of his example, which also illustrates part
(3), is reproduced in the appendix.

23A more direct condition defining partial probabilities on arbitrary families of sets
was identified by Horn and Tarski (1948). See Bhaskara Rao and Bhaskara Rao (1983,
Definition 3.2.2).
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4.4 Choice over Statistical Models

So far we have examined choice over acts, taking the prior choice of a learning
strategy σ as given. Different strategies of course lead to different informa-
tion structures, begging the question: how a decision maker chooses among
alternative learning strategies?

For expositional convenience, restrict attention to statistical models (C, ε, t)
with finite data. Intuitively, a decision maker chooses the model that is most
helpful in evaluating the acts of interest to him. One can define a binary
relationship www on statistical models that reflects this preference and intro-
duce standard assumptions like completeness and transitivity. It also makes
sense to require www to be monotone increasing in C and t, and decreasing in
ε. This just says that the decision maker prefers, other things held fixed,
more data, more events and higher confidence.

Beyond these weak requirements, there seems to be little additional
structure on www that one would be compelled to impose in general. In spe-
cific contexts, it is not hard to think of idiosyncratic as well as social and
competitive factors that shape the choice of a statistical model. Statisti-
cal practice offers insights into the process of model selection: practitioners
design statistical models as a function of the hypotheses they want to test,
intuitions about likely connections, conventions and so on. These are extra-
factual considerations that lie outside our minimalist learning model. One
can hope that a more ambitious model than the present one can account for
patterns of diversity and conformity of individuals’ models.

5 Implications and Connections

5.1 Uniform Learning and Vapnik-Chervonenkis Theory

Uniform learning can be given an elegant and insightful characterization
using the theory of Vapnik and Chervonenkis. The key concept in this
theory is that of shattering capacity of a family of events C. Define the mth

shatter coefficient of a family of sets C to be

s(C,m) = max
{x1,...,xm}⊂X

#{C ∩ {x1, . . . , xm} : C ∈ C}.

Here, interpret {x1, . . . , xm} as a potential sample drawn from X. Then
#{A∩ {x1, . . . , xm} : A ∈ C} is the number of subsets that can be obtained
by intersecting the sample with some event in C. The shatter coefficient
s(C,m) is a measure of the complexity of a family of events C.
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Clearly, s(C,m) ≤ 2m. The highest integer m at which this bound is
achieved is called the Vapnik-Chervonenkis (or VC-) dimension of C:

VC ≡ max
m
{s(C,m) = 2m}.

If there is no such m, we write VC =∞.
A central result in statistical learning theory is that a class of events is

uniformly learnable if and only if it has finite VC-dimension. In particular,

sup
P∈P

P∞
{
s : sup

A∈C
|νt(A, s)− P (A)| > ε

}
< K tVC e−tε

2/32, (12)

where K is some constant. While tighter bounds are available (perhaps
under mild additional assumptions), the above version is the most useful for
our purposes.24

For a family of events C to have a finite VC-dimension means that it is
not too rich to be uniformly learned. A finite C obviously has finite VC-
dimension, while the powerset has VC-dimension equal to the cardinality of
the space. But the cardinality of a family C has at best a tangential (and
often misleading) relationship to its statistical complexity.

The best-known class of finite VC-dimension is the half intervals ap-
pearing in Example 1, also known as the Glivenko-Cantelli class. This is
an uncountable family of events that nevertheless has a VC-dimension of 2.
Historically, this was the first class of events for which uniform learnability
results were shown. This, and the striking generalization provided by Vapnik
and Chervonenkis (1971), spawned the vast literature on the subject.

To see that this class has VC = 2, note that any pair of points x1, x2 ∈ X
can be shattered by C, so VC ≥ 2. Take any set of three points x1 < x2 < x3,
intersections with elements of C generate the sets {x1}, {x3}, {x1, x2}, {x2, x3},
but no intersection can generate the singleton set {x2}. Since no set with
three points can be shattered, we have VC = 2.25

The next example shows that passing from a family C to the algebra it
generates is not innocuous from a learning stand point:

24See Devroye, Gyorfi, and Lugosi (1996) and, for another take on the problem, Pollard
(1984). A characterization in terms of samples drawn from a given subset of X is given
in Talagrand (1987).

25 Consider the class C′ ( C with identical definition as C but where t is restricted
to be a rational number. Then C and C′ have identical VC-dimension, even though C′ is
countable while C is not. This is another illustration that learning is only tangentially
related to the cardinality of the events to be learned.
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Example 2 X = [0, 1] with C′ the algebra generated by the Glivenko-Cantelli
class C. Then VC′ =∞. In particular, the family of Borel subsets has infinite
VC-dimension.

To verify the claim, note first that the algebra generated by C contains all
finite unions of intervals. Fix a finite set {x1, . . . , xm}. It is clear that any
subset of {x1, . . . , xm} can be expressed as the intersection of {x1, . . . , xm}
with a finite union of intervals. This means that the algebra generated by C
shatters a finite set {x1, . . . , xm} of size m for any m, and hence has infinite
VC-dimension. To verify the last claim, note that passing to superset of
events can only increase the VC-dimension.

5.2 Over-fitting and Falsifiability

The fundamental trade-off facing the decision maker in this paper is between
the desire to learn the probability of as many events as possible, and the
fear of over-fitting the data. To see the relationship to over-fitting, I focus
on the special case of categorization problems.

