Gender, Children and Intrahousehold Distribution

Missing Women

Amartya Sen - about 100 million women missing

A ‘missing woman’ is one who was born but who died more rapidly relative to men than would be expected ‘in absence of discrimination’:

\[\# \text{ of missing} = \text{total population} \times \text{gender ratio in SSA or Europe-North America} - \text{number of women}. \]
Table 4.1 Female–male ratio (FMR) and ‘missing women’, 1986

<table>
<thead>
<tr>
<th>Region</th>
<th>FMR</th>
<th>Missing women in relation to sub-Saharan African FMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number (millions)</td>
</tr>
<tr>
<td>Europe</td>
<td>1.050</td>
<td>2.4</td>
</tr>
<tr>
<td>Northern America</td>
<td>1.047</td>
<td>4.4</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>1.022</td>
<td>4.3</td>
</tr>
<tr>
<td>South-east Asia</td>
<td>1.010</td>
<td>1.4</td>
</tr>
<tr>
<td>Latin America</td>
<td>1.000</td>
<td>44.0</td>
</tr>
<tr>
<td>North Africa</td>
<td>0.984</td>
<td>3.7</td>
</tr>
<tr>
<td>West Asia</td>
<td>0.948</td>
<td>36.9</td>
</tr>
<tr>
<td>Iran</td>
<td>0.942</td>
<td>5.2</td>
</tr>
<tr>
<td>China</td>
<td>0.941</td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0.940</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>0.905</td>
<td></td>
</tr>
</tbody>
</table>

Notes: (i) The number of ‘missing women’ for a particular country is calculated as the difference between (1) the number of women the country would have if its FMR was the same as that of sub-Saharan Africa (i.e. 1.022), given its actual male population, and (2) the number of women it actually has. The proportion of ‘missing women’ is the ratio of missing women to the actual number of women in a particular country. (ii) ‘Sub-Saharan Africa’ here includes all of Africa except North Africa and South Africa.

Source: Calculated from data on male and female populations provided in UN Demographic Yearbook 1986, Tables 2 and 3. This publication does not give separate male and female population figures for India. The Indian figures are therefore based on the female–male ratio of the 1981 census and the 1986 population total, respectively provided in ILO Yearbook of Labour Statistics 1988, Table 1, and World Development Report 1988, Table 27.

Figure 1: From Hunger and Public Action, by Dreze & Sen
Infanticide? - from Duflo Class notes

- Mortality at birth (from 0-1 month) in Punjab - nope
 - Male - 51
 - Female - 43
 - Ratio 1.18

- Ratio male/female mortality at other ages
 - 1-11 mnths: 0.53
 - 12-23 mnth: 0.51
 - 24-59 mnths: 0.65

- That’s key - much higher mortality for girls. Look at neglect.
• maternal mortality causes another jump

• selective abortion?
Deaton - cost of kids (see Deaton, section 4.2)

Let A be a set of adult goods. Two stage budgeting:

$$q_i^A = g_i(x^A, p, z^C, z^A)$$

$$x^A = \theta(y, p, z^C, z^A)$$

suppose

$$\frac{\partial g_i()}{\partial z^C} = 0$$

for some set of goods $i \in A$ and $q_i^C = 0 \ \forall i \in A$. Then

$$\frac{\partial q_i^A}{\partial z^C} = \frac{\partial g_i}{\partial x^A} \frac{\partial \theta}{\partial z^C} = \frac{\partial \theta}{\partial z^C}$$

measures the reduction in adult expenditures per kid. Both of the terms on the rhs can be estimated. Suppose

- 1 more kid is associated with a reduction of, say, $100 in tobacco expenditure, and
• 1 more dollar of income is associated with an increase of $0.1 in tobacco exp.

Then having that kid is like having $1000 less to spend on adult stuff.

Now compare these figures for girls and boys.

note: ratio (1) should be the same for all goods \(i \in A \), so it can be tested.

Findings:

In Maharashtra (with a disastrous excess female mortality) we find no difference in these ratios by gender. Repeated other places, nothing striking comes out.

WHY?
- substitution effects

- girls need more

- subtle discrimination

- selection

- male goods

- addictive goods

- emergency interventions
Rose (1999) argues the latter.

In drought, female mortality rises relative to male mortality.