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ACTUAL AND WARRANTED RELATIONS
BETWEEN ASSET PRICES

By ANDREA E. BELTRATTI and ROBERT J. SHILLER

1. Introduction

A vARIETY of efficient markets models can be represented in the form P, = E, P¥
where P, is the price of asset i at time t and P} is its ex post value, ie.,
fundamental value.! In this paper, we inquire what such models imply for the
covariance and for the correlation between the prices of the assets in terms of
the covariance matrices of the ex post values. We show that while knowledge
of the covariance matrix between ex post values does not permit us to predict,
using efficient markets models, the covariance between prices, it does allow us
to put bounds on this covariance.

Certainly, there is a common-sense presumption that these price covariances,
correlations, as well as betas and factor loadings, depend on the covariances or
correlations of ex post values. If an observed covariance between prices is to
be justified in terms of these models, then there must be enough covariance
between ex post values to warrant the covariance between prices. But apparently
the limits on the actual covariances between prices that may be warranted
by the covariance matrix of ex post values have never been set forth in a
general form before. These are important limits to set forth, since empirical
finance is widely concerned with observed correlations among asset prices, and
much work is based on the general notion that these have something to do with
fundamentals. We will apply our theory to a study of the covariance and
correlation of log price—dividend ratios between the United Kingdom and the
United States.? In so doing, we will be able to offer some evidence on the
claims of some who, observing the UK and US stock markets often rise and
crash together, have doubted that information about fundamentals in the two
countries could justify the extent of the co-movements.

Knowing the relations among these covariances and correlations is important
for a number of purposes. They would help us to understand whether
international transmission of asset price movements must be understood in
terms of something other than the simple present value models; that is our
immediate objective here. Beyond that, they may help us to understand how
fundamentals interact with investor information to determine betas or factor
loadings of asset prices.

! Typically, ex post value is a present value of dividends per share at time ¢. It may have other
interpretations as well; for example if P, is a forward price ex post value could be the subsequent
spot price. Also, prices and ex post values may be transformed as in the empirical work below.

2 The transformation of price and of the present value referred to above is its log minus the log
dividend. This is a nonlinear transformation, but the transformation can be justified in terms of
an approximation to the present value model; see Campbell and Shiller (1988). The transformation
causes the variable P, to be stationary through time.



286
ACTUAL AND WARRANTED RELATIONS

Many empirical studies of relations among financial prices refer either
explicitly or implicitly to covariances among fundamentals to motivate the
construction of the study or the interpretation of results. For example, Fama
and French (1989, pp. 3-4) examine whether forecasting variables related to
business conditions track common variation of expected returns on bonds and
stocks for the US 1927-87. They ask: ‘Are the relations [between returns]
consistent with intuition, theory and existing evidence on the exposure of
different assets to changes in business conditions? and they conclude that the
results are ‘comforting.” Chen et al. (1986, p. 402), in their study of economic
forces in the US stock market 1953-84 and in their selection of macroeconomic
factors to use for stock market returns appear to base their selection on the
likely correlation of fundamental with these. They write: ‘Our conclusion is that
stock returns are exposed to systematic economic news, that they are priced in
accordance with their exposures, and that the news can be measured as
innovations in state variables whose identification can be accomplished through
simple and intuitive financial theory.” Pindyck and Rotemberg (1988, 1990,
p. 1) estimate multiple indicator multiple cause (MIMIC) models of asset prices
where the indicators are returns and the causes are economic variables related
to fundamentals. They conclude from thir study of US stock prices 1969-87
that ‘we show that comovements of individual stock prices cannot be justified
by economic fundamentals’. King et al. (1990, p. 1) estimate a factor model for
16 national stock markets 1970-88 using ten macroeconomic variables. They
conclude that ‘the main empirical finding is that only a small proportion of the
time-variation in the covariances between national stock markets can be
accounted for by observable economic variables’. The conclusions in these
different studies seem rather varied; it is worth examining whether these claims
can be evaluated in terms of a consistent and rigorous theoretical framework.

The key problem in carrying out the objective of reconciling correlations of
prices with correlations of fundamentals is that we do not observe the full
information set available to market participants to forecast present values, and
in the framework of efficient markets theory, we must assume that market
participants might have superior information. This means we cannot observe
the optimal forecast at time ¢ of P}, cannot observe directly its covariance with
anything, and thus cannot calculate just what the covariance of prices should be.