Let F be a class of categorization rules f : Y → I, with I = {0, 1}. A
state is a probability distribution P on the set of outcomes Y ×I. Denote its
marginal on Y by ηP (or just η, when P is clear). We make a few simplifying
assumptions, which only sharpen our point:

• Y is finite;

• All P ’s have the same marginal η on Y ;

• η(y) > 0 for every y;

• There is f ∈ F such that P (i | y) = f(y) for every y, i.

The last condition says that the true category is deterministic conditional
on y. Under these assumptions, every P may be identified with a true
categorization, which we denote by f̄ .

Fix a small ε > 0 and finite t, so the decision maker’s statistical model
reduces to the set of events {Af : f ∈ F◦}, where F◦ is a subset of the set
of all categorization rules F .

As in Section 2.2, the decision maker evaluates categorization rules ac-
cording to the probability of the event Af that he ‘gets it right:’

P (Af ) ≡ P
{

(y, i) ∈ X : f(y) = i
}
.
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Under our simplifying assumptions, this takes a very simple form. Define
m(f, P )(y) to be 1 if f and f̄ match at y and 0 otherwise. The goal of the
decision maker is to match f̄ as closely as possible, in the sense of solving:

max
f∈F◦

∑
y

m(f, f̄)(y) η(y), (13)

with η being fixed and known.
How should a decision maker constrain his statistical model F◦? By

choosing a ‘rich’ class F◦, say the set of all categorization rules F , he would
be relaxing the constraint in (13), potentially producing a better choice of
f . The problem is that F◦ = F is so rich that it perfectly fits any sample
st = {(yr, ir)}tr=1 of t instance-category pairs. This decision maker can
rationalize everything but learns nothing. In fact, all he learns from the
sample is the values of f̄ at the instances y1, . . . , yt but nothing about what
to do elsewhere. This is the classic problem of over-fitting.

Learning is fundamentally about generalization, and this is possible only
through ex ante restrictions on the set of admissible rules. The theory of
uniform learning and the concept of VC-dimension formally delineate what
sort of restrictions are needed in order to over-come this over-fitting problem.
This is formally done by requiring that F◦ be uniformly learnable, in the
sense of (4).

One may view a statistical model F◦ as a theory and each f ∈ F◦ as
an admissible hypothesis or explanation within that theory. The decision
maker uses data to decide which explanation within those admissible under
his theory F◦ has the greatest empirical support. If F◦ is very rich, then
it can produce an explanation that fits any observed set of data. As a
theory, F◦ is not falsifiable. Conversely, the requirement that F has a finite
(and, ideally, small) VC-dimension amounts to saying that F is falsifiable
by some realizations of the data. The interpretation of VC theory in terms
of falsifiability of theories is further elaborated on in Vapnik (1998) and
Harman and Kulkarni (2007).

5.3 Statistical Models, Coarsening, and Information Parti-
tions

A key theme of this paper is that the desire to draw secure inferences from
scarce data leads individuals to coarser models of their environment. As
an example, consider a categorization problem and a decision maker who
chooses a statistical model (C, ε, t) with small ε. Then an ambiguity-sensitive
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decision maker will strongly favor categorization acts measurable with re-
spect to C. For example, if C is the algebra generated by some partition
{A1, . . . , AL} of X, then he will be inclined to choose acts that do not make
fine distinctions between outcomes within any given Al, effectively catego-
rizing outcomes according to the partition {A1, . . . , AL}.26

This coarsening is superficially similar to the representation of incom-
plete information as partitions of the underlying state space. There are
profound differences, however. Information partitions model the availabil-
ity of information, while the coarsening of the state space using statistical
models captures constraints on information processing. In the model of this
paper, individuals may draw different inferences even though they have iden-
tical information, know each other’s statistical models, and have a common
initial understanding of the structure of their environment.

An important and frequently raised concern about non-standard models
of behavior is that they often boil down to a model of incomplete informa-
tion. The Bayesian incomplete information paradigm has been a run-away
success precisely because of its flexibility in incorporating a broad range of
phenomena previously seen as impervious to analysis in terms of rational
choice. The model of this paper differs from incomplete information models
just as fundamentally as Bayesian and frequentist approaches to inference
differ. The two modeling approaches ask different questions, raise different
issues, and reach different conclusions.

5.4 Statistical Models vs. ‘Bounded Rationality’

In his survey of the literature, Lipman (1995) describes ‘boundedly rational’
behavior as “choice that is imperfect in the sense that the output is often
not the ‘correct’ one but is sensible in that it can be understood as an
attempt by the agent to do reasonably well.” A natural modelling approach
is what Lipman refers to as partitional models where a decision maker is
assumed to be constrained by a partition that reflects his coarse and limited
understanding of the environment. The decision maker displays “boundedly
rational” behavior in the sense that he chooses from a diminished set of acts
(those measurable with respect to his partition). Lipman (1995) observes
that much of the ‘bounded rationality’ literature is of the partitional variety,
citing as examples models where decision makers use analogies and costly
partitions, or suffer from memory limitations, bounded recall, computability
constraints, among others.

26In general, C can have a more subtle structure than an algebra generated by a partition.
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It is tempting to think of ‘boundedly rational’ behavior through the
lenses of partitional, incomplete information models. This, I believe, is
unfortunate. Lack of information is an objective constraint that limits what
an agent can and cannot condition on. The constraints imposed by ‘bounded
rationality,’ on the other hand, have to do with information processing, an
object that is inherently more nebulous, constantly changing with learning,
introspection and competitive pressures. I suspect this is one reason why
‘bounded rationality’ models are often perceived, fairly or not, as ad hoc.

