Roll the DICE Again: Economic Models of Global Warming

Appendix B

William D. Nordhaus and Joseph Boyer

Yale University
October 25, 1999

Note: This is the “manuscript edition” of the book by the same title to be published by MIT Press. The manuscript edition is for the personal use of readers and may not be sold or used without the written permission of MIT Press.

Version is DICE v.101599
Appendix B. Equations of DICE-99

(B.1) \[W = \sum_{t} U[c(t),L(t)]R(t) \]

(B.2) \[R(t) = \prod_{v=0}^{t} [1 + \rho(v)]^{-10} \]

\[\rho(t) = \rho(0)\exp(-g^\rho t) \]

(B.3) \[U[c(t),L(t)] = L(t) \{ \log[c(t)] \} \]

(B.4) \[g^{\text{pop}}(t) = g^{\text{pop}}(0)\exp(-\delta^{\text{pop}} t) \]

\[L(t) = L(0)\exp\left(\int_{0}^{t} g^{\text{pop}}(t)\right) \]

(B.5) \[Q(t) = \Omega(t)(1-b_1(t)\mu(t)b_2)A(t)K(t)^\gamma L(t)^{1-\gamma} \]

(B.6) \[g^A(t) = g^A(0)\exp(-\delta^A t) \]

\[A(t) = A(0)\exp\left(\int_{0}^{t} g^A(t)\right) \]

(B.7) \[\Omega(t) = 1/[1+D(t)] \]

(B.8) \[D(t) = \theta_1 T(t) + \theta_2 T(t)^2 \]

(B.9) \[g^b(t) = g^b(0) \exp(-\delta^b t) \]

\[b_1(t) = b_1(t-1)/(1+g^b(t)) \]

\[b_1(0) = b_1^* \]

(B.10) \[E(t) = (1-\mu(t))\sigma(t)A(t)K(t)^\gamma L(t)^{1-\gamma} \]

(B.11) \[g^\sigma(t) = g^\sigma(0)\exp(-\delta^\sigma t - \delta^\sigma t^2) \]
\[\sigma(t) = \sigma(t-1)/(1 + g^\sigma(t)) \]
\[\sigma(0) = \sigma^* \]

(B.12) \[Q(t) + \tau(t)[\Pi(t) - E(t)] = C(t) + I(t) \]

(B.13) \[\Pi(t) = E(t) \]

(B.14) \[c(t) = C(t)/L(t) \]

(B.15) \[K(t) = K(t-1)(1-\delta_K)^{10} + 10 \times I(t-1) \]
\[K(0) = K^* \]

(B.16) \[LU(t) = LU(0)(1-\delta_i)^t \]
\[ET(t) = E(t) + LU(t) \]

(B.17a) \[M_{AT}(t) = 10 \times ET(t) + \phi_{11} M_{AT}(t-1) - \phi_{12} M_{AT}(t-1) + \phi_{21} M_{UP}(t-1) \]
\[M_{AT}(0) = M_{AT}^* \]

(B.17b) \[M_{UP}(t) = \phi_{22} M_{UP}(t-1) + \phi_{12} M_{AT}(t-1) - \phi_{21} M_{UP}(t-1) + \phi_{32} M_{LO}(t-1) - \phi_{23} M_{UP}(t-1) \]
\[M_{UP}(0) = M_{UP}^* \]

(B.17c) \[M_{LO}(t) = \phi_{33} M_{LO}(t-1) - \phi_{32} M_{LO}(t-1) + \phi_{23} M_{UP}(t-1) \]
\[M_{LO}(0) = M_{LO}^* \]

(B.18) \[F(t) = \eta \{ \log[M_{AT}(t)/M_{AT}^{pl}] / \log(2) \} + O(t) \]
\[O(t) = -0.1965 + 0.13465t \quad t < 11 \]
\[= 1.15 \quad t > 10 \]

(B.19) \[T(t) = T(t-1) + \sigma_1 \{ F(t) - \lambda T(t-1) - \sigma_2 [T(t-1) - T_{LO}(t-1)] \} \]
\[T(0) = T^* \]
(B.20) \[T_{LO}(t) = T_{LO}(t-1) + \sigma_{3}[T(t-1) - T_{LO}(t-1)] \]

\[T_{LO} = T_{LO}^* \]