Robert E. Lucas (1990) famously asked, “Why Doesn’t Capital Flow from Rich to Poor Countries?” If there exist aggregate production functions representing approximately the same technology across countries, then the vastly higher output per worker in richer countries implies that capital per worker must be much higher in these countries, and diminishing returns implies a much lower rate of return to capital in rich than in poor countries. The details of the calculation depend, of course, on specific assumptions. However, the magnitudes are sufficiently large that the absence of massive capital flows to the poorest countries is properly seen as a fundamental puzzle.

Lucas considers the possibility that capital market imperfections permit the existence of a gap in the returns to capital across countries, but argues that this cannot account for most of the difference implied by his calculation. He, therefore, raises the possibility that there are huge differences in human capital across countries, and externalities associated with these differences imply that returns to physical capital are not so different across countries with even large differences in physical capital per worker. Accordingly, there is no mystery about the lack of physical capital flows.

In contrast, Abhijit V. Banerjee and Esther C. Duflo (2005) review a good deal of evidence, mostly from India, showing widely varying and often very high real interest rates. In addition,

*We are grateful to Marcus Noland for the initial conversation that led to this paper, to Erica Field, Barbara O’Brien and Yuichi Kitamura for valuable comments, and to Hyungi Woo, Tavneet Suri, and Patrick Amihere for research assistance. We thank the Institute for Statistical, Social and Economic Research at the University of Ghana for providing a superb research environment. Financial support was provided by the Pew Charitable Trusts project on The Moral and Social Dimensions of Microeconomic Behavior in Low-Income Communities.
they summarize a relatively smaller set of studies estimating rates of return to capital, again showing real rates of return often exceed 100%. In this note, we provide some evidence about rates of return to capital in Ghana’s informal sector, among entrepreneurs who might have particularly limited access to financial markets.

1 The Returns to Investment in a New Technology

We begin with the most direct and simple approach to calculating the return to capital: calculate the internal rate of return to investment in a sample of enterprises, using detailed information on production inputs and output. There are important data challenges associated with this effort, particularly given our goal of assessing returns for enterprises in a developing country’s informal sector. Difficulties arise, particularly for smaller enterprises in developing countries where personal and enterprise accounts are typically intermingled (for good reason, because in the context of imperfect financial markets, the ‘separation’ of production and consumption does not occur, and simple profit maximization no longer necessarily maximizes the utility of the entrepreneur). Questions regarding net income from the business have little meaning to many small scale entrepreneurs, and are unlikely to yield useful data. To get a reasonable estimate of enterprise-specific flows of revenue and costs requires detailed information on the associated transactions (Angus Deaton 1997, pp 29-32).

Markus P. Goldstein and Christopher R. Udry (1999) collected intensive data on inputs and outputs at the plot level for 1,659 plots cultivated by 435 farmers in 4 village clusters over a two year period in southern Ghana. Over the survey period, resident enumerators interviewed each farmer at approximately 6 week intervals. This relatively high frequency was designed to increase the accuracy of recall concerning plot specific farming activities, particularly regarding the use of household labor and the continual harvests of some staple crops.

We examine the return to investment on these plot level farming enterprises in southern Ghana. Long integrated into world trade, this region first produced palm oil and later cocoa for export. Since the mid-twentieth century the primary farming system has been based on an intercropped mixture of maize and cassava, food crops produced for nearby urban markets. A dramatic structural adjustment program in the 1980’s increased the relative price of tradeables,
and beginning in the 1990’s farmers in the area began to produce pineapple for export as fresh fruit to Europe (Timothy G. Conley and Christopher R. Udry 2005).

We calculate for each plot the internal rate of return to investment on that plot. Output (sold or not) is valued at village*survey round specific prices. Inputs are also valued at market prices; in particular, household labor is valued at village*survey round*gender specific wage rates. This valuation is appropriate if labor markets operate smoothly. Active labor markets exist in each of the villages, but there are transaction costs and information asymmetries associated with hired labor in the sample area. These market imperfections have implications for the appropriate definition of the returns from cultivation, which we ignore for the purposes of this exercise. Instead, we simply report the real internal rate of return for the investments on each plot, treating all inputs and outputs as costlessly tradeable.