Al-Najjar, Anderlini, and Felli (2006) explore a class of partitional mod-
els of undescribable events. Their goal is to model events that can be as-
signed probabilities, but that cannot be described ex ante relative to a given
language. By contrast, the present paper explains why learning may cause
decision makers to use statistical models that coarsely lump outcomes—
independent of any language. The driving force here is the difficulty of
learning a family of events rather than the difficulty of describing any single
event.

From the perspective language-based models, this paper says that lan-
guage, or any other cognitive construct that goes beyond the simple-minded
counting of frequencies, should matter only when learning is hard. The
learning- and language-based approaches are potentially complementary and
may be related in some subtle ways.

5.5 Bayesian and Frequentist Beliefs

A true Bayesian would be bemused by the seemingly arbitrary use of frequen-
cies in the learning model of this paper. The decades-old debate between
Bayesians and their detractors is well beyond the scope of this paper.27

There are many basic and well-known reasons why Bayesianism may be
problematic, such as the lack of procedure to form priors. Here I elaborate
on the intractability of learning in a Bayesian setting.

Suppose a decision maker faces an experiment in which random draws
are taken from an outcome space X. As a good Bayesian, he should have a
prior belief on the state space S, the space of all infinite sequences of such
draws. If he regards the outcomes at each stage as symmetric, then his belief

27See for example Efron (1986)’s “Why isn’t everyone a Bayesian?” which points out
that Bayesianism “has failed to make much of dent in the scientific statistical practice”
because objectivity in this practice is key and “by definition one cannot argue with a
subjectivist.” Efron (2005) advocates a combination of frequentist and Bayesian ideas.

32



is an exchangeable distribution. By the celebrated de Finetti Theorem28 his
prior is equivalent to a two-stage lottery where he first draws a P according
to some probability measure ν on P, then outcomes are generated i.i.d.
according to P . In words, exchangeable beliefs must be i.i.d. with unknown
parameter P .

De Finetti’s theorem is an elegant representation of beliefs on symmetric
experiments, but it is not a theory of learning. Granted de Finetti’s repre-
sentation, and using νt(s) to denote the posterior after t observations, the
learning question is: given that data is generated according to P , would the
posteriors converge to put unit mass on P?

If the true distribution P is compatible with the decision maker’s beliefs
ν 29 then he ends up learning the true P . A Bayesian, confident ν is the
correct model, is convinced he will eventually learn. But what happens if
his model is mis-specified?

Suppose that X is a complete separable metric space and endow both P
and ∆(P) with the weak topology, and P×∆(P) with the product topology.
Interpret a typical element (P, ν) of this space as a true distribution P and
a Bayesian belief ν. The following is a startling result on the pathological
nature of Bayesian updating: if X is any infinite complete, separable metric
space, then for a generic choice of (P, ν) the sequence of posteriors νt(s)
visits every open set in ∆(P) infinitely often P -a.s.

This was first shown by Freedman (1965) and later generalized by Feld-
man (1991). The notion of genericity here is that of a residual set.30 As
an illustration, take any distribution Q and any open neighborhood of the
belief δQ that puts unit mass on Q. Then the Bayesian will put almost unit
mass on that neighborhood, believing with near certainty that the process is
driven by Q. For almost all samples s, this occurs infinitely often for every
neighborhood of every Q. Diaconis and Freedman (1990) conclude that for a
Bayesian in a higher dimensional setting, the prior swamps the data, rather
than the other way around.

From a decision making stand point, these inconsistency results seem
to undermine the normative case for forming beliefs via Bayesian updating.
They suggest that building a compelling normative case for Savage-style

28The classic reference is Hewitt and Savage (1955) which generalizes de Finetti’s result.
29Formally, ν is drawn at random according to a probability measure ν̂ on ∆(X) that

is mutually absolutely continuous with respect to ν. See Feldman (1991) for references.
A typical proof of this result relies on the fact that the sequence of posteriors forms a
martingale under P .

30i.e., the complement of a countable union of nowhere dense sets.
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behavior that takes belief formation and learning seriously one should allow
for non-Bayesian belief formation processes. In the model of this paper,
given a statistical model C, beliefs on the set of events C? are Bayesian,
although they are not arrived at in a Bayesian fashion.

Consider, finally, the case of a strict frequentist, by which I mean a
decision maker with belief given by:

πtfreq(s) ≡ δνt(s)

where νt(s) is the empirical measure (1). When X is a complete separable
metric space, the empirical measure converges to the true measure, so a
frequentist will not suffer from the erratic belief formation inflicting the
Bayesian.

Our definition of the set of distributions µt(s) consistent with empirical
evidence is also based on empirical frequencies, and the empirical measures
always belongs to µt(s). The difference is that µt(s) uses the empirical
frequences only for the uniformly learnable family of events C that are part of
the decision maker’s statistical model. It is agnostic about the probabilities
of events outside C.31 This is essential for our model for two reasons. First,
a strict frequentist will put unit mass on the set of outcomes appearing
in the sample, ruling out as impossible outcomes that did not appear in
the sample. This is particularly striking when X is infinite (e.g., [0,1]),
in which case a frequentist cannot entertain the possibility that the true
distribution is atomless. Even when X is finite but very large, a strict
frequentist exposed to a realistic size sample will hold beliefs that would
appear overly dogmatic and unreasonable. Second, the strict frequentist
assigns probabilities regardless of concerns for confidence in these estimates.
The notion of consistency with empirical evidence incorporates confidence
via the requirement of uniform learning. Although the set µt(s) always
includes the empirical measures, it also includes all other measures that
cannot be incontrovertibly ruled out by evidence.