We can only put bounds on the warranted covariances of prices from the
knowledge of variance matrices of ex post values. In Section 2 we derive
covariance bounds for the case when no forecasting information is available
for statistical analysis, while in Section 3 we show that using more information
is helpful both in deriving more efficient covariance bounds and in deriving
bounds for the warranted correlation between the two assets. Section 4 contains
a description of the pricing theories that we use for stocks, Section 5 describes
the data. In contrast to most of the aforementioned studies, we use very long
time series data, extending from 1919 to the present, to enable us to see more
of the low frequency variation in fundamentals that might explain covariances
between prices, and in contrast to all of these studies we use direct measures
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of ex post or fundamental value. Section 6 describes the econometric methodo-
logy, and Section 7 gives the results.

2. The case of no forecasting information available for statistical analysis

Suppose first that we wish to base our statistical analysis only on the covariance
matrix of the vector P¥ = [P*, P4, whose ith element is the present value of
the dividends accruing to asset i. The corresponding vector of prices P, has as
its ith element the price of asset i. By basing our analysis only on these
covariance matrices, we are attempting to see in very simple and basic terms
whether we can find evidence of excessive co-movement of prices. We will
suppose that the present values and corresponding prices have been suitably
transformed so that they are stationary, and so that variance matrices var(P*)
and var(P) exist.

How large can the covariance between P;, and P,, be, given var(P*)? That
is, knowing how much the fundamental variables vary and co-move, how much
can P;, and P,, co-move? To answer this, we must solve a nonlinear program-
ming problem: maximize cov(P,,, P,,) with respect to ¢(P;) and a(P,) subject to
the inequality restrictions implicit in the requirement that the 2 x 2 matrices
var(P) and (var(P*) — var(P)) are both positive semidefinite.® This means that
there are eight inequality constraints: the four variances must be positive and
(from the restrictions that the determinants must be positive) there are upper
and lower bounds to the two covariances. Since we are maximizing, only the
upper bounds to the covariances could be binding. The variance constraints
mean that, in a(P;), o(P,) space, the point (¢(P;), 6(P,)) must lie in a box in
the positive quadratnt from 0 to ¢(P¥) and from 0 to ¢(P%). The remaining
two constraints are

cov(Py, Py) < a(Py) o(Py) M
cov(P;, P,) < cov(PY, P¥) + ((6(P1)* — a(P)*)(0(P3)” — o(P)Y))°  (2)

Isoquants for the constraint on cov(P;, P,) in (1) are rectangular hyperbolas
within the box in a(P,), 6(P,) space, so that there are asymptotes to both
abscissa and ordinate. Higher values of the covariance permitted by (1) occur
as we move from one isoquant to isoquants positioned higher up or to the right.
Isoquants for the constraint on cov(P,, P,) in (2) are also negatively sloped
throughout the box, but are concave down instead of up. Higher values of the
covariance permitted by (2) occur as we move from one isoquant to isoquants
positioned down and to the left. Tangencies between these sets of isoquants lie
along a diagonal straight line across opposite corners of the box, the straight
line from (0, 0) to (a(P%¥), o(P%)). Thus, the maximum will be found at one of
these tangencies, along the straight line, where both constraints (1) and (2) will

3 Here, the term positive-semidefinite is taken to allow strictly positive definite matrices as well
as singular ones.
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be binding at the maximum, and none of the other constrants will be binding.*
Since these are the only two constraints that bind, we can find the upper bound
to the covariance by solving the simple problem of maximizing ¢(P,)o(P,) with
respect to o(P,) and o(P,) subject to the constraint that the difference between
the right hand sides of (1) and (2) equals zero. Solving this problem, and the
corresponding minimization problem, we find bounds on the covariance:

(cov(PY, P¥) — a(PT)a(P3))/2 < cov(Py, Py) < (cov(PY, P) + o(PY)a(P7))/2
A3)

We shall refer to the range specified in this inequality as the range of warranted
covariance between P, and P,. Note that the warranted covariance between
prices can exceed the covariance between the present values, even when this
covariance 1s positive. As noted in Shiller (1989), this happens when there is
‘positive information pooling,” when the forecast error P¥, — P;, is negatively
correlated with the forecast error P¥, — P,,. In this case, the variance of the
forecast error P¥, + P% — (P, + P,,) is less than the sum of the variances of
the individual forecast errors. In this case, information is more about the
aggregate P¥, + P% than about the individual present values, i.e., the informa-
tion about the present values is pooled.