In Figure 1, we report these returns by plot size, along with pointwise 95% confidence intervals. The distribution of internal rates of return is reported separately for the new and apparently highly profitable technology of pineapple cultivation and for other plots (primarily planted with an intercropped mixture of maize and cassava). In Figure 2, we present similar calculations of the magnitude of the investments made in these enterprises, again by plot size. The first point evident from the figures is that the return to investment in pineapple cultivation is extremely high. Even on the smallest plots, investment in pineapple cultivation earns a real rate of return of over 150%. On median-sized plots of one-third hectare, mean returns are over 250% per annum.

Second, rates of return are high even on plots cultivated with the traditional, well-established technology. Even on small plots at the tenth percentile of the size distribution, the mean real rate of return is 30%; the return rises to almost 50% for plots of a third of a hectare.

Finally, it can be seen in Figure 2 that the cost of cultivating pineapple is far higher than the cost of the traditional maize/cassava mixture. Approximately 500,000 Ghanaian cedis are required to cultivate a typical quarter-hectare pineapple plot (this was about US $250). There is a minimum plot size below which exporters will not send their refrigerated trucks to collect pineapple for transport. The total cost of cultivating even this small plot (approximately .135 ha) with pineapple is as large as the cost of cultivating a plot at the 97th percentile of the plot size distribution for non-pineapple plots. This finding lends some credence to the ubiquitous claim
by farmers in the area that lack of capital is the primary barrier to the adoption of pineapple cultivation.

It should be clear that these figures are not marginal rates of return to capital. These are average rates of return, albeit for very finely-defined, small (by global standards) investments. These returns are not adjusted for risk. Most importantly, it is not possible to distinguish the returns to entrepreneurship from those to capital. We have valued at market wages the time spent by the cultivator actually working on his or her farm, but we have no way of accounting for the value of his or her supervisory activity, nor for the effort that has been put into making decisions on the farm. This is a standard – and fundamental – difficulty with accounting approaches to estimating the return to capital. One component of the enormous observed gap between the measured returns to investment in pineapple and to investment in other crops may, of course, be precisely the unobserved return to innovation and experimentation.

2 Durable Goods and the Return to Capital

If these direct measures of the return to investment based on an accounting methodology provide an upper bound to the real marginal product of capital, we can use data on the relative prices of durable goods with different expected lives to provide a lower bound estimate of the return to capital. Ceterus peribus, as the rate of return to capital in a local economy rises, the equilibrium price of the more durable good falls relative to that of the less durable good.\(^2\)

We collected information on the prices and expected lives of groups of auto parts from a number of used auto parts dealers in Accra, the capital of Ghana. For example, we have data on two used fan blade motors for a Daewoo Tico sold by a single parts dealer. One can be expected to last for 1.5 years in constant use (in a hypothetical taxi running a particular route in the Ghanaian capital), while the other can be expected to last only 1 year. Each of our groups has these characteristics: each is defined as a number of units of a very specific part, used in a specific model of car, and is sold by a single dealer, varying (we hope) only by expected life. For each group, we have at least two observations. A research assistant accompanied by an experienced auto mechanic hired for this project collected data on both the prices and life expectancies of all of the parts. We have usable data on 56 pairs of parts.
We presume that price data were collected without error. We abstract from any problem of asymmetric information concerning part quality, but we do permit such information to be imperfect. In particular, we assume that there is proportional measurement error in the expected life of any part. Let \(p_{ik} \) be the price of part \(i \) in group \(k \), and \(T_{ik} \) be the reported expected life of that part. The actual expected life of the part is \(\tilde{T}_{ik} = T_{ik} \varepsilon_{ik} \) where \(\varepsilon_{ik} \) is a realization from the (lognormally distributed) proportional reporting error \(\varepsilon \).

We begin by assuming, counterfactually, that there exists a common opportunity cost of capital to all agents in a given local economy. In the next section, we discuss the interpretation of this estimate in the context of an economy with no financial markets that can serve to equalize this opportunity cost.