31Except in so far as they can be bounded by knowledge of probabilities of events in C.
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A Proofs

A.1 Strategic Product Measures

Defining sampling when X is complete separable metric space (i.e., X = Xc)
is standard: we take as sample space Ω the product X ×X × · · · endowed
with the Borel σ-algebra generated by the product topology.

The case of discrete X is, however, not standard and appeals to results
likely to be unfamiliar to the reader. They are, however, appropriate gen-
eralizations of the usual constructions: Given X = Xd, we also define the
sample space Ω = X ×X × · · · . The product topology on this space is de-
fined the usual way, where each coordinate is given the discrete topology. As
in the countably additive case, we take as set of events the Borel σ-algebra
generated by the product topology on Ω.

Suppose we are given a finitely additive probability measure λ on X. We
are interested in defining the product measure λ∞ on Ω. If λ happens to be
countably additive, a standard result is that a countably additive λ∞ can
be uniquely defined. When λ is only finitely additive, the product measure
λ∞ need not be uniquely defined.

Dubins and Savage (1965) faced this problem in their book on stochastic
processes and proposed the concept of strategic products. These are product
measures that satisfy natural disintegration properties (trivially satisfied
when λ is countably additive). In a classic paper, Purves and Sudderth
(1976) showed that any finitely additive λ on a discrete X has a unique
extension λ∞ to the Borel σ-algebra on Ω.

I do not provide the details of the Dubins and Savage (1965) concept of
strategic products or Purves and Sudderth (1976)’s constructions because
they are not essential for what follows. For the purpose of the present pa-
per, what the reader should bear in mind is: (1) the concept of strategic
products is a natural restriction (for example, all product measures in the
countably additive setting are strategic products); and (2) Purves and Sud-
derth’s result permits extensions to the finitely additive setting of many
of the major results in stochastic processes, including the Borel-Cantelli
lemma, the strong law of large numbers, the Glivenko-Cantelli theorem and
the Kolmogorov 0-1 law.

A.2 Proof of Theorem 3: Exact Learning

Lemma A.1 Fix any uniformly learnable (C, ε), we have:

P∞
{
s : lim

t→∞
sup
A∈C

∣∣νt(A, s)− P (A)
∣∣ = 0

}
= 1.
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Proof: From (12) we have that for every P ∈ P and α > 0

∞∑
t=1

P∞
{
s : sup

A∈C
|νt(A, s)− P (A)| > α

}
<∞.

As shown by Purves and Sudderth (1976), the Borel-Cantelli Lemma applies
in the strategic setting. This implies:

P∞
{
s : ∃t̄ ∀t > t̄, sup

A∈C
|νt(A, s)− P (A)| ≤ α

}
= 1.

Take a sequence αn ↓ 0, and note that each of the events:{
s : ∃t̄ ∀t > t̄, sup

A∈C
|νt(A, s)− P (A)| ≤ αn

}
is a tail event. Purves and Sudderth (1983) show that P∞ is countably
additive on tail events, so:

P∞
⋂
n

{
s : ∃t̄ ∀t > t̄, sup

A∈C
|νt(A, s)− P (A)| ≤ αn

}
= 1,

hence:
P∞
{
s : lim

t→∞
sup
A∈C

∣∣νt(A, s)− P (A)
∣∣ = 0

}
= 1.

Lemma A.2 For any uniformly learnable C and an ε > 0, we have, P∞-
a.s.,

M(C, ε, s) ≡
∞⋃
i=1

⋂
t≥i

{
p : sup

A∈C

∣∣p(A)− νt(A, s)
∣∣ ≤ ε}

=
{
p : ∃t̄, ∀t > t̄ sup

A∈C

∣∣p(A)− νt(A, s)
∣∣ ≤ ε}

=
{
p : sup

A∈C
|p(A)− P (A)| ≤ ε

}
.

Proof: Lemma A.1 states that the set of sample paths:{
s : lim

t→∞
sup
A∈C

∣∣νt(A, s)− P (A)
∣∣ = 0

}
(14)
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has P∞-probability 1. Being in the event in (14) above implies that given
any ε′ > 0 we have supA′∈C |νt(A′, s) − P (A′)| < ε′ for all large t. For the
remainder, fix s to be any sample in this set.

If p ∈ M(C, ε, s) then supA∈C |p(A) − νt(A, s)| < ε for all large enough
t. Thus, for all large t, we have:

sup
A∈C
|p(A)− P (A)| ≤ sup

A∈C

[∣∣p(A)− νt(A, s)
∣∣+
∣∣νt(A, s)− P (A)

∣∣]
≤ sup

A∈C

∣∣p(A)− νt(A, s)
∣∣+ sup

A′∈C

∣∣νt(A′, s)− P (A′)
∣∣

≤ ε+ ε′.

Since ε′ was arbitrary, we conclude

sup
A∈C
|p(A)− P (A)| ≤ ε,

so p ∈
{
p′ : supA∈C |p′(A)− P (A)| ≤ ε

}
.