Note, for example, from (3), that if P¥, and P%, are highly positively correlated,
then P, and P,, can have both positive or negative covariance, but possible
covariances include large positive covariances but only small negative covari-
ances. For another example, note that if P, and P%, are uncorrelated and have
the same variance, then the covariance between P, and P,, can range between
minus half the variance to plus half the variance.

It was concluded in Shiller (1989) that, for a transformation of UK and US
stock prices indexes 1918-88 (where the transformation consists of dividing
price by a long moving average of lagged dividends) cov(P,, P,) exceeded
cov(P¥*, P¥) with a constant discount rate used to compute present values, and
there was no evidence of information pooling. It is not surprising, therefore,
that the inequality (3) is strongly violated with that data too. However, when
the discount rate is allowed to vary with the prime commercial paper rate, the
bounds in (3) are no longer violated.’

That result, if valid, implies that with constant discount rates there is excess
covariance between the UK and the US stock prices. But, it does not tell us
whether or not there is excess correlation between the two countries’ stock
prices. Covariance tells us the magnitude of their co-movements, but does not
tell us whether the two prices closely resemble each other.

4 However, in the special case where P} and P¥ are perfectly correlated, the maximum will occur
on the diagonal at the upper right corner of the box.

5 Variance matrices var(P) and var(P*) are given in Table 1 of Shiller (1989). The covariance
between P, and Py, 1919-87 (between the transformed UK and US prices) was reported as 39.73.
With a constant discount rate assumption, the upper bound allowed by (1) using the estimated
covariance matrices is 8.84. With a discount rate varying with the prime commercial paper rate,
the upper bound allowed by (1) using the estimated covariance matrices is 45.18.
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In fact, if we have only var(P*) to work with, lacking any components of the
information set that the public uses to forecast, and if this matrix is not singular,
then we cannot say anything at all about the warranted correlation between
P, and P,. As long as var(P}) is nonsingular we can always write P} = u, + v,
where u, and v, are random vectors uncorrelated with each other, and v,, and
v,, are uncorrelated with each other, and all elements have non-zero variances.
Suppose that information consists of u,, + u,, + noise, vy, and v,,. As the
variance of v;, and v,, are taken to zero, the correlation between prices
approaches 1.00. As the variance of noise is increased toward infinity, the
correlation approaches zero.

Now suppose that the second asset is the return on the market portfolio,
that prices are scaled to 1.00 in the preceding period, that there are no dividends
paid this period and that the variance matrix of P* is conditional on information
before this period. Then the conditional beta of the first asset is given by
f = cov(P,, P,)/var(P,). We can always write P} = u, + v, where u, and v, are
random vectors uncorrelated with each other, and as long as var(P¥*) is strictly
positive definite, we can take the var(u,)/var(u,) = x for arbitrary positive x.
Suppose the information set consists only of u#; + u,. Then the beta is x, which
can be made anything from 0 to infinite for positive x. It can similarly be shown
that beta can also range from O to minus infinity by taking the information
vector to be u; — u,. Thus, the variance matrix of fundamental values places
no restriction at all on beta. It is still possible to put bounds on the correlation
between the two prices, or on the beta of an asset, even without specifying the
full information set used by market participants, so long as we know part of
the information set used by the market. Using such a subset of public
information also allows us to tighten our bounds on the covariance between
P, and P,,.

3. The case when forecasting information is available for analysis

If we know a subset of the information set available by market participants
to forecast present values, and thereby observe the variance matrix of the
forecast P, = E(P¥ | I,) where I is the subset of information, then this will allow
us to put tighter bounds on the warranted covariance between prices. We
assume that only a subset, and not the whole set, of the information used by
market participants is available for statistical analysis, since much information
that participants used has not been reduced to quantified time series.

We can, following Campbell and Shiller (1988a,b), include the vector of
actual prices in the subset of information, since surely the market knows market
prices. Under the efficient market hypothesis, then P; should equal P, and so
under the efficient markets hypothesis the covariance between P, and P5,
should equal the covariance between Py, and P,,. A comparison of cov(P;,, P;,)
with an estimated cov(P},, P;,), which should (except for estimation error) be
the same, is thus a valid way of testing the efficient markets model. The problem
comes in interpreting violations of the efficient markets relation: we cannot take
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cov(P,,, P,,) greater than cov(P},, P5,) as evidence of excess covariability.
Suppose, for example, that prices are not set by F, = E,P} but by P, = E.Pf + w,
where w, is a ‘noise’ vector whose variance matrix is diagonal (noise in one
asset is independent of noise in the other asset) and which is independent of
E,P¥ (noise is independent of true fundamentals). If Pj, (i = 1, 2) is taken as
the projection of P¥ on P,, then we will find that (by usual errors in variables
results) the coeflicient on price P, is less than one so that the fitted value P;,
does not equal P,. Thus, the efficient markets model is (correctly) found to be
violated. However, it would be incorrect to infer that it is violated because of
excessive covariance between P, and P,,. The covariance between P}, and P,
will be less than the covariance of P, and P,,, and yet clearly the covariance
between P;, and P,, is quite right.