The expected present value of the cost of using part \(i \) from now to infinity is:

\[
PV_{ik} = \sum_{n=0}^{\infty} \frac{p_{ik}}{(1 + r)^n \tilde{T}_{ik}}
\]

(1)

In equilibrium the expected present value of the cost of each part in group \(k \) should be equal. For simplicity, presume that there are two parts (\(i \) and \(j \)) in each group:

\[
\sum_{n=0}^{\infty} \frac{p_{ik}}{(1 + r)^n \tilde{T}_{ik}} = \sum_{n=0}^{\infty} \frac{p_{jk}}{(1 + r)^n \tilde{T}_{jk}}
\]

(2)

Therefore, we have

\[
\frac{p_{ik}}{1 - (\frac{1}{1 + r})\tilde{T}_{ik}} = \frac{p_{jk}}{1 - (\frac{1}{1 + r})\tilde{T}_{jk}}.
\]

(3)

Given \((p_{ik}, p_{jk}, \tilde{T}_{ik}, \tilde{T}_{jk})\), it is possible to calculate the discount rate \(r \) \((> 0)\) that warrants the observed relative prices and durabilities of the two goods. Suppose for the moment that there is no measurement error in the expected life of each durable. We can then calculate for each part pair \(k \) the \(r_k \) that satisfies (3).

The method proposed here provides a lower bound estimate of the return to capital because we abstract from any costs associated with breakdowns of the durable good as it approaches the end of its useful life, and from search costs and the labor cost of installation. The latter pair of costs are likely to be relatively small in the context of this market (labor charges by mechanics are small, and most purchasers do self-installation during the constant process of
tinkering with their taxis to keep them running). The cost of breakdowns, however, loom large in conversations with drivers.

The median of these r_k is 32%; the mean is 66%. These might serve as appropriate alternative estimates of this lower bound to the real opportunity cost of capital in this local economy.

However, these are arbitrary calculations. Why should the appropriate discount rate r vary across pairs of durable goods? These are equilibrium prices in a single, narrowly-defined market. Instead, we can define the maximum likelihood estimate of the real opportunity cost of capital.

Letting $\beta = \frac{1}{1+r}$ and recalling that $T_{ik} = T_{ik}e_{ik}$, we can re-arrange (3):

$$\frac{1 - \beta(T_{ik}e_{ik})}{1 - \beta(T_{jk}e_{jk})} = \frac{p_{ik}}{p_{jk}}$$

(4)

Without loss of generality, choose indices such that $p_{ik} > p_{jk}$ (i is the durable in ‘better’ condition). Given a value of r (and thus β), for any observation $(p_{ik}, p_{jk}, T_{ik}, T_{jk})$, there is a unique function $e_{ik}^*(e_{jk})$ such that (4) is satisfied:

$$e_{ik}^* = \frac{1}{T_{ik} \ln \beta} (\ln(PV_{jk} - p_{ik}) - \ln(PV_{jk}))$$

(5)

The domain of (5) are those e_{jk} such that $PV_{jk} - p_{ik} > 0$ (if the cost of a single purchase of i is as great as the present value of purchasing an infinite stream of j, there is no measurement error e_{ik} that can satisfy (4)). Thus

$$e_{jk} < e_{jk}^*(\beta, p_{ik}, p_{jk}, T_{jk})$$

(6)

Our data is $(T_{ik}, T_{jk}, p_{ik}, p_{jk})$ for $k = 1, ..., N$. We model (e_{ik}, e_{jk}) as independently drawn realizations of the lognormally distributed proportional measurement error e. Then for each observation k, (5) and (6) describe the set ${\{(e_{ik}, e_{jk})| e_{ik} = e_{ik}^*(e_{jk}), 0 < e_{jk} < e_{jk}^*\}}$. Let λ_k denote an unobserved random effect that selects one pair from this set; in particular, $e_{jk} = \lambda_k e_{jk}^c$, for $\lambda_k \in (0, 1)$ (James J. Heckman and Burton H. Singer 1984). We let λ take on a discrete set of values $\Lambda = \{\lambda^1, ..., \lambda^l, ..., \lambda^m\}$, with associated probabilities p^l. Thus $e_{jk}^l \equiv \lambda^l e_{jk}^c$ and $e_{ik}^l \equiv e_{ik}^*(e_{jk}^l)$. and the contribution of pair k to the likelihood is

$$\sum_{l=1}^{m} p^l h(e_{ik}^l, e_{jk}^l; \sigma)$$

(7)
where \(h \) is the bivariate log normal density with means 1, variance \(\sigma \) and covariance 0. Our point estimate for \(r \) is .60, with a standard error of .02.4.