Conversely, if p ∈
{
p : supA∈C |p(A) − P (A)| ≤ ε

}
then, to show that

supA∈C |p(A)−νt(A, s)| < ε for all large t, we proceed similarly to the above
argument:

sup
A∈C

∣∣p(A)− νt(A, s)
∣∣ ≤ sup

A∈C

[∣∣p(A)− P (A)
∣∣+
∣∣P (A)− νt(A, s)

∣∣]
≤ sup

A∈C

∣∣p(A)− P (A)
∣∣+ sup

A′∈C

∣∣νt(A′, s)− P (A′)|

≤ ε+ ε′,

and the conclusion follows from the fact that ε′ was arbitrary.

Theorem 3 Fix any learning strategy {(Ct, εt)}∞t=1 and write C ≡ ∪∞t=1Ct.
Then for any P ∈ P

µσ(s) =
{
p : p(A) = P (A),∀A ∈ C

}
, P∞ − a.s.

In particular, µσ(s) is a convex set of probability measures, almost surely.

Proof: We first note that:

M(s) =
⋂
Ct′

t′=1,2...

⋂
ε>0

∞⋃
i=1

⋂
t≥i

{
p : sup

A∈Ct′

∣∣p(A)− νt(A, s)
∣∣ ≤ ε}

=
⋂
Ct′

t′=1,2...

⋂
ε>0

M(Ct′ , ε, s).
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Note also that any event of the form:{
s :M(C′, ε, s) =

{
p : sup

A∈C′
|p(A)− P (A)| ≤ ε

}}
is a tail event and, by Lemma A.2, must have P∞-probability 1. By Purves
and Sudderth (1983)’s result that P∞ is countably additive on tail events,
we have

P∞


⋂
Ct′

t′=1,2...

⋂
ε>0

{
s :M(Ct′ , ε, s) =

{
p : sup

A∈Ct′
|p(A)− P (A)| ≤ ε

}} = 1.32

This is equivalent to the desired result, namely:

P∞
{
s :M(s) =

{
p : sup

A∈C
|p(A)− P (A)| ≤ ε

}}
= 1

(recall that C ≡ ∪∞t=1Ct).

A.3 Proof of Theorem 4: Complete Learning in Continuous
Outcome Spaces

This is essentially a consequence of two facts: (1) all complete separable
metric spaces are “equivalent” to a Borel subset of [0, 1]; and (2) on [0, 1]
knowing the probabilities of half intervals is sufficient to determine the prob-
ability of all Borel sets. The technical details are as follows:

By Royden (1968, Theorem 8, p. 326) (X = Xc,B) is Borel equivalent
to a Borel subset of [0,1].33 That is, there is a Borel subset B ⊂ [0, 1] and a
measurable bijection φ : X → B such that φ−1 is also measurable. For each
r ∈ [0, 1] define Ar = φ−1

(
[0, r]

)
and let C = {Ar : r ∈ [0, 1]}. That is, the

collection C mimics the structure of half-intervals on [0, 1]. Note, however,
that these sets need not preserve much of the geometric properties of half
interval, such as connectedness. What they do preserve, however, is the fact
that they are nested: Ar ( Ar′ whenever r < r′. It is easy to verify, then,
that the family of sets C has VC-dimension of 1.34 From this it follows that

32These are countable intersections, since we can take a sequence εn ↓ 0 if necessary.
33The interval [0,1] will always be understood as being endowed with the Borel σ-algebra.
34See Problem 13.15 of Devroye, Gyorfi, and Lugosi (1996, p. 231) for this obvious fact

and its (slightly less obvious) converse.
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for every (countably additive) probability distribution P :

P∞
{
s : sup

A∈C
| lim
t→∞

νt(A, s)− P (A)| = 0
}

= 1.

Fix any sample path s such that supA∈C | limt→∞ ν
t(A, s)−P (A)| = 0. If

p ∈ limt→∞ µ
t
σ(s), then it follows from the definition of µtσ that p(A) = P (A)

for every A ∈ C.
To show that p and P are identical, we “transfer” p and P to the interval

[0,1]. For every Borel set A ⊂ [0, 1], define p̃(A) ≡ p
(
φ−1(A)

)
and P̃ (A) ≡

P
(
φ−1(A)

)
. Then by Royden (1968, Proposition 1, p. 318) P̃ and p̃ are

probability measures on [0,1] that agree on the values they assign to all half
intervals, and thus must have the same distribution functions. From this, it
follows that p̃ = P̃ , hence p = P since φ is a Borel equivalence.

A.4 Proof of Theorems 5: Failure of Complete Learning in
Discrete Outcome Spaces

We first prove the following weaker claim:

Proposition 10 Beliefs in the discrete outcome space (Xd,Σ) are not asymp-
totically determinate by any simple learning strategy.

We will show that there are two probability measures λ and γ that agree
on C but disagree on some (in fact, many) events outside C?. The proof
proceeds in three steps: (1) Construct a “nice” finitely additive probabil-
ity measure λ on C; (2) Construct a class of admissible perturbations s of
the density of λ with the property that they leave λ unaffected on C; (3)
Show that any admissible perturbation to λ yields a new finitely additive
probability measure γ that differs from λ in the value it assigns to many
sets.