We want instead to put bounds on the covariance between P;, and P, that
are violated only when there is in fact excess covariance between the asset prices,
and yet we still want to use information about var(P’). We can write
P, = P, + v,, where the vector v, is uncorrelated with P; since it represents an
error unforecastable from the subset of information used to compute P;. To
put an upper (lower) bound on cov(P;, P,) we must solve the nonlinear
programming problem to maximize (minimize) it in terms of the three elements
of var(P) subject to he inequality restrictions implicit in var(P) — var(P’) and
var(P*) — var(P) both positive semidefinite, in other words, to maximize
(minimize) in terms of the three elements of v such that var(v) and var(e*) —
var(v) are positive semidefinite, where var(e*) = var(P*) — var(P’). This is really
essentially the same maximization problem that we discussed in the preceding
section, and the bounds implied by the solution to this problem and by the
solution to the corresponding minimization problem are:

cov(Pi, Py) + (cov(eF, &%) — a(e¥)o(e?))/2 < cov(Py, Py)
< cov(Py, Py) + (cov(et, e3) + a(ef)a(e3))/2  (4)

This inequality can put much tighter bounds on the warranted covariance
between P;, and P,,. Suppose, for example, var(P*) is the identity matrix, so
that by (3) cov(P;, P,) can range between —0.5 and +0.5. Suppose, however,
that var(P’) has all four of its elements equal to 0.5. Then the upper bound to
cov(P;, P,) is 0.5, the lower bound is zero: the extra information reduced the
range of warranted covariances by a half, moreover, in this case we know that
the upper bound to the covariance between P, and P,, is exactly equal to the
covariance between P}, and P5,.

Knowing var(P’) now enables us to put bounds on the correlation between
P,, and P,,. Since v, is uncorrelated with P; and we have:

cov(Py, P3) + cov(vy, v,)

corr(Py, Py) = e 3 . BN
((6(P})* + o(v1))(0(P2)" + o(vy)")

)

We can put maximum and minimum values on this function with respect to
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var(v) subject to the restriction that var(v) and var(e*) — var(v) are both positive
semidefinite.® This will give us bounds on the correlation between P, and P,
that are analogous to the bounds (3) and (4) above. Plainly, so long as
cov(P,, P,) is non-zero then this procedure will put some meaningful bounds on
the correlation between P, and P,. Since P, = P;+ v, where P, and v, are
uncorrelated, and since the variance matrix of v, is limited by var(e), there is
no way that perfect positive or perfect negative correlation between P, and P,
can be achieved. By a similar argument, if the second asset is the market
portfolio, we can place bounds on the beta between the two assets.

We will discuss below a present value model of stock prices that will allow
us to compute var(P’) and var(P*) for a certain transformation of stock prices.
We will then compute cov(P;, P,) and compare this with cov(P}, P3) as well as
the bounds in (4) and compute corr(P,, P,) and compare this with corr(P}, P3)
as well as the bounds implied by the maximization of (5).

4. The data

For the US, the annual stock price is the Standard and Poor Composite
Stock Price Index for January of the year. The dividend is total dividends per
share adjusted to index, four quarter total, fourth quarter of the year, backdated
before 1926 using the dividend series in Cowles (1939). The interest rate in the
US is the continuously compounded annual return on 4-6 month prime
commercial paper computed from January and July commercial paper rates
assuming a six-month maturity. For the UK the annual stock price is the
Barclay de Zoete Wedd (BZW) stock price index for the end of the preceding
year, and the dividend is the associated BZW dividend series for the year. The
UK interest rate is the three-month prime bank bill rate, averaged over the
year, as a continuously compounded return. These are the same series as used
in Shiller and Beltratti (1992).

For both the US and the UK we shall de-trend stock prices in each year by
using as P, and P¥ the log of the price and present value respectively divided
by the dividend for the preceding year. This differs from Shiller (1989), where
prices were de-trended by dividing by a long moving average of dividends, and
the resulting ratio was not logged. The dividing of nominal prices by nominal
dividends serves to put the data in real terms: the variable F, may be regarded
also as the log of real price divided by real dividend, where the deflator used
for both is the same.

