This set of slides is an addendum to Lecture slides #10. It discusses the short-run effects of an increase in G (holding T fixed) on the interest rate i and investment I.

Remember from Prof. Jaynes' part of the course (p. 5 of his Lecture slides #10 and p. 8 of his Lecture slides #12), that real money demand depends on both Y and i:

$$\frac{M_d}{P} = kY - Zi$$

\[\downarrow \]

Warning! this is NOT the same τ as in our theory of aggregate supply.
Let's simplify things and suppose that M^d/p depends only on c: $\frac{M^d}{p} = \bar{M} - \bar{c}i$. This is analogous to our assumption that I depends only on c (in reality, it also depends positively on the amount of aggregate economic activity, Y).

Equilibrium in the money market requires $M^d = M^s$: nominal money demand = nominal money supply.

So if p rises, M^d rises too, so that i must rise to bring M^d back into equality with M^s. The increase in i reduces I, in turn reducing Y. This is why the AD curve slopes down!
• Now consider the effects of an increase in G. The AD curve shifts out, increasing P and Y. Because P increases, the real money supply \(M^s/p \) decreases, implying that the interest rate must increase in order to reduce real money demand \(M^d/p \) and bring it back into equality with real money supply \(M^s/p \). The increase in \(i \) reduces investment. So, in the short run, the increase in G raises Y, P, i, and C (because disposable income increases) and lowers I.

• In the long run, as discussed in detail in Lecture Slides #10, the increase in G raises P and i, leaves C and Y unchanged, and lowers I.