A.4.1 Constructing λ

Let {XN}∞N=1 be an increasing sequence of finite subsets of X such that

ηN − ηN−1

ηN
> 1− 1

N

where ηN ≡ #XN denotes the cardinality of XN . Note that this implies that
ηN > NηN−1. To avoid excessive repetition, in the remainder of the proof it
will be understood that N − 1 ≥ 1 whenever necessary.
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Define the probability measure λN on 2X by

λN(A) =
#(A ∩XN)

#XN

.

That is, λN(A) is the frequency of the set A in XN .
Let U be a free ultrafilter on the integers and for any sequence of real

numbers xN define the expression

U−lim
N→∞

xN = x

to mean that the set {N : |xN −x| < ε} belongs to U for any for every ε > 0.
Then for any event A, define:

λ(A) ≡ U−lim
N→∞

λN(A),

Intuitively, λ is a “uniform” distribution on the integers. It is immediate
that λ is atomless (i.e., assigns zero mass to each point) and purely finitely
additive.

Comments: For readers not familiar with these concepts, the idea is to
define the probability of the event A, λ(A), as limit of the finite probabilities
λN(A). If λN(A), N = 1, 2 . . . converges, then the statement that λ(A) ≡
limN→∞ λN(A) is equivalent to saying that the set of integers {N : |λN(A)−
λ(A)| < ε} is cofinite (i.e., complement of a finite set) for every ε > 0. That
is, “λN(A) converges to λ(A)” means that the set of N ’s on which λN(A) is
within ε of λ(A) is small for all ε > 0, where ‘small’ here means finite.

The notion of ultrafilter generalizes this intuition by identifying a collection
of large subsets of integers U . That U is free means that it contains all
cofinite sets, and that it is ‘ultra’ means that each set of integers is either in
U or its complement is. This immediately implies that the operation U−lim
generalizes the usual limit, and that any sequence must have a generalized
U−lim. Ultrafilters is a standard mathematical tool that generalizes limits
by selecting convergent subsequences in a consistent manner.35

A.4.2 Perturbations

A perturbation is any function s : X → {1 − ε, 1 + ε}, with ε ∈ [0, 1].
Let S denote the set of all perturbations. Endow S with the σ-algebra Σ
generated by the product topology, i.e., the one generated by all sets of the
form {s : s(x) = 1 + ε} for some x ∈ X.

35Bhaskara Rao and Bhaskara Rao (1983) provide formal definitions. Wikipedia has a
nice article on the subject.
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Let P be the countably additive product measure on the measure space
(S,Σ) assigning probability 0.5 to each of the events {s : s(x) = 1 + ε}, x ∈
X. That is, P is constructed by taking equal probability i.i.d. randomizations
for s(x) ∈ {1−ε, 1+ε}. Note that (S,Σ, P ) is a standard countably additive
probability space constructed using standard methods (e.g., Kolmogorov
extension). The only finite additivity is in the measure λ on the index set
X.

Fix an arbitrary N . Two events A,B ⊂ X are XN-equivalent (or simply
equivalent, when N is understood) if A ∩ XN = B ∩ XN . We use AN to
denote the equivalence class of A and define CN ≡ {AN : A ∈ C}. That is,
CN is the appropriate ‘projection’ of C on XN .

The key observation is that, C having finite VC-dimension v on all of X
means that no subset of v + 1 points in X can be shattered by C. Then,
a fortiori, no subset of v + 1 points in XN can be shattered by C, so the
VC-dimension of the family of events CN in XN is at most v.

A key combinatorial result, due to Sauer (1972) (see also Devroye, Gyorfi,
and Lugosi (1996, Theorem 13.3, p. 218)) states that, given an outcome
space of ηN points, any family of events of finite VC-dimension v cannot
contain more than 2(ηN)v events.

Comments: To appreciate this bound, recall that XN contains 2N events in
all, so an implication of Sauer’s Lemma is that being of finite VC-dimension
severely restricts how rich a family of events can be. For example, with 50
states (N = 50) if C has a VC-dimension of 5, say, then the ratio of the
number of events in C to the powerset is no more than 5.5× 10−7.

This cardinality argument, while suggestive, does little for us in the limit:
when the size of XN goes to infinity, even fixing v, both the cardinality
of C and the power set go to infinity. In fact, it is possible to construct a
family of events C in X of VC-dimension 1, yet C has uncountable cardinality
(see Devroye, Gyorfi, and Lugosi (1996, Problem 13.14, p. 231)). This
necessitates a more indirect approach than just “counting sets.”

Let C′N ⊂ CN denote the family of events {AN : A ∈ C, λ(A) ≥ 1
4}. Since

C is closed under complements, so is CN , hence for each A ∈ C at least one
of the sets {AN , A

c
N} belongs to C′N .

Since the perturbations are chosen independently, we may apply the
Chernov bound to conclude that, for any subset of XN containing at least
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N/4 points:

P

s ∈ S :
1
ηN

∣∣∣∣∣∣
∑

x∈AN−XN−1

s(x)−#(AN −XN−1)

∣∣∣∣∣∣ > α

 ≤ 2 e−2 #(AN−XN−1)α

≤ 2 e−2
ηN−ηN−1

4
α

≤ 2 e−2
ηN
8
α.

Since there are no more than 2(ηN)v events in C′N , we obtain:

P (ZαN ) ≤ 4 (ηN)v e−
ηN
4
α

where

ZαN ≡

s ∈ S : max
AN∈C′N

1
ηN

∣∣∣∣∣∣
∑

x∈AN−XN−1

s(x)−#(AN −XN−1)

∣∣∣∣∣∣ > α

 .