5. The present value relation

We will set up our present value relation, for the econometric work that
follows, as a sort of dynamic Gordon model replacing the original Gordon
model (1962), which was a steady-state growth path condition. Let us first
review and recall the Gordon model. The Gordon model asserts that price

6 This will be done by means of numerical methods described in Section 6.
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is the present value of dividends with constant discount rate R and that
dividends grow at a constant rate g. That is, the model assumes that the price
P, of a share at time 0 is given by:

P, ——-J does'e™ ™ dt

0

Then, evaluating the integral, the dividend—price ratio d,/F, equals R — g. (R
must be greater than g for the integral to converge.) By the Gordon model,
then, high (low) dividend price ratios have either of two interpretations. Either
the rate R used to discount future dividends is high (low), or the growth rate
of dividends is low (high).

The Gordon model, unfortunately, was derived under assumptions that limit
its usefulness, unless it is modified. The most natural application of the Gordon
model is to interpret time variation in dividend—price ratios. One is tempted
to interpret times of high dividend—price ratios as times when the discount rate
R is high and/or the rate of growth of dividends g is low. But, the original
Gordon model does not apply if the growth rate of dividends or the discount
rate is not constant through time.

So, we shall use here a dynamic modification of the Gordon model, which
allows time variation both in the discount rate and the rate of growth in
dividends. The variant that we shall use will be in discrete time rather than
continuous time, since our data are sampled at discrete intervals, and the variant
will preserve essential linearity so that the model fits in well with linear time
series methods. Moreover, it will be convenient to couch the analysis in terms
of price-dividend ratios rather than dividend-price ratios.

We shall use a log-linearized version of the present-value model, developed
by Campbell and Shiller (1988a, b). The model is:

Pst = EtP;kt
where

P;l; = Z p:Gst+n + ks/(1 - ps) (6)

n=0

and where s = UK (United Kingdom), US (United States). Here, P, is the log
price—dividend ratio for country s, G, is defined as Ad,, — iy, Ad,, is the change
from the preceding period of log nominal dividends in country s, iy is the
nominal one-period interest rate in country s, and k; and p, are constants of
linearization (see Campbell and Shiller, 1988a). Note that G, is (minus) the
one-period counterpart to the R — g in the Gordon model: in effect the dynamic
Gordon model makes the log price—dividend model an expectation of a moving
average of future one-period R — g terms. For each country, p, was taken to
be exp(g, — R,), where g, is the average rate of growth of dividends and R; is
the average return on stocks over the sample, and k, does not affect our analysis
when we calculate a time series for P%. Equation (6) says that the log of the
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price divided by dividend (January log price minus the log total dividends over
the preceding year) P, is equal to the expectation at time t of future ex post
value PX.

Equation (6) says simply that stock prices will be high relative to dividends
when dividends are expected to grow more than average and/or short-term
interest rates are expected to be low in the not-to-distant future, where
not-to-distant is defined in terms of the discount parameter p,. By this model
the log price—dividend ratio will be stationary if the fundamentals are themselves
stationary.

Note also that by writing equation (6) in the form P, = E,P¥ we can also
apply the analysis of the preceding sections. The covariances and correlations
between price—dividend ratios (P,) are related to the covariances and correla-
tions of the ex post values (P%). The price-dividend ratios in two different
countries cannot co-vary or correlate highly unless the ex post values do, in
accordance with the above inequalities. This means then that the price-dividend
ratios in two countries cannot co-vary highly with each other unless the
discount rates and/or growth rates in the not-too-distant future co-vary highly
across the two countries. Our analysis below will inquire whether the cross-
country covariance or correlation of price-dividend ratios can be reconciled in
this way with the actual covariances or correlations across countries in these
variables, in accordance with dynamic Gordon model (6).

Too achieve this end, we will have to set up some vector-autoregressive
econometric methodology. A problem in testing this model is that the summa-
tion in (6) extends to infinity, and hence all the terms in the summation are
not observed; our econometric methodology must address this problem.

6. Econometric methodology

The bounds on the covariances and correlations which we can derive are
based on the moments of the vector of ex post values. We will use two different
methods to compute these moments. The first one is the same method usually
followed in the literature and proposed by Shiller (1989); it is based on
calculating a time series for P¥ subject to a terminal condition which says that
P*. in the last year T of the sample is equal to the actual P,y on that date:

T-k-1

Py = Z plscht+k + psT_tPsTa S = US’ UK (7)
k=0

st

From these time series one can then estimate the sample covariance matrix for
P¥ =[P, Pfk.]’ to use in the inequality expressions.