3 Durable Goods and the Return to Capital without Financial Markets

If the individuals purchasing the durables considered in section 2 all faced a common real interest rate in a smoothly operating credit market, then that section provides a method for estimating that rate. Of course, in that case one could simply gather data on the interest rate to know the return to capital in that economy. What does the relative price of durables with different durability tell us about the returns to capital when financial markets are not so perfect?

Consider the opposite extreme case, in which financial markets are entirely absent and profit-maximizing entrepreneurs move resources through time only via production, or through holding durable assets. A simple two-period model suffices to clarify the relationship between prices and the return to capital in this case. There is a continuum of individuals of measure 1 indexed by \(i \). Individual \(i \) has an endowment (\(k_{i0}^u \)) of used capital which is tradeable at price \(p_0^u \) within the local economy. She can purchase a costlessly storable, internationally tradable good (whose price is normalized to unity), or purchase new capital \(k_{i0}^n \) at price \(p_0^n \) to use in production of that good. New and used capital is identical, except that after production \(k_{i0}^n \) depreciates into valueless waste, while \(k_{i0}^n \) depreciates into \(k_{i1}^n \). We presume that new capital is also internationally tradeable, and choose units to normalize its price to unity as well. In period 0, \(i \)'s endowment is \(y_{i0} = p_0^u k_{i0}^u \). \(i \)'s endowment in period 1, then, is

\[
y_{i1} = f(k_{i0}^n + k_{i0}^u) + p_1^u k_{i0}^n + (y_{i0} - k_{i0}^n - p_0^u k_{i0}^u). \tag{8}
\]

The first term is the value of output of the good, the second is the value of the new capital purchased in period 0 which has now become used, and the third is the value of the good purchased in period 0 and stored until period 1. In period 1, new and used capital is again used to produce the tradeable good, which is then consumed:

\[
c_i = f(k_{i1}^n + k_{i1}^u) + p_2^u k_{i1}^n + (y_{i1} - k_{i1}^n - p_1^u k_{i1}^u). \tag{9}
\]
i’s problem is to choose new and used capital each period to maximize consumption c_i, subject to (8), (9), the budget constraints $y_{it} - k_{it}^n - p_{1i}^u k_{it}^u \geq 0$, and the non-negativity constraints $k_{it}^n, k_{it}^u \geq 0$ for $t = 0, 1$.

There is no production after period 1, so $p_{2i}^n = 0$. If $p_{1i}^u < 1$, then $k_{i1}^u = 0$ (because used capital has no value after period 1). Let k_{i1}^* be defined by $f'(k_{i1}^*) = p_{1i}^u$. Then if $y_{i1} \geq p_{1i}^u k_{i1}^*$, $k_{i1}^u = k_{i1}^*$. Otherwise, $k_{i1}^u = \frac{y_{i1}}{p_{1i}^u}$. For all i, $\frac{dk_{i1}^u}{dp_{1i}^u} < 0$. Given the purchases of k_{i0}^u by all the agents in period 0 (which becomes the inelastic supply of used capital in period 1), there is a unique equilibrium p_{1i}^u that sets demand equal to supply for used capital.6

In period 0, given prices p_{0i}^u and p_{1i}^u, there are 3 different behaviors, depending upon the agent’s endowment. A range of ‘middle wealth’ agents use both used and new capital, setting their capital stock k_i^* such that $f'(k_{ie}^*) + p_{1i}^u = \frac{f'(k_{ie}^*)}{p_{0i}^u}$, or

$$f'(k_{ie}^*) = \frac{p_{1i}^u p_{0i}^n}{p_{1i}^u - p_{0i}^u}$$

(10)

The lower bound of this range is the individual i with endowment $k_{ie}^u = k_{ie}^*$; this agent keeps all of her endowment in used capital. Agents with higher endowments maintain a constant productive capital stock by purchasing more expensive new capital in period 0. The upper bound of the endowment range of those who hold both new and used capital in period zero is the agent with an endowment $k_{ie}^u = \frac{k_{i1}^*}{p_{0i}^u}$.