By construction, ZαN , N = 1, 2 . . . is a sequence of independent events,
for any fixed α > 0. (This is the reason why we use the sets AN − XN−1,
rather than simply AN . Had we used the latter, the ZαN ’s will obviously be
correlated.) Summing up, we obtain:

∞∑
N=1

P (ZαN ) ≤ 4
∞∑
N=1

(ηN)v e−
ηN
4
α <∞.

By the Borel-Cantelli Lemma (the usual version, since P is countably ad-
ditive), the set Zα of perturbations that belong to infinitely many of the
ZαN ’s has P -measure 0. This, in turn, implies that the event

Q0 ≡
∞⋂
k=1

(Z1/k)
c (15)

also has P -measure 1. In addition, using the law of large numbers, P (Q1) =
1 where Q1 =

{
s ∈ S : λ{x : s(x) = 1 + ε} = 1

2

}
(this follows from Al-Najjar

(2007)–the argument in this case is in fact completely straightforward).
From the above it follows that P (Q0 ∩ Q1) = 1 and so Q0 ∩ Q1 is, in

particular, non-empty.

Comments: The above argument is delicate and is the heart of the proof.
Think of an indicator function χA of an event A with 0 < λ(A) < 1 as
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its ‘density’ function with respect to the distribution λ. The idea is to
perturb that density by tweaking it up and down by ε. Call a perturbation
s neutral with respect to A if λ(A) ≡

R
χA dλ =

R
s · χA dλ. Any such

perturbation s defines a new probability measure γ(A) ≡
R
s χA dλ that

leaves the probability of A intact yet differs from A at least on the event
B ≡ {x : s(x) = 1 − ε}. I show the existence of perturbations s that
accomplish this not just with respect to a single event A, but all events in C
simultaneously.

The strategy is to draw, for each x, a value in {1 + ε, 1 − ε} with equal
probability and independently across the x’s. It is straightforward to check
that, given a single fixed event A, any draw s will be, P−almost surely,
neutral with respect to A. Since the intersection of countably many P -
measure 1 sets has P -measure 1, this conclusion can be extended to any
countable family of events A = {A1, A2, . . .}. The trouble is in dealing
with an uncountable family C, a case that is essential for the theory since
many standard classes like half intervals, half spaces, Borel sets, . . . etc are
uncountable. A less direct and more subtle argument is needed.

Here, the assumption that C is uniformly learnable (specifically, has finite
VC-dimension) plays a critical role via the fundamental combinatorial result
known as Sauer’s lemma. It is well-known from the theory of large deviations
that convergence in the (weak) law of large numbers is exponential in sample
size. This implies that one can estimate the probabilities of an increasing
family of events, provided the cardinality of this family does not increase too
quickly. Sauer’s lemma roughly states that a family with finite VC-dimension
must have a cardinality that is polynomial in the size of the outcome space.
The difficulty, of course, is that neither large deviations nor Sauer’s lemma
have much meaning in the limit, when t is infinite. In the proof I first
project the (possibly uncountable) family C on the finite sets XN , identify
the (approximately) good perturbations, and bound their probabilities. Only
then can I pass to the limit to obtain the sets Q0 and Q1.

A.4.3 Perturbed Measures

The desired candidate perturbation is any element of Q0 ∩ Q1. Fixing one
such s, define the set function:

γ(A) ≡
∫
A
s(x) dλ, A ⊂ X.

We first verify that γ is a finitely additive probability measure. From the
additivity of the integral, it immediately follows that γ is an additive set
function. Positivity of γ follows as long as ε ∈ [0, 1]. Finally, the fact that
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s ∈ Q1 implies

γ(X) =
∫
X
s(x) dλ

= (1 + ε)λ{x : s(x) = 1 + ε}+ (1− ε)λ{x : s(x) = 1− ε}

=
1
2

(1 + ε) +
1
2

(1− ε) = 1.

Next we show that λ and γ coincide on C (hence necessarily on C?). Take
any set A ∈ C. If λ(A) = 0, then

γ(A) ≡
∫
A
s(x) dλ ≤ (1 + ε)λ(A) = 0,

so γ agrees with λ on A. By the additivity of the integral, the same conclu-
sion holds if λ(A) = 1.

Having disposed of this case, assume that 0 < λ(A) < 1. Without loss
of generality, let λ(A) ≥ 0.5 (if not, take its complement and use additivity
again). From the ultrafilter construction, there is a subsequence Nk, k =
1, 2 . . . such that λNk(A)→ λ(A), hence for each k we have ANk

∈ C′Nk .
Now

|γ(A)− λ(A)| =
∣∣∣∣U−lim
N→∞

∫
A
s(x) dλN − U−lim

N→∞
λN(A)

∣∣∣∣
=

∣∣∣∣ lim
k→∞

∫
A
s(x) dλNk − lim

k→∞
λNk(A)

∣∣∣∣
= lim

k→∞

1
ηNk

∣∣∣∣∣∣
∑

x∈A∩XNk

s(x)−#(A ∩XNk
)

∣∣∣∣∣∣
= lim

k→∞

1
ηNk

∣∣∣∣∣∣
∑

x∈ANk

s(x)−#ANk

∣∣∣∣∣∣ .
Using the triangle inequality, we have:∣∣∣∣∣∣

∑
x∈AN

s(x)−#AN

∣∣∣∣∣∣ =

∣∣∣∣∣ ∑
x∈AN−XN−1

s(x) +
∑

x∈AN∩XN−1

s(x)

−#(AN −XN−1)−#(AN ∩XN−1)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

x∈AN−XN−1

s(x)−#(AN −XN−1)

∣∣∣∣∣∣+ εηN−1,
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from which we conclude that:

|γ(A)−λ(A)| ≤ lim
k→∞

1
ηNk

∣∣∣∣∣∣
∑

x∈ANk−XNk−1

s(x)−#(ANk
−XNk

)

∣∣∣∣∣∣+ε lim
k→∞

ηNk−1

ηNk
.

Fixing α > 0 and using the fact that s ∈ Q0 we have, for all large enough k,

1
ηNk

∣∣∣∣∣∣
∑

x∈ANk−XNk−1

s(x)−#(AN −XN−1)

∣∣∣∣∣∣ < α.

The above, and the assumption that limk→∞
ηNk−1

ηNk
= 0 imply that

|γ(A)− λ(A)| ≤ α.

Since α is arbitrary, it follows that γ(A) = λ(A).
All that remains to prove is that the perturbed measure γ must differ

from λ on some (in fact, many) events outside C?. Take the event B ≡ {x :
s(x) = 1− ε}. Since s ∈ Q1, we have λ(B) = 0.5, yet

γ(B) ≡
∫
B
s(x) dλ = (1− ε)λ(B) 6= λ(B), (16)

so B 6∈ C? since, by the earlier part of the argument, λ and γ coincide on C.
This completes the proof of Proposition 10.

Comments: From Theorem 4, we know that this proof must break down
somewhere if X were a complete separable metric space with countably addi-
tive probabilities. A natural question is: at what stage was finite additivity
needed and the implications of Theorem 4 avoided? The construction of the
perturbation s by i.i.d. sampling is not possible in a complete, separable X
with countably additive probabilities. The reason is that a typical sample
path s is non-measurable and the perturbed measure γ(A) =

R
s · χA dλ

cannot be meaningfully defined. Of course, I do not claim that finding s via
random sampling is the only feasible procedure to construct perturbations,
but only point out that this particular procedure breaks down in standard
spaces–as it should, given Theorem 4.

A.4.4 Proof of Corollary 6

From (16) and the fact λ(B) = 0.5 we can write:

γ(B) = λ(B)− 0.5 ε
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so
|γ(B)− λ(B)| = |0.5 ε|.

Varying ε within the interval (0,1] yields the desired conclusion. The fact
that there are uncountably many such B’s follows from the fact that the
distribution on admissible perturbations is atomless, and hence its support
must be uncountable.

A.4.5 Proof of Theorem 5

We now assume that C = ∪∞t=1Ct with Ct having finite VC-dimension. In-
dex the events defined in (15) by t, writing it as Qt0 to make explicit its
dependence on Ct. Consider now the event

∞⋂
t=1

Qt0 ∩ Q1

and note that it must have P∞-probability 1. Let s be any element of this
set. It is clear that the remainder of the argument in Section A.4.3 goes
through unaltered.

A.5 Miscellaneous Proofs

Proof of Theorem 1: Let C denote the set of all classes of events contain-
ing C that are ε-uniformly learnable by data of size t. Then C is partially
ordered by set inclusion. By Hausdorff maximal principle, in C there is a to-
tally ordered chain containing C. That is, there is a maximal set C? ⊂ C such
that C ∈ C? and C? is linearly ordered by set inclusion. Define C̄ ≡ ∪Ĉ∈C? Ĉ.

First we note that C̄ is ε-uniformly learnable by data of size t. For if this
were not the case, then there is sample x1, . . . , xm that can be shattered
by C̄ but not by any class in C?. But shattering a finite sample requires
only finitely many events. By the definition of C̄ there must be Ĉ ∈ C? that
can also shatter the same sample, contradicting the assumption that Ĉ is
ε-uniformly learnable by data of size t. Since C? is maximal, C̄ ∈ C?.

Proof of Theorem 2: The VC-dimension of 2Xf is n. The first claim
follows directly from (12). For the second part, a lower bound on the amount
of data needed was shown by Ehrenfeucht, Haussler, Kearns, and Valiant
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(1989)36 to be:

t ≥ VC − 1
32ε

. (17)

Applying this bound with VC = n, holding t and ε fixed, yields the result.

Example illustrating part 2 of Theorem 9: TakeX = {1, 2, 3, 4, 5, 6}
and C to consist of X, the empty set, and all events of the form {x, x+1, x+
2}, where x ∈ X and addition is modulo 6. It is easy to verify that C is
closed under complements and disjoint unions, so C itself is a λ-system. On
the other hand, C 6= C?: if µ is any probability measure on 2X , then

µ({1, 2, 3}) + µ({3, 4, 5})− µ({2, 3, 4}) = µ({1, 3, 5}).

So the probability of the event {1, 3, 5} 6∈ C can be unambiguously deter-
mined, and so this event belongs to C?.

On the other hand, C? 6= 2X : Fix any µ that assigns positive probability
to each state. Consider vectors of the form ᾱ = (α,−0.5α,−0.5α, α,−0.5α,−0.5α).
Then for any appropriately chosen value for α > 0, µ + ᾱ is a probability
measure that assigns identical values as µ to events in C even though µ and
µ+ ᾱ differ at each state. This shows, in particular, that {1} 6∈ C?.

36See also Devroye, Gyorfi, and Lugosi (1996, Section 14.5)).
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