The second method which we use does not involve computation of a time
series for P¥. Defining G, = [ Gys,» Guk.]’> and defining p as a 2 x 2 matrix with
pus and pux on the diagonal, then from (7) P¥ X(k = 0, 00)p*G, ., (plus a
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constant which we will disregard) and so var(P}) is given by:

var(Pr) = ¥ Y p7 cov(Gra s, Gian) Pt ®)

j=0 k=0

Using (8) to estimate var(P}) of course involves estimating the complete
autocovariance function for G, at all leads and lags. Unfortunately, for a given
sample of data, we cannot estimate all the infinite series of covariance matrices,
and we have to truncate the estimated autocovariance function after a finite
number of lags. We report results for lag n/4 as well as for lag 30. Note that
in (8), future covariances are multiplied by the terms pyg and pyg, which are
less than one; this means that autocovariances at long lags are already given
less weight because of the very definition of the vector P}, so that truncation
is not likely to affect the results much.

As to the bound on the covariance and the correlation which we have derived
for the case when some forecasting information is available for statistical
analysis, that is (4), one can see that the information contained in the perfect
foresight price must be supplemented with information contained in the
statistical estimate of the fundamental price of the assets. An econometric model
is therefore necessary to this purpose.

Following previous work by Campbell and Shiller (1988a, b) we use vector
autoregressions to test the models and to calculate the expectations of future
fundamentals given an a priori specified information set. In the case of a VAR
of order 17 we consider the following vector:

X, = [Pyss Guse— 15 Poker Guii-1]’ )

where variables are demeaned. By selecting this vector for the vector auto-
regressive model, we have chosen as an information set the price-dividend ratios
and the variables G, which are the one-period growth rates of dividends minus
the one-period interest rates. Note that the G,,, s = US, UK, are lagged in this
vector, so that it contains only information known by the agents at the
beginning of period ¢.

We assume an autoregressive form for the vector x:

Xpp1 = Ax, +q, (10)

where g, is a white noise term with a covariance matrix which can have non-
zero contemporaneous correlations. Now, the model (10) implies that the
optimal forecast at time ¢ of x,,, is Ax,, and the optimal forecast of x,,, is
A¥x,. Tt follows that the optimal forecast of the present value x, + px,,; +
p*X, 41+ -+ is (I — pA)~'x,. We can pick out of this vector of optimal
forecasts of present values the ith element by pre-multiplying the optimal

7 We consider in the text only the first-order VAR case, since higher-order VARSs can be easily
treated with the same methodology after putting them into a first order ‘companion form” VAR,
as described in Campbell and Shiller (1988a, b).
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forecast vector by ei’ where ei is a vector of zeros apart from the ith element
which is equal to 1.
The model (10) therefore implies:

P,= P, s=US, UK
where
Pys, = e2'A(I — pysA)™'x, (11a)

uke = A AU — puxA) ™ 'x, (11b)

Here, the prime after the P is used as it was in Section 3 above, to denote the
expectation of the present value given only the information x,, ie, the
price-dividend ratio implied by the dynamic Gordon model (6) and the time
series model (10). The P’ here is the same as in Campbell and Shiller (1988a, b),
where P’ was referred to as the ‘theoretical’ price-dividend ratio; it may also be
called the warranted price—dividend ratio. Now, since F, and Py, are elements
of x,, they can be written in terms of x, as el’x, and e3'x, respectively.
Substituting into the left-hand sides of (11a) and (11b) we can then cancel x,
from the equations and the regressions (1la, b) thus imply the following
cross-equation restrictions on the estimated matrix A:

el'(I — pysA) = e2'A (12a)
e3(I — pyxA) = ed A (12b)

We test these linear restrictions by means of Wald tests. Beyond testing the
models, if we are willing to identify expectations with linear projections, we can
use (11a, b) to derive the expectations of future fundamentals under the
hypothesis that the model is true (see Campbell and Shiller 1988a, b), and then
use these estimated values to compute what in the previous sections was defined
with the variable P'.

In order to consider the possibility of small sample bias we calculate empirical
distributions for all the statistics that we report in the tables® by a Monte Carlo
experiment which generates 2,000 series of the variables in the vector x subject
to the restrictions that the models for the two assets are true. We report both
numerical standard errors for the statistics, and the p-value corresponding to
the empirical distribution.

We can also use our P’ to calculate the bounds in expressions (4). Again we
can use two methods to compute the covariance bounds. One possibility is to
compute P* with a terminal value, compute P’ from the VAR, calculate
&¥ = P* — P, as with expression (7). From these time series one can compute
the variance matrices var(P*), var(P’), and var(s*). This guarantees that all
matrices are positive semidefinite. The second possibility is to calculate var(P*)
from the covariance matrix of G, using (8), and then calculate var(e*) as the

8 These statistics are the Wald tests, and the difference between theoretical and actual covariances
and correlations.
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difference between var(P*) and var(P’), where the last is computed from the
time series of P".

As to the correlations between the two assets, we generate upper and lower
bounds by means of numerical methods. We use a Monte Carlo program that
generates random positive definite matrices var(v), and which tests then if
var(e*) — var(v) is also positive semidefinite. If it passes the test, the program
calculates the correlation coefficient using expression (5). After repeating the
exercise 4,000 times we pick the highest and the lowest correlation. In particular,
we make the diagonal elements of var(v) uniform from zero to corresponding
diagonal elements of var(¢*). In each iteration we compute from these diagonal
elements a(v,)o(v,), and make off diagonal elements of var(v) uniform from
—a(vy)o(v,) to +a(v,)o(v,). So var(v) is positive semidefinite, and the diagonal
elements of var(¢*) — var(v) are non-negative. We then only need to check that
the determinant of var(e*) — var(v) is non-negative in each iteration.

Both for the covariance bounds and the correlation bound we calculate
standard errors by means of Monte Carlo simulations. In this case we generate
4,000 series of variables from the estimated VAR and we use them to calculate
the standard errors of the bounds across iterations.

7. Results

Table 1, panel A, shows that the Wald tests usually reject the restrictions
(12), and this is similar to previous results (Campbell and Shiller 1988, Beltratti
1989, and Shiller and Beltratti 1992). We report both asymptotic p-values, and
p-values from the empirical distribution function obtained from the restricted
model. Note that the asymptotic standard errors sometimes over-reject the
model, but the differences are minimal even for large order VARs. We can thus
reject the model represented by equations (6) and (10), but it remains to be
seen whether the rejection might have something to do with excess co-
movement between countries, and for this we turn to the inequalities.

Table 1 Panel B shows that the correlation between the estimated warranted
prices P’ tends to be higher than the correlation between prices, but that the
covariance between the estimated warranted prices tends to be lower than the
covariance between the actual prices. This sort of difference between the results
with covariances and with correlations has been noted before (see for example,
Campbell and Shiller, 1988b); the difference reflects the estimated ‘excess
volatility’ of both markets, which drives up covariances but not correlations of
actual prices relative to warranted values. Of course, these results are in no
way tests of the efficient markets model; essentially they make no account of
the possibility that the market may have superior information from that used
to make estimated P, and hence we turn to the covariance and correlation
bounds.

Table 2 reports results for the covariance bound that can be derived when
no forecasting information is available for statistical analysis, that is the
bounds given in expression (3). The actual covariance is within the bounds
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TABLE 1
Wald tests and co-movement measures

Panel A: results from VAR estimation
Tests of restrictions expressions (10)

Lags 1 2 3
Country: US

Wald test:

asymptotic p-value 0.009 0.014 0.015
p-value from e.df. 0.014 0.026 0.029
Country: UK

Wald test:

asymptotic p-value 0.000 0.000 0.000
p-value from e.df. 0.000 0.000 0.000

Panel B: Co-movements between stock markets
Corr(Pys, Pux): 0470 Cou(Rys, Pux): 0.033877
Warranted co-movements estimated using expression (11):

Corr(Pys, Pyx) — Corr(Pys, Puk) 0.113 0.393 0.417
numerical std. error 0.339 0.205 0.179
std. error from e.d.f. 0.184 0.224 0.241
Cov(Pys, Pyx) — Cov(PBys, Pux) —0.029 —0.018 —0.011
numerical std. error 0.004 0.013 0.016
std. error from e.d.f. 0.023 0.027 0.028

Note: Sample period is 1919-89.