Agents with endowments larger than $\frac{k_{i1}^*}{p_{0i}^u}$ purchase only new capital, and for these agents

$$f'(k_{i0}^u) < \frac{p_{1i}^u p_{0i}^n}{p_{1i}^u - p_{0i}^u}$$

(11)

(there is a further lower bound to the marginal product of capital, provided by the storability of the good. Wealthy agents will never push $f'(k_{i0}^u)$ below $1 - p_{1i}^u$). In contrast, agents with endowments k_{ie}^u lower than k_{ie}^* purchase only used capital, and for these agents

$$f'(k_{i0}^u) > \frac{p_{1i}^u p_{0i}^n}{1 - p_{0i}^u}$$

(12)

From (10)-(12) it is straightforward to derive the demand for new and used capital by each agent. It can be shown (albeit not in the context of this short note), that for strictly concave f, there is a unique equilibrium pair (p_{0i}^u, p_{1i}^u) that equalizes supply and demand for used goods in each period for any given distribution of endowments k_{ie}^u, subject to minimal regularity conditions.
In an economy with missing financial markets in which both new and used goods are purchased, the price of the less durable good relative to the more durable good reveals information about the returns to capital. Consider marginal purchasers – those indifferent between purchasing more and less durable capital goods. (10) shows that the marginal product of capital for these agents increases as the price of the used (less durable) good rises towards 1 (the price of the more durable good). The returns to capital for those agents who purchase only the least durable goods, of course, is always even larger.

4 Conclusion

We have provided evidence that the rate of return to capital in Ghana’s informal sector is quite high. For farmers, we find real returns in the range of 250 – 300% p.a. in the new technology of pineapple cultivation, and 30 – 50% in well-established food crop cultivation. We then turn to an examination of the relative prices of durable goods of varying durability, noting that the price of less durable goods rises relative to that of more durable goods as the opportunity cost of capital becomes higher. From this exercise, we can estimate the lower bound of the marginal return to capital as revealed in an equilibrium price, not subject to the standard biases associated with production function estimates. Our estimate of the real return to capital in Ghana’s informal sector using this method is 60%.

These high observed returns to investment in Ghana, therefore, bring us full circle. Why doesn’t capital flow from rich to poor countries? We suggest that financial market imperfections that make flows of capital into the informal sector are likely an important component of the explanation.
References

Notes

1These are Fan locally-weighted regressions with a quartic kernel and a bandwidth of .5. The estimates of the pointwise standard errors are obtained from 100 bootstrap replications. Plot areas are based on GPS mapping of each plot. This procedure yields much more accurate measures of plot size than are available in most surveys in Africa.

2Jerry A. Hausman (1979) uses the same core idea, in a very different context and with an alternative statistical methodology to estimate individual discount rates. The method that we outline below is applicable in a wide variety of contexts. For example, it would be interesting to use data from online auctions of used parts in the United States to investigate marginal returns to capital in the US.

3The domain condition is that
\[
\varepsilon_{jk} < \frac{\ln(p_{ik} - p_{jk}) - \ln p_{ik}}{T_{jk} \ln \beta} \equiv \varepsilon_{jk}^c.
\]

4The variance of \(\varepsilon \) is estimated as .05 (standard error .01). \(\Lambda \equiv \{1/4, 1/2, 3/4\} \), and we estimate \(p_1 = .07 \) (.04) and \(p_2 = .52 \) (.07). The likelihood function is not globally concave, but this is the local interior optimum with the highest likelihood.

5We abstract from the use of labor in production, a simplification which changes nothing of substance below.

6And this equilibrium price will be positive for sufficiently productive \(f \).
Figure 1: Rates of Return by Plot Size

with 2 s.e. pointwise confidence interval

- Return on Pineapple Plots
- Return on Non-Pineapple Plots
Figure 2: Investment by Plot Size

with 2 s.e. pointwise confidence interval

- Blue: Investment on Pineapple Plots
- Pink: Investment on Non-Pineapple Plots