TABLE 2
Covariance bounds from equation (3) in the text

Actual Cov(Pys, Pyx) = 0.034
Lower bound Upper bound

(i) Var(P*) computed from time series of P*, using expression (7).
—0.008 0.045
(0.012) (0.027)
(i) var(P*)is computed from the estimated autocovariance function of fundamentals up to 30 lags,
using expression (8).
-0.010 0.036
(0.012) (0.019)

(iii) Var(P*)is computed from the estimated autocovariance function of fundamentals up to (n/4)
lags, where n is the number of observations, using expression (8):

—0.005 0.048
(0.012) (0.027)

Note: The numbers in parentheses are standard errors obtained from a Monte Carlo simulation. Sample period
is 1919-89.
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TABLE 3

Covariance bounds from equation (4) in the text

Actual Cov(Pys, Pyx) = 0.034
Lower bound

Upper bound

(i) Var(P*) computed from time series of P*, using expression (7).

Order ofthe VAR
1 —0.004 0.049
(0.012) (0.025)
2 0.003 0.046
(0.015) (0.030)
3 0.005 0.050
(0.027) (0.042)

(ii) Var(P*) is computed from the estimated autocovariance func-
tion of fundamentals up to 30 lags, using expression (8).

1 —0.003 0.034
(0.013) (0.019)
2 0.003 0.034
(0.014) (0.018)
3 0.008 0.033
(0.018) (0.020)

(iii) Var(P*) is computed from the estimated autocovariance func-
tion of fundamentals up to (n/4) lags, where n is the number of

observations, using expression (8).

1 0.001 0.047
(0.012) (0.025)

2 0.008 0.047
(0.014) (0.018)

3 0.013 0.046
(0.017) (0.019)

Note: Fach sub-panel reports results from VAR of order 1, 2 and 3. The
numbers in parentheses are standard errors obtained from a Monte Carlo
simulation. Sample period is 1919-89.

in all cases, but close to the upper bound. There is not much difference between
the results obtained by estimating the covariance matrix of the time series of
P* or by estimating the autocovariance function of fundamentals when only
(n/4) terms are included in the last. However, when 30 terms are considered
the upper bound gets closer to the actual value.

The same structure of results appears in Table 3, when the information set
contained in the estimated VAR is used for the covariance bounds given by
expression (4). Again, the actual covariance is usually within the bounds. Again
a long estimated autocovariance function tends to lower the upper bound.
Results from VARs of order 1, 2 and 3 are not very different from each other.

Finally, also the actual correlations, shown in Table 4 are in general inside
the bounds computed, using expression (5), by Monte Carlo methods. When
only one lag is used in the vector autoregression, the estimated correlation
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TABLE 4
Correlation bounds from equation (5) in the text

Actual corr(Rys, Pyx) = 0470
Lower bound Upper bound

(i) Var(P*)computed from time series of P*, using expression (7).

Order ofthe VAR
1

0212 0.929

(0.268) (0.106)

2 0.167 0.933
(0.298) (0.094)

3 0.187 0.932
(0.274) (0.058)

(if) Var(P*) is computed from the estimated autocovariance func-
tion of fundamentals up to 30 lags, using expression (8).

1 0.135 0.929
(0.185) (0.098)
2 0.437 0.940
(0.213) (0.082)
3 0.415 0919
(0.256) (0.061)

(ili) Var(P*)is computed from the estimated autocovariance func-
tion of fundamentals up to (n/4) lags, where n is the number of

observations, using expression (8).

1 —0.148 0.899
(0.268) (0.106)
2 0.183 0.932
(0.279) (0.093)
3 0.324 0.896
(0.248) (0.059)

Note: Fach sub-panel reports results from VAR of order 1, 2 and 3. The
numbers in parentheses are standard errors obtained from a Monte Carlo
simulation. Sample period is 1919-89.

bounds are extremely wide, allowing almost anything from no correlation to per-
fect positive correlation. The bounds are substantially tighter when more lags are
introduced, reflecting the information available in the further lagged values.

8. Conclusions

We are unable to reject the hypothesis that the covariance and correlation
between the US and UK log price-dividend ratios is in accordance with the
present value model. The bounds on covariances and correlations are quite
wide and usually embrace the actual covariance and correlations. Despite the
tendency of the US and UK stock markets to move somewhat together, even
to undergo boom markets and stock market crashes together, and despite the
casually asserted opinion that there could be no objective fundamental reason
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for these comovements, we do not find any evidence of excessive comovements.
The problem is that informative pooling could justify a large amount of
comovement between the markets: information pooling could justify the
covariance we documented between the US and UK markets even though there
is less covariance between fundamentals in the two markets.

This does not mean that if a larger information set were used we might have
been able to get narrower bounds on covariances and correlations, and might
then have been able to reject the model. Note also that in this paper, in contrast
with some results in Shiller (1989), time varying interest rates are used to
discount in the present value formulae